EP1881551A1 - Wave guide manifold - Google Patents
Wave guide manifold Download PDFInfo
- Publication number
- EP1881551A1 EP1881551A1 EP07013103A EP07013103A EP1881551A1 EP 1881551 A1 EP1881551 A1 EP 1881551A1 EP 07013103 A EP07013103 A EP 07013103A EP 07013103 A EP07013103 A EP 07013103A EP 1881551 A1 EP1881551 A1 EP 1881551A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- chamfer
- connecting pieces
- manifold
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005058 metal casting Methods 0.000 claims 1
- 238000005452 bending Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 6
- 230000007704 transition Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/02—Bends; Corners; Twists
- H01P1/022—Bends; Corners; Twists in waveguides of polygonal cross-section
Definitions
- the invention relates to a waveguide header according to the preamble of claim 1.
- Waveguides are known to be used in microwave technology. Waveguides represent the basic element in waveguide technology. Waveguides are available in various lengths, cross-sectional shapes and sizes. Hollow waveguides often have a rectangular cross section. But also round cross-sectional shapes for waveguides are known. Usually, such waveguides are provided at the beginning and at the end with a flange so as to connect successive waveguide sections firmly together. In a waveguide section usually the cross section is obtained. But also transitions from one cross-sectional shape to another cross-sectional shape are known.
- waveguide headers or waveguide angles are used.
- waveguide angles are 90 ° elbows, where the direction of the electric field lines (E-bend, E-angle), so in the rectangular waveguide on the broadside, or the direction of the magnetic field lines (A-bend, A-angle), so in rectangular waveguides in the direction of the narrow side changes ,
- Such waveguide manifolds are basically from the publication " Erich Pehl, Microwave Technology, Volume 1, Waveguides and Line Components, Dr. med. Alfred Bachig Verlag Heidelberg, 1988, pages 172-175 "as well as, for example” Walter Jansen, waveguide and stripline, dr. Alfred Bachig Verlag Heidelberg, 1977, pages 101 to 104
- a so-called H-manifold and with reference to Figure 6.1 c a so-called e-manifold reproduced.
- a 90 ° -Hohlleiterkrümmer is also from the EP 0 285 295 A1 known.
- the 90 ° waveguide manifold has an edge length according to an embodiment of Figure 2 of this prior publication, which is indicated with a size of 0.900 inches.
- the length L from the beginning of the bevel to the 90 ° corner point in the case of optimizing the E-plane waves is 0.700 inches and for optimizing the H-plane wave is 0.642 inches at one edge length of the waveguide cross section of 0.900 inches.
- Object of the present invention is based on the above-mentioned generic state of the art with a square in cross section waveguide
- a 90 ° -Hohlleiterkrümmer ie a 90 ° -Hohlleiterwinkel, which should be produced by casting, with a cost-effective and reliable adaptation to existing LNB's should be possible, and this with respect to the prior art again improved electrical properties in terms the propagation of the electromagnetic waves (ie both the E and the H-plane waves) in the waveguide.
- the invention provides a 90 ° -Hohlleiterkrümmer, which can be used due to its square waveguide cross-section equally as E-manifold for electric field lines or as H-manifold for magnetic field lines.
- a round waveguide has the disadvantage that relatively large bending radii necessary are, ie a space-saving 90 ° -Knick is not feasible.
- the inventive 90 ° waveguide bend is particularly suitable for a frequency range of 10.7 to 12.75 GHz, namely for vertical and horizontal polarization (parallel alignment to the two mutually perpendicular axes of the square cross-section of the waveguide).
- the waveguide bend according to the invention can be used with equally good properties for other frequency ranges comparable comparable bandwidth (around +/- 10% relative to the center frequency).
- Decisive is the edge length of the waveguide, which then has to be scaled accordingly.
- the edge length is e.g. 15 mm.
- the two mutually perpendicular waveguide sections are connected in the 90 ° -Krümmer Scheme so that the internal 90 ° corner point outside connecting side is an edge length of a ⁇ 2, where a is the edge length of the square waveguide.
- the length of the bend thus corresponds to a diagonal in a square with the edge length a.
- a deviating geometry in which the chamfer of the compensated corner in the 90 ° bend region corresponds to the edge length a of a square waveguide, wherein slight deviations of less than 0.1% can still be regarded as sufficient in the sense of the invention.
- the inner dimension of the waveguide must always be taken into account, and not the outer lengths, taking into account the wall thicknesses.
- this elbow does not necessarily have to have an extant 90 °.
- it can also be a manifold which is designed for an angular range between 70 ° to 110 °, especially for an angular range between 80 ° and 100 ° or in particular for an angular range between 85 ° to 95 °.
- the subject of the invention is not a square in cross-section, but a rectangular in cross section waveguide manifold.
- the waveguide manifold in the transition region has no bevel comparable to the present invention, but that here stepped heels are incorporated into the waveguide material. These may be a few large-sized steps or a plurality of steps, which are formed according to the number of stages with a smaller step height. In the context of the invention, however, it has been shown that such an embodiment does not lead to the desired properties, as can be realized within the scope of the invention.
- FIG. 1 shows, in a schematic 3D representation, an exemplary embodiment of a 90 ° waveguide manifold according to the invention, which comprises two mutually perpendicular, straight waveguide connecting pieces 1.
- These waveguide connecting pieces 1 have a square cross-section, with an edge length a.
- the housing wall is made of electrically conductive material, in particular of metal.
- This is preferably a cast material, since the waveguide according to the invention is to be produced in a casting process.
- zinc, brass and / or aluminum is used as cast or die cast materials.
- Other materials or combinations of materials and alloys are also conceivable.
- the waveguide angle according to the invention does not necessarily have to be produced in a casting process. Other manufacturing methods and methods are possible.
- a waveguide material made of nonconductive, dielectric material may also be considered if it is coated with an electrically conductive layer.
- the waveguide connecting pieces 1 at their end face open connection side 3 nor a circumferential flange, to which the waveguide manifold thus formed with a subsequent, usually straight waveguide connector or, for example, a waveguide terminal of an LNB or other components are connected can.
- the 90 ° waveguide bend or waveguide angle has an inner edge 5 on which the inner wall sections 7 of the two waveguide connecting pieces 1 converge at a 90 ° angle.
- the left in Figure 1 inner wall portion 7 and also belonging to the left waveguide connector 1 outer wall portion 9 are parallel to each other.
- the inner and the outer wall portion 7, 9 of the right in Fig. 1 lying waveguide connection piece 1 are aligned parallel to each other.
- the inner and outer wall portion 7, 9 of the left-lying waveguide connecting piece 1 are then aligned perpendicular to the inner and outer wall portions 7, 9 of the right in Figure 1 waveguide connector 1.
- a chamfer 19 which is perpendicular and symmetrical to the bisector 21 of the 90 °, is provided on the inside 90 ° edge 5, which runs perpendicular to the plane of the drawing in plan view according to FIG Smash runs.
- the chamfer 19 has in plan view according to FIG. 2 a length which corresponds to the edge length a of the waveguide connecting pieces 1, which are square in cross-section. Such dimensioning provides the best transmission conditions for the propagation of an electromagnetic wave in this waveguide elbow. Deviations from the edge length a for the chamfer 19 in the propagation direction of the electromagnetic waves of less than 0.5% are still sufficient to achieve the desired result.
- the length of the designated as bevel 19 and preferably in a 135 'angle to the alignment of the waveguide connecting pieces 1 extending wall corresponds to the edge length a, that is to say has the same length as the edge length at the opening region of the waveguide connecting pieces 1.
- This length of the chamfer 19 is thus measured in the direction of the plane of curvature. Since the height in the direction perpendicular thereto in the waveguide manifold likewise has the edge length a, the wall defined by the bevel 19 thus has a square shape, since not only the length but also the height perpendicular thereto corresponds to the edge length a.
- the waveguide curvature can also have other values and is not necessarily limited to 90 °.
- the waveguide manifold could have a curvature between 80 ° to 100 ° or less, for example between 85 ° and 95 ° or between 87 ° and 93 °, in particular between 89 ° and 91 °.
- a 90 ° -Hohlleiterkrümmer in the context of the invention a manifold understood that has one of the above-mentioned angle ranges.
- the dimensions given above with regard to the edge length with the dimension a as well as with respect to the length of the bevel with the length a in each case relate to the internal dimension of the waveguide sections.
- the waveguide elbow can have an arbitrarily thick wall with an arbitrarily thick wall thickness, so that the outer dimension at the edge length or the outer dimension at the bevel can deviate from the length a.
- the waveguide inner dimension with respect to the square opening has with respect to the waveguide channel in the longitudinal and transverse directions of the square Waveguide an edge length a, wherein the inside of the waveguide inner piece measure of the chamfer has the length a and a height with the clear inner dimension a.
- the outer contours can also be angular in the area of the so-called bevel.
- the compensating wall sections 23 shown in the figures can be made longer and terminate at right angles to one another with the formation of an outer vertical edge, as if no bevelled wall 19 were provided internally as the boundary wall of the waveguide channel. Because as stated, only the measurement and the design of the waveguide elbow with respect to the waveguide channel limiting inner walls is crucial. In other words, all of the walls explained above represent the inner walls and / or surfaces that bound the waveguide channel to the outside.
Landscapes
- Waveguides (AREA)
Abstract
Description
Die Erfindung betrifft einen Hohlleiterkrümmer nach dem Oberbegriff des Anspruches 1.The invention relates to a waveguide header according to the preamble of
Hohlleiter werden bekanntermaßen in der Mikrowellentechnik eingesetzt. Hohlleiter stellen das Grundelement in der Hohlleitertechnik dar. Hohlleiter gibt es in verschiedenen Längen, Querschnittsformen und Größen. Häufig weisen Hohlwellenleiter einen rechteckförmigen Querschnitt auf. Aber auch runde Querschnittsformen für Hohlleiter sind bekannt. Üblicherweise werden derartige Hohlleiter am Anfang und am Ende mit einem Flansch ausgestattet, um so aufeinander folgende Hohlleiterabschnitte fest miteinander zu verbinden. In einer Hohlleiterstrecke bleibt üblicherweise der Querschnitt erhalten. Aber auch Übergänge von einer Querschnittsform in eine andere Querschnittsform sind bekannt.Waveguides are known to be used in microwave technology. Waveguides represent the basic element in waveguide technology. Waveguides are available in various lengths, cross-sectional shapes and sizes. Hollow waveguides often have a rectangular cross section. But also round cross-sectional shapes for waveguides are known. Usually, such waveguides are provided at the beginning and at the end with a flange so as to connect successive waveguide sections firmly together. In a waveguide section usually the cross section is obtained. But also transitions from one cross-sectional shape to another cross-sectional shape are known.
Häufig stellt sich die Aufgabe, in einer Hohlleiterstrecke eine Richtungsänderung vorzusehen. Dafür werden sogenannten Hohlleiterkrümmer oder Hohlleiterwinkel verwendet. Meistens handelt es sich dabei um 90°-Krümmer, bei denen sich die Richtung der elektrischen Feldlinien (E-Krümmer, E-Winkel), also bei der Rechteckhohlleitung über die Breitseite, oder die Richtung der magnetischen Feldlinien (A-Krümmer, A-Winkel), also bei Rechteckhohlleitern in Richtung der schmalen Seite, ändert.Frequently, the task arises to provide a direction change in a waveguide route. For this purpose, so-called waveguide headers or waveguide angles are used. Most of these are 90 ° elbows, where the direction of the electric field lines (E-bend, E-angle), so in the rectangular waveguide on the broadside, or the direction of the magnetic field lines (A-bend, A-angle), so in rectangular waveguides in the direction of the narrow side changes ,
Derartige Hohlleiter-Krümmer sind grundsätzlich aus der Veröffentlichung "
Ein 90°-Hohlleiterkrümmer ist auch aus der
Aufgabe der vorliegenden Erfindung ist es, ausgehend von dem vorstehend genannten gattungsbildenden Stand der Technik einen im Querschnitt quadratischen Hohlleiter mit einem 90°-Hohlleiterkrümmer, also einem 90°-Hohlleiterwinkel zu schaffen, der in Gusstechnik herstellbar sein soll, wobei eine kostengünstige und zuverlässige Adaption an bestehende LNB's möglich sein soll, und dies bei gegenüber dem Stand der Technik nochmals verbesserten elektrischen Eigenschaften im Hinblick auf die Ausbreitung der elektromagnetischen Wellen (also sowohl der E- als auch der H-Ebenen-Wellen) im Hohlleiter.Object of the present invention is based on the above-mentioned generic state of the art with a square in cross section waveguide To provide a 90 ° -Hohlleiterkrümmer, ie a 90 ° -Hohlleiterwinkel, which should be produced by casting, with a cost-effective and reliable adaptation to existing LNB's should be possible, and this with respect to the prior art again improved electrical properties in terms the propagation of the electromagnetic waves (ie both the E and the H-plane waves) in the waveguide.
Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved according to the features specified in
Die Erfindung schafft einen 90°-Hohlleiterkrümmer, der aufgrund seines quadratischen Hohlleiter-Querschnittes gleichermaßen als E-Krümmer für elektrische Feldlinien oder aber auch als H-Krümmer für magnetische Feldlinien eingesetzt werden kann.The invention provides a 90 ° -Hohlleiterkrümmer, which can be used due to its square waveguide cross-section equally as E-manifold for electric field lines or as H-manifold for magnetic field lines.
In einem wie im Rahmen der Erfindung vorgesehenen quadratischen Hohlleiter sind grundsätzlich zwei zueinander orthogonale Moden ausbreitungsfähig. Üblicherweise würde allerdings bei einem derartigen, im Querschnitt quadratischen 90°-Krümmer eine Rückfluss- und Durchgangsdämpfung auftreten, die für den praktischen Gebrauch ungenügende elektrische Werte ergeben würde.In a square waveguide as provided in the invention, basically two mutually orthogonal modes are capable of propagation. Typically, however, with such a square cross-sectional 90 ° bend, there would be reflux and transmission loss which would result in insufficient electrical values for practical use.
Von daher ist es im Stand der Technik üblich, beide senkrecht zueinander stehenden Moden getrennt über eigene Rechteck-Hohlleiter oder beide Moden gemeinsam über einen Rund-Hohlleiter zu führen. Ein Rund-Hohlleiter weist dabei den Nachteil auf, dass relativ große Biegeradien notwendig sind, d.h. ein platzsparender 90°-Knick nicht durchführbar ist.It is therefore customary in the prior art to guide both mutually perpendicular modes separately via their own rectangular waveguide or both modes together via a circular waveguide. A round waveguide has the disadvantage that relatively large bending radii necessary are, ie a space-saving 90 ° -Knick is not feasible.
Der erfindungsgemäße 90° -Hohlleiter-Knick eignet sich insbesondere für einen Frequenzbereich von 10,7 bis 12,75 GHz, nämlich für vertikale und horizontale Polarisation (Parallelausrichtung zu den beiden senkrecht zueinander stehenden Achsen des quadratischen Querschnitts des Hohlleiters).The inventive 90 ° waveguide bend is particularly suitable for a frequency range of 10.7 to 12.75 GHz, namely for vertical and horizontal polarization (parallel alignment to the two mutually perpendicular axes of the square cross-section of the waveguide).
Der erfindungsgemäße Hohlleiter-Knick kann mit gleich guten Eigenschaften auch für andere Frequenzbereiche vergleichbarer relativer Bandbreite (rund +/- 10% bezogen auf die Mittenfrequenz) angewendet werden. Entscheidend ist die Kantenlänge des Hohlleiters, welche dann entsprechend zu skalieren ist. Für den angegebenen Frequenzbereich beträgt die Kantenlänge z.B. 15 mm.The waveguide bend according to the invention can be used with equally good properties for other frequency ranges comparable comparable bandwidth (around +/- 10% relative to the center frequency). Decisive is the edge length of the waveguide, which then has to be scaled accordingly. For the specified frequency range, the edge length is e.g. 15 mm.
Überraschend ist, dass im Rahmen der Erfindung ein Hohlleiterkrümmer geschaffen wird, dessen 90°-Winkel oder dessen 90°-Knick für beide Polarisationen gute elektrische Übertragungseigenschaften inklusive der Kreuzpolarisations-Entkopplung aufweist.It is surprising that within the scope of the invention a waveguide manifold is provided whose 90 ° angle or its 90 ° bend has good electrical transmission properties including the cross-polarization decoupling for both polarizations.
Zur Umsetzung derartiger 90°-Hohlleiter ist bereits vorgeschlagen worden, den Übergang als kontinuierlichen Bogenabschnitt (in Seitenansicht also als teilkreisförmiges Rechteckrohr) auszubilden.For the implementation of such 90 ° waveguide has already been proposed to form the transition as a continuous arc section (in side view so as part-circular rectangular tube).
Die üblichste Ausführungsform ist jedoch, dass die zwei senkrecht zueinander ausgebildeten Hohlleiterabschnitte in dem 90°-Krümmerbereich so verbunden werden, dass die zum innenliegenden 90°-Eckpunkt außenliegende Verbindungsseite eine Kantenlänge von a √2 beträgt, wobei a die Kantenlänge des quadratischen Hohlleiters beträgt. Die Länge der Abwinklung entspricht also einer Diagonalen in einem Quadrat mit der Kantenlänge a.However, the most common embodiment is that the two mutually perpendicular waveguide sections are connected in the 90 ° -Krümmerbereich so that the internal 90 ° corner point outside connecting side is an edge length of a √2, where a is the edge length of the square waveguide. The length of the bend thus corresponds to a diagonal in a square with the edge length a.
Erfindungsgemäß wird eine abweichende Geometrie vorgeschlagen, bei der die Abschrägung des kompensierten Ecks im 90°-Krümmerbereich der Kantenlänge a eines quadratischen Hohlleiters entspricht, wobei geringfügige Abweichungen von weniger als 0,1% als noch ausreichend im Sinne der Erfindung betrachtet werden können.According to the invention, a deviating geometry is proposed, in which the chamfer of the compensated corner in the 90 ° bend region corresponds to the edge length a of a square waveguide, wherein slight deviations of less than 0.1% can still be regarded as sufficient in the sense of the invention.
Bei der vorstehend erwähnten Dimensions-Regel ist stets das Innenmaß des Hohlleiters zu berücksichtigen, und nicht die Außenlängen unter Berücksichtigung der Wandstärken. Dabei weist der quadratische Hohlleiter an seinen Anschlussstücken als lichtes Innenmaß die Kantenlänge a auf. So soll auch die abgeschrägte Wand im Winkelbereich als Innenmaß eine Länge in Ausbreitungsrichtung der elektromagnetischen Wellen aufweisen, die dem Maß a des lichten Abstandes an den im Querschnitt quadratischen Anschlusstücken entspricht.In the dimension rule mentioned above, the inner dimension of the waveguide must always be taken into account, and not the outer lengths, taking into account the wall thicknesses. In this case, the square waveguide on its connecting pieces as a light internal dimension, the edge length a. So should also have the beveled wall in the angular range as an inner measure a length in the propagation direction of the electromagnetic waves, which corresponds to the dimension a of the clear distance to the square in cross-section fittings.
Auch wenn erfindungsgemäß von einem 90° -Krümmer gesprochen wird, so muss dieser Krümmer nicht- zwingend extakt 90° aufweisen. Es kann sich grundsätzlich auch um einen Krümmer handeln, der für einen Winkelbereich zwischen 70° bis 110°, vor allem für einen Winkelbereich zwischen 80° und 100° oder insbesondere für einen Winkelbereich zwischen 85° bis 95° konzipiert ist.Even if the invention speaks of a 90 ° elbow, this elbow does not necessarily have to have an extant 90 °. In principle, it can also be a manifold which is designed for an angular range between 70 ° to 110 °, especially for an angular range between 80 ° and 100 ° or in particular for an angular range between 85 ° to 95 °.
Es ist zwar grundsätzlich ein 90°-Hohlleiterkrümmer auch aus der
Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert. Dabei zeigen im Einzelnen:
- Figur 1:
- eine schematische räumliche Darstellung des erfindungsgemäßen 90°-Hohlleiterkrümmers; und
- Figur 2 :
- eine schematische Seitenansicht auf das Ausführungsbeispiel gemäß
Figur 1.
- FIG. 1:
- a schematic spatial representation of the inventive 90 ° -Hohlleiterkrümmers; and
- FIG. 2:
- a schematic side view of the embodiment of Figure 1.
In Figur 1 ist in schematischer 3D-Darstellung ein erfindungsgemäßes Ausführungsbeispiel eines 90°-Hohlleiterkrümmers gezeigt, der zwei senkrecht zueinander stehende, gerade verlaufende Hohlleiter-Anschlussstücke 1 umfasst.FIG. 1 shows, in a schematic 3D representation, an exemplary embodiment of a 90 ° waveguide manifold according to the invention, which comprises two mutually perpendicular, straight
Diese Hohlleiter-Anschlussstücke 1 weisen einen quadratischen Querschnitt auf, und zwar mit einer Kantenlänge a.These
Die Gehäusewandung besteht aus elektrisch leitfähigem Material, insbesondere aus Metall. Bevorzugt handelt es sich hierbei um ein Gussmaterial, da der erfindungsgemäße Hohlleiter in einem Gussverfahren hergestellt werden soll. Bevorzugt wird Zink, Messing und/oder Aluminium als Guss- oder Druckgussmaterialien verwendet. Es sind auch andere Materialien oder Materialkombinationen und -legierungen denkbar. Der erfindungsgemäße Hohlleiterwinkel muss nicht zwangsläufig in einem Gussverfahren hergestellt werden. Auch andere Herstellungsverfahren und Methoden sind möglich.The housing wall is made of electrically conductive material, in particular of metal. This is preferably a cast material, since the waveguide according to the invention is to be produced in a casting process. Preferably, zinc, brass and / or aluminum is used as cast or die cast materials. Other materials or combinations of materials and alloys are also conceivable. The waveguide angle according to the invention does not necessarily have to be produced in a casting process. Other manufacturing methods and methods are possible.
Der Vollständigkeit halber wird erwähnt, dass grundsätzlich auch ein Hohlleitermaterial aus nicht-leitendem, dielektrischem Material in Betracht kommt, wenn es mit einer elektrisch leitfähigen Schicht überzogen ist. In der Regel weisen die Hohlleiter-Anschlussstücke 1 an ihrer stirnseitig offenen Anschlussseite 3 noch einen umlaufenden Flansch auf, an den der so gebildete Hohlleiterkrümmer mit einem nachfolgenden, in der Regel gerade verlaufenden Hohlleiter-Anschlussstück oder beispielsweise einem Hohlleiteranschluss eines LNB's oder anderen Umbauteilen angeschlossen werden kann.For the sake of completeness, it is mentioned that, in principle, a waveguide material made of nonconductive, dielectric material may also be considered if it is coated with an electrically conductive layer. As a rule, the
Wenn die Enden eines Hohlleiter-Krümmers üblicherweise mit Flanschen ausgestattet sind, so kommen insbesondere sogenannte Schraubflansche in Betracht, wie diese bei Rechteck-Hohlleitern üblich sind. Genauso ist es möglich, den beschriebenen Hohlleiter-Krümmer beispielsweise an ein LNB mittels einer Muff-Verbindung anzuschließen. D.h., dass sich der Hohlleiter-Krümmer über den Hohlleiter-Anschluss des LNB's stülpt oder überstülpt. Das andere Ende des Hohlleiter-Krümmers kann so ausgestattet sein, dass in Abhängigkeit des nachfolgenden Bauteils eine entsprechende Verbindung sichergestellt werden kann.If the ends of a waveguide bend are usually equipped with flanges, then so-called screw flanges in particular come into consideration, as are customary with rectangular waveguides. Likewise, it is possible to connect the described waveguide manifold, for example, to an LNB by means of a muff connection. This means that the waveguide elbow over the waveguide port of the LNB's inverts or over. The other end of the waveguide manifold may be equipped so that Depending on the subsequent component a corresponding connection can be ensured.
Wie sich aus der 3D-Darstellung gemäß Figur 1 ergibt, weist der 90°-Hohlleiterkrümmer oder Hohlleiterwinkel eine innenliegende Kante 5 auf, an welcher die innenliegenden Wandabschnitte 7 der beiden Hohlleiter-Anschlussstücke 1 im 90° -Winkel aufeinanderzulaufen. Mit anderen Worten sind der in Figur 1 linke innenliegende Wandabschnitt 7 und der ebenfalls zum linken Hohlleiter-Anschlussstück 1 gehörende äußere Wandabschnitt 9 parallel zueinander. Ebenso sind der innenliegende und der außenliegende Wandabschnitt 7, 9 des in Figur 1 rechts liegendenden Hohlleiter-Anschlussstückes 1 parallel zueinander ausgerichtet. Der innere und äußere Wandabschnitt 7, 9 des links liegenden Hohlleiter-Anschlussstückes 1 sind dann zu den inneren und äußeren Wandabschnitten 7, 9 des in Figur 1 rechts liegenden Hohlleiter-Anschlussstückes 1 senkrecht ausgerichtet.As can be seen from the 3D representation according to FIG. 1, the 90 ° waveguide bend or waveguide angle has an
Die zu den erwähnten Wandabschnitten 7 und 9 jeweils um 90° versetzt liegenden weiteren oberen und unteren Wandabschnitte 11 der beiden Hohlleiter-Anschlussstücke 1 liegen jeweils in einer gemeinsamen Ebene, nämlich in einer in Figur 1 gezeigten oberen sowie einer dazu parallelen unteren Ebene, in der auch die Krümmer-Begrenzungswand 15 des eigentlichen Winkelabschnittes 17 zu liegen kommt. Sowohl in der in Figur 1 oben liegenden Ebene als auch in der in Figur 1 unten liegenden Ebene stellt die Krümmer-Begrenzungswand 15 einen Übergangswandabschnitt jeweils zwischen den Wandabschnitten 11 der beiden Hohlleiter-Anschlussstücke 1 dar. Im Übrigen stellt die in Figur 1 oben liegende, aus dem Wandabschnitt 11, der angrenzenden Krümmer-Begrenzungswand 15 und dem nächsten Wandabschnitt 11 des nächsten Hohlleiter-Anschlussstückes 1 gebildete Ebene (sowie alle parallelen Ebenen dazu) die sogenannte Krümmungsebene dar, in der die 90°-Krümmung sowie die Ausbreitungsrichtung des Hohlleiters definiert ist).The respective upper and
Wie sich insbesondere aus der Draufsicht gemäß Figur 2 ergibt, ist zu der innenliegenden 90°-Kante 5, die in Draufsicht gemäß Figur 2 senkrecht zur Zeichenebene verläuft, außenliegend eine Abschrägung 19 als Begrenzungswand vorgesehen, die senkrecht und symmetrisch zur Winkelhalbierenden 21 des 90°-Krümmers verläuft.As can be seen in particular from the top view according to FIG. 2, a
Gemäß dieser Anordnung ergeben sich somit Ausgleichs-Wandabschnitte 23, die jeweils in Verlängerung des äußeren Wandabschnitts 9 der beiden Hohlleiter-Anschlussstücke 1 in gleicher Ebene mit diesen zu liegen kommen.According to this arrangement, thus resulting balancing
Die Abschrägung 19 weist in Draufsicht gemäß Figur 2 eine Länge auf, die der Kantenlänge a der im Querschnitt quadratischen Hohlleiter-Anschlussstücke 1 entspricht. Bei einer derartigen Dimensionierung werden die besten Übertragungsbedingungen für die Ausbreitung einer elektromagnetischen Welle in diesem Hohlleiter-Winkelstück geschaffen. Abweichungen von der Kantenlänge a für die Abschrägung 19 in Ausbreitungsrichtung der elektromagnetischen Wellen von weniger als 0,5% sind zur Erzielung des erwünschten Erfolges auch noch ausreichend.The
Die Länge der als Abschrägung 19 bezeichneten und vorzugsweise in einem 135'-Winkel zur Ausrichtung der Hohlleiter-Anschlussstücke 1 verlaufenden Wand (also in Ausbreitungsrichtung der durch den Hohlleiterkrümmer verlaufenden elektromagnetischen Wellen) entspricht der Kantenlänge a, weist also die gleiche Länge auf wie die Kantenlänge am Öffnungsbereich der Hohlleiter-Anschlussstücke 1. Diese Länge der Abschrägung 19 wird also in Richtung der Krümmungsebene gemessen. Da die Höhe in senkrechter Richtung dazu in dem Hohlleiterkrümmer ebenfalls die Kantenlänge a aufweist, weist somit die durch die Abschrägung 19 definierte Wand eine quadratische Form auf, da nicht nur die Länge, sondern auch die dazu senkrecht stehende Höhe der Kantenlänge a entspricht.The length of the designated as
Die Erfindung ist anhand eines 90°-Hohlleiterkrümmers beschrieben worden. Die Hohlleiterkrümmung kann aber auch andere Werte aufweisen und ist nicht zwangsläufig auf 90° beschränkt. Grundsätzlich könnte der Hohlleiterkrümmer eine Krümmung zwischen 80° bis 100° oder weniger aufweisen, beispielsweise zwischen 85° und 95° oder zwischen 87° und 93°, insbesondere zwischen 89° und 91°. Insoweit wird unter einem 90°-Hohlleiterkrümmer im Sinne der Erfindung auch ein Krümmer verstanden, der einen der vorstehend genannten Winkelbereiche aufweist.The invention has been described with reference to a 90 ° -Hohlleiterkrümmers. However, the waveguide curvature can also have other values and is not necessarily limited to 90 °. In principle, the waveguide manifold could have a curvature between 80 ° to 100 ° or less, for example between 85 ° and 95 ° or between 87 ° and 93 °, in particular between 89 ° and 91 °. In that regard, a 90 ° -Hohlleiterkrümmer in the context of the invention, a manifold understood that has one of the above-mentioned angle ranges.
Ferner wird darauf hingewiesen, dass sich die vorstehend angegebenen Maßangaben bezüglich der Kantenlänge mit dem Maß a wie aber auch bezüglich der Länge der Abschrägung mit der Länge a jeweils auf das Innenmaß der Hohlleiterabschnitte beziehen. In Abweichung davon kann das Hohlleiter-Winkelstück eine beliebig dicke Wand mit einer beliebig dicken Wandstärke aufweisen, so dass die Außenma-ße an der Kantenlänge bzw. das Außenmaß an der Abschrägung von der Länge a abweichen kann. Das Hohlleiter-Innenmaß bezüglich der quadratischen Öffnung weist bezüglich des Hohlleiterkanals in Längs- und Querrichtung des quadratischen Hohlleiters eine Kantenlänge a auf, wobei das im Hohlleiter-Innenstück innenliegende Maß der Abschrägung die Länge a und eine Höhe mit dem lichten Innenmaß a aufweist.It should also be noted that the dimensions given above with regard to the edge length with the dimension a as well as with respect to the length of the bevel with the length a in each case relate to the internal dimension of the waveguide sections. In deviation from this, the waveguide elbow can have an arbitrarily thick wall with an arbitrarily thick wall thickness, so that the outer dimension at the edge length or the outer dimension at the bevel can deviate from the length a. The waveguide inner dimension with respect to the square opening has with respect to the waveguide channel in the longitudinal and transverse directions of the square Waveguide an edge length a, wherein the inside of the waveguide inner piece measure of the chamfer has the length a and a height with the clear inner dimension a.
Von daher kann auch im Bereich der sogenannten Abschrägung die Außenkonturen winkelförmig sein. Mit anderen Worten können die in den Figuren gezeigten Ausgleichs-Wandabschnitte 23 verlängert ausgebildet sein und unter Bildung einer äußeren Vertikalkante rechtwinklig aufeinander stoßend enden, so als ob innenliegend als Begrenzungswand des Hohlleiter-Kanals keine abgeschrägte Wand 19 vorgesehen wäre. Denn wie ausgeführt, ist allein die Maßangabe und die Gestaltung des Hohlleiter-Winkelstückes bezüglich der den Hohlleiter-Kanal begrenzenden Innenwände entscheidend. Mit anderen Worten stellen alle vorstehend erläuterten Wände die Innenwände und/oder -flächen dar, die den Hohlleiter-Kanal nach außen hin begrenzen.Therefore, the outer contours can also be angular in the area of the so-called bevel. In other words, the compensating
Claims (8)
gekennzeichnet durch die folgenden weiteren Merkmale:
characterized by the following further features:
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006033703A DE102006033703A1 (en) | 2006-07-20 | 2006-07-20 | waveguide bend |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1881551A1 true EP1881551A1 (en) | 2008-01-23 |
EP1881551B1 EP1881551B1 (en) | 2016-09-28 |
Family
ID=38543548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07013103.2A Not-in-force EP1881551B1 (en) | 2006-07-20 | 2007-07-04 | Wave guide manifold |
Country Status (3)
Country | Link |
---|---|
US (1) | US7750763B2 (en) |
EP (1) | EP1881551B1 (en) |
DE (1) | DE102006033703A1 (en) |
Families Citing this family (172)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009253369A (en) * | 2008-04-01 | 2009-10-29 | Furuno Electric Co Ltd | Corner waveguide |
WO2012044983A1 (en) * | 2010-09-30 | 2012-04-05 | Aviat Networks, Inc. | Systems and methods of waveguide assembly |
EP2745154A4 (en) | 2011-08-18 | 2015-07-01 | Opel Solar Inc | OPTICAL CLOSED LOOP MICRORESONATOR AND THYRISTOR MEMORY DEVICE |
US10521288B2 (en) * | 2012-11-07 | 2019-12-31 | International Business Machines Corporation | Collaborative application testing |
US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
US9705571B2 (en) | 2015-09-16 | 2017-07-11 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system |
US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
US10310268B2 (en) | 2016-12-06 | 2019-06-04 | Microsoft Technology Licensing, Llc | Waveguides with peripheral side geometries to recycle light |
US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
RU177328U1 (en) * | 2017-12-04 | 2018-02-15 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | DEVICE FOR ROTATING THE POLARIZATION PLANE |
US11784384B2 (en) | 2017-12-20 | 2023-10-10 | Optisys, LLC | Integrated tracking antenna array combiner network |
RU2680731C1 (en) * | 2018-04-06 | 2019-02-26 | Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" | Waveguide corner |
WO2022087027A1 (en) | 2020-10-19 | 2022-04-28 | Optisys, LLC | Broadband waveguide to dual-coaxial transition |
US12183970B2 (en) | 2020-10-29 | 2024-12-31 | Optisys, Inc. | Integrated balancing radiating elements |
WO2022241483A2 (en) | 2021-05-14 | 2022-11-17 | Optisys, Inc. | Planar monolithic combiner and multiplexer for antenna arrays |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2411338A (en) | 1944-07-24 | 1946-11-19 | Roberts Shepard | Wave guide |
US3672202A (en) * | 1970-09-15 | 1972-06-27 | Microwave Dev Lab Inc | Method of making waveguide bend |
EP0012978A1 (en) | 1978-12-29 | 1980-07-09 | Siemens Aktiengesellschaft | H-plane rectangular-wave guide bend |
EP0285295A1 (en) | 1987-03-26 | 1988-10-05 | Hughes Aircraft Company | Matched dual mode waveguide corner |
JPH03167901A (en) | 1989-11-27 | 1991-07-19 | Matsushita Electric Works Ltd | Waveguide corner |
US6253444B1 (en) | 1998-05-20 | 2001-07-03 | Lucent Technologies Inc. | Method for the manufacture of elbows for microwave guides |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3822981A1 (en) | 1988-07-07 | 1988-12-22 | Kathrein Werke Kg | SEMICONDUCTOR POLARIZING SWITCH |
-
2006
- 2006-07-20 DE DE102006033703A patent/DE102006033703A1/en not_active Withdrawn
-
2007
- 2007-07-04 EP EP07013103.2A patent/EP1881551B1/en not_active Not-in-force
- 2007-07-20 US US11/878,040 patent/US7750763B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2411338A (en) | 1944-07-24 | 1946-11-19 | Roberts Shepard | Wave guide |
US3672202A (en) * | 1970-09-15 | 1972-06-27 | Microwave Dev Lab Inc | Method of making waveguide bend |
EP0012978A1 (en) | 1978-12-29 | 1980-07-09 | Siemens Aktiengesellschaft | H-plane rectangular-wave guide bend |
EP0285295A1 (en) | 1987-03-26 | 1988-10-05 | Hughes Aircraft Company | Matched dual mode waveguide corner |
JPH03167901A (en) | 1989-11-27 | 1991-07-19 | Matsushita Electric Works Ltd | Waveguide corner |
US6253444B1 (en) | 1998-05-20 | 2001-07-03 | Lucent Technologies Inc. | Method for the manufacture of elbows for microwave guides |
Non-Patent Citations (3)
Title |
---|
DOANE J L ET AL: "OVERSIZED RECTANGULAR WAVEGUIDES WITH MODE-FREE BENDS AND TWISTS FOR BROADBAND APPLICATIONS", 1 March 1989, MICROWAVE JOURNAL, HORIZON HOUSE PUBLICATIONS, NORWOOD, MA, US, PAGE(S) 153-160, ISSN: 0192-6225, XP000047795 * |
ERICH PEHL; ALFRED HÜTIG: "Mikrowellentechnik, Band 1, Wellenleitungen und Leitungsbausteine", vol. 1, 1988, VERLAG HEIDELBERG, pages: 172 - 175 |
WALTER JANSEN: "Hohlleiter und Streifenleiter", 1977, DR. ALFRED HÜTIG VERLAG, pages: 101 - 104 |
Also Published As
Publication number | Publication date |
---|---|
EP1881551B1 (en) | 2016-09-28 |
US20080018420A1 (en) | 2008-01-24 |
US7750763B2 (en) | 2010-07-06 |
DE102006033703A1 (en) | 2008-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1881551B1 (en) | Wave guide manifold | |
EP2262059B1 (en) | Dielectric antenna | |
DE102007005928A1 (en) | Transmission line transition | |
EP2912714B1 (en) | Tunable high frequency filter | |
EP2878042B1 (en) | Hf coaxial cable with an angular plug connection, and a method for producing same | |
DE102009031373A1 (en) | High frequency filter | |
EP2897213B1 (en) | Broadband signal splitting with sum signal absorption | |
EP3120410B1 (en) | Multi-stage broadband directional coupler | |
EP1183752B1 (en) | Polarization separating filter | |
EP3298649B1 (en) | High-frequency conductor system with cable-bound rf bushing | |
DE102005047336A1 (en) | Waveguide band stop filter | |
DE2521956B2 (en) | POLARIZATION POINT | |
DE3345689C2 (en) | ||
DE3133362C2 (en) | Choke flange connection for rectangular waveguides | |
EP1014472B1 (en) | Directional coupler | |
EP2438645B1 (en) | Forward coupler comprising strip conductors | |
AT508823A1 (en) | CONTINUOUS CASTING | |
DE102006038029A1 (en) | directional coupler | |
DE4205577A1 (en) | Wideband hollow waveguide series-parallel coupling - comprises magic T formed in 2 single parts with sepn. plane along centre of E-arm and each symmetrical side-arm. | |
EP1741158B1 (en) | Impedance transformer | |
DE3822981A1 (en) | SEMICONDUCTOR POLARIZING SWITCH | |
DE1034721B (en) | Angled, rectangular waveguide | |
WO2016135327A1 (en) | High-frequency filter of cavity design | |
EP2533354B1 (en) | Device for coupling an HF signal along a signal path | |
DE2732809A1 (en) | MANUFACTURING PROCESS FOR A HIGH-PASS FILTER FOR MILLIMETER WAVES AND FILTER MANUFACTURED BY THIS PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080207 |
|
17Q | First examination report despatched |
Effective date: 20080305 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAV | Appeal reference deleted |
Free format text: ORIGINAL CODE: EPIDOSDREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160428 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007015141 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007015141 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007015141 Country of ref document: DE Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502007015141 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502007015141 Country of ref document: DE Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502007015141 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502007015141 Country of ref document: DE Owner name: KATHREIN SE, DE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20190314 AND 20190320 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007015141 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502007015141 Country of ref document: DE Owner name: KATHREIN DIGITAL SYSTEMS GMBH, DE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20200109 AND 20200115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220725 Year of fee payment: 16 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230720 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230704 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007015141 Country of ref document: DE |