EP1856199B1 - Plastic moulding with bidimensional or tridimensional image structures generated by inner laser engraving - Google Patents
Plastic moulding with bidimensional or tridimensional image structures generated by inner laser engraving Download PDFInfo
- Publication number
- EP1856199B1 EP1856199B1 EP06743190A EP06743190A EP1856199B1 EP 1856199 B1 EP1856199 B1 EP 1856199B1 EP 06743190 A EP06743190 A EP 06743190A EP 06743190 A EP06743190 A EP 06743190A EP 1856199 B1 EP1856199 B1 EP 1856199B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plastic
- laser
- oxide
- moulded bodies
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000010147 laser engraving Methods 0.000 title abstract description 21
- 238000010137 moulding (plastic) Methods 0.000 title abstract description 12
- 229920003023 plastic Polymers 0.000 claims abstract description 88
- 239000004033 plastic Substances 0.000 claims abstract description 82
- 239000000463 material Substances 0.000 claims abstract description 70
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 38
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 37
- 239000002245 particle Substances 0.000 claims abstract description 23
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims abstract description 11
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 19
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 17
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 17
- 239000004952 Polyamide Substances 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 13
- 229920002647 polyamide Polymers 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 10
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- -1 polyphenylene Polymers 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 4
- 229920000098 polyolefin Polymers 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 2
- 229910000410 antimony oxide Inorganic materials 0.000 claims description 2
- XXLJGBGJDROPKW-UHFFFAOYSA-N antimony;oxotin Chemical class [Sb].[Sn]=O XXLJGBGJDROPKW-UHFFFAOYSA-N 0.000 claims description 2
- 229920000402 bisphenol A polycarbonate polymer Polymers 0.000 claims description 2
- 229910003437 indium oxide Inorganic materials 0.000 claims description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 claims description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 claims description 2
- 229920001643 poly(ether ketone) Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 229920001470 polyketone Polymers 0.000 claims description 2
- 229920000193 polymethacrylate Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 2
- 229910001887 tin oxide Inorganic materials 0.000 claims description 2
- 239000011787 zinc oxide Substances 0.000 claims description 2
- 239000004711 α-olefin Substances 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 1
- 229920000265 Polyparaphenylene Polymers 0.000 claims 1
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims 1
- 229920002313 fluoropolymer Polymers 0.000 claims 1
- 229920000570 polyether Polymers 0.000 claims 1
- 125000001174 sulfone group Chemical group 0.000 claims 1
- 238000000465 moulding Methods 0.000 abstract description 11
- 238000006116 polymerization reaction Methods 0.000 description 16
- 229910019655 synthetic inorganic crystalline material Inorganic materials 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000002105 nanoparticle Substances 0.000 description 12
- 238000003384 imaging method Methods 0.000 description 11
- 239000000654 additive Substances 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 7
- 230000005855 radiation Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000010330 laser marking Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000005355 lead glass Substances 0.000 description 4
- 239000002861 polymer material Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229920005377 Plexiglas® 7N Polymers 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011265 semifinished product Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- PBLZLIFKVPJDCO-UHFFFAOYSA-N 12-aminododecanoic acid Chemical compound NCCCCCCCCCCCC(O)=O PBLZLIFKVPJDCO-UHFFFAOYSA-N 0.000 description 2
- 241001301278 Cerion Species 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- BDBZTOMUANOKRT-UHFFFAOYSA-N 4-[2-(4-aminocyclohexyl)propan-2-yl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1C(C)(C)C1CCC(N)CC1 BDBZTOMUANOKRT-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XZAHJRZBUWYCBM-UHFFFAOYSA-N [1-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1(CN)CCCCC1 XZAHJRZBUWYCBM-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- VHRGRCVQAFMJIZ-UHFFFAOYSA-N cadaverine Chemical class NCCCCCN VHRGRCVQAFMJIZ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical class OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- JMLPVHXESHXUSV-UHFFFAOYSA-N dodecane-1,1-diamine Chemical compound CCCCCCCCCCCC(N)N JMLPVHXESHXUSV-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006129 ethylene fluorinated ethylene propylene Polymers 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical class NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- DDLUSQPEQUJVOY-UHFFFAOYSA-N nonane-1,1-diamine Chemical compound CCCCCCCCC(N)N DDLUSQPEQUJVOY-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/26—Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/24—Ablative recording, e.g. by burning marks; Spark recording
Definitions
- the invention relates to plastic moldings with two- or three-dimensional image structures produced internally by internal laser engraving, wherein the plastic moldings consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, and both the plastic material and the metal oxide contained the laser light used to generate the image structures is transparent.
- the marking of plastics by laser marking acts on the object surface or in the near-surface region. Decisive here is the absorption of the laser energy in the plastic material by direct interaction with the polymer or with an additive added to the plastic material, such as an organic dye or an inorganic pigment which absorbs the laser radiation. In any case, the absorption of the laser energy causes a chemical change in the material and thus a visible local discoloration of the plastic.
- the laser markability is dependent on the wavelength-specific absorption behavior of the plastic materials or of the polymers on which they are based, of the wavelength-specific Absorption behavior of any laser-sensitive additives as well as the wavelength and radiation power of the laser radiation to be used.
- Nd YAG lasers (neodymium-doped yttrium-aluminum Garnet lasers) with the characteristic wavelengths of 1064 nm and 532 nm are increasingly being used in this technique.
- Laser-markable plastic materials which contain laser-sensitive additives in the form of dyes and / or pigments generally have a more or less pronounced coloring and / or lack of transparency. Often, the equipment is to be set as laser-absorbing molding compounds by the introduction of carbon black.
- the laser engraving has to work in any depth of the material. This presupposes that the material is essentially transparent to the incident laser radiation, since otherwise it would already be absorbed in the surface region.
- microcracking results in locally limited microcracking in the material.
- Such microcracks have a dot diameter of 25-40 microns. In visible light transparent glasses and plastics, the microcracks appear as bright spots due to the scattering of daylight at the crack edges.
- corresponding structures can be composed of individual microcracks in the workpiece.
- the pulse repetition frequency of the lasers typically used in this case allows the generation of structures with up to about 1000 points per minute.
- the starting point is a 3D representation of the later motif in a CAD program.
- the surface or the entire structure of the model is computationally resolved as a point cloud whose individual points are converted by the laser beam in the glass or plastic as microcracks. The denser the point cloud through which the object is displayed, the more accurate and clean the model is mapped.
- Another problem of laser engraving with methods and materials according to the prior art is the insufficient imaging accuracy in detailed, filigree patterns, both in glass and in plastics. Theoretically one can improve the imaging accuracy by increasing the dot cloud density. In practice, however, the dots run into each other at a certain point density due to the uncontrolled propagation of cracks and are no longer resolved, so that the imaging accuracy even suffers.
- the present invention therefore an object of the invention to find plastic materials and to provide two-dimensional or three-dimensional image structures with significantly improved imaging accuracy by means of laser engraving while avoiding uncontrolled cracking and crack propagation.
- the commercially available commercially available laser sources should be used.
- plastic moldings which consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm
- three-dimensional image structures of the highest fineness and detail can be produced by means of internal laser engraving, if laser light is used for that both the plastic material and the metal oxide contained is transparent, irradiated by imaging.
- the invention thus relates to plastic moldings with two- or three-dimensional image structures produced in the interior by internal laser engraving, which are characterized in that the plastic moldings consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, wherein both the Plastic material and the metal oxide contained is transparent to the laser light used to generate the image structures.
- the invention further relates to a process for the production of two- or three-dimensional image structures in the interior of plastic moldings by internal laser engraving, in which moldings consisting of plastic materials having a content of nanoscale metal oxides with particle size of 1 to 500 nm, with Laser light for which both the plastic material and the metal oxide contained is transparent, imagewise irradiated.
- Transparent plastic materials should be understood as meaning those which are essentially transparent in a wavelength range of 300 to 1300 nm. On the one hand, the visible wavelength range of 400 to 800 nm is preferred. Corresponding materials are particularly suitable for introducing visually perceptible structures by internal laser engraving, for example in the form of art objects. On the other hand, plastic materials with laser transparency in the wavelength range from 800 to 1300 nm are preferred. Corresponding materials, which may also appear colored and / or opaque or completely opaque in their visual appearance, are suitable for introducing visually imperceptible structures by internal laser engraving. for example as bar codes or data matrix codes for, for example, security purposes.
- the transmission of the plastic material in the selected wavelength range of typically commercially used, commercially available laser sources should be greater than 80%, preferably greater than 85% and particularly preferably greater than 90%.
- the haze in the wavelength range from 400 to 800 nm should be less than 5, preferably less than 2 and in particular less than 1%. The determination of transmission and haze is carried out according to ASTM D 1003.
- Nanoscale metal oxides are understood as meaning all inorganic-metallic oxides, such as metal oxides, mixed metal oxides, complex oxides and mixtures thereof, which cause little or no absorption in the characteristic wavelength range of the laser to be used.
- nanoscale is meant that the largest dimension of the discrete particles of these laser-sensitive metal oxides less than 1 pm, that is in the nanometer range.
- This size definition refers to all possible particle morphologies such as primary particles as well as any aggregates and agglomerates.
- the particle size of the laser-sensitive metal oxides is preferably from 1 to 500 nm and in particular from 5 to 100 nm. If the particle size is below 100 nm, the metal oxide particles are no longer visible per se and do not impair the transparency of the plastic matrix.
- the content of inorganic nanoparticles is suitably 0.0001 to 0.1 wt.%, Preferably 0.0005 to 0.05 wt.% And particularly preferably 0.001 to 0.01 wt.%, Based on the plastic material. In this concentration range, a controlled crack formation and thus a visible depth marking with high imaging accuracy is usually and for all eligible plastic materials effected.
- nanoparticles with particle sizes above 100 nm to choose the lower concentration range, while at particle sizes below 100 nm, higher concentrations can also be selected.
- Suitable inorganic nanoparticles for the production of laser-deep-markable plastic materials are preferably doped indium oxide, doped tin oxide, doped zinc oxide, doped aluminum oxide, doped antimony oxide and corresponding mixed oxides.
- inorganic nanoparticles are indium tin oxide (ITO) or antimony tin oxide (ATO) and doped indium or antimony tin oxides.
- ITO indium tin oxide
- ATO antimony tin oxide
- doped indium or antimony tin oxides are particularly suitable, and in turn, the "blue" indium tin oxide obtainable by a partial reduction process.
- the unreduced “yellow” indium tin oxide may cause a visually perceptible slightly yellowish hue of the plastic material at higher concentrations and / or particle sizes at the top, while the "blue” indium tin oxide will not cause any discernible color change. At most, a faint blueness is observed, which is regarded by the viewer but rather as high quality, as a yellow cast.
- the inorganic nanoparticles to be used according to the invention are known per se and are also commercially available in nanoscale form, that is to say with particle sizes of less than 1 ⁇ m, and in particular in the size range preferred here, often in the form of dispersions.
- the inorganic nanoparticles are generally agglomerated.
- the agglomerates, whose particle size is between 1 .mu.m and several mm, can be broken down into nanoscale particles by means of strong shearing.
- the determination of the Agglomerationagrades takes place in the sense of DIN 53206 (from August 1972).
- Nanoscale metal oxides can be prepared, for example, by pyrolytic processes. Such methods are for example in EP 1 142 830 A . EP 1 270 511 A or DE 103 11 645 described. Furthermore, inorganic nanoparticles can be prepared by precipitation processes, such as in DE 100 22 037 described.
- the nanoscale metal oxides can be incorporated into virtually any plastic system to impart laser markability.
- plastic materials in which the plastic matrix on poly (meth) acrylate, polyamide, polyurethane, polyolefins, styrene polymers and styrene copolymers, polycarbonate, silicones, polyimides, polysulfone, polyethersulfone, polyketones, polyether ketones, PEEK, polyphenylene sulfide, polyester (such as PET, PEN, PBT ), Polymethylene oxide, polyurethane, polyolefins or fluorine-containing polymers (such as PVDF, EFEP, PTFE).
- inorganic nanoparticles according to the invention is in particular in highly transparent plastic systems such as polycarbonates, transparent polyamides (for example Grilamid® TR55, TR90, Trogamid® T5000, CX7323), polyethylene terephthalate, polysulfone, polyethersulfone, cycloolefin copolymers (Topas®, Zeonex®), polymethyl methacrylate and their copolymers because they do not affect the transparency of the material.
- transparent polystyrene and polypropylene are to be mentioned, furthermore all semicrystalline plastics which can be processed by the use of nucleating agents or special processing conditions to transparent moldings.
- the transparent polyamides of the invention are generally prepared from the building blocks: branched and unbranched aliphatic (6 C to 14 C atoms), alkyl-substituted or unsubstituted cycloaliphatic (14 C to 22 C atoms), araliphatic diamines (C14 - C22) and aliphatic and cycloaliphatic dicarboxylic acids (C6 to C44); The latter can be partly due to aromatic Dicarboxylic acids are replaced.
- the transparent polyamides can additionally consist of monomer units with 6 C atoms, 10 C atoms, 11 C atoms or 12 C atoms, which are derived from lactams or ⁇ -aminocarboxylic acids.
- the transparent polyamides of the invention are prepared from the following building blocks: laurolactam or ⁇ -aminododecanoic acid, azelaic acid, sebacic acid, dodecanedioic acid, fatty acids (C18-C36, eg under the trade name Pripol®), cyclohexanedicarboxylic acids, partial or partial replacement thereof aliphatic acids by isoterephthalic acid, terephthalic acid, naphthalenedicarboxylic acid, tributylisophthalic acid.
- decanediamine dodecanediamine, nonanediamine, hexamethylenediamines branched, unbranched or substituted, as well as representatives of the class of alkyl-substituted / unsubstituted cycloaliphatic diamines bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) - methane, bis (4-aminocyclohexyl) propane, bis (aminocyclohexane), bis (aminomethyl) cyclohexane, isophoronediamine or substituted pentamethylenediamines.
- Examples of corresponding transparent polyamides are approximately in EP 0 725 100 and EP 0 725 101 described.
- nanoscale metal oxides can also be used in colored high-transparency systems become.
- neutral color of these additives allows a free choice of color.
- the transparent plastic materials which can be structured according to the invention by internal laser engraving can be present as plates, shaped bodies, semi-finished products or molding compositions. In this case, only a part of the plates, moldings, semi-finished products and molding compounds can be set laser-engravable inside.
- the production of the laser-engravable plastic materials is carried out in a conventional manner according to common in plastics production and processing techniques and methods. It is possible to enter the nanoparticulate additives before or during the polymerization or polycondensation into individual starting materials or Eduktgemische or even during the reaction, wherein the known in the art specific manufacturing process for the plastics in question are used.
- polycondensates such as polyamides
- incorporation of the additive into one of the monomer components can take place.
- This monomer component can then be subjected to a polycondensation reaction in the customary manner with the other reaction partners.
- the resulting high molecular weight intermediates or end products can be mixed with the nanoparticulate additives, it also being possible in this case for all methods familiar to the person skilled in the art to be used.
- the plastic matrix material liquid Depending on the formulation of the plastic matrix material liquid, semi-liquid and solid formulation ingredients or monomers and optionally required additives such as polymerization initiators, stabilizers (such as UV absorbers, heat stabilizers), optical brighteners, Anstistatika, plasticizers, mold release agents, lubricants, dispersing aids, antistatic agents but also Fillers and reinforcing agents or impact modifiers, etc. in customary devices and equipment such as reactors, stirred tanks, mixers, roll mills, extruders, etc. blended and homogenized, optionally shaped and then cured.
- the nanoscale metal oxides are introduced into the material at the appropriate time and homogeneously incorporated. Particularly preferred is the incorporation of the nanoscale metal oxides in the form of a concentrated masterbatch with the same or a compatible plastic material.
- the incorporation of the nanoscale metal oxides in the plastic matrix takes place under high shear in the plastic matrix. This can be done by appropriate adjustment of the mixer, roller mills, extruder. This effectively prevents any agglomeration or aggregation of the nanoscale metal oxide particles into larger units; any larger particles that are present are comminuted.
- the skilled worker is familiar with the corresponding techniques and the respective process parameters to be selected.
- Plastic moldings and semi-finished products are obtainable by injection molding or extruding from molding materials or by casting from the monomers and / or prepolymers.
- the polymerization is carried out by methods known to the person skilled in the art, for example by adding one or more polymerization initiators and inducing the polymerization by heating or irradiation.
- an annealing step can follow the polymerization.
- Laser engraving may be performed on a commercially available laser marking device, e.g. Cerion (Cerion X2, compact, green 532 nm) with a writing speed of 300 to 1000 points / s, a pulse frequency of 3 kHz and a pulse energy of 1 to 2 mJ are performed.
- Cerion Cerion X2, compact, green 532 nm
- the shaped bodies to be engraved are placed in the device and, after irradiation with a focused laser beam, obtain white to dark gray image structures with sharp contours and high contrast.
- the required settings can be determined in individual cases without further ado.
- diode lasers emitting at wavelengths of 808, 940 and 980 nm can also be used.
- the transparent plastic materials can be used very advantageously for the production of plastic moldings having three-dimensional image structures produced below the surface by internal laser engraving.
- artistic objects can be realized.
- the transparent polymers can also be colored. It makes sense to use colors that match the laser light do not absorb.
- the coloring can be transparent, translucent but also covered.
- 90g PMMA molding compound PLEXIGLAS® 7N are melted on the preheated two-roll mill.
- the roller temperature is 166 ° C at the front roller and 148 ° C at the rear roller.
- An additional 90 g of PLEXIGLAS® 7N PMMA molding compound are premixed with 20 g of Nano® ITO IT-05 C5000 and applied to the rollers with about 5 g of stearic acid.
- the rear roller is rotated a little faster, creating a friction. Within 6 minutes, the rolled sheet is pulled off the roll 10 times, folded and returned to the roll. Then you pull the roller skin from the roller, allowed to cool and crushed.
- the bottle is closed and rolled on a roll bar for 50 hours.
- the polymerization mixture is stirred for 30 min, allowed to stand for 10 min, filled into the polymerization and then immediately placed in a water bath.
- a polymerization chamber size of 10 x 200 x 200 mm size is built.
- the polymerization is set up vertically, allowed to run slowly the polymerization mixture and sealed the chamber.
- the filled polymerization chamber is placed horizontally in the heated to 45 to 50 ° C water bath and left so long until the polymerization is polymerized to a solid mass. After removal of the clamps and the Distanzierschnur the polymerization is 4h end polymerized in a pre-heated to 115 ° C tempering, then allowed to cool in a tempering and removed from the mold.
- Visible light transmission is 90% and Haze 1%.
- the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm power level 3, duration 4 min).
- the procedure is analogous to the procedure of Example 1. Only the process steps 3 and 4 are carried out. On the production of a rolled sheet can be omitted. The appropriate amount of stock solution from step 3 can be replaced by an appropriate amount of MMA / PMMA syrup.
- Visible light transmission is 90% and Haze 1%.
- the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm, power level 3, duration 4 min).
- Trogamid® CX 7323 a commercial product of Degussa AG, Business Unit High Performance Polymers, Marl, is coated with nanoscale indium tin oxide Nano®ITO IT-05 C5000 from Nanogate in a concentration of 0.01% by weight on a Berstorff ZE 2533 D extruder Compounded at 300 ° C and granulated. From the granules plates were produced by injection molding with the dimensions 10 x 100 x 100 mm.
- the light transmission in the visible range is 90% and the Haze 1.5%.
- the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm, power level 4, duration 1 min).
- the light transmission in the visible range is 90% and the Haze 1.5%.
- the material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm, power level 4, duration 1 min).
- illustration 1 shows the result with the material of Example 1.
- ITO-doped polymer material a clear line pattern was produced.
- Figure 2 shows the result with the undoped polymer material from Example 2. A line structure is difficult to recognize. The differences in the imaging accuracy are clearly visible.
- Figure 3 shows the result with the material from example 1. With the doped material every single point in the letter is clearly visible. All points are separated. A confluence of dots due to uncontrolled cracking is not observed.
- Figure 4 shows the result with the undoped polymer material from Example 2.
- the letter "a” is traversed by cracks and the edge appears very blurred.
- Figure 5 (Material of Example 1) the dot cloud pattern can be seen with high imaging accuracy, a very blurred line pattern is obtained in lead crystal glass.
- Figure 6 shows the result of the interior engraving in lead crystal glass (same point cloud file as in Figure 5 ).
- the outstanding imaging accuracy of the doped PMMA is also observed in the third dimension.
- Figure 7 shows the side view of the letter "S" Figure 5 (Material from Example 1). A line pattern of approximately 10 lines that are completely separated from each other can be observed.
- Figure 8 shows the same picture structure in the lead crystal block.
- the approximately 10 lines are much wider and more offset than the lines in Figure 7 ,
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Laser Beam Processing (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
Description
Die Erfindung betrifft Kunststoffformkörper mit im Inneren durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen, wobei die Kunststoffformkörper aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, und sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid für das zur Erzeugung der Bildstrukturen verwendete Laserlicht transparent ist.The invention relates to plastic moldings with two- or three-dimensional image structures produced internally by internal laser engraving, wherein the plastic moldings consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, and both the plastic material and the metal oxide contained the laser light used to generate the image structures is transparent.
Das Einbringen optischer Informationen in Kunststoffmaterialien durch Laserstrahlung ist an sich bekannt. Man unterscheidet hierbei die Lasermarkierung und die Laser-Innengravur.The introduction of optical information in plastic materials by laser radiation is known per se. A distinction is made between laser marking and laser engraving.
Die Kennzeichnung von Kunststoffen durch Lasermarkierung wirkt an der Objektoberfläche beziehungsweise im oberflächennahen Bereich. Entscheidend ist hierbei die Absorption der Laserenergie im Kunststoffmaterial durch direkte Wechselwirkung mit dem Polymer oder mit einem dem Kunststoffmaterial zugesetzten Additiv, wie etwa einem organischer Farbstoff oder einem anorganischen Pigment, das die Laserstrahlung absobiert. In jedem Fall wird durch Absorption der Laserenergie eine chemische Materialveränderung und damit eine lokale sichtbare Verfärbung des Kunststoffes bewirkt.The marking of plastics by laser marking acts on the object surface or in the near-surface region. Decisive here is the absorption of the laser energy in the plastic material by direct interaction with the polymer or with an additive added to the plastic material, such as an organic dye or an inorganic pigment which absorbs the laser radiation. In any case, the absorption of the laser energy causes a chemical change in the material and thus a visible local discoloration of the plastic.
Die Lasermarkierbarkeit ist abhängig von dem wellenlängenspezifischen Absorptionsverhalten der Kunststoffmaterialien bzw. der diesen zugrunde liegenden Polymere, von dem wellenlängenspezifischen Absorptionsverhalten an etwaigen lasersensitiven Zusätzen sowie von Wellenlänge und Strahlungsleistung der einzusetzenden Laserstrahlung. Neben CO2- und Excimer-Lasern kommen in dieser Technik vermehrt Nd:YAG-Laser (Neodym-dotierte Yttrium-Aluminium-Garnet-Laser) mit den charakteristischen Wellenlängen 1064 nm und 532 nm zum Einsatz.The laser markability is dependent on the wavelength-specific absorption behavior of the plastic materials or of the polymers on which they are based, of the wavelength-specific Absorption behavior of any laser-sensitive additives as well as the wavelength and radiation power of the laser radiation to be used. In addition to CO 2 and excimer lasers, Nd: YAG lasers (neodymium-doped yttrium-aluminum Garnet lasers) with the characteristic wavelengths of 1064 nm and 532 nm are increasingly being used in this technique.
Lasermarkierbare Kunststoffmaterialien, die lasersensitive Zusätze in Form von Farbstoffen und/oder Pigmenten enthalten, weisen generell eine mehr oder weniger ausgeprägte Färbung und/oder Intransparenz auf. Oft erfolgt die Ausrüstung der als laserabsorbierend einzustellenden Formmassen durch das Einbringen von Ruß.Laser-markable plastic materials which contain laser-sensitive additives in the form of dyes and / or pigments generally have a more or less pronounced coloring and / or lack of transparency. Often, the equipment is to be set as laser-absorbing molding compounds by the introduction of carbon black.
Hochtransparente Kunststoffmaterialien, die durch einen Zusatz an nanoskaligen laserabsorbierenden Metalloxiden lasermarkierbar gemacht werden können, sind in dem
Zur Technologie der Innengravur von für Laserstrahlung transparenten Gläsern und Kunststoffen durch Laserstrahlen seien beispielhaft die Schriften
Im Gegensatz zur Lasermarkierung hat die Laser-Innengravur in beliebiger Tiefe des Materials zu wirken. Dies setzt voraus, daß das Material im wesentlichen transparent für die eingestrahlte Laserstrahlung ist, da ansonsten diese bereits im Oberflächenbereich absorbiert würde.In contrast to the laser marking, the laser engraving has to work in any depth of the material. This presupposes that the material is essentially transparent to the incident laser radiation, since otherwise it would already be absorbed in the surface region.
Bei der Fokussierung eines Laserstrahls genügend hoher Leistungsdichte in das Innere des für das Laserlicht an sich transparenten Materials kommt es auf Grund optischer Effekte zu einer begrenzten Entwicklung von Wärmeenergie im Laserfokus.When focusing a laser beam of sufficiently high power density into the interior of the material which is transparent to the laser light, optical effects cause a limited development of thermal energy in the laser focus.
Diese Wärmeentwicklung hat eine lokal eng begrenzte Mikrorissbildung im Material zur Folge. Derartige Mikrorisse weisen einen Punktdurchmesser von 25 - 40 µm auf. Bei im sichtbaren Licht transparenten Gläsern und Kunststoffen erscheinen die Mikrorisse wegen der Streuung des Tageslichtes an den Risskanten als helle Punkte.This heat development results in locally limited microcracking in the material. Such microcracks have a dot diameter of 25-40 microns. In visible light transparent glasses and plastics, the microcracks appear as bright spots due to the scattering of daylight at the crack edges.
Durch die Ablenkung der Laserstrahlung über Spiegel und die Bewegung des Werkstückes sowie durch eine Synchronisation zwischen dem Bewegungsablauf und den Laserpulsen lassen sich im Werkstück entsprechende Strukturen aus einzelnen Mikrorissen zusammensetzen.By deflecting the laser radiation via mirrors and the movement of the workpiece as well as by a synchronization between the movement sequence and the laser pulses corresponding structures can be composed of individual microcracks in the workpiece.
Die Pulsfolgefrequenz der typischerweise hierbei eingesetzten Laser ermöglicht die Erzeugung von Strukturen mit bis zu etwa 1000 Punkten in der Minute.The pulse repetition frequency of the lasers typically used in this case allows the generation of structures with up to about 1000 points per minute.
Ausgangspunkt ist eine 3D-Darstellung des späteren Motivs in einem CAD-Programm. Die Oberfläche oder die gesamte Struktur des Modells wird rechnerisch als Punktwolke aufgelöst, deren Einzelpunkte durch den Laserstrahl im Glas oder Kunststoff als Mikrorisse umgesetzt werden. Je dichter die Punktwolke ist, durch die das Objekt dargestellt wird, umso genauer und sauberer wird das Modell abgebildet.The starting point is a 3D representation of the later motif in a CAD program. The surface or the entire structure of the model is computationally resolved as a point cloud whose individual points are converted by the laser beam in the glass or plastic as microcracks. The denser the point cloud through which the object is displayed, the more accurate and clean the model is mapped.
Bei der Laser-Innengravur von Kunststoffen mit Laserlicht, für das der Kunststoff eigentlich transparent ist, wird durch entsprechende Fokussierung des Laserstrahls eine Markierung im Inneren des Materials in Form von Mikrorissen erzeugt. Dabei kann es zur unkontrollierten Rissbildung und Rissausbreitung kommen. Dies stellt eine Schwächung des Materials dar. Daher sollte versucht werden, diese Schwächung so gering wie möglich zu halten.In the laser engraving of plastics with laser light, for which the plastic is actually transparent, a marking is generated in the interior of the material in the form of microcracks by appropriate focusing of the laser beam. This can lead to uncontrolled cracking and crack propagation. This is a weakening of the material. Therefore, it should be attempted to minimize this weakening.
In Glas kann diese Rissbildung sogar zu einer nachträglichen Zerstörung des Formkörpers führen, die zum Teil erst Tage oder sogar Wochen nach der Laser-Innengravur auftritt.In glass, this cracking can even lead to a subsequent destruction of the molding, some of which only days or even weeks after the laser engraving occurs.
In Kunststoffen kann neben der Rissbildung zusätzlich eine lokale Zerstörung des Materials und Karbonisierung auftreten, welche bei der Innengravur von im sichtbaren Licht transparenten Materialien wegen der dunklen Verfärbung unerwünscht ist.In plastics, in addition to the cracking, a local destruction of the material and carbonization may additionally occur, which is undesirable in the interior engraving of materials that are transparent in visible light because of the dark discoloration.
Ein weiteres Problem der Laser-Innengravur mit Methoden und Materialien nach dem Stand der Technik ist die ungenügende Abbildegenauigkeit bei detailreichen, filigranen Mustern, sowohl in Glas als auch in Kunststoffen. Theoretisch kann man die Abbildegenauigkeit durch Erhöhung der Punktwolkendichte verbessern. In der Praxis laufen die Punkte aber ab einer gewissen Punktdichte durch die unkontrollierte Rissausbreitung ineinander und werden nicht mehr aufgelöst, so dass die Abbildegenauigkeit sogar leidet.Another problem of laser engraving with methods and materials according to the prior art is the insufficient imaging accuracy in detailed, filigree patterns, both in glass and in plastics. Theoretically one can improve the imaging accuracy by increasing the dot cloud density. In practice, however, the dots run into each other at a certain point density due to the uncontrolled propagation of cracks and are no longer resolved, so that the imaging accuracy even suffers.
In
In
Der vorliegenden Erfindung lag daher die Aufgabenstellung zugrunde, Kunststoffmaterialien aufzufinden und bereitzustellen, in denen mittels Laser-Innengravur unter Vermeidung unkontrollierter Rissbildung und Rissausbreitung zwei- oder dreidimensionale Bildstrukturen mit deutlich verbesserter Abbildegenauigkeit erzeugt werden können. Hierbei sollten die typischerweise im technischen Einsatz befindlichen, kommerziell erhältlichen Laserquellen eingesetzt werden können.The present invention therefore an object of the invention to find plastic materials and to provide two-dimensional or three-dimensional image structures with significantly improved imaging accuracy by means of laser engraving while avoiding uncontrolled cracking and crack propagation. In this case, the commercially available commercially available laser sources should be used.
Überraschenderweise wurde gefunden, daß im Inneren von Kunststoffformkörpern, die aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, mittels Laser-Innengravur dreidimensionale Bildstrukturen von höchster Feinheit und Detailtreue erzeugt werden können, wenn man mit Laserlicht für das sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid transparent ist, bildgebend bestrahlt.Surprisingly, it has been found that in the interior of plastic moldings, which consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, three-dimensional image structures of the highest fineness and detail can be produced by means of internal laser engraving, if laser light is used for that both the plastic material and the metal oxide contained is transparent, irradiated by imaging.
Gegenstand der Erfindung sind somit Kunststoffformkörper mit im Inneren durch Laser-Innengravur erzeugten zwei- oder dreidimensionalen Bildstrukturen, die dadurch gekennzeichnet sind, daß die Kunststoffformkörper aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, wobei sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid für das zur Erzeugung der Bildstrukturen verwendete Laserlicht transparent ist.The invention thus relates to plastic moldings with two- or three-dimensional image structures produced in the interior by internal laser engraving, which are characterized in that the plastic moldings consist of plastic materials which have a content of nanoscale metal oxides with a particle size of 1 to 500 nm, wherein both the Plastic material and the metal oxide contained is transparent to the laser light used to generate the image structures.
Gegenstand der Erfindung ist weiterhin ein Verfahren zur Erzeugung von zwei- oder dreidimensionalen Bildstrukturen im Inneren von Kunststoffformkörpern durch Laser-Innengravur, bei dem man Formkörper, die aus Kunststoffmaterialien bestehen, die einen Gehalt an nanoskaligen Metalloxiden mit Partikelgröße von 1 bis 500 nm aufweisen, mit Laserlicht für das sowohl das Kunststoffmaterial als auch das enthaltene Metalloxid transparent ist, bildgebend bestrahlt.The invention further relates to a process for the production of two- or three-dimensional image structures in the interior of plastic moldings by internal laser engraving, in which moldings consisting of plastic materials having a content of nanoscale metal oxides with particle size of 1 to 500 nm, with Laser light for which both the plastic material and the metal oxide contained is transparent, imagewise irradiated.
Unter transparenten Kunststoffmaterialien sollen solche verstanden werden, die in einem Wellenlängenbereich von 300 bis 1300 nm im wesentlichen transparent sind. Bevorzugt ist zum einen der sichtbare Wellenlängenbreich von 400 bis 800 nm. Entsprechende Materialien eignen sich insbesondere für die Einbringung visuell wahrnehmbarer Strukturen durch Laser-Innengravur, etwa in Form von Kunstobjekten. Bevorzugt sind zum anderen Kunststoffmaterialien mit Lasertransparenz im Wellenlängenbereich von 800 bis 1300 nm. Entsprechende Materialien, die auch in ihrer visuellen Erscheinung farbig und/oder opak bzw. gänzlich undurchsichtig erscheinen können, eignen sich zur Einbringung von visuell nicht wahrnehmbaren Strukturen durch Laser-Innengravur, etwa als Bar-Codes oder Data Matrix Codes für zum Beispiel Sicherungszwecke.Transparent plastic materials should be understood as meaning those which are essentially transparent in a wavelength range of 300 to 1300 nm. On the one hand, the visible wavelength range of 400 to 800 nm is preferred. Corresponding materials are particularly suitable for introducing visually perceptible structures by internal laser engraving, for example in the form of art objects. On the other hand, plastic materials with laser transparency in the wavelength range from 800 to 1300 nm are preferred. Corresponding materials, which may also appear colored and / or opaque or completely opaque in their visual appearance, are suitable for introducing visually imperceptible structures by internal laser engraving. for example as bar codes or data matrix codes for, for example, security purposes.
Die Transmission des Kunststoffmaterials im ausgewählten Wellenlängenbereich von typischerweise im technischen Einsatz befindlichen, kommerziell erhältlichen Laserquellen sollte größer 80%, vorzugsweise größer 85% und besonders bevorzugt größer 90% sein. Der Haze im Wellenlängenbereich von 400 bis 800 nm sollte kleiner 5, vorzugsweise kleiner 2 und insbesondere kleiner 1% sein. Die Bestimmung von Transmission und Haze erfolgen nach ASTM D 1003.The transmission of the plastic material in the selected wavelength range of typically commercially used, commercially available laser sources should be greater than 80%, preferably greater than 85% and particularly preferably greater than 90%. The haze in the wavelength range from 400 to 800 nm should be less than 5, preferably less than 2 and in particular less than 1%. The determination of transmission and haze is carried out according to ASTM D 1003.
Unter nanoskaligen Metalloxiden sind alle anorganischmetallischen Oxide wie Metalloxide, Metallmischoxide, komplexe Oxide und Gemische hiervon zu verstehen, die im charakteristischen Wellenlängenbereich des einzusetzenden Lasers keine oder nur eine geringe Absorption hervorrufen.Nanoscale metal oxides are understood as meaning all inorganic-metallic oxides, such as metal oxides, mixed metal oxides, complex oxides and mixtures thereof, which cause little or no absorption in the characteristic wavelength range of the laser to be used.
Insgesamt muss streng darauf geachtet werden, das sowohl der transparente Kunststofformkörper als auch das nanoskalige Metalloxid für das einzusetzende Laserlicht transparent sind.Overall, care must be taken to ensure that both the transparent molded plastic body and the nanoscale metal oxide are transparent to the laser light to be used.
Unter nanoskalig ist zu verstehen, daß die größte Dimension der diskreten Partikel dieser lasersensitiven Metalloxide kleiner als 1 pm, also im Nanometerbereich ist. Dabei bezieht sich diese Größendefinition auf alle möglichen Partikelmorphologien wie Primärpartikel sowie etwaige Aggregate und Agglomerate.By nanoscale is meant that the largest dimension of the discrete particles of these laser-sensitive metal oxides less than 1 pm, that is in the nanometer range. This size definition refers to all possible particle morphologies such as primary particles as well as any aggregates and agglomerates.
Bevorzugt beträgt die Partikelgröße der lasersensitiven Metalloxide 1 bis 500 nm und insbesondere 5 bis 100 nm. Bei Wahl der Partikelgröße unter 100 nm sind die Metalloxidpartikel per se nicht mehr sichtbar und beeinträchtigen die Transparenz der Kunststoffmatrix nicht.The particle size of the laser-sensitive metal oxides is preferably from 1 to 500 nm and in particular from 5 to 100 nm. If the particle size is below 100 nm, the metal oxide particles are no longer visible per se and do not impair the transparency of the plastic matrix.
In dem Kunststoffmaterial beträgt der Gehalt an anorganischen Nanopartikeln zweckmäßigerweise 0,0001 bis 0,1 Gew.%, vorzugsweise 0,0005 bis 0,05 Gew.% und besonders bevorzugt 0,001 bis 0,01 Gew.%, bezogen auf das Kunststoffmaterial. In diesem Konzentrationsbereich wird in aller Regel und für alle in Frage kommenden Kunststoffmaterialien eine kontrollierte Rissausbildung und damit eine sichtbare Tiefenmarkierung mit hoher Abbildegenauigkeit bewirkt.In the plastic material, the content of inorganic nanoparticles is suitably 0.0001 to 0.1 wt.%, Preferably 0.0005 to 0.05 wt.% And particularly preferably 0.001 to 0.01 wt.%, Based on the plastic material. In this concentration range, a controlled crack formation and thus a visible depth marking with high imaging accuracy is usually and for all eligible plastic materials effected.
Bei geeigneter Wahl von Partikelgröße und Konzentration in den angegebenen Bereichen ist auch bei im sichtbaren Wellenlängenbereich hochtransparenten Matrixmaterialien eine Beeinträchtigung der intrinsischen Transparenz ausgeschlossen. So ist es zweckmäßig für Nanopartikel mit Partikelgößen über 100 nm den unteren Konzentrationsbereich zu wählen, während bei Partikelgößen unter 100 nm auch höhere Konzentrationen gewählt werden können.With a suitable choice of particle size and concentration in the specified ranges, an impairment of the intrinsic transparency is excluded even in the case of highly transparent matrix materials in the visible wavelength range. Thus, it is expedient for nanoparticles with particle sizes above 100 nm to choose the lower concentration range, while at particle sizes below 100 nm, higher concentrations can also be selected.
Als anorganische Nanopartikel zur Herstellung von lasertiefenmarkierenbaren Kunststoffmaterialien kommen vorzugsweise dotiertes Indiumoxid, dotiertes Zinnoxid, dotiertes Zinkoxid, dotiertes Aluminiumoxid, dotiertes Antimonoxid und entsprechende Mischoxide in Betracht.Suitable inorganic nanoparticles for the production of laser-deep-markable plastic materials are preferably doped indium oxide, doped tin oxide, doped zinc oxide, doped aluminum oxide, doped antimony oxide and corresponding mixed oxides.
Auch bei opaken Kunststoffmaterialien, die im Wellenbereich zwischen 800 und 1300 nm bildgebend bestrahlt werden sollen, werden sinnvollerweise Nanopartikel mit Partikelgrössen von kleiner 100 nm eingesetzt, da so eine homogene Verteilung der Metalloxide in der Polymermatrix erreicht werden kann, die für eine kontrollierte Rissausbildung entscheidend ist.Even with opaque plastic materials, which are irradiated in the wave range between 800 and 1300 nm nano particles with particle sizes of less than 100 nm are usefully used, since a homogeneous distribution of the metal oxides in the polymer matrix can be achieved, which is crucial for controlled crack formation.
Besonders geeignete anorganische Nanopartikel sind Indium-Zinnoxid (ITO) oder Antimon-Zinnoxid (ATO) sowie dotierte Indium- bzw. Antimon-Zinnoxide. Besonders bevorzugt ist Indium-Zinnoxid und hiervon wiederum das durch einen partiellen Reduktionsprozess erhältliche "blaue" Indium-Zinnoxid. Das nichtreduzierte "gelbe" Indium-Zinnoxid kann bei höheren Konzentrationen und/oder Partikelgrößen im oberen Bereich einen visuell wahrnehmbaren leicht gelblichen Farbton des Kunststoffmaterials bewirken, während das "blaue" Indium-Zinnoxid zu keiner wahrnehmbaren Farbveränderung führt. Allenfalls wird eine schwache Bläuung beobachtet, die vom Betrachter aber eher als hochwertig angesehen wird, als ein Gelbstich.Particularly suitable inorganic nanoparticles are indium tin oxide (ITO) or antimony tin oxide (ATO) and doped indium or antimony tin oxides. Indium tin oxide is particularly preferred, and in turn, the "blue" indium tin oxide obtainable by a partial reduction process. The unreduced "yellow" indium tin oxide may cause a visually perceptible slightly yellowish hue of the plastic material at higher concentrations and / or particle sizes at the top, while the "blue" indium tin oxide will not cause any discernible color change. At most, a faint blueness is observed, which is regarded by the viewer but rather as high quality, as a yellow cast.
Die erfindungsgemäß einzusetzenden anorganischen Nanopartikel sind an sich bekannt und auch in nanoskaliger Form, also mit Partikelgrößen unter 1µm, und insbesondere im hier bevorzugten Größenbereich kommerziell verfügbar, häufig in Form von Dispersionen. In ihrer Lieferform sind die anorganischen Nanopartikel in der Regel agglomeriert. Die Agglomerate, deren Teilchengröße zwischen 1 µm bis zu mehreren mm beträgt, lassen sich mittels starker Scherung zu nanoskaligen Partikeln zerlegen. Die Bestimmung des Agglomerationagrades erfolgt im Sinne der DIN 53206 (von August 1972).The inorganic nanoparticles to be used according to the invention are known per se and are also commercially available in nanoscale form, that is to say with particle sizes of less than 1 μm, and in particular in the size range preferred here, often in the form of dispersions. As supplied, the inorganic nanoparticles are generally agglomerated. The agglomerates, whose particle size is between 1 .mu.m and several mm, can be broken down into nanoscale particles by means of strong shearing. The determination of the Agglomerationagrades takes place in the sense of DIN 53206 (from August 1972).
Nanoskalige Metalloxide können beispielsweise durch pyrolytische Verfahren hergestellt werden. Solche Verfahren sind beispielsweise in
Die nanoskaligen Metalloxide können in praktisch alle Kunststoffsysteme eingearbeitet werden, um diesen Lasermarkierbarkeit zu verleihen. Typisch sind Kunststoffmaterialien bei denen die Kunststoffmatrix auf Poly(meth)acrylat, Polyamid, Polyurethan, Polyolefinen, Styrolpolymeren und Styrolcopolymeren, Polycarbonat, Silikonen, Polyimiden, Polysulfon, Polyethersulfon, Polyketone, Polyetherketone, PEEK, Polyphenylensulfid, Polyester (wie PET, PEN, PBT), Polymethylenoxid, Polyurethan, Polyolefinen oder fluorhaltigen Polymeren (wie PVDF, EFEP, PTFE) basiert. Ebenfalls ist eine Einarbeitung in Blends möglich, die als Komponenten oben genannte Kunststoffe beinhalten, oder in von diesen Klassen abgeleitete Polymere, die durch nachträgliche Reaktionen verändert wurden. Diese Materialien sind in großer Vielfalt bekannt und kommerziell erhältlich. Der erfindungsgemäße Vorteil der anorganischen Nanopartikel kommt insbesondere bei hochtransparenten Kunststoffsystemen wie Polycarbonaten, transparenten Polyamiden (beispielsweise Grilamid® TR55, TR90, Trogamid® T5000, CX7323), Polyethylenterephthalat, Polysulfon, Polyethersulfon, Cycloolefincopolymeren (Topas®, Zeonex®), Polymethylmethacrylat und deren Copolymeren zum tragen, da sie die Transparenz des Materials nicht beeinflussen. Des weiteren sind transparentes Polystyrol und Polypropylen zu nennen, weiterhin alle teilkristallinen Kunststoffe, die durch den Einsatz von Nukleierungsmitteln oder speziellen Verarbeitungsbedingungen zu transparenten Formkörpern verarbeitet werden können.The nanoscale metal oxides can be incorporated into virtually any plastic system to impart laser markability. Typical are plastic materials in which the plastic matrix on poly (meth) acrylate, polyamide, polyurethane, polyolefins, styrene polymers and styrene copolymers, polycarbonate, silicones, polyimides, polysulfone, polyethersulfone, polyketones, polyether ketones, PEEK, polyphenylene sulfide, polyester (such as PET, PEN, PBT ), Polymethylene oxide, polyurethane, polyolefins or fluorine-containing polymers (such as PVDF, EFEP, PTFE). It is also possible to incorporate them into blends containing the above-mentioned plastics as components, or into polymers derived from these classes which have been modified by subsequent reactions. These materials are widely known and commercially available. The advantage of the inorganic nanoparticles according to the invention is in particular in highly transparent plastic systems such as polycarbonates, transparent polyamides (for example Grilamid® TR55, TR90, Trogamid® T5000, CX7323), polyethylene terephthalate, polysulfone, polyethersulfone, cycloolefin copolymers (Topas®, Zeonex®), polymethyl methacrylate and their copolymers because they do not affect the transparency of the material. Furthermore, transparent polystyrene and polypropylene are to be mentioned, furthermore all semicrystalline plastics which can be processed by the use of nucleating agents or special processing conditions to transparent moldings.
Die erfindungsgemäßen transparenten Polyamide werden allgemein hergestellt aus den Bausteinen: verzweigte und unverzweigte aliphatische (6 C- bis 14 C-Atome), alkylsubstituierte oder unsubstituierten cycloaliphatische (14 C- bis 22 C-Atome), araliphatische Diamine (C14 - C22) und aliphatische und cycloaliphatische Dicarbonsäuren (C6 bis C44); letztere können teilweise durch aromatische Dicarbonsäuren ersetzt werden. Insbesondere können sich die transparenten Polyamide zusätzlich aus Monomerbausteinen mit 6 C-Atomen, 10 C-Atomen, 11 C-Atomen beziehungsweise 12 C-Atomen zusammensetzen, die sich von Lactamen oder ω-Aminocarbonsäuren ableiten.The transparent polyamides of the invention are generally prepared from the building blocks: branched and unbranched aliphatic (6 C to 14 C atoms), alkyl-substituted or unsubstituted cycloaliphatic (14 C to 22 C atoms), araliphatic diamines (C14 - C22) and aliphatic and cycloaliphatic dicarboxylic acids (C6 to C44); The latter can be partly due to aromatic Dicarboxylic acids are replaced. In particular, the transparent polyamides can additionally consist of monomer units with 6 C atoms, 10 C atoms, 11 C atoms or 12 C atoms, which are derived from lactams or ω-aminocarboxylic acids.
Bevorzugt, aber nicht ausschließlich, werden die erfindungsgemäßen transparenten Polyamide aus den folgenden Bausteinen hergestellt: Laurinlactam oder ω-Aminododekansäure, Azelainsäure, Sebacinsäure, Dodecandisäure, Fettsäuren (C18 - C36; z.B. unter dem Handelsnamen Pripol®), Cyclohexandicarbonsäuren, partieller oder teilweiser Ersatz dieser aliphatischen Säuren durch Isoterephthalsäure, Terephthalsäure, Naphthalindicarbonsäure, Tributylisophthalsäure. Desweiteren finden Verwendung Dekandiamin, Dodecandiamin, Nonandiamin, Hexamethylendiamine verzweigt, unverzweigt oder substituiert, sowie als Vertreter aus der Klasse der alkylsubstituierten/unsubstituierten cycloaliphatischen Diamine Bis-(4-aminocyclohexyl)-methan, Bis-(3-methyl-4-aminocyclohexyl)-methan, Bis-(4-aminocyclohexyl)-propan, Bis-(aminocyclohexan), Bis-(aminomethyl)-cyclohexan, Isophorondiamin oder auch substituierte Pentamethylendiamine.Preferably, but not exclusively, the transparent polyamides of the invention are prepared from the following building blocks: laurolactam or ω-aminododecanoic acid, azelaic acid, sebacic acid, dodecanedioic acid, fatty acids (C18-C36, eg under the trade name Pripol®), cyclohexanedicarboxylic acids, partial or partial replacement thereof aliphatic acids by isoterephthalic acid, terephthalic acid, naphthalenedicarboxylic acid, tributylisophthalic acid. Furthermore, the use of decanediamine, dodecanediamine, nonanediamine, hexamethylenediamines branched, unbranched or substituted, as well as representatives of the class of alkyl-substituted / unsubstituted cycloaliphatic diamines bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) - methane, bis (4-aminocyclohexyl) propane, bis (aminocyclohexane), bis (aminomethyl) cyclohexane, isophoronediamine or substituted pentamethylenediamines.
Beispiele für entsprechende transparente Polyamide sind etwa in
Besonders bevorzugt sind hochtransparente Kunststoffsysteme auf Basis von Polymethylmethacrylat, Bisphenol-A-Polycarbonat, Polyamid und sogenannter Cycloolefincopolymere aus Norbornen und α-Olefinen die mit Hilfe der erfindungsgemäßen anorganischen Nanopartikel ohne Beeinträchtigung der Transparenz des Materials lasertiefenmarkierbar gemacht werden können.Highly transparent plastic systems based on polymethyl methacrylate, bisphenol A polycarbonate, polyamide and so-called cycloolefin copolymers of norbornene and α-olefins which can be made laser-marked with the aid of the inorganic nanoparticles according to the invention without impairing the transparency of the material are particularly preferred.
Selbstverständlich können die nanoskaligen Metalloxide auch in eingefärbten hochtransparenten Systemen verwendet werden. Hier ist insbesondere vorteilhaft, daß die neutrale Eigenfarbe dieser Additive eine freie Farbwahl ermöglicht.Of course, the nanoscale metal oxides can also be used in colored high-transparency systems become. Here is particularly advantageous that the neutral color of these additives allows a free choice of color.
Die erfindungsgemäß durch Laser-Innengravur strukturierbaren transparenten Kunststoffmaterialien können als Platten, Formkörper, Halbzeuge oder Formmassen vorliegen. Dabei kann auch nur ein Teil der Platten, Formkörper, Halbzeuge und Formmassen laser-innengravierbar eingestellt sein.The transparent plastic materials which can be structured according to the invention by internal laser engraving can be present as plates, shaped bodies, semi-finished products or molding compositions. In this case, only a part of the plates, moldings, semi-finished products and molding compounds can be set laser-engravable inside.
Die Herstellung der laser-innengravierbaren Kunststoffmaterialien erfolgt in an sich bekannter Weise nach in der Kunststoffherstellung und Verarbeitung gängigen und üblichen Techniken und Verfahren. Dabei ist es möglich, die nanopartikulären Additive vor oder während der Polymerisation oder Polykondensation in einzelne Edukte oder Eduktgemische einzutragen oder auch während der Reaktion zuzusetzen, wobei die dem Fachmann bekannten spezifischen Herstellverfahren für die betreffenden Kunststoffe eingesetzt werden. Im Falle von Polykondensaten wie Polyamiden kann beispielsweise eine Einarbeitung des Additives in eine der Monomerkomponenten erfolgen. Diese Monomerkomponente kann dann mit den übrigen Reaktionspartnern in üblicher Weise einer Polykondensationsreaktion unterworfen werden. Weiter können nach Bildung von Makromolekülen die entstandenen hochmolekularen Zwischen- oder Endprodukte mit den nanopartikulären Additiven versetzt werden, wobei auch in diesem Falle alle dem Fachmann geläufigen Verfahren eingesetzt werden können.The production of the laser-engravable plastic materials is carried out in a conventional manner according to common in plastics production and processing techniques and methods. It is possible to enter the nanoparticulate additives before or during the polymerization or polycondensation into individual starting materials or Eduktgemische or even during the reaction, wherein the known in the art specific manufacturing process for the plastics in question are used. In the case of polycondensates such as polyamides, for example, incorporation of the additive into one of the monomer components can take place. This monomer component can then be subjected to a polycondensation reaction in the customary manner with the other reaction partners. Furthermore, after the formation of macromolecules, the resulting high molecular weight intermediates or end products can be mixed with the nanoparticulate additives, it also being possible in this case for all methods familiar to the person skilled in the art to be used.
Je nach Rezeptur des Kunststoffmatrixmaterials werden flüssige, halbflüssige und feste Rezepturbestandteile oder Monomere sowie gegebenenfalls erforderliche Additive wie etwa Polymerisationsinitiatoren, Stabilisatoren, (wie UV-Absorber, Wärmestabilisatoren), optische Aufheller, Anstistatika, Weichmacher, Entformungshilfsmittel, Schmiermittel, Dispergierhilfsmittel, Antistatika aber auch Füll- und Verstärkungsstoffe oder Schlagzähmodifikatoren etc. in dafür üblichen Vorrichtungen und Anlagen wie Reaktoren, Rührkesseln, Mischern, Walzenstühlen, Extrudern etc. gemischt und homogenisiert, gegebenenfalls geformt und danach zur Aushärtung gebracht. Die nanoskaligen Metalloxide werden hierbei zum geeigneten Zeitpunkt in das Material eingebracht und homogen eingearbeitet. Besonders bevorzugt ist die Einarbeitung der nanoskaligen Metalloxide in Form einer konzentrierten Vormischung (Masterbatch) mit dem gleichen oder einem kompatiblen Kunststoffmaterial.Depending on the formulation of the plastic matrix material liquid, semi-liquid and solid formulation ingredients or monomers and optionally required additives such as polymerization initiators, stabilizers (such as UV absorbers, heat stabilizers), optical brighteners, Anstistatika, plasticizers, mold release agents, lubricants, dispersing aids, antistatic agents but also Fillers and reinforcing agents or impact modifiers, etc. in customary devices and equipment such as reactors, stirred tanks, mixers, roll mills, extruders, etc. blended and homogenized, optionally shaped and then cured. The nanoscale metal oxides are introduced into the material at the appropriate time and homogeneously incorporated. Particularly preferred is the incorporation of the nanoscale metal oxides in the form of a concentrated masterbatch with the same or a compatible plastic material.
Es ist vorteilhaft, wenn die Einarbeitung der nanoskaligen Metalloxide in die Kunststoffmatrix unter hoher Scherung in die Kunststoffmatrix erfolgt. Dies kann durch entsprechende Einstellung der Mischer, Walzenstühle, Extruder vorgenommen werden. Hierdurch wird eine etwaige Agglomeration oder Aggregation der nanoskaligen Metalloxidpartikel zu größeren Einheiten wirksam verhindert; etwa vorhandene größere Partikel werden zerkleinert. Dem Fachmann sind die entsprechenden Techniken und die jeweils zu wählenden Verfahrensparameter geläufig.It is advantageous if the incorporation of the nanoscale metal oxides in the plastic matrix takes place under high shear in the plastic matrix. This can be done by appropriate adjustment of the mixer, roller mills, extruder. This effectively prevents any agglomeration or aggregation of the nanoscale metal oxide particles into larger units; any larger particles that are present are comminuted. The skilled worker is familiar with the corresponding techniques and the respective process parameters to be selected.
Kunststoffformkörper und Halbzeuge sind durch Spritzgießen oder Extrudieren aus Formmassen oder durch Gussverfahren aus den Monomeren und/oder Präpolymeren erhältlich.Plastic moldings and semi-finished products are obtainable by injection molding or extruding from molding materials or by casting from the monomers and / or prepolymers.
Die Polymerisation erfolgt nach dem Fachmann bekannten Verfahren, beispielsweise durch Zusatz eines oder mehrerer Polymerisationsinitiatoren und Induktion der Polymerisation durch Erwärmen oder Bestrahlen. Zur vollständigen Umsetzung des oder der Monomere kann sich ein Temperschritt an die Polymerisation anschließen.The polymerization is carried out by methods known to the person skilled in the art, for example by adding one or more polymerization initiators and inducing the polymerization by heating or irradiation. For the complete conversion of the monomer or monomers, an annealing step can follow the polymerization.
Nach Herstellung von Kunststoffformteilen aus den nanoskalige Metalloxide enthaltenden Kunststoffmaterialien lassen sich diese durch Bestrahlen mit Laserlicht markieren.After production of plastic moldings from the nano-scale metal oxides containing plastic materials can be marked by irradiation with laser light.
Das Laser-Innengravieren kann auf einem handelsüblichen Lasermarkierungsgerät, z.B. der Firma Cerion (Cerion X2, compact, grün 532 nm) mit einer Schreibgeschwindigkeit von 300 bis 1000 Punkten/s, einer Pulsfrequenz von 3 kHz und einer Pulsenergie von 1 bis 2 mJ durchgeführt werden. Man legt die zu gravierenden Formkörper in das Gerät ein und erhält nach Bestrahlung mit fokussiertem Laserstrahl weiße bis dunkelgraue Bildstrukturen mit scharfen Konturen und hohem Kontrast. Die erforderlichen Einstellungen können im Einzelfall ohne weiteres ermittelt werden.Laser engraving may be performed on a commercially available laser marking device, e.g. Cerion (Cerion X2, compact, green 532 nm) with a writing speed of 300 to 1000 points / s, a pulse frequency of 3 kHz and a pulse energy of 1 to 2 mJ are performed. The shaped bodies to be engraved are placed in the device and, after irradiation with a focused laser beam, obtain white to dark gray image structures with sharp contours and high contrast. The required settings can be determined in individual cases without further ado.
Als Laserkristalle können zum Beispiel auch folgende Materialien verwendet werden:
- Ti:Al203 (Wellenlänge einstellbar von 680 bis 1100 nm)
- Yb:YAG (Wellenlänge 1030 nm, 1. Oberschwingung: 515 nm, 2. Oberschwingung: 343 nm)
- Nd: YAG und Nd:Ce:Tb:YAG (Wellenlänge 1064 nm, 1. Oberschwingung: 532 nm, 2. Oberschwingung: 355 nm)
- Ho:Cr:Tm:YAG (Wellenlänge 2097 nm, 1. Oberschwingung: 1048,5 nm, 2. Oberschwingung: 699 nm)
- Er:YAG (Wellenlänge 2940 nm, 1. Oberschwingung: 1470 nm, 2. Oberschwingung: 980 nm)
- Ti: Al 2 O 3 (wavelength adjustable from 680 to 1100 nm)
- Yb: YAG (wavelength 1030 nm, 1st harmonic: 515 nm, 2nd harmonic: 343 nm)
- Nd: YAG and Nd: Ce: Tb: YAG (wavelength 1064 nm, 1st harmonic: 532 nm, 2nd harmonic: 355 nm)
- Ho: Cr: Tm: YAG (wavelength 2097 nm, 1st harmonic: 1048.5 nm, 2nd harmonic: 699 nm)
- Er: YAG (wavelength 2940 nm, 1st harmonic: 1470 nm, 2nd harmonic: 980 nm)
Es können natürlich auch Diodenlaser eingesetzt werden, die bei Wellenlängen von 808, 940 und 980 nm emittieren.Of course, diode lasers emitting at wavelengths of 808, 940 and 980 nm can also be used.
Die transparenten Kunststoffmaterialien können erfindungsgemäß sehr vorteilhaft zur Herstellung von Kunststoffformkörper mit unter der Oberfläche durch Laser-Innengravur erzeugten dreidimensionalen Bildstrukturen verwendet werden. Neben technischen Anwendungen können insbesondere auch künstlerische Objekte realisiert werden.According to the invention, the transparent plastic materials can be used very advantageously for the production of plastic moldings having three-dimensional image structures produced below the surface by internal laser engraving. In addition to technical applications, in particular, artistic objects can be realized.
Die transparenten Polymere können auch eingefärbt werden. Sinnvollerweise werden Farben verwandt, die das Laserlicht nicht absorbieren. Die Einfärbung kann transparent, transluzent aber auch gedeckt ausgeführt sein.The transparent polymers can also be colored. It makes sense to use colors that match the laser light do not absorb. The coloring can be transparent, translucent but also covered.
Besonders interessante Kunstobjekte werden erhalten, wenn fluoreszierende Farbstoffe verwendet werden. Durch Beleuchtung der Kanten derartiger Kunstobjekte können besonders wertvoll erscheinende Kunstobjekte hergestellt werden.Particularly interesting art objects are obtained when fluorescent dyes are used. By illuminating the edges of such art objects particularly valuable appearing art objects can be produced.
Im folgenden soll die Herstellung der Nanopartikel/Kunststoffmischungen und die Durchführung der Innengravur durch Lasertiefenmarkierung beispielhaft an Polymethylmethacrylat- und Polyamidsystemen erläutert werden.In the following, the preparation of the nanoparticles / plastic mixtures and the performance of the internal engraving by laser depth marking will be explained by way of example on polymethyl methacrylate and polyamide systems.
90g PMMA-Formmasse PLEXIGLAS® 7N werden auf dem vorgeheizten Zweiwalzenstuhl aufgeschmolzen. Die Walzentemperatur beträgt an der vorderen Walze 166°C und an der hinteren Walze 148°C. Weitere 90 g PMMA-Formmasse PLEXIGLAS® 7N werden mit 20g Nano®ITO IT-05 C5000 vorgemischt und mit ca. 5g Stearinsäure auf die Walzen aufgegeben. Die hintere Walze lässt man etwas schneller rotieren und erzeugt dadurch eine Friktion. Innerhalb von 6 Minuten wird das Walzfell 10-mal von der Walze abgezogen, gefaltet und wieder auf die Walze aufgegeben. Anschließend zieht man das Walzfell von der Walze ab, lässt abkühlen und zerkleinert.90g PMMA molding compound PLEXIGLAS® 7N are melted on the preheated two-roll mill. The roller temperature is 166 ° C at the front roller and 148 ° C at the rear roller. An additional 90 g of PLEXIGLAS® 7N PMMA molding compound are premixed with 20 g of Nano® ITO IT-05 C5000 and applied to the rollers with about 5 g of stearic acid. The rear roller is rotated a little faster, creating a friction. Within 6 minutes, the rolled sheet is pulled off the roll 10 times, folded and returned to the roll. Then you pull the roller skin from the roller, allowed to cool and crushed.
In eine 11 Weithalsflasche werden eingewogen:
Zum Lösen des Walzfells und des polymeren Dispergiermittels wird die Flasche verschlossen und 50h auf einer Rollbank gerollt.To loosen the roller skin and the polymeric dispersant, the bottle is closed and rolled on a roll bar for 50 hours.
Herstellung des Polymerisationsansatzes von 1000g mit 0,01% Nano®ITO IT-05 C5000.
Der Polymerisationsansatz wird 30 Min. gerührt, 10 Min. stehen gelassen, in die Polymerisationskammer eingefüllt und danach sofort in ein Wasserbad eingelegt.The polymerization mixture is stirred for 30 min, allowed to stand for 10 min, filled into the polymerization and then immediately placed in a water bath.
Aus zwei 6mm dicken Floatglasscheiben, einer Distanzierschnur und einigen Metallklammern wird eine Polymerisationskammergröße von 10 x 200 x 200 mm Größe gebaut. Die Polymerisationskammer wird senkrecht aufgestellt, der Polymerisationsansatz langsam einlaufen gelassen und die Kammer verschlossen. Die gefüllte Polymerisationskammer wird waagrecht in das auf 45 bis 50°C aufgeheizte Wasserbad eingelegt und so lange liegen gelassen bis der Polymerisationsansatz zu einer festen Masse polymerisiert ist. Nach Entfernen der Klammern und der Distanzierschnur wird die Polymerisationskammer 4h in einem auf 115°C vorgeheizten Temperschrank endpolymerisiert, anschließend im Temperschrank abkühlen gelassen und aus der Form entnommen.From two 6mm thick float glass panes, a spacer cord and some metal clips, a polymerization chamber size of 10 x 200 x 200 mm size is built. The polymerization is set up vertically, allowed to run slowly the polymerization mixture and sealed the chamber. The filled polymerization chamber is placed horizontally in the heated to 45 to 50 ° C water bath and left so long until the polymerization is polymerized to a solid mass. After removal of the clamps and the Distanzierschnur the polymerization is 4h end polymerized in a pre-heated to 115 ° C tempering, then allowed to cool in a tempering and removed from the mold.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1 %.Visible light transmission is 90% and
Das Material wurde mit einem frequenzverdoppelten Nd:YAG Laser (Emissionswellenlänge 532 nm Leistungstufe 3, Dauer 4 min) laserinnenmarkiert.The material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532
Es wird analog der Vorschrift des Beispiels 1 verfahren. Dabei werden nur die Verfahrenschritte 3. und 4. durchgeführt. Auf die Herstellung eines Walzfelles kann verzichtet werden. Die entsprechende Menge Stammlösung aus Schritt 3. kann durch eine entsprechende Menge MMA/PMMA Sirup ersetzt werden.The procedure is analogous to the procedure of Example 1. Only the process steps 3 and 4 are carried out. On the production of a rolled sheet can be omitted. The appropriate amount of stock solution from
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1 %.Visible light transmission is 90% and
Das Material wurde mit einem frequenzverdoppelten Nd:YAG Laser (Emissionswellenlänge 532 nm, Leistungstufe 3, Dauer 4 min) laserinnenmarkiert.The material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm,
Trogamid® CX 7323, ein Handelsprodukt der Degussa AG, Geschäftsbereich High Performance Polymers, Marl, wird mit nanoskaligem Indiumzinnoxid Nano®ITO IT-05 C5000 der Firma Nanogate in einer Konzentration von 0,01 Gew.% auf einem Extruder Berstorff ZE 2533 D bei 300°C compoundiert und granuliert. Aus dem Granulat wurden im Spritzgußverfahren Platten mit den Maßen 10 x 100 x 100 mm hergestellt.Trogamid® CX 7323, a commercial product of Degussa AG, Business Unit High Performance Polymers, Marl, is coated with nanoscale indium tin oxide Nano®ITO IT-05 C5000 from Nanogate in a concentration of 0.01% by weight on a Berstorff ZE 2533 D extruder Compounded at 300 ° C and granulated. From the granules plates were produced by injection molding with the dimensions 10 x 100 x 100 mm.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1,5 %.The light transmission in the visible range is 90% and the Haze 1.5%.
Das Material wurde mit einem frequenzverdoppelten Nd:YAG Laser (Emissionswellenlänge 532 nm, Leistungstufe 4, Dauer 1 min) laserinnenmarkiert.The material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm,
Aus Trogamid® CX 7323, einem Handelsprodukt der Degussa AG, Geschäftsbereich High Performance Polymers, Marl, wurden im Spritzgußverfahren Platten mit den Maßen 10 x 100 x 100 mm hergestellt.From Trogamid® CX 7323, a commercial product of Degussa AG, Business Unit High Performance Polymers, Marl, plates with the dimensions 10 x 100 x 100 mm were produced by injection molding.
Die Lichttransmission im sichtbaren Bereich beträgt 90 % und der Haze 1,5 %.The light transmission in the visible range is 90% and the Haze 1.5%.
Das Material wurde mit einem frequenzverdoppelten Nd:YAG Laser (Emissionswellenlänge 532 nm, Leistungstufe 4, Dauer 1 min) laserinnenmarkiert.The material was laser-marked with a frequency-doubled Nd: YAG laser (emission wavelength 532 nm,
Die folgenden Abbildungen wurden von mit einem frequenzverdoppelten Nd:YAG Laser (Emissionswellenlänge 532 nm) innengravierten Formkörpern hergestellt.The following images were prepared from internally engraved molded articles using a frequency-doubled Nd: YAG laser (emission wavelength 532 nm).
Auch beim Schreiben von Buchstaben ist eine deutlich bessere Abbildegenauigkeit der dotierten PMMA Proben zu erkennen.Even when writing letters a significantly better imaging accuracy of the doped PMMA samples can be seen.
Auch im Vergleich zu Bleikristallglas, welches üblicherweise für die Herstellung von Kunstobjekten durch Laserinnengravur verwendet wird ist die Überlegenheit der Abbildegenauigkeit von dotiertem PMMA bei der Laserinnengravur deutlich sichtbar.In comparison to lead crystal glass, which is commonly used for the production of art objects by laser engraving, the superiority of the imaging accuracy of doped PMMA in laser engraving is clearly visible.
Während bei
Die herausragende Abbildegenauigkeit des dotierten PMMA wird auch in der 3. Dimension beobachtet.The outstanding imaging accuracy of the doped PMMA is also observed in the third dimension.
Claims (15)
- Plastic moulded bodies having two- or three-dimensional image structures produced in the interior through laser subsurface engraving, characterized in that the plastic moulded bodies consist of plastic materials including a content of nanoscale metal oxides having a particle size from 1 to 500 nm, wherein not only the plastic material but also the included metal oxide is transparent to the laser light used for producing the image structures.
- Plastic moulded bodies according to Claim 1, characterized in that the particle size of the metal oxides included in the plastic material is 5 to 100 nm.
- Plastic moulded bodies according to Claims 1 or 2, characterized in that the content of metal oxides is 0.0001% to 0.1% by weight, preferably 0.001% to 0.01% by weight, relative to the plastic material.
- Plastic moulded bodies according to Claims 1 to 3, characterized in that doped indium oxide, doped tin oxide, doped zinc oxide, doped aluminium oxide or doped antimony oxide is included in the plastic material as nanoscale metal oxide.
- Plastic moulded bodies according to Claim 4, characterized in that indium-tin oxide, antimony-tin oxide or doped indium- or antimony-tin oxides are included in the plastic material as nanoscale metal oxide.
- Plastic moulded bodies according to Claim 5, characterized in that blue indium-tin oxide is included in the plastic material as nanoscale metal oxide.
- Plastic moulded bodies according to Claims 1 to 6, characterized in that the plastic matrix is based on poly(meth)acrylate, polyamide, polyurethane, polyolefins, styrene polymers and styrene copolymers, polycarbonate, silicones, polyimides, polysulphone, polyether sulphone, polyketones, polyether ketones, polyphenylene sulphide, polyesters, polyethylene oxide, polyurethane, polyolefins and chlorinated or fluorinated polymers.
- Plastic moulded bodies according to Claims 1 to 7, characterized in that the plastic matrix is based on polymethyl methacrylate.
- Plastic moulded bodies according to Claims 1 to 7, characterized in that the plastic matrix is based on bisphenol A polycarbonate.
- Plastic moulded bodies according to Claims 1 to 7, characterized in that the plastic matrix is based on polyamide.
- Plastic moulded bodies according to Claims 1 to 7, characterized in that the plastic matrix is based on cyclo-olefinic copolymers made of norbornene and α-olefins.
- Plastic moulded body according to Claims 1 to 11, characterized in that the plastic moulded body is transparent to laser light with a wavelength of 300 to 1300 nm.
- Plastic moulded body according to Claim 12, characterized in that the plastic moulded body is transparent to laser light with a wavelength of 400 to 800 nm.
- Plastic moulded body according to Claim 12, characterized in that the plastic moulded body is transparent to laser light with a wavelength of 800 to 1300 nm.
- Process for producing two- or three-dimensional image structures in the interior of plastic moulded bodies through laser subsurface engraving, characterized in that moulded bodies consisting of plastic materials having a content of nanoscale metal oxides with particle size from 1 to 500 nm are imagingly irradiated with laser light to which not only the plastic material but also the included metal oxide is transparent.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005011180A DE102005011180A1 (en) | 2005-03-09 | 2005-03-09 | Plastic moldings with two-dimensional or three-dimensional image structures produced by laser engraving |
PCT/EP2006/060035 WO2006094881A1 (en) | 2005-03-09 | 2006-02-16 | Plastic moulding with bidimensional or tridimensional image structures generated by inner laser engraving |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1856199A1 EP1856199A1 (en) | 2007-11-21 |
EP1856199B1 true EP1856199B1 (en) | 2008-06-04 |
Family
ID=36216945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06743190A Not-in-force EP1856199B1 (en) | 2005-03-09 | 2006-02-16 | Plastic moulding with bidimensional or tridimensional image structures generated by inner laser engraving |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP1856199B1 (en) |
AT (1) | ATE397639T1 (en) |
DE (2) | DE102005011180A1 (en) |
ES (1) | ES2308743T3 (en) |
TW (1) | TWI383015B (en) |
WO (1) | WO2006094881A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202011100305U1 (en) | 2011-05-05 | 2011-10-20 | Cero Gmbh | Laser machining device |
US8691915B2 (en) | 2012-04-23 | 2014-04-08 | Sabic Innovative Plastics Ip B.V. | Copolymers and polymer blends having improved refractive indices |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006062269A1 (en) | 2006-12-22 | 2008-06-26 | Eckart Gmbh & Co. Kg | Use of spherical metal particle, that is free of antimony and/or antimony containing compounds, as laser marking or laser-weldable agent in plastics |
ATE447476T1 (en) | 2007-11-30 | 2009-11-15 | Eckart Gmbh | USE OF A MIXTURE WITH SPHERICAL METAL PARTICLES AND METAL FLAKES AS A LASER MARKING OR LASER WELDABLE AGENTS AND LASER MARKABLE AND/OR LASER WELDABLE PLASTIC |
DE102008006955B4 (en) * | 2008-01-31 | 2010-07-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Production and application of multifunctional optical modules for photovoltaic power generation and lighting purposes |
ES2377695B1 (en) * | 2009-07-14 | 2013-02-15 | Bsh Electrodomésticos España, S.A. | DOMESTIC APPLIANCE COVER PLATE WITH AN LASER ENGRAVING. |
DE102009028937A1 (en) | 2009-08-27 | 2011-03-03 | Evonik Röhm Gmbh | Sign for license plates comprising at least one translucent, retroreflective layer |
DE102009047164A1 (en) | 2009-11-26 | 2011-12-15 | Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG | Sensor i.e. electrochemical sensor, for determining measured variable in pH glass electrode in food technology field, has marker arranged between electrolyte-filled interior and outer shell surface, so that marker yields identification |
DE102011016416A1 (en) * | 2011-04-08 | 2012-10-11 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Indicator device for vehicle e.g. car, has light guide plate with edge portions that is provided in indicator plate having light source, such that light scattering nanoparticles are distributed within light guide plate |
DE102011016440A1 (en) * | 2011-04-08 | 2012-10-11 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Indicator device for e.g. agricultural vehicle, has illumination device mounted on top portion of indicator plate, and light guide plate whose light conducting edges are distributed with light-scattering nanoparticles |
DE102011016435A1 (en) * | 2011-04-08 | 2012-10-11 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Indicator device for vehicle e.g. car, has base plate and indicator plate that are provided with light guide plates which consist of light-scattering nano-dopant particles |
DE102011084269A1 (en) | 2011-10-11 | 2013-04-11 | Evonik Degussa Gmbh | Process for the preparation of polymer nanoparticle compounds by means of a nanoparticle dispersion |
DE102014016286A1 (en) * | 2014-11-05 | 2016-05-12 | Merck Patent Gmbh | Laser-markable and laser-weldable polymeric materials |
WO2016128272A1 (en) * | 2015-02-10 | 2016-08-18 | Jt International S.A. | Method and apparatus for marking a package of articles |
EP3862209B1 (en) * | 2020-02-10 | 2023-06-07 | Smart Coloring GmbH | Display device with functional elements and method for producing such a display device |
EP3862210B1 (en) * | 2020-02-10 | 2023-06-07 | Smart Coloring GmbH | Display device with functional elements and method for producing such a display device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3411797A1 (en) * | 1984-03-30 | 1985-10-10 | Bayer Ag, 5090 Leverkusen | METHOD FOR LABELING PLASTIC PARTS |
DE4407547C2 (en) * | 1994-03-07 | 1996-05-30 | Swarovski & Co | Body made of transparent material with a marking and process for its production |
JP3713675B2 (en) * | 1997-06-12 | 2005-11-09 | ソマール株式会社 | LASER MARKING MATERIAL COLORED BLACK BY LASER LIGHT IRRADIATION AND RESIN COMPOSITION CONTAINING THE SAME |
US6664501B1 (en) * | 2002-06-13 | 2003-12-16 | Igor Troitski | Method for creating laser-induced color images within three-dimensional transparent media |
US6950157B2 (en) * | 2003-06-05 | 2005-09-27 | Eastman Kodak Company | Reflective cholesteric liquid crystal display with complementary light-absorbing layer |
US7187396B2 (en) * | 2003-11-07 | 2007-03-06 | Engelhard Corporation | Low visibility laser marking additive |
DE202004003362U1 (en) * | 2004-03-04 | 2004-05-13 | Degussa Ag | Highly transparent laser-markable and laser-weldable plastic materials |
US20060281846A1 (en) * | 2004-03-04 | 2006-12-14 | Degussa Ag | Laser-weldable which are transparently, translucently, or opaquely dyed by means of colorants |
-
2005
- 2005-03-09 DE DE102005011180A patent/DE102005011180A1/en not_active Withdrawn
-
2006
- 2006-02-16 WO PCT/EP2006/060035 patent/WO2006094881A1/en active IP Right Grant
- 2006-02-16 AT AT06743190T patent/ATE397639T1/en not_active IP Right Cessation
- 2006-02-16 DE DE502006000883T patent/DE502006000883D1/en active Active
- 2006-02-16 EP EP06743190A patent/EP1856199B1/en not_active Not-in-force
- 2006-02-16 ES ES06743190T patent/ES2308743T3/en active Active
- 2006-03-08 TW TW095107837A patent/TWI383015B/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202011100305U1 (en) | 2011-05-05 | 2011-10-20 | Cero Gmbh | Laser machining device |
US8691915B2 (en) | 2012-04-23 | 2014-04-08 | Sabic Innovative Plastics Ip B.V. | Copolymers and polymer blends having improved refractive indices |
Also Published As
Publication number | Publication date |
---|---|
DE102005011180A1 (en) | 2006-09-14 |
EP1856199A1 (en) | 2007-11-21 |
WO2006094881A1 (en) | 2006-09-14 |
ES2308743T3 (en) | 2008-12-01 |
ATE397639T1 (en) | 2008-06-15 |
DE502006000883D1 (en) | 2008-07-17 |
TWI383015B (en) | 2013-01-21 |
TW200643079A (en) | 2006-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1856199B1 (en) | Plastic moulding with bidimensional or tridimensional image structures generated by inner laser engraving | |
US7704586B2 (en) | Plastic molded bodies having two-dimensional and three-dimensional image structures produced through laser subsurface engraving | |
DE102004010504B4 (en) | Highly transparent laser-markable and laser-weldable plastic materials, their use and manufacture, and use of metal-mixed oxides and methods of marking of manufactured goods | |
EP1722984B1 (en) | Laser-weldable which are transparently, translucently or opaquely dyed by means of colorants | |
EP3215347B1 (en) | Laser-markable and laser-weldable polymer materials | |
EP3328925B1 (en) | Laser-markable polymers and coatings | |
WO2005090056A1 (en) | Laser sintering with lasers having a wavelength ranging from 100 to 3,000 nm | |
DE102004051457A1 (en) | Colored weldable plastics which are transparent, translucent or covered, contain nanoscale, laser-sensitive particles | |
EP1763431B1 (en) | Laser-beam welding method and material | |
DE69504238T2 (en) | Compositions for colored labeling of plastic materials by laser | |
WO2008138362A1 (en) | Use of spherical metal particles as laser marking additives for sealing, closure or coating materials or paints comprising polymer, and also laser-markable sealing, closure or coating material or laser-markable paint comprising polymer | |
EP2524009A1 (en) | Laser additive | |
DE69513426T2 (en) | Marking composition, molded part made from it and marking process | |
EP3840958B1 (en) | Improved method for partial colouring of plastic parts | |
EP3155039B1 (en) | Laser markable and laser weldable polymer materials | |
DE202005003918U1 (en) | Plastic molded article with two- or three-dimensional inner structure by laser, comprises a plastic material, which exhibits nano metal oxides and the plastic material and nano metal oxides are transparent | |
EP2160441A2 (en) | Mechanically reinforced thermoplastic plastic product for laser-based joining processes | |
DE10311446A1 (en) | Polymer powder for SIV processes | |
DE202004016363U1 (en) | Transparent, translucent or covered plastic materials colored by coloring agent, useful as molded articles, semi-finished material or lacquer coatings, comprises nano particles of laser sensitive particles, which are weldable by laser | |
DE102015009854A1 (en) | Laser-markable polymers and coatings | |
DE4446874A1 (en) | Silicone article rapid prodn. for high-contrast markings for car parts | |
HK1098428B (en) | Highly transparent laser-markable and laser-weldable plastic materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070807 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STUBER, WOLFGANG Inventor name: ITTMANN, GUENTHER Inventor name: HASSKERL, THOMAS Inventor name: SCHUEBEL, KLAUS-DIETER Inventor name: KREUTZ, JUERGEN Inventor name: RICHTER, RALF Inventor name: WOLFF, WILHELM Inventor name: HAEGER, HARALD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STUBER, WOLFGANG Inventor name: RICHTER, RALF Inventor name: HAEGER, HARALD Inventor name: HASSKERL, THOMAS Inventor name: ITTMANN, GUENTHER Inventor name: WOLFF, WILHELM Inventor name: KREUTZ, JUERGEN Inventor name: SCHUEBEL, KLAUS-DIETER |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502006000883 Country of ref document: DE Date of ref document: 20080717 Kind code of ref document: P |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: EVONIK DEGUSSA GMBH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: EVONIK DEGUSSA GMBH Effective date: 20080806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2308743 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081004 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081104 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080904 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
26N | No opposition filed |
Effective date: 20090305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100215 Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080905 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140219 Year of fee payment: 9 Ref country code: SE Payment date: 20140218 Year of fee payment: 9 Ref country code: CH Payment date: 20140218 Year of fee payment: 9 Ref country code: FI Payment date: 20140212 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140219 Year of fee payment: 9 Ref country code: IT Payment date: 20140228 Year of fee payment: 9 Ref country code: ES Payment date: 20140226 Year of fee payment: 9 Ref country code: BE Payment date: 20140218 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006000883 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150216 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20151030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150302 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150217 |