EP1876349A1 - Injector assembly for an injector - Google Patents
Injector assembly for an injector Download PDFInfo
- Publication number
- EP1876349A1 EP1876349A1 EP06014132A EP06014132A EP1876349A1 EP 1876349 A1 EP1876349 A1 EP 1876349A1 EP 06014132 A EP06014132 A EP 06014132A EP 06014132 A EP06014132 A EP 06014132A EP 1876349 A1 EP1876349 A1 EP 1876349A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injector
- tube
- double
- cover
- fluid pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 93
- 238000002347 injection Methods 0.000 claims description 23
- 239000007924 injection Substances 0.000 claims description 23
- 238000007789 sealing Methods 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000004323 axial length Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/005—Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M51/00—Fuel-injection apparatus characterised by being operated electrically
- F02M51/06—Injectors peculiar thereto with means directly operating the valve needle
- F02M51/0603—Injectors peculiar thereto with means directly operating the valve needle using piezoelectric or magnetostrictive operating means
Definitions
- the invention relates to an injector assembly for an injector.
- the injector assembly comprises a double-tube-shaped fluid pipe and an injector cover.
- Modern internal combustion engines often are designed very compact. In such internal combustion engines there is not much space for components, for example an injection valve, of the internal combustion engine. So, the injection valve has to be designed very compact. However, the injection valve has to be connected to a fuel connection and an electrical or hydraulic circuit for driving an actor of the injection valve. Further, such an injection valve has to be calibrated. In general, the two connections and means for calibrating the injection valve are very space consuming.
- An injector assembly for an injector comprises a double-tube-shaped fluid pipe and an injector cover.
- the injector cover has a fluid connection of the injector and a fluid line of the injector cover.
- the fluid line of the injector cover communicates with the fluid connection of the injector.
- the injector cover is at least partly arranged in the double-tube-shaped fluid pipe.
- the injector cover and the double-tube-shaped fluid pipe are formed and arranged such that the relative axial position of the injector cover to the double-tube-shaped fluid pipe influences a fluid injection characteristic of the injector.
- the injector assembly enables to create the injector fairly compact because the injector cover fulfills three different tasks: sealing up the inside of the injector, embodying the fluid connection, and enabling the calibration of the injector through its axial position relative to the double-tube-shaped fluid pipe.
- the fluid injection characteristic may comprise, for example, a spray shape of the injected fluid, an average drop size, an amount of injected fluid in a given time etc.
- the injector cover has at least a first and a second axial section.
- the first axial section has a larger diameter than the second axial section of the injector cover.
- the fluid connection of the injector is formed at the first axial section of the injector cover facing away from the second axial section of the injector cover. This contributes to that the injector cover fulfills the three tasks in a simple way.
- the double-tube-shaped fluid pipe comprises an electrical connection path which penetrates the double-tube-shaped fluid pipe at least partly radially. This contributes very effectively to the compactness of the injector.
- the double-tube-shaped fluid pipe has an outer tube and an inner tube for guiding the fluid between the outer and the inner tube of the double-tube-shaped fluid pipe.
- the outer tube of the double-tube-shaped fluid pipe is radially coupled to the first axial section of the injector cover.
- the inner tube of the double-tube-shaped fluid pipe is radially coupled to the second axial section of the injector cover.
- the double-tube-shaped fluid pipe communicates with the fluid line of the injector cover.
- the coupling of the first axial section with the outer tube enables the sealing of the inside of the injector against the environment.
- the coupling of the second axial section to the inner tube enables the sealing of the inside of the inner tube against the fluid.
- An injector 2 (figure 1) has a valve body 4 and a needle 6.
- the needle 6 is arranged in a recess 8 of the valve body 4.
- the needle 6 is movable in axial direction.
- a first spring 10 forces the needle 6 via a spring washer 12 towards an actor 14 of the injector 2.
- the actor 14 comprises a ground plate 16 and a top plate 18.
- the actor 14 is a piezoelectric actuator.
- the actor 14 is axially coupled to a hydraulic compensation device 20 at the top plate 18 of the actor 14.
- the hydraulic compensation device may be arranged between the spring washer 12 and the ground plate 16 of the actor 14.
- the injector 2 comprises an injector assembly (figure 2).
- the injector assembly comprises a double-tube-shaped fluid pipe 21 and an injector cover 24.
- the double-tube-shaped fluid pipe 21 comprises an inner tube 22 and an outer tube 23.
- a fluid, preferably fuel, is guided to an injection nozzle in a free volume between the inner tube 22 and the outer tube 23 of the double-tube-shaped fluid pipe 21.
- the injection nozzle is formed by the valve body 4 and the needle 6, if the needle 6 is outside of its closing position. In the closing position of the needle 6 the needle 6 and the valve body 4 prevent a fluid flow by closing the injection nozzle.
- the injector cover 24 sealingly covers the injector.
- the injector cover 24 preferably comprises a first axial section 26 and a second axial section 28.
- the diameter of the first axial section 26 is larger than the diameter of the second axial section 28.
- the first axial section 26 is radially coupled to the outer tube 23.
- the second axial section 28 is radially coupled to the inner tube 22.
- a fluid connection 30 of the injector is arranged at the first axial section 26 facing away from the second axial section 28.
- a fluid line 32 of the injector cover 24 communicates with the fluid connection 30 and with the double-tube-shaped fluid pipe 21.
- the fluid connection 30 is arranged for connecting the injector 2, for example, to an external fluid line.
- the injector cover 24 preferably is welded at the first axial section 26 to the outer tube 23.
- the fluid connection 30 of the injector and the fluid line 32 of the injector cover 24 preferably are produced by drilling two simple holes into the injector cover 24.
- an O-ring 34 is arranged between the second axial section 28 and the inner tube 22, for sealing up the inside of the double-tube-shaped fluid pipe 21 against the fluid,
- the actor 14 is connected to an electric circuit. If the actor 14 gets energized, the injector 14 increases its axial length in some microseconds. If the actor 14 increases its length in such a fast way, the hydraulic compensation device 20 reacts like a stiff body. So, the ground plate 16 of the injector 14 forces the needle 6 away from the compensation device 20. If the force of the actor 14 on the needle 6 is the same or bigger than the force of the first spring 10 on the needle 6, the needle 6 moves away from its closing position and away from the hydraulic compensation device 20. Then, the injection nozzle is formed at the tips of the valve body 4 and the needle 6. In this way, the fluid flow through the injection nozzle is enabled. If the injector 2 gets deenergized again, the actor 14 decreases its length in some microseconds and the needle 6 closes the injection nozzle. So, the fluid flow through the injection nozzle is prevented.
- the hydraulic compensation device 20 compensates that thermal expansion.
- the injector 2 has to be calibrated.
- the injector cover 24 is at least partially arranged in the double-tube-shaped fluid pipe 21.
- the hydraulic compensation device 20 is coupled to the actor 14 and the actor 14 is coupled to the spring washer 12 and the needle 6.
- the injector cover 24 gets pressed towards the actor 14 with a given force.
- fluid is injected through the injector 2 and the force on the injector cover 24, and in particular the relative axial position of the injector cover 24 to the double-tube-shaped fluid pipe is varied until the fluid injection characteristic of the injector 2 corresponds to a given fluid injection characteristic.
- the force is held and the injector cover 24 is welded to the outer tube 23.
- the injector 2 may be calibrated by forming a threat on the injector cover 24 and a corresponding threat on the double-tube-shaped fluid pipe 21. Then, the injector cover 24 may be screwed onto the double-tube-shaped fluid pipe 21. Then, while screwing the injector cover 24 to the double-tube-shaped fluid pipe 21, fluid is injected by the injector 2. If the fluid injection characteristic corresponds to the given fluid injection characteristic, the screwing is stopped.
- the fluid injection characteristic may comprise a spray shape of the injected fluid, an amount of injected fluid in a given time and/or with a given fluid pressure, an average drop size, an average drop range etc.
- the injector cover 24 fulfills three different tasks: sealingly covering up the injector 2, forming the fluid connection of the injector 2, and enabling the calibration of the injector 2. This is very space saving because instead of the injector cover 24, normally, there would have to be three different components for fulfilling the three different tasks.
- the injector assembly comprises an electrical connection path 36 (figure 3).
- the electrical connection path 36 penetrates the double-tube-shaped fluid pipe 21.
- the electrical connection path 36 extends at least partly radially.
- the electrical connection path 36 is arranged for the electrical contact of the actor 14 to the electrical circuit.
- the electrical connection path 36 is sealed against the double-tube-shaped fluid pipe 21.
- the injector cover 24 may comprise more axial sections.
- the fluid connection 30 may be not arranged parallel to an axis of the injector 2 and/or not in an overlapping area with the axis of the injector 2. Further, there may be arranged further O-rings for sealing up the injector 2.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
- The invention relates to an injector assembly for an injector. The injector assembly comprises a double-tube-shaped fluid pipe and an injector cover.
- Modern internal combustion engines often are designed very compact. In such internal combustion engines there is not much space for components, for example an injection valve, of the internal combustion engine. So, the injection valve has to be designed very compact. However, the injection valve has to be connected to a fuel connection and an electrical or hydraulic circuit for driving an actor of the injection valve. Further, such an injection valve has to be calibrated. In general, the two connections and means for calibrating the injection valve are very space consuming.
- It is an object of the invention to create an injection assembly for a compact injector.
- The object is achieved by the independent claim 1. Advantageous embodiments of the invention are given in the sub-claims.
- An injector assembly for an injector comprises a double-tube-shaped fluid pipe and an injector cover. The injector cover has a fluid connection of the injector and a fluid line of the injector cover. The fluid line of the injector cover communicates with the fluid connection of the injector. The injector cover is at least partly arranged in the double-tube-shaped fluid pipe. The injector cover and the double-tube-shaped fluid pipe are formed and arranged such that the relative axial position of the injector cover to the double-tube-shaped fluid pipe influences a fluid injection characteristic of the injector.
- The injector assembly enables to create the injector fairly compact because the injector cover fulfills three different tasks: sealing up the inside of the injector, embodying the fluid connection, and enabling the calibration of the injector through its axial position relative to the double-tube-shaped fluid pipe. The fluid injection characteristic may comprise, for example, a spray shape of the injected fluid, an average drop size, an amount of injected fluid in a given time etc.
- In an advantageous embodiment of the invention, the injector cover has at least a first and a second axial section. The first axial section has a larger diameter than the second axial section of the injector cover. The fluid connection of the injector is formed at the first axial section of the injector cover facing away from the second axial section of the injector cover. This contributes to that the injector cover fulfills the three tasks in a simple way.
- In a further advantageous embodiment of the injector assembly, the double-tube-shaped fluid pipe comprises an electrical connection path which penetrates the double-tube-shaped fluid pipe at least partly radially. This contributes very effectively to the compactness of the injector.
- In a further advantageous embodiment of the injector assembly, the double-tube-shaped fluid pipe has an outer tube and an inner tube for guiding the fluid between the outer and the inner tube of the double-tube-shaped fluid pipe. The outer tube of the double-tube-shaped fluid pipe is radially coupled to the first axial section of the injector cover. The inner tube of the double-tube-shaped fluid pipe is radially coupled to the second axial section of the injector cover. The double-tube-shaped fluid pipe communicates with the fluid line of the injector cover. The coupling of the first axial section with the outer tube enables the sealing of the inside of the injector against the environment. The coupling of the second axial section to the inner tube enables the sealing of the inside of the inner tube against the fluid.
- The invention is explained in the following with the help of schematic drawings.
- These are as follows:
- figure 1
- an injector,
- figure 2
- an injector assembly for the injector,
- figure 3
- a cut through the injector assembly according to figure 2.
- Elements with the same design and function that appear in different illustrations are identified by the same reference characters.
- An injector 2 (figure 1) has a
valve body 4 and aneedle 6. Theneedle 6 is arranged in a recess 8 of thevalve body 4. Theneedle 6 is movable in axial direction. Afirst spring 10 forces theneedle 6 via aspring washer 12 towards an actor 14 of theinjector 2. - The actor 14 comprises a
ground plate 16 and atop plate 18. Preferably, the actor 14 is a piezoelectric actuator. The actor 14 is axially coupled to ahydraulic compensation device 20 at thetop plate 18 of the actor 14. There may be arranged a second spring which is axially coupled to thehydraulic compensation device 20 facing away from the actor 14. In an alternative embodiment the hydraulic compensation device may be arranged between thespring washer 12 and theground plate 16 of the actor 14. - Further, the
injector 2 comprises an injector assembly (figure 2). The injector assembly comprises a double-tube-shaped fluid pipe 21 and aninjector cover 24. The double-tube-shaped fluid pipe 21 comprises aninner tube 22 and anouter tube 23. A fluid, preferably fuel, is guided to an injection nozzle in a free volume between theinner tube 22 and theouter tube 23 of the double-tube-shaped fluid pipe 21. The injection nozzle is formed by thevalve body 4 and theneedle 6, if theneedle 6 is outside of its closing position. In the closing position of theneedle 6 theneedle 6 and thevalve body 4 prevent a fluid flow by closing the injection nozzle. - The injector cover 24 sealingly covers the injector. The
injector cover 24 preferably comprises a firstaxial section 26 and a secondaxial section 28. The diameter of the firstaxial section 26 is larger than the diameter of the secondaxial section 28. The firstaxial section 26 is radially coupled to theouter tube 23. The secondaxial section 28 is radially coupled to theinner tube 22. Afluid connection 30 of the injector is arranged at the firstaxial section 26 facing away from the secondaxial section 28. Afluid line 32 of the injector cover 24 communicates with thefluid connection 30 and with the double-tube-shaped fluid pipe 21. - The
fluid connection 30 is arranged for connecting theinjector 2, for example, to an external fluid line. Theinjector cover 24 preferably is welded at the firstaxial section 26 to theouter tube 23. Thefluid connection 30 of the injector and thefluid line 32 of theinjector cover 24 preferably are produced by drilling two simple holes into theinjector cover 24. - Preferably, an O-
ring 34 is arranged between the secondaxial section 28 and theinner tube 22, for sealing up the inside of the double-tube-shaped fluid pipe 21 against the fluid, - The actor 14 is connected to an electric circuit. If the actor 14 gets energized, the injector 14 increases its axial length in some microseconds. If the actor 14 increases its length in such a fast way, the
hydraulic compensation device 20 reacts like a stiff body. So, theground plate 16 of the injector 14 forces theneedle 6 away from thecompensation device 20. If the force of the actor 14 on theneedle 6 is the same or bigger than the force of thefirst spring 10 on theneedle 6, theneedle 6 moves away from its closing position and away from thehydraulic compensation device 20. Then, the injection nozzle is formed at the tips of thevalve body 4 and theneedle 6. In this way, the fluid flow through the injection nozzle is enabled. If theinjector 2 gets deenergized again, the actor 14 decreases its length in some microseconds and theneedle 6 closes the injection nozzle. So, the fluid flow through the injection nozzle is prevented. - If the relative position of the actor 14 to the double-tube-shaped
fluid pipe 21 changes slowly, for example, because of a thermal expansion and a different thermal expansion coefficient of the actor 14 and the double-tube-shapedfluid pipe 21, thehydraulic compensation device 20 compensates that thermal expansion. - Because of the actor 14, the
hydraulic compensation device 20 and system tolerances of thewhole injector 2, theinjector 2 has to be calibrated. For calibrating theinjector 2, theinjector cover 24 is at least partially arranged in the double-tube-shapedfluid pipe 21. Thehydraulic compensation device 20 is coupled to the actor 14 and the actor 14 is coupled to thespring washer 12 and theneedle 6. Theinjector cover 24 gets pressed towards the actor 14 with a given force. Then, fluid is injected through theinjector 2 and the force on theinjector cover 24, and in particular the relative axial position of theinjector cover 24 to the double-tube-shaped fluid pipe is varied until the fluid injection characteristic of theinjector 2 corresponds to a given fluid injection characteristic. Then, the force is held and theinjector cover 24 is welded to theouter tube 23. - Alternatively, the
injector 2 may be calibrated by forming a threat on theinjector cover 24 and a corresponding threat on the double-tube-shapedfluid pipe 21. Then, theinjector cover 24 may be screwed onto the double-tube-shapedfluid pipe 21. Then, while screwing theinjector cover 24 to the double-tube-shapedfluid pipe 21, fluid is injected by theinjector 2. If the fluid injection characteristic corresponds to the given fluid injection characteristic, the screwing is stopped. - So, the relative axial position of the
injector cover 24 to the double-tube-shapedfluid pipe 21 influences the fluid injection characteristic of theinjector 2. The fluid injection characteristic may comprise a spray shape of the injected fluid, an amount of injected fluid in a given time and/or with a given fluid pressure, an average drop size, an average drop range etc. - In this way, the
injector cover 24 fulfills three different tasks: sealingly covering up theinjector 2, forming the fluid connection of theinjector 2, and enabling the calibration of theinjector 2. This is very space saving because instead of theinjector cover 24, normally, there would have to be three different components for fulfilling the three different tasks. - In this context, it is very advantageous if the injector assembly comprises an electrical connection path 36 (figure 3). The
electrical connection path 36 penetrates the double-tube-shapedfluid pipe 21. Theelectrical connection path 36 extends at least partly radially. Theelectrical connection path 36 is arranged for the electrical contact of the actor 14 to the electrical circuit. Theelectrical connection path 36 is sealed against the double-tube-shapedfluid pipe 21. - The invention is not restricted on the explained embodiments. For example, the
injector cover 24 may comprise more axial sections. Further, thefluid connection 30 may be not arranged parallel to an axis of theinjector 2 and/or not in an overlapping area with the axis of theinjector 2. Further, there may be arranged further O-rings for sealing up theinjector 2.
Claims (5)
- Injector assembly for an injector (2) which comprises a double-tube-shaped fluid pipe (21) and an injector cover (24) having a fluid connection (30) of the injector (2) and having a fluid line (32) of the injector cover (24) which communicates with the fluid connection (30) of the injector (2), the injector cover (24) being at least partly arranged in the double-tube-shaped fluid pipe (21), wherein the injector cover (24) and the double-tube-shaped fluid pipe (21) are formed and arranged such that the relative axial position of the injector cover (24) to the double-tube-shaped fluid pipe (21) influences a fluid injection characteristic of the injector (2).
- Injector assembly in accordance with claim 1, wherein the injector cover (24) has at least a first and a second axial section (26, 28), the first axial section (26) having a larger diameter than the second axial section (28) of the injector cover (24) and wherein the fluid connection (30) of the injector (2) is formed at the first axial section (26) of the injector cover (24) facing away from the second axial section (28) of the injector cover (24).
- Injector assembly in accordance with one of the preceding claims, wherein the double-tube-shaped fluid pipe (21) comprises an electrical connector path (36) which penetrates the double-tube-shaped fluid pipe (21) at least partly radially.
- Injector assembly in accordance with one of the preceding claims, with- the double-tube-shaped fluid pipe (21) having an outer tube (23) and an inner tube (22) for guiding the fluid between the outer and the inner tube (23, 22) of the double-tube-shaped fluid pipe (21),- the outer tube (23) of the double-tube-shaped fluid pipe (21) being radially coupled to the first axial section (26) of the injector cover (24),- the inner tube (22) of the double-tube-shaped fluid pipe (21) being radially coupled to the second axial section (28) of the injector cover (24),- the double-tube-shaped fluid pipe (21) communicating with the fluid line (32) of the injector cover (24).
- Injector assembly in accordance with one of the preceding claims comprising an O-ring (34) which is arranged between the second axial section (28) of the injector cover (24) and the inner tube (22) of the double-tube-shaped fluid pipe (21) for sealing up an inside of the inner tube (22) against the fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06014132.2A EP1876349B1 (en) | 2006-07-07 | 2006-07-07 | Method for calibrating an injector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06014132.2A EP1876349B1 (en) | 2006-07-07 | 2006-07-07 | Method for calibrating an injector |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1876349A1 true EP1876349A1 (en) | 2008-01-09 |
EP1876349B1 EP1876349B1 (en) | 2016-05-18 |
Family
ID=37453047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06014132.2A Ceased EP1876349B1 (en) | 2006-07-07 | 2006-07-07 | Method for calibrating an injector |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1876349B1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19932760A1 (en) * | 1999-07-14 | 2001-01-18 | Bosch Gmbh Robert | Fuel injector |
WO2005026558A1 (en) * | 2003-09-12 | 2005-03-24 | Siemens Aktiengesellschaft | Hydraulic system having a compensation reservoir |
EP1548854A1 (en) * | 2003-12-22 | 2005-06-29 | Siemens VDO Automotive S.p.A. | Actuator unit and method for manufacturing an actuator unit |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57136859U (en) * | 1981-02-18 | 1982-08-26 | ||
DE102004021921A1 (en) * | 2004-05-04 | 2005-12-01 | Robert Bosch Gmbh | Fuel injector |
-
2006
- 2006-07-07 EP EP06014132.2A patent/EP1876349B1/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19932760A1 (en) * | 1999-07-14 | 2001-01-18 | Bosch Gmbh Robert | Fuel injector |
WO2005026558A1 (en) * | 2003-09-12 | 2005-03-24 | Siemens Aktiengesellschaft | Hydraulic system having a compensation reservoir |
EP1548854A1 (en) * | 2003-12-22 | 2005-06-29 | Siemens VDO Automotive S.p.A. | Actuator unit and method for manufacturing an actuator unit |
Also Published As
Publication number | Publication date |
---|---|
EP1876349B1 (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2058508B1 (en) | Fuel injector with electric shield | |
EP2058511B1 (en) | Fuel injector with fuel pressure sensor | |
EP2105607B1 (en) | Fuel injector with built-in fuel pressure sensor | |
EP2058510B1 (en) | Internal combustion engine having a fuel injector designed to minimize mechanical stress on fuel pressure sensor installed therein | |
KR101857463B1 (en) | Valve assembly for an injection valve, injection valve and method for assembling a valve assembly of an injection valve | |
CN1297513A (en) | Fuel injection valve | |
CN100385108C (en) | Piezoelectric actuator module and assembly method thereof | |
US8069841B2 (en) | Coupling arrangement and fuel injector | |
EP2149699B1 (en) | Fuel injector | |
US6962297B2 (en) | Piezoelectric actuator module | |
EP1876349A1 (en) | Injector assembly for an injector | |
CN102822483A (en) | Method and device for operating an injection valve | |
US8757512B2 (en) | Injector for a fluid | |
US9080538B2 (en) | Injector assembly for an injection valve | |
JP4532557B2 (en) | Injector for injecting fuel in an internal combustion engine | |
EP2700805B1 (en) | Extension part, injection valve and fuel delivery assembly | |
US7913929B2 (en) | Modular outward opening piezo direct fuel injector | |
EP1918571B1 (en) | Injector for dosing fluid | |
EP2075857B1 (en) | Actuator arrangement and injection valve | |
EP1413743B1 (en) | Nozzle for a fuel injector | |
EP1826395A1 (en) | Coupling device for connecting an injector to a fluid supply | |
EP2067981B1 (en) | Valve assembly for an injection valve and injection valve | |
EP2080895B1 (en) | Thermal compensation arrangement and injection valve | |
JP2011122464A (en) | Fuel injection valve | |
US20100090035A1 (en) | Injection valve and method for its manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080709 |
|
AKX | Designation fees paid |
Designated state(s): DE FR IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONTINENTAL AUTOMOTIVE GMBH |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR IT |
|
17Q | First examination report despatched |
Effective date: 20110321 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151211 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR IT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602006049103 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602006049103 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170221 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180724 Year of fee payment: 13 Ref country code: FR Payment date: 20180725 Year of fee payment: 13 Ref country code: DE Payment date: 20180731 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602006049103 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190707 |