EP1871565A1 - Femtosecond laser micromachining device with dynamic beam shaping - Google Patents
Femtosecond laser micromachining device with dynamic beam shapingInfo
- Publication number
- EP1871565A1 EP1871565A1 EP06743814A EP06743814A EP1871565A1 EP 1871565 A1 EP1871565 A1 EP 1871565A1 EP 06743814 A EP06743814 A EP 06743814A EP 06743814 A EP06743814 A EP 06743814A EP 1871565 A1 EP1871565 A1 EP 1871565A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- laser
- wavefront
- active
- spatial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000007493 shaping process Methods 0.000 title claims abstract description 12
- 238000005459 micromachining Methods 0.000 title claims description 10
- 230000003287 optical effect Effects 0.000 claims abstract description 11
- 230000001427 coherent effect Effects 0.000 claims abstract description 4
- 238000012545 processing Methods 0.000 claims abstract description 3
- 230000005855 radiation Effects 0.000 claims abstract description 3
- 238000001514 detection method Methods 0.000 claims description 14
- 238000012986 modification Methods 0.000 claims description 6
- 230000004048 modification Effects 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000001419 dependent effect Effects 0.000 claims description 2
- 239000004973 liquid crystal related substance Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000012937 correction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0665—Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
Definitions
- the invention relates to the technical sector of micro-machining of various materials, including femtosecond laser.
- Harzic 2002 R. Harzic, N. Huot, Audouard E., Jonin C., Laporte P., S.
- the object of the invention is to remedy these disadvantages in a simple, safe, effective and rational manner.
- the problem that the invention proposes to solve is to be able to suppress the wavefront sensor which makes it possible to obtain a linear correction with a quasi-direct correspondence between address pixels and detected pixels and to use, according to invention, an optimization method for making the correction.
- a femtosecond laser micro-machining device with dynamic beam conformation of the type comprising: a source of coherent light radiation of laser type emitting ultrashort pulses;
- the dynamic conformation assembly of the beam comprises an optical system composed of an active part for modifying the wavefront of the beam.
- the means capable of ensuring the spatial shaping of the beam is a simple detection system of the CDD camera type or photodetector.
- the feedback loop implements an algorithm selected to adapt the phase functions performed by the first and second components, in order to optimize the result in the form of an assigned score. by criteria dependent on the selected simple detection system.
- the action of a high-speed ultrashort pulse laser, with programmable shaping of the beam, without phase measurement is of real industrial interest.
- the high rate decreases the rate of the process
- the programmable formatting makes it possible to structure the shape of the beam and to vary it by computer.
- the absence of phase measurement saves the use of a wavefront sensor or an interferometric device whose prices are prohibitive.
- FIG. 1 is a purely schematic view of the main assemblies of the device according to the invention for implementing the laser method in the context of micromachining operations, in the case of direct transmission of the laser source;
- Figure 2 is a view similar to Figure 1, in the case of a transmission by reflection of the laser source.
- the femtosecond laser micro-machining device comprises in combination a coherent light source of laser type emitting ultrashort pulses (1), a dynamic beamforming assembly (2), (3), (4), (5), ) and (6) and a set of implementation and processing of the laser beam (7), (8), (9) and (10) (micromachining operation for example).
- the laser source (1) operates in mode-locked pulse mode and delivers ultra-short pulses of less than 100 ps duration and repetition rates greater than or equal to 1 kHz.
- the energies delivered for each pulse are generally greater than or equal to 1 nJ.
- the laser source emits at a wavelength compatible with the dynamic beam conformation assembly.
- a source may consist of an amplified femtosecond chain based on titanium doped Sapphire crystal emitting pulses of 4 ⁇ J for a duration of 200 fs at a variable rate of 10 to 250 kHz.
- a diode pumped femtosecond source based on Ytterbium ion doping emitting pulses of 100 ⁇ J for a duration of 400 fs at a rate of 1 to 10 kHz can be used. It is also possible to use an amplified femtosecond source based on titanium doped sapphire crystal emitting pulses of about 1-1.5 mJ for a duration of 150 fs at a rate of 1-5 kHz.
- the dynamic conformation assembly of the beam comprises an optical device composed of an active wavefront modification system (2) of the laser source (1) and a detection system without phase measurement (5) .
- the wavefront modification system (2) and the phase-less detection system (5) are connected by a feedback loop (6).
- the detection system (5) is not a wavefront sensor whatever it is or an interferometric device for phase measurement.
- the active wavefront modification system (5) contains a first fixed or active component and a second active component.
- the first component has a low spatial resolution in terms of wavefront sculpture.
- this component When this component is fixed, it may be constituted by an afocal optical system composed of lenses and / or mirrors and which is capable of producing a curvature of the wavefront.
- This first component when it is fixed, may also consist of a diffractive optical element performing a "pre-shaping" function modulated by the second component.
- this first component When this first component is active, it may be constituted by a deformable mirror (for example of the type marketed by CILAS France) or by a deformable membrane (for example of the type marketed at OKO Technologies, Japan) or by a valve optically addressed optically and more generally by any means for performing a modulation of the spatial phase with a fairly high dynamic (typically greater than or equal to 2 ⁇ ) with a low spatial resolution, especially with pixels less than or equal to 100 microns.
- a deformable mirror for example of the type marketed by CILAS France
- a deformable membrane for example of the type marketed at OKO Technologies, Japan
- the first component When the first component is active, it allows to realize the phase function necessary to obtain the desired formatting, without solving the details of this basic function. In this case, such details are made by the second active component.
- This second component has a high spatial resolution with a pixel dimension less than or equal to 100 ⁇ m and a number of pixels of at least 100.
- This second active component is based on a liquid crystal layer and can, for example, be constituted by a spatial light modulator set in phase modulator and addressed electrically or be constituted by an optical valve optically addressed and more generally by any means performing this function with sufficient spatial resolution.
- This active component can operate by reflection or transmission having the function of refining the spatial shape of the wavefront.
- the detection system (5) combining with the feedback loop (6) makes it possible to assign a note to the formatting performed.
- the detection system is not a phase measuring device making it possible to compare the phase front produced with an expected phase front. It is a simple detection system of the CDD camera type or photodetector, after nonlinear crystal.
- the system without a wavefront sensor may consist of any detection system whose function is to spatially shape the beam and to obtain a better result.
- a score assigned according to the criteria depending on the selected means for example the image quality if it is with a CDD camera or frequency doubled intensity detected on a photodiode.
- the rating assigned depends on the pixel rate of the address at a time. As a result, there is no direct correspondence as is the case with a wavefront sensor. It is therefore necessary to optimize the entire dressing matrix at the same time.
- the note is integrated into the feedback loop (6).
- the feedback loop implements an algorithm to adapt the phase functions performed by the first and second components to optimize the note delivered by the detection part.
- the so-called “genetic” or “revolutionary” algorithms can be used.
- the device After dynamic conformation of the beam, the device comprises an objective (Fourier lenses (3), (4), for example) which focuses the beam thus structured and produced in its focal point or in its vicinity, a spot having the desired spatial distribution . If the minimum dimension of this spot does not correspond to the desired dimensions, a lens and / or mirror imaging device (7) can be added downstream.
- an objective Frier lenses (3), (4), for example
- a sample (9) on which the laser process is performed is arranged.
- the sample (9) is mechanically connected to a mobile assembly (10) controlled by computer.
- this mobile assembly may be a set of motorized translations coupled or not to motorized rotation devices.
- a set of scanner type (8) (galvanometric mirror system) can also be inserted on the optical path before forming the image spot so as to deflect the beam by computer control.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
DISPOSITIF DE MICRO-USINAGE PAR LASER FEMTOSECONDE AVEC CONFORMATION DYNAMIQUE FEMTOSECOND LASER MICRO-MACHINING DEVICE WITH DYNAMIC CONFORMATION
DE FAISCEAUBEAM
L'invention se rattache au secteur technique des micro-usinages de matières diverses, notamment par laser femtoseconde.The invention relates to the technical sector of micro-machining of various materials, including femtosecond laser.
On a déjà proposé de réaliser des opérations de micro-usinage en utilisant des sources laser produisant des impulsions ultracourtes. On peut citer, par exemple, l'enseignement du brevet US 6,285,002 et l'enseignement du brevet EP 1.011.911 qui concerne un usinage de métaux et alliages au laser à impulsions ultracourtes.It has already been proposed to perform micromachining operations using laser sources producing ultrashort pulses. There may be mentioned, for example, the teaching of US Pat. No. 6,285,002 and the teaching of patent EP 1,011,911, which concerns a machining of ultra-short pulse laser metals and alloys.
Il convient de se référer aux publications [Momma 1996] : C. Momma, B. N. Chichkov, S. Nolte, F. Von Alvensleben, A. Tunnermann,Reference should be made to the publications [Momma 1996]: C. Momma, B. N. Chichkov, S. Nolte, F. Von Alvensleben, A. Tunnermann,
H. Welling and B. Wellegehausen, Opt. Comm. 129, 134 (1996) et [LeH. Welling and B. Wellegehausen, Opt. Comm. 129, 134 (1996) and [The
Harzic 2002] : R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S.Harzic 2002]: R. Harzic, N. Huot, Audouard E., Jonin C., Laporte P., S.
Valette, A. Fraczkievicz and R. Fortunier, Appl. Phys. Lett. 80, 3886Valette, A. Fraczkievicz and R. Fortunier, Appl. Phys. Lett. 80, 3886
(2002), qui montrent que les procédés laser avec des impulsions ultracourtes trouvent une application particulièrement intéressante pour effectuer des micro-usinages à effet thermique collatéral extrêmement limité pour des matériaux suffisamment minces, notamment d'épaisseur inférieure au millimètre.(2002), which show that laser processes with ultrashort pulses find a particularly advantageous application to perform micro-machining with extremely limited collateral thermal effect for sufficiently thin materials, in particular of thickness less than one millimeter.
Par ailleurs, il ressort de la publication [Cordingley 1993]Moreover, it appears from the publication [Cordingley 1993]
J. Cordingley, Appl. Opt. 32, 2538 (1993) que les procédés laser utilisant des éléments optiques diffractants fixes, permettent une mise en forme du faisceau avant process. On connaît également des procédés laser ultra-brefs utilisant une correction dynamique de front d'onde avec rétroaction par mesure de phase [Sanner 2004] N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte and J.P. Huignard. Les résultats techniques obtenus peuvent être considérés comme satisfaisants, en observant toutefois que l'utilisation d'un senseur de front d'onde (mesure de phase) est d'un coût de revient particulièrement élevé.J. Cordingley, Appl. Opt. 32, 2538 (1993) that laser processes using fixed diffracting optical elements, allow a shaping of the beam before process. Ultra-short laser processes are also known using dynamic wavefront correction with phase measurement feedback [Sanner 2004] N. Sanner, N. Huot, Audouard E., Larat C., Laporte P. and JP Huignard. The technical results obtained can be considered satisfactory, while observing however that the use of a wavefront sensor (phase measurement) is a particularly high cost.
L'invention s'est fixée pour but de remédier à ces inconvénients d'une manière simple, sûre, efficace et rationnelle.The object of the invention is to remedy these disadvantages in a simple, safe, effective and rational manner.
Le problème que se propose de résoudre l'invention est de pouvoir supprimer le senseur de front d'onde qui permet d'obtenir une correction linéaire avec une correspondance quasi-directe entre pixels d'adressage et pixels détectés et d'utiliser, selon l'invention, une méthode d'optimisation pour faire la correction.The problem that the invention proposes to solve is to be able to suppress the wavefront sensor which makes it possible to obtain a linear correction with a quasi-direct correspondence between address pixels and detected pixels and to use, according to invention, an optimization method for making the correction.
Il a donc été conçu et mis au point un dispositif de micro-usinage par laser femtoseconde avec conformation dynamique de faisceau du type de ceux comprenant : - une source de rayonnement lumineux cohérent de type laser émettant des impulsions ultracourtes ;It has therefore been designed and developed a femtosecond laser micro-machining device with dynamic beam conformation of the type comprising: a source of coherent light radiation of laser type emitting ultrashort pulses;
- un ensemble de conformation dynamique du faisceau ;a set of dynamic conformation of the beam;
- un ensemble de mise en œuvre et de traitement du rayon laser,a set of implementation and treatment of the laser beam,
Selon l'invention, compte tenu du problème posé, pour assurer la compression dynamique du faisceau sans mesure de phase, l'ensemble de conformation dynamique du faisceau comprend un système optique composé d'une partie active de modification du front d'onde de la source laser et d'un moyen de détection, à l'exclusion d'un mesureur de phase, apte à assurer la mise en forme spatiale du faisceau, lesdites parties étant reliées par une boucle de contre-réaction, la partie active de modification contentant un premier composant fixe ou actif et un deuxième composant actif.According to the invention, in view of the problem posed, in order to ensure the dynamic compression of the beam without phase measurement, the dynamic conformation assembly of the beam comprises an optical system composed of an active part for modifying the wavefront of the beam. source laser and a detection means, excluding a phase meter, adapted to ensure the spatial shaping of the beam, said parts being connected by a feedback loop, the active part of modification containing a first fixed or active component and a second active component.
Compte tenu du problème posé de ne pas utiliser un senseur de front d'onde, le moyen apte à assurer la mise en forme spatiale du faisceau est un système simple de détection du type caméra CDD ou photodétecteur.Given the problem of not using a wavefront sensor, the means capable of ensuring the spatial shaping of the beam is a simple detection system of the CDD camera type or photodetector.
Pour résoudre le problème posé de réaliser la convergence informatique, la boucle de contre-réaction met en œuvre un algorithme sélectionné pour adapter les fonctions de phase réalisées par les premier et deuxième composants, afin d'optimiser le résultat sous forme d'une note attribuée par des critères dépendants du système simple de détection sélectionné.To solve the problem of achieving computer convergence, the feedback loop implements an algorithm selected to adapt the phase functions performed by the first and second components, in order to optimize the result in the form of an assigned score. by criteria dependent on the selected simple detection system.
Selon une caractéristique à la base de l'invention, l'action d'un laser à impulsions ultracourtes à haute cadence, avec mise en forme programmable du faisceau, sans mesure de phase, présente un réel intérêt industriel. Notamment, il apparaît que la haute cadence diminue le taux du process, tandis que la mise en forme programmable permet de structurer la forme du faisceau et de la faire varier par ordinateur. D'une manière particulièrement importante, l'absence de mesure de phase économise l'emploi d'un senseur de front d'onde ou d'un dispositif interférométrique dont les prix sont prohibitifs. L'invention est exposée ci-après plus en détail à l'aide des figures des dessins annexés dans lesquels : la figure 1 est une vue à caractère purement schématique des principaux ensembles du dispositif selon l'invention pour la mise en œuvre du procédé laser dans le cadre des opérations de microusinage, dans le cas d'une transmission directe de la source laser ; la figure 2 est une vue semblable à la figure 1, dans le cas d'une transmission par réflexion de la source laser.According to a feature underlying the invention, the action of a high-speed ultrashort pulse laser, with programmable shaping of the beam, without phase measurement, is of real industrial interest. In particular, it appears that the high rate decreases the rate of the process, while the programmable formatting makes it possible to structure the shape of the beam and to vary it by computer. In a particularly important way, the absence of phase measurement saves the use of a wavefront sensor or an interferometric device whose prices are prohibitive. The invention is described below in more detail with reference to the figures of the accompanying drawings in which: FIG. 1 is a purely schematic view of the main assemblies of the device according to the invention for implementing the laser method in the context of micromachining operations, in the case of direct transmission of the laser source; Figure 2 is a view similar to Figure 1, in the case of a transmission by reflection of the laser source.
Le dispositif de micro-usinage par laser femtoseconde comprend en combinaison une source de rayonnement lumineux cohérent du type laser émettant des impulsions ultracourtes (1), un ensemble de conformation dynamique de faisceau (2), (3), (4), (5) et (6) et un ensemble de mise en œuvre et de traitement du rayon laser (7), (8), (9) et (10) (opération de micro-usinage par exemple).The femtosecond laser micro-machining device comprises in combination a coherent light source of laser type emitting ultrashort pulses (1), a dynamic beamforming assembly (2), (3), (4), (5), ) and (6) and a set of implementation and processing of the laser beam (7), (8), (9) and (10) (micromachining operation for example).
La source laser (1) fonctionne en régime impulsionnel à blocage de modes et délivre des impulsions ultra-brèves de durée inférieure à 100 ps et à des cadences de répétition supérieures ou égales à 1 kHz. Les énergies délivrées pour chaque impulsion sont généralement supérieures ou égales à 1 nJ. La source laser émet à une longueur d'onde compatible avec l'ensemble de conformation dynamique de faisceau. A titre d'exemple indicatif nullement limitatif, une source peut être constituée d'une chaîne femtoseconde amplifiée basée sur le cristal de Saphir dopé Titane émettant des impulsions de 4 μJ pour une durée de 200 fs à une cadence variable de 10 à 250 kHz. Sans pour cela sortir du cadre de l'invention, d'autres solutions peuvent être envisagées. Par exemple, on peut utiliser une source femtoseconde pompée par diodes et basée sur le dopage à l'ion Ytterbium émettant des impulsions de 100 μJ pour une durée de 400 fs à une cadence de 1 à 10 kHz. Il est également possible d'utiliser une source femtoseconde amplifiée basée sur le cristal de Saphir dopé Titane émettant des impulsions d'environ 1-1,5 mJ pour une durée de 150 fs à une cadence de 1-5 kHz.The laser source (1) operates in mode-locked pulse mode and delivers ultra-short pulses of less than 100 ps duration and repetition rates greater than or equal to 1 kHz. The energies delivered for each pulse are generally greater than or equal to 1 nJ. The laser source emits at a wavelength compatible with the dynamic beam conformation assembly. By way of non-limiting example, a source may consist of an amplified femtosecond chain based on titanium doped Sapphire crystal emitting pulses of 4 μJ for a duration of 200 fs at a variable rate of 10 to 250 kHz. Without departing from the scope of the invention, other solutions can be envisaged. For example, a diode pumped femtosecond source based on Ytterbium ion doping emitting pulses of 100 μJ for a duration of 400 fs at a rate of 1 to 10 kHz can be used. It is also possible to use an amplified femtosecond source based on titanium doped sapphire crystal emitting pulses of about 1-1.5 mJ for a duration of 150 fs at a rate of 1-5 kHz.
L'ensemble de conformation dynamique du faisceau, comprend un dispositif optique composé d'un système de modification active de front d'onde (2) de la source laser (1) et d'un système de détection sans mesure de phase (5). Le système de modification de front d'onde (2) et le système de détection sans mesure de phase (5) sont reliés par une boucle de contre- réaction (6).The dynamic conformation assembly of the beam comprises an optical device composed of an active wavefront modification system (2) of the laser source (1) and a detection system without phase measurement (5) . The wavefront modification system (2) and the phase-less detection system (5) are connected by a feedback loop (6).
D'une manière importante et selon une caractéristique à la base de l'invention et comme il sera indiqué dans la suite de la description, le système de détection (5) n'est pas un senseur de front d'onde quel qu'il soit ou un dispositif interférométrique de mesure de phase.In a significant way and according to a characteristic underlying the invention and as will be indicated in the following description, the detection system (5) is not a wavefront sensor whatever it is or an interferometric device for phase measurement.
Le système de modification active du front d'onde (5) contient un premier composant fixe ou actif et un deuxième composant actif.The active wavefront modification system (5) contains a first fixed or active component and a second active component.
Le premier composant possède une faible résolution spatiale en termes de sculpture de front d'onde.The first component has a low spatial resolution in terms of wavefront sculpture.
Lorsque ce composant est fixe, il peut être constitué par un système optique afocal composé de lentilles et/ou miroirs et qui est apte à réaliser une courbure du front d'onde. Ce premier composant, lorsqu'il est fixe, peut également être constitué par un élément optique diffractant réalisant une fonction de « pré-mise en forme » modulée par le deuxième composant.When this component is fixed, it may be constituted by an afocal optical system composed of lenses and / or mirrors and which is capable of producing a curvature of the wavefront. This first component, when it is fixed, may also consist of a diffractive optical element performing a "pre-shaping" function modulated by the second component.
Lorsque ce premier composant est actif, il peut être constitué par un miroir déformable (par exemple du type de ceux commercialisés chez CILAS France) ou par une membrane déformable (par exemple du type de celles commercialisées chez OKO Technologies, Japon) ou par une valve optique adressée optiquement et plus généralement par tout moyen permettant de réaliser une modulation de la phase spatiale avec une dynamique assez élevée (typiquement supérieure ou égale à 2π) avec une résolution spatiale basse, notamment avec des pixels de dimension inférieure ou égale à 100 μm.When this first component is active, it may be constituted by a deformable mirror (for example of the type marketed by CILAS France) or by a deformable membrane (for example of the type marketed at OKO Technologies, Japan) or by a valve optically addressed optically and more generally by any means for performing a modulation of the spatial phase with a fairly high dynamic (typically greater than or equal to 2π) with a low spatial resolution, especially with pixels less than or equal to 100 microns.
Ces différents composants sont adressés électriquement ou optiquement et pilotés par ordinateur. Ils peuvent fonctionner par réflexion ou par transmission.These different components are addressed electrically or optically and controlled by computer. They can work by reflection or transmission.
Lorsque le premier composant est actif, il permet de réaliser la fonction de phase nécessaire à l'obtention de la mise en forme souhaitée, sans pour autant résoudre les détails de cette fonction de base. Dans ce cas, de tels détails sont réalisés par le deuxième composant actif.When the first component is active, it allows to realize the phase function necessary to obtain the desired formatting, without solving the details of this basic function. In this case, such details are made by the second active component.
Ce deuxième composant possède une résolution spatiale élevée avec une dimension de pixels inférieure ou égale à 100 μm et un nombre de pixels au moins de 100. Ce deuxième composant actif est basé sur une couche de cristal liquide et peut, par exemple, être constitué par un modulateur spatial de lumière réglé en modulateur de phase et adressé électriquement ou bien être constitué par une valve optique adressée optiquement et plus généralement par tout moyen réalisant cette fonction avec une résolution spatiale suffisante. Ce composant actif peut fonctionner par réflexion ou par transmission en ayant pour fonction d'affiner la forme spatiale du front d'onde.This second component has a high spatial resolution with a pixel dimension less than or equal to 100 μm and a number of pixels of at least 100. This second active component is based on a liquid crystal layer and can, for example, be constituted by a spatial light modulator set in phase modulator and addressed electrically or be constituted by an optical valve optically addressed and more generally by any means performing this function with sufficient spatial resolution. This active component can operate by reflection or transmission having the function of refining the spatial shape of the wavefront.
Selon une caractéristique importante de l'invention, le système de détection (5) se combinant avec la boucle de contre-réaction (6) permet d'attribuer une note à la mise en forme réalisée. D'une manière fondamentale, le système de détection n'est pas un dispositif de mesure de phase permettant de comparer le front de phase réalisé avec un front de phase attendu. Il s'agit d'un système simple de détection du type caméra CDD ou photodétecteur, après cristal non linéaire.According to an important characteristic of the invention, the detection system (5) combining with the feedback loop (6) makes it possible to assign a note to the formatting performed. In a fundamental way, the detection system is not a phase measuring device making it possible to compare the phase front produced with an expected phase front. It is a simple detection system of the CDD camera type or photodetector, after nonlinear crystal.
Plus généralement, selon l'invention, le système sans senseur de front d'onde, peut être constitué par tout système de détection ayant pour fonction de mettre en forme spatialement le faisceau et permettant d'obtenir un meilleur résultat. Par résultat, on entend une note attribuée suivant les critères dépendant des moyens choisis, par exemple la qualité d'image si c'est avec une caméra CDD ou l'intensité doublée en fréquence détectée sur une photodiode.More generally, according to the invention, the system without a wavefront sensor may consist of any detection system whose function is to spatially shape the beam and to obtain a better result. By result, we mean a score assigned according to the criteria depending on the selected means, for example the image quality if it is with a CDD camera or frequency doubled intensity detected on a photodiode.
Avec cette solution technique, la note attribuée dépend du taux de pixels d'adressage à la fois. Il en résulte qu'il n'y a plus de correspondance directe comme c'est le cas avec un senseur de front d'onde. Il est donc nécessaire d'optimiser l'ensemble de la matrice de dressage en même temps. La note est intégrée dans la boucle de contre-réaction (6).With this technical solution, the rating assigned depends on the pixel rate of the address at a time. As a result, there is no direct correspondence as is the case with a wavefront sensor. It is therefore necessary to optimize the entire dressing matrix at the same time. The note is integrated into the feedback loop (6).
Compte tenu de ces caractéristiques, pour réaliser la convergence informatique, la boucle de contre-réaction met en œuvre un algorithme permettant d'adapter les fonctions de phase réalisées par les premier et deuxième composants afin d'optimiser la note délivrée par la partie de détection. Par exemple, on peut utiliser les algorithmes dits « génétiques » ou « révolutionnaires ».Given these characteristics, to achieve the computer convergence, the feedback loop implements an algorithm to adapt the phase functions performed by the first and second components to optimize the note delivered by the detection part. For example, the so-called "genetic" or "revolutionary" algorithms can be used.
Après conformation dynamique du faisceau, le dispositif comprend un objectif (lentilles de Fourier (3), (4), par exemple) qui focalise le faisceau ainsi structuré et produit en son point focal ou à son voisinage, une tache ayant la répartition spatiale souhaitée. Si la dimension minimale de cette tache ne correspond pas aux dimensions souhaitées, un dispositif d'imagerie à lentilles et/ou miroirs (7) peut être ajouté en aval.After dynamic conformation of the beam, the device comprises an objective (Fourier lenses (3), (4), for example) which focuses the beam thus structured and produced in its focal point or in its vicinity, a spot having the desired spatial distribution . If the minimum dimension of this spot does not correspond to the desired dimensions, a lens and / or mirror imaging device (7) can be added downstream.
Au niveau de la tache image est disposé un échantillon (9) sur lequel le process laser est réalisé. Par exemple, l'échantillon (9) est relié mécaniquement à un ensemble mobile (10) piloté par ordinateur. Par exemple, cet ensemble mobile peut être un ensemble de translations motorisées couplé ou non à des dispositifs de rotation motorisée.At the image spot is arranged a sample (9) on which the laser process is performed. For example, the sample (9) is mechanically connected to a mobile assembly (10) controlled by computer. For example, this mobile assembly may be a set of motorized translations coupled or not to motorized rotation devices.
Un ensemble du type scanner (8) (système à miroirs galvanométriques) peut également être inséré sur le chemin optique avant la formation de la tache image de façon à dévier le faisceau par un pilotage informatique.A set of scanner type (8) (galvanometric mirror system) can also be inserted on the optical path before forming the image spot so as to deflect the beam by computer control.
Les avantages ressortent bien de la description, en particulier on souligne et on rappelle la diminution significative des coûts par la suppression du senseur de front d'onde utilisant un simple détecteur apte à fournir un signal de contre-réaction en liaison avec un algorithme sélectionné pour établir une procédure de convergence à essai erreur avec amélioration au cours de chaque essai erreur. The advantages are apparent from the description, in particular it is emphasized and recalled the significant decrease in costs by the removal of the wavefront sensor using a simple detector capable of providing a feedback signal in connection with an algorithm selected to establish a test-error convergence procedure with improvement during each error test.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0551007A FR2884743B1 (en) | 2005-04-20 | 2005-04-20 | FEMTOSECOND LASER MICRO-MACHINING DEVICE WITH DYNAMIC BEAM CONFORMATION |
PCT/FR2006/050356 WO2006111682A1 (en) | 2005-04-20 | 2006-04-19 | Femtosecond laser micromachining device with dynamic beam shaping |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1871565A1 true EP1871565A1 (en) | 2008-01-02 |
Family
ID=35432747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06743814A Withdrawn EP1871565A1 (en) | 2005-04-20 | 2006-04-19 | Femtosecond laser micromachining device with dynamic beam shaping |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080210673A1 (en) |
EP (1) | EP1871565A1 (en) |
FR (1) | FR2884743B1 (en) |
WO (1) | WO2006111682A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7567596B2 (en) | 2001-01-30 | 2009-07-28 | Board Of Trustees Of Michigan State University | Control system and apparatus for use with ultra-fast laser |
US8208505B2 (en) | 2001-01-30 | 2012-06-26 | Board Of Trustees Of Michigan State University | Laser system employing harmonic generation |
WO2007064703A2 (en) | 2005-11-30 | 2007-06-07 | Board Of Trustees Of Michigan State University | Laser based identification of molecular characteristics |
US9018562B2 (en) | 2006-04-10 | 2015-04-28 | Board Of Trustees Of Michigan State University | Laser material processing system |
JP4402708B2 (en) * | 2007-08-03 | 2010-01-20 | 浜松ホトニクス株式会社 | Laser processing method, laser processing apparatus and manufacturing method thereof |
US8675699B2 (en) | 2009-01-23 | 2014-03-18 | Board Of Trustees Of Michigan State University | Laser pulse synthesis system |
US8861075B2 (en) | 2009-03-05 | 2014-10-14 | Board Of Trustees Of Michigan State University | Laser amplification system |
US8630322B2 (en) | 2010-03-01 | 2014-01-14 | Board Of Trustees Of Michigan State University | Laser system for output manipulation |
US10350705B2 (en) | 2014-07-01 | 2019-07-16 | Qiova | Micromachining method for patterning a material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3877009B2 (en) * | 1996-03-08 | 2007-02-07 | 孝久 實野 | Lens, semiconductor laser element, processing apparatus thereof, manufacturing method of semiconductor laser element, optical element, optical element processing apparatus, and optical element processing method |
US5986807A (en) * | 1997-01-13 | 1999-11-16 | Xerox Corporation | Single binary optical element beam homogenizer |
JP2002273583A (en) * | 2001-03-19 | 2002-09-25 | Inst Of Physical & Chemical Res | Transparent medium processing equipment |
US6717104B2 (en) * | 2001-06-13 | 2004-04-06 | The Regents Of The University Of California | Programmable phase plate for tool modification in laser machining applications |
US20060207976A1 (en) * | 2005-01-21 | 2006-09-21 | Bovatsek James M | Laser material micromachining with green femtosecond pulses |
-
2005
- 2005-04-20 FR FR0551007A patent/FR2884743B1/en not_active Expired - Fee Related
-
2006
- 2006-04-19 US US11/911,985 patent/US20080210673A1/en not_active Abandoned
- 2006-04-19 EP EP06743814A patent/EP1871565A1/en not_active Withdrawn
- 2006-04-19 WO PCT/FR2006/050356 patent/WO2006111682A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2006111682A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2006111682A1 (en) | 2006-10-26 |
FR2884743B1 (en) | 2007-07-20 |
US20080210673A1 (en) | 2008-09-04 |
FR2884743A1 (en) | 2006-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006111682A1 (en) | Femtosecond laser micromachining device with dynamic beam shaping | |
CA2922526C (en) | Device and method for laser marking of an ophthalmic lens with a pulsed laser of wavelength and energy selected per pulse | |
EP0299836B1 (en) | Optical system and surgical apparatus comprising said system | |
EP3203949B1 (en) | Device for cutting a cornea or a crystalline lens | |
Kuang et al. | Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator | |
EP3164828B1 (en) | Micromachining method and system for patterning a material, and method for using one such micromachining system | |
EP2836332A1 (en) | Laser nanomachining device and method | |
CA2925491A1 (en) | Modular laser apparatus | |
JP2016055319A (en) | Light irradiation device and light irradiation method | |
EP2311158B1 (en) | Device for generating a short duration laser pulse | |
EP4264752B1 (en) | Device for amplifying a laser beam | |
FR2661371A1 (en) | Method and device for restoring a work of art | |
WO2020212729A1 (en) | Method for creating an iridescent visual effect on the surface of a material, devices for carrying out said method, and part obtained thereby | |
FR2872351A1 (en) | HIGH CADENCE ULTRA-SHORT LASER WITH DYNAMIC BEAM CONFORMATION | |
WO2020212728A1 (en) | Method for the creation of an iridescent effect on the surface of a material, and devices for carrying out said method | |
EP3999004B1 (en) | Cutting device with optical coupler including a polarisation corrector | |
EP4046817B1 (en) | Method for laser treatment of a timepiece component intended to darken at least one portion | |
CA2971630C (en) | Method for refocusing an optical assembly | |
FR3118330A1 (en) | LASER AMPLIFICATION DEVICE | |
CH717123A2 (en) | Method for metallic marking of a watch component. | |
FR3099636A1 (en) | Laser treatment system and method | |
BE888885A (en) | PROCESS AND APPARATUS FOR TREATING PRECIOUS STONES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071024 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HUOT, NICOLAS Inventor name: SODER, HERVE Inventor name: AUDOUARD, ERIC |
|
17Q | First examination report despatched |
Effective date: 20090519 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131101 |