EP1840232A1 - Nickel-based alloy - Google Patents
Nickel-based alloy Download PDFInfo
- Publication number
- EP1840232A1 EP1840232A1 EP07105258A EP07105258A EP1840232A1 EP 1840232 A1 EP1840232 A1 EP 1840232A1 EP 07105258 A EP07105258 A EP 07105258A EP 07105258 A EP07105258 A EP 07105258A EP 1840232 A1 EP1840232 A1 EP 1840232A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- equal
- contents
- temperature
- workpiece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/056—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
Definitions
- the invention relates to alloys, or superalloys, based on nickel (Ni) intended more particularly for the production of turbine disks or turbine engine compressor, according to powder metallurgy processes.
- the turbomachines concerned can be aeronautical (turbojet engine, turboprop engine) or terrestrial (gas turbine dedicated to the production of energy).
- the compressor and turbine disks respectively located upstream and downstream of the combustion chamber of a turbojet engine are subjected in service to mechanical stresses comparable to traction, creep and fatigue, at temperatures up to 800 ° C. However, it is desired that the operating lifetimes of these disks reach several thousand hours. These discs must therefore be made of an alloy having, at high temperatures, a high resistance to tensile stresses, a very good creep resistance, as well as a good resistance to the propagation of cracks.
- these discs can be made of Ni-based alloys according to powder metallurgy processes, these processes limiting chemical segregation phenomena and promoting good microstructural homogeneity of the alloy.
- This alloy example is part of the two-phase alloys which comprise: a so-called gamma phase formed by a nickel-based solid solution, which constitutes the matrix of the metallurgical grains, and a phase called gamma prime, whose structure is based on the Ni 3 Al ordered intermetallic compound.
- the gamma prime phase forms several populations of inter or intra-granular precipitates that appear at different stages of the thermomechanical history of the alloy and have different roles. distinct in the mechanical behavior of the alloy.
- the intergranular precipitate population limits the growth of the gamma matrix grains during a recrystallization heat treatment.
- the population of intergranular precipitates and thus the size of said grains is controlled.
- the maximum temperature reached during this heat treatment is greater (treatment said supersolvus) or lower (so-called subsolvus treatment) at the dissolution temperature (or solvus temperature) of the intergranular precipitates of gamma prime phase, the recrystallization results in a high grain size (for a supersolvus treatment) or a small grain size (for a subsolvus treatment).
- the two-phase alloys are thermomechanically treated to present either a fine grain microstructure (small grains), that is to say having a grain size of about 5 at 15 .mu.m (that is to say, indices ASTM 12 to 9, according to the "American Society for Testing and Material” standard), ie a coarse-grained microstructure, that is to say having a size of grain of the order of 20 to 180 microns (that is to say, ASTM indices 8 to 2).
- the grain reinforcement is ensured by the presence of different populations of intra-granular precipitates of the gamma prime Ni 3 Al base phase and it is generally accepted that the tensile strength, when hot, of these alloys increases with the volume fraction of the gamma prime phase, this fraction up to 60%.
- the N18 alloy whose volume fraction of gamma prime phase is about 55%, is mainly subjected to subsolvus treatments, because it is desired to obtain a fine-grained microstructure. Indeed, the fatigue and tensile strength of this alloy is generally preferred over its creep resistance, due to a temperature of use often less than 650 ° C, that is to say relatively moderate.
- the purpose of the invention is to propose Ni-based alloys for which it is possible to carry out a subsolvus treatment, but also a supersolvus treatment on an industrial scale and which preferably have high temperature mechanical characteristics, in particular a creep resistance, at least equivalent, and preferably greater than that of the alloy N18.
- the Applicant has established that the elemental composition of alloy N18 allowed, during the maintenance of temperature at more than 650 ° C for sufficiently long periods, the development of topologically compact phases, generally referred to as sigma and mu phases, which are harmful. the high temperature behavior of a disc in operation.
- composition of the alloys of the invention is chosen so as to precipitate a limited volume fraction of gamma prime phase.
- alloys of the invention are thus less rich than the alloy N18 gamma prime phase, they have against all expectations, in their microstructural small grain, tensile characteristics and creep resistance greater than those of this reference alloy. It also appears that these alloys exhibit fatigue cracking rates equivalent to or even lower than those of alloy N18.
- the high resistance to tensile stresses is particularly favorable to the bursting behavior of these discs that may occur during an accidental overspeed regime. This high resistance also makes it possible to anticipate good properties in oligocyclic fatigue and adequate lifetimes.
- the reduction, relative to the N18 alloy, of the gamma prime phase volume fraction is favorable for producing discs having a coarse-grained microstructure and therefore a high resistance to creep at high temperature (ie ie for temperatures greater than or equal to 700 ° C).
- This creep resistance associated with very good mechanical characteristics in traction and in propagation of cracks in fatigue-creep allows the use of these discs at higher temperatures than in the current turbomachines, which allows access to better thermal efficiency and to reduce the specific consumption of turbomachines.
- this coarse-grained microstructure is further facilitated by the comfortable temperature range between the solvus temperature of the gamma prime phase and the melting start temperature of the alloy.
- the compositions of the alloys of the invention are such that the width of this range is greater than or equal to 35 ° C. This allows the industrial production of heat treatments beyond the solvus temperature, without the risk of burning of the alloy.
- the ability to develop one or other of the large and small grains microstructures and the good mechanical properties corresponding to each of these two microstructures is a definite advantage of the alloys of the invention compared to those used for this purpose. day and, in particular, alloy N18.
- this ability allows for dual structure disks. Indeed, by carrying out a heat treatment under a temperature gradient, a coarse grain structure is developed in the peripheral zone of the disk, where the temperatures in service are the highest and where creep plays a significant role in the damage of the material. , and a small-grain structure in the central zone of the disk (near the hub), colder, where the damage results essentially from the traction forces and cyclic stresses.
- the alloys of the invention have a relatively low density, preferably less than or equal to 8. , 3 kg / dm 3 , which makes it possible to limit the mass of the disk and the stresses resulting from the centrifugal force.
- the elemental compositions of the alloys of the invention provide them with good microstructural stability with regard to the appearance of the sigma and mu phases, which is delayed beyond 500 hours of maintenance at 750 ° C.
- the compositions of the alloys of the invention have a limited gamma prime phase volume fraction and, preferably, less than or equal to 50%.
- the gamma prime phase must nevertheless be in sufficient proportion, the volume fraction of gamma prime phase is preferably between 40 and 50%.
- the sum of the contents of Al, Ti and Nb, in atomic percentages is greater than or equal to 10.5% and less than or equal to 13%, ie: 10.5% ⁇ Al + Ti + Nb ⁇ 13%.
- the precipitation of the gamma prime phase in Ni-based alloys depends exclusively on the presence of Al in sufficient concentration
- the elements Ti and Nb, which, by substituting for Al, constitute this phase are, like this one, considered as favorable elements for the formation of the gamma prime phase and are called gamma prime-genes.
- the value of the volume fraction of the gamma prime phase is therefore a function of the sum of the atomic concentrations of Al, Ti and Nb.
- tantalum (Ta) is also a gamma primegen element but that it has not been retained in the composition of the alloys of the invention. Indeed, Ta is an element of high atomic mass, which necessitates complex composition adjustments in order to maintain the density of the alloy under a reasonable limit (preferably less than or equal to 8.3 kg / dm 3 ). In addition, the cost of Ta is high and its beneficial role on crack resistance could not be clearly established. Finally, its enhancement effect of the gamma prime phase does not appear to be greater than that of the elements Ti and Nb. It has even been found that the resistance of the alloys of the invention was at least equivalent to that of the alloys containing Ta.
- the Al, Ti and Nb contents, in atomic percentages in the alloys of the invention are such that the ratio between the sum of the contents of Ti and Nb, and the Al content, is greater than or equal to 0.9 and less than or equal to 1.1, ie: 0.9 ⁇ [(Ti + Nb) / Al] ⁇ 1.1.
- the Al-substituted Ti and Nb atoms in the Ni 3 Al base gamma prime phase have the effect of reinforcing it by mechanisms similar to those of solid solution hardening. This hardening is even higher than the ratio [(Ti + Nb) / Al] is high.
- the ordered phase eta Ni 3 Ti precipitates in the form of elongated platelets which have a detrimental effect on the mechanical behavior, especially on the ductility of the alloys which contain them.
- the concentration of Nb must be limited because an excessive content of Nb is detrimental to the resistance to the propagation of cracks in this type of alloys.
- the contents in W, Mo, Cr and Co, in atomic percentages are such that the sum of the contents in W, Mo, Cr and Co is greater than or equal to 30% and less than or equal to at 34%, and such that the sum of the contents in W and Mo is greater than or equal to 3% and less than or equal to 4.5%, namely: 30% ⁇ W + Mo + Cr + Co ⁇ 34%; and 3% ⁇ W + Mo ⁇ 4.5%.
- the elements which essentially substitute for Ni in the gamma solid solution are Cr, Co, Mo and W.
- Cr is essential for the resistance to oxidation and corrosion of the alloy and participates, as a solid solution, in the hardening of the gamma matrix.
- Co improves the resistance of these alloys to creep at high temperatures.
- the increase in Co concentration within the limits of the stability of the gamma phase structure, makes it possible to lower the solvus temperature of the gamma prime phase and thus to facilitate the implementation of heat treatments. partial or total solution of solution thereof.
- Mo and W provide a strong hardening of the gamma matrix by the effect of solid solution.
- these elements have high atomic masses and their substitution with Ni (in particular the substitution of W for Ni) results in a significant increase in the density of the alloy.
- the contents of Cr, Mo, Co and W in the alloys of the invention must therefore be carefully adjusted with respect to each other to obtain the desired effects, in particular optimum curing of the gamma matrix, without thereby risking causing the premature appearance of the phases of fragile intermetallic compounds, sigma and mu. These phases, when they develop in excessive amounts, can indeed cause a significant reduction in the ductility and mechanical strength of the alloys.
- minor elements C, B and Zr form segregations mainly at the grain boundaries, for example in the form of carbides or borides. They contribute to increase the strength and ductility of alloys by changing the chemistry of grain boundaries and their absence would be detrimental.
- an excess content of these elements leads to a reduction of the melting temperature beginning and excessive precipitation of carbides and borides which consumes alloy elements that no longer participate in the hardening of the alloy.
- the concentrations of carbon, boron and zirconium are therefore adjusted, in particular with non-zero minimum levels of carbon and boron, in order to obtain at high temperature optimum mechanical strength and ductility for the alloys of the invention.
- Hf is also present in moderate amounts because this element improves resistance to intergranular hot cracking.
- the subject of the invention is also a method for manufacturing a part, more particularly a turbomachine part such as a compressor or turbine disk, characterized in that a blank of said part is produced, or the part itself from a powder of an alloy according to the invention, by a powder metallurgy technique.
- said blank or said part is subjected to a recrystallization heat treatment according to which the blank or part is brought, either at a temperature below the solvus temperature of the gamma prime phase of said alloy, or at a temperature of less than a temperature greater than the solvus temperature of the gamma prime phase of said alloy, and less than the melting start temperature of this alloy, so as to promote the development of a grain size microstructure adapted to the stress conditions.
- the parts made from the alloys according to the invention are preferably manufactured by powder metallurgy techniques.
- the rate of cooling following the dissolution treatment makes it possible to control the distribution of the intragranular precipitates of gamma prime phase.
- One or more treatments of income make it possible to control the size of the tertiary precipitates of phase gamma prime and to relax the internal stresses which result from the quenching.
- the alloy A is the alloy N18 and the alloy B is sold under the reference Rene-88DT.
- a partial solution treatment of the gamma prime phase was performed at a temperature below the solvus temperature (Tsolvus) of the gamma prime phase (at about Tsolvus - 25 ° C).
- the cooling rate was of the order of 100 ° C./min after dissolution. This treatment was followed by an income of 24 hours at 750 ° C and air cooling.
- a treatment of total dissolution of the gamma prime phase was performed at a temperature above the solvus gamma prime (at about Tsolvus + 15 at 20 ° C).
- the cooling rate was of the order of 140 ° C./min after the dissolution. This treatment was followed by an 8 hour income at 760 ° C and air cooling.
- Tables III and IV are presented some results of mechanical tests carried out in tension, in creep and in crack propagation, respectively for alloys having received a subsolvus treatment (Table III) and a supersolvus treatment (Table IV).
- the creep tests were carried out in air at 700 ° C. under an initial stress of 550 MPa (650 MPa for the C1 alloy).
- the data t 0.2% is the holding time in hours to reach a plastic deformation of 0.2%.
- the load cycle is as follows: load increase in 10 seconds, hold time of 300 seconds at maximum load and discharge in 10 seconds with a load ratio (minimum load / maximum load) equal to 0.05.
- the data V f35 is the crack propagation velocity, measured at a delta K value equal to 35 MPa.m 1/2 .
- microstructural examinations were performed on subsolvus-treated alloys A and C1 to detect the appearance of topologically compact phases (i.e., fragile intermetallic compounds) after an aging heat treatment of 500 hours at 750 ° C.
- the observations were made by scanning electron microscopy, backscattered electron contrast, on untouched samples.
- the severe aging of 500 hours at 750 ° C causes, in alloy A, the inter and intra-granular formation of phases rich in heavy elements. These phases appear in clear contrast (white edging) at the grain boundaries in Figure 1.
- These phases when formed in excessive amounts, can cause a significant reduction in the ductility and mechanical strength of the alloys.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
L'invention concerne des alliages, ou superalliages, à base de nickel (Ni) comprenant essentiellement les éléments suivants dans les teneurs indiquées en pourcentages en poids: Cr : 11,5 à 13,5 %; Co : 11,5 à 16,0 %; Mo : 3,4 à 5,0 %; W : 3,0 à 5,0 %; Al : 2,2 à 3,2 %; Ti : 3,5 à 5,0 %; Nb : 0,5 à 2,0 %; Hf : 0,25 à 0,35 %; Zr : 0 à 0,07 %; C : 0,015 à 0,030 %; B : 0,01 à 0,02 %; et Ni : complément à 100 %. Utilisation pour la réalisation de disques de turbine ou de compresseur de turbomachines, selon des procédés de métallurgie des poudres.The invention relates to alloys, or superalloys, based on nickel (Ni) essentially comprising the following elements in the contents indicated in percentages by weight: Cr: 11.5 to 13.5%; Co: 11.5 to 16.0%; Mo: 3.4 to 5.0%; W: 3.0 to 5.0%; Al: 2.2 to 3.2%; Ti: 3.5 to 5.0%; Nb: 0.5 to 2.0%; Hf: 0.25 to 0.35%; Zr: 0 to 0.07%; C: 0.015 to 0.030%; B: 0.01 to 0.02%; and Ni: 100% complement. Use for the production of turbine disks or turbine engine compressor, according to powder metallurgy processes.
Description
L'invention concerne des alliages, ou superalliages, à base de nickel (Ni) destinés plus particulièrement à la réalisation de disques de turbine ou de compresseur de turbomachines, selon des procédés de métallurgie des poudres. Les turbomachines concernées peuvent être aéronautiques (turboréacteur, turbopropulseur) ou terrestres (turbine à gaz dédiée à la production d'énergie).The invention relates to alloys, or superalloys, based on nickel (Ni) intended more particularly for the production of turbine disks or turbine engine compressor, according to powder metallurgy processes. The turbomachines concerned can be aeronautical (turbojet engine, turboprop engine) or terrestrial (gas turbine dedicated to the production of energy).
Les disques de compresseur et de turbine situés respectivement en amont et en aval de la chambre de combustion d'un turboréacteur sont soumis en service à des sollicitations mécaniques assimilables à de la traction, du fluage et de la fatigue, à des températures pouvant atteindre 800°C. Or, on souhaite que les durées de vie en fonctionnement de ces disques atteignent plusieurs milliers d'heures. Ces disques doivent donc être réalisés en un alliage présentant, à hautes températures, une résistance élevée aux efforts de traction, une très bonne tenue au fluage, ainsi qu'une bonne résistance à la propagation des fissures.The compressor and turbine disks respectively located upstream and downstream of the combustion chamber of a turbojet engine are subjected in service to mechanical stresses comparable to traction, creep and fatigue, at temperatures up to 800 ° C. However, it is desired that the operating lifetimes of these disks reach several thousand hours. These discs must therefore be made of an alloy having, at high temperatures, a high resistance to tensile stresses, a very good creep resistance, as well as a good resistance to the propagation of cracks.
Aujourd'hui, ces disques peuvent être réalisés en alliages à base de Ni selon des procédés de métallurgie des poudres, ces procédés limitant les phénomènes de ségrégation chimique et favorisant la bonne homogénéité microstructurale de l'alliage.Today, these discs can be made of Ni-based alloys according to powder metallurgy processes, these processes limiting chemical segregation phenomena and promoting good microstructural homogeneity of the alloy.
Un exemple d'alliage à base de nickel connu est décrit dans le document
Cet exemple d'alliage, de même que les alliages de l'invention, fait partie des alliages biphasés qui comprennent : une phase dite gamma formée par une solution solide à base de nickel, qui constitue la matrice des grains métallurgiques, et une phase dite gamma prime, dont la structure est basée sur le composé intermétallique ordonné Ni3Al. La phase gamma prime forme plusieurs populations de précipités inter ou intra-granulaires qui apparaissent à différentes étapes de l'histoire thermomécanique de l'alliage et qui ont des rôles distincts dans le comportement mécanique de l'alliage.This alloy example, as well as the alloys of the invention, is part of the two-phase alloys which comprise: a so-called gamma phase formed by a nickel-based solid solution, which constitutes the matrix of the metallurgical grains, and a phase called gamma prime, whose structure is based on the Ni 3 Al ordered intermetallic compound. The gamma prime phase forms several populations of inter or intra-granular precipitates that appear at different stages of the thermomechanical history of the alloy and have different roles. distinct in the mechanical behavior of the alloy.
On a pu constater que la population de précipités intergranulaires limitait la croissance des grains de matrice gamma au cours d'un traitement thermique de recristallisation. Ainsi, en jouant sur le traitement thermique de recristallisation de l'alliage, on contrôle la population de précipités intergranulaires et donc la taille desdits grains. Selon que la température maximum atteinte lors de ce traitement thermique est supérieure (traitement dit supersolvus) ou inférieure (traitement dit subsolvus) à la température de mise en solution (ou température de solvus) des précipités intergranulaires de phase gamma prime, la recristallisation se solde par une taille de grain élevée (pour un traitement supersolvus) ou faible (pour un traitement subsolvus).It has been found that the intergranular precipitate population limits the growth of the gamma matrix grains during a recrystallization heat treatment. Thus, by modifying the heat treatment of recrystallization of the alloy, the population of intergranular precipitates and thus the size of said grains is controlled. Depending on whether the maximum temperature reached during this heat treatment is greater (treatment said supersolvus) or lower (so-called subsolvus treatment) at the dissolution temperature (or solvus temperature) of the intergranular precipitates of gamma prime phase, the recrystallization results in a high grain size (for a supersolvus treatment) or a small grain size ( for a subsolvus treatment).
La résistance en traction est généralement favorisée par la réduction de la taille de grain alors que la résistance au fluage est favorisée par une augmentation de celle-ci. Ainsi, selon l'application envisagée et les caractéristiques mécaniques visées, les alliages biphasés sont traités thermomécaniquement pour présenter soit une microstructure à grains fins (petits grains), c'est-à-dire présentant une taille de grain de l'ordre de 5 à 15 µm (c'est-à-dire d'indices ASTM 12 à 9, selon la norme "American Society for Testing and Material"), soit une microstructure à gros grains, c'est-à-dire présentant une taille de grain de l'ordre de 20 à 180 µm (c'est-à-dire d'indices ASTM 8 à 2).The tensile strength is generally favored by the reduction of the grain size while the resistance to creep is favored by an increase in it. Thus, according to the intended application and the mechanical characteristics referred to, the two-phase alloys are thermomechanically treated to present either a fine grain microstructure (small grains), that is to say having a grain size of about 5 at 15 .mu.m (that is to say, indices ASTM 12 to 9, according to the "American Society for Testing and Material" standard), ie a coarse-grained microstructure, that is to say having a size of grain of the order of 20 to 180 microns (that is to say, ASTM indices 8 to 2).
Par ailleurs, le renforcement des grains est assuré par la présence de différentes populations de précipités intra-granulaires de la phase gamma prime de base Ni3Al et il est généralement admis que la résistance mécanique en traction, à chaud, de ces alliages augmente avec la fraction volumique de la phase gamma prime, cette fraction pouvant atteindre 60%.Moreover, the grain reinforcement is ensured by the presence of different populations of intra-granular precipitates of the gamma prime Ni 3 Al base phase and it is generally accepted that the tensile strength, when hot, of these alloys increases with the volume fraction of the gamma prime phase, this fraction up to 60%.
L'alliage N18, dont la fraction volumique de phase gamma prime est d'environ 55%, est principalement soumis à des traitements subsolvus, car on souhaite obtenir une microstructure à grains fins. En effet, la résistance en fatigue et en traction de cet alliage est généralement privilégiée par rapport à sa résistance en fluage, du fait d'une température d'utilisation souvent inférieure à 650°C, c'est-à-dire relativement modérée.The N18 alloy, whose volume fraction of gamma prime phase is about 55%, is mainly subjected to subsolvus treatments, because it is desired to obtain a fine-grained microstructure. Indeed, the fatigue and tensile strength of this alloy is generally preferred over its creep resistance, due to a temperature of use often less than 650 ° C, that is to say relatively moderate.
A des températures supérieures à 650°C, une résistance élevée au fluage est nécessaire et, par conséquent, une microstructure à gros grains, (obtenue par traitement supersolvus) serait mieux adaptée. Or, un traitement supersolvus sur des disques de grand diamètre en alliage N18 est très difficile, voire impossible à réaliser industriellement en raison de l'écart trop faible entre la température de solvus de la phase gamma prime et la température de brûlure (c'est-à-dire de début de fusion) de l'alliage. Cette plage de températures pour la remise en solution de la phase gamma prime (c'est-à-dire pour réaliser un traitement supersolvus) est en effet trop étroite (inférieure à 30°C) ce qui rend hasardeuse la pratique industrielle du traitement thermique de remise en solution totale de la phase gamma prime.At temperatures above 650 ° C, high creep resistance is required and, therefore, a coarse-grained microstructure (obtained by supersolvus treatment) would be more suitable. However, a supersolvus treatment on N18 alloy large diameter discs is very difficult or impossible to achieve industrially because of the too small difference between the solvus temperature of the gamma prime phase and the burn temperature (this is ie beginning of melting) of the alloy. This temperature range for the dissolution of the gamma prime phase (that is to say to achieve a supersolvus treatment) is indeed too narrow (lower than 30 ° C) which makes hazardous the industrial practice of the heat treatment of total dissolution of the gamma prime phase.
En outre, des contraintes internes élevées naissent dans les disques, lors du refroidissement rapide (de l'ordre de 100°C/min) consécutif au traitement thermique de remise en solution totale, et provoquent l'apparition de fissures (tapures de trempe).In addition, high internal stresses arise in the disks, during rapid cooling (of the order of 100 ° C / min) consecutive to the heat treatment of total solution dissolution, and cause the appearance of cracks (quenching taps) .
L'invention a pour but de proposer des alliages à base de Ni pour lesquels il est possible de réaliser un traitement subsolvus, mais également un traitement supersolvus à l'échelle industrielle et qui, de préférence, présentent des caractéristiques mécaniques à hautes températures, notamment une résistance au fluage, au moins équivalentes, et de préférence supérieures, à celles de l'alliage N18.The purpose of the invention is to propose Ni-based alloys for which it is possible to carry out a subsolvus treatment, but also a supersolvus treatment on an industrial scale and which preferably have high temperature mechanical characteristics, in particular a creep resistance, at least equivalent, and preferably greater than that of the alloy N18.
Pour atteindre ce but, l'invention a pour objet des alliages caractérisés en ce qu'ils comprennent essentiellement (c'est-à-dire aux éventuelles impuretés près) les éléments suivants, dans les teneurs indiquées en pourcentages en poids:
- chrome (Cr) : 11,5 à 13,5 %;
- cobalt (Co) : 11,5 à 16,0 %;
- molybdène (Mo) : 3,4 à 5,0 %;
- tungstène (W) : 3,0 à 5,0 %;
- aluminium (Al) : 2,2 à 3,2 %;
- titane (Ti): 3,5 à 5,0 %;
- niobium (Nb): 0,5 à 2,0 %;
- hafnium (Hf) : 0,25 à 0,35 %;
- zirconium (Zr) : 0 à 0,07 %;
- carbone (C) : 0,015 à 0,030 %;
- bore (B) : 0,01 à 0,02 %; et
- nickel (Ni) : complément à 100 %.
- chromium (Cr): 11.5 to 13.5%;
- cobalt (Co): 11.5 to 16.0%;
- molybdenum (Mo): 3.4 to 5.0%;
- tungsten (W): 3.0 to 5.0%;
- aluminum (Al): 2.2 to 3.2%;
- titanium (Ti): 3.5 to 5.0%;
- niobium (Nb): 0.5 to 2.0%;
- hafnium (Hf): 0.25 to 0.35%;
- zirconium (Zr): 0 to 0.07%;
- carbon (C): 0.015 to 0.030%;
- boron (B): 0.01 to 0.02%; and
- nickel (Ni): 100% complement.
Dans ses recherches ayant conduit à l'invention, le demandeur a établi que les problèmes rencontrés avec l'alliage N18 étaient liés, en partie, à la forte fraction volumique (55%) de phase gamma prime dans cet alliage.In his research leading to the invention, the Applicant has established that the problems encountered with the alloy N18 were related, in part, to the high volume fraction (55%) of gamma prime phase in this alloy.
En effet, d'une part, le demandeur a établi que cette forte fraction volumique avait tendance à réduire l'écart entre la température de solvus de la phase gamma prime et la température de brûlure de l'alliage N18, rendant cet écart trop étroit pour réaliser industriellement un traitement supersolvus.Indeed, on the one hand, the plaintiff has established that this high volume fraction tends to reduce the gap between the solvation temperature of the gamma prime phase and the burn temperature of the N18 alloy, making this gap too narrow. to realize industrially a supersolvus treatment.
D'autre part, le demandeur a établi que les contraintes internes naissant dans la pièce au cours du refroidissement rapide consécutif au traitement thermique de remise en solution totale, résultaient en partie de la précipitation d'une fraction volumique élevée de phase gamma prime.On the other hand, the applicant has established that the internal stresses arising in the room during the rapid cooling following the total solution heat treatment, resulted in part from the precipitation of a high volume fraction of gamma prime phase.
Enfin, le demandeur a établi que la composition élémentaire de l'alliage N18 autorisait, au cours du maintien en température à plus de 650°C pendant des temps suffisamment longs, le développement de phases topologiquement compactes, généralement désignées phases sigma et mu, néfastes à la tenue à haute température d'un disque en fonctionnement.Finally, the Applicant has established that the elemental composition of alloy N18 allowed, during the maintenance of temperature at more than 650 ° C for sufficiently long periods, the development of topologically compact phases, generally referred to as sigma and mu phases, which are harmful. the high temperature behavior of a disc in operation.
Ainsi, la composition des alliages de l'invention est choisie de manière à faire précipiter une fraction volumique limitée de phase gamma prime.Thus, the composition of the alloys of the invention is chosen so as to precipitate a limited volume fraction of gamma prime phase.
Bien que les alliages de l'invention soient ainsi moins riches que l'alliage N18 en phase gamma prime, ils possèdent contre toute attente, dans leur version microstructurale à petits grains, des caractéristiques en traction et une résistance au fluage supérieures à celles de cet alliage de référence. Il apparaît également que ces alliages présentent des vitesses de fissuration en fatigue-fluage équivalentes, voire même inférieures à celles de l'alliage N18.Although the alloys of the invention are thus less rich than the alloy N18 gamma prime phase, they have against all expectations, in their microstructural small grain, tensile characteristics and creep resistance greater than those of this reference alloy. It also appears that these alloys exhibit fatigue cracking rates equivalent to or even lower than those of alloy N18.
Pour des disques de compresseur ou de turbine de turbomachine, la résistance élevée aux efforts de traction est particulièrement favorable à la tenue à l'éclatement de ces disques pouvant survenir lors d'un régime accidentel de survitesse. Cette résistance élevée permet également d'anticiper de bonnes propriétés en fatigue oligocyclique et des durées de vie adéquates.For turbomachine compressor or turbine discs, the high resistance to tensile stresses is particularly favorable to the bursting behavior of these discs that may occur during an accidental overspeed regime. This high resistance also makes it possible to anticipate good properties in oligocyclic fatigue and adequate lifetimes.
En outre, la réduction, par rapport à l'alliage N18, de la fraction volumique de phase gamma prime est favorable à la réalisation de disques présentant une microstructure à gros grains et donc une résistance élevée au fluage à haute température (c'est-à-dire pour des températures supérieures ou égales à 700°C). Cette résistance au fluage associée à de très bonnes caractéristiques mécaniques en traction et en propagation de fissures en fatigue-fluage, autorise l'utilisation de ces disques à des températures plus élevées que dans les turbomachines actuelles, ce qui permet d'accéder à de meilleurs rendements thermiques et de diminuer la consommation spécifique des turbomachines.In addition, the reduction, relative to the N18 alloy, of the gamma prime phase volume fraction is favorable for producing discs having a coarse-grained microstructure and therefore a high resistance to creep at high temperature (ie ie for temperatures greater than or equal to 700 ° C). This creep resistance associated with very good mechanical characteristics in traction and in propagation of cracks in fatigue-creep, allows the use of these discs at higher temperatures than in the current turbomachines, which allows access to better thermal efficiency and to reduce the specific consumption of turbomachines.
La réalisation de cette microstructure à gros grains est en outre facilitée par la confortable plage de températures entre la température de solvus de la phase gamma prime et la température de début de fusion de l'alliage. Avantageusement, les compositions des alliages de l'invention sont telles que la largeur de cette plage est supérieure ou égale à 35°C. Ceci autorise la réalisation industrielle de traitements thermiques au-delà de la température de solvus, sans risque de brûlure de l'alliage.The realization of this coarse-grained microstructure is further facilitated by the comfortable temperature range between the solvus temperature of the gamma prime phase and the melting start temperature of the alloy. Advantageously, the compositions of the alloys of the invention are such that the width of this range is greater than or equal to 35 ° C. This allows the industrial production of heat treatments beyond the solvus temperature, without the risk of burning of the alloy.
L'aptitude à développer l'une ou l'autre des microstructures à gros et à petits grains ainsi que les bonnes propriétés mécaniques correspondant à chacune de ces deux microstructures est un avantage certain des alliages de l'invention par rapport à ceux utilisés à ce jour et, notamment, à l'alliage N18.The ability to develop one or other of the large and small grains microstructures and the good mechanical properties corresponding to each of these two microstructures is a definite advantage of the alloys of the invention compared to those used for this purpose. day and, in particular, alloy N18.
En outre, cette aptitude permet de réaliser des disques à structure duale. En effet, en réalisant un traitement thermique sous gradient de température, on développe une structure à gros grains dans la zone périphérique du disque, où les températures en service sont les plus élevées et où le fluage joue un rôle significatif dans l'endommagement du matériau, et une structure à petits grains dans la zone centrale du disque (proche du moyeu), plus froide, où l'endommagement résulte essentiellement des efforts de traction et des sollicitations cycliques.In addition, this ability allows for dual structure disks. Indeed, by carrying out a heat treatment under a temperature gradient, a coarse grain structure is developed in the peripheral zone of the disk, where the temperatures in service are the highest and where creep plays a significant role in the damage of the material. , and a small-grain structure in the central zone of the disk (near the hub), colder, where the damage results essentially from the traction forces and cyclic stresses.
Malgré une concentration en aluminium inférieure à celle de l'alliage N18 (qui est directement corrélée à une fraction volumique de phase gamma prime plus faible), les alliages de l'invention présentent une masse volumique assez faible, de préférence inférieure ou égale à 8,3 kg/dm3, ce qui permet de limiter la masse du disque et les contraintes résultant de la force centrifuge.Despite an aluminum concentration lower than that of alloy N18 (which is directly correlated to a lower volume fraction of gamma prime phase), the alloys of the invention have a relatively low density, preferably less than or equal to 8. , 3 kg / dm 3 , which makes it possible to limit the mass of the disk and the stresses resulting from the centrifugal force.
Enfin, les compositions élémentaires des alliages de l'invention leur assurent une bonne stabilité microstructurale au regard de l'apparition des phases sigma et mu, qui est retardée au-delà de 500 heures de maintien à 750°C.Finally, the elemental compositions of the alloys of the invention provide them with good microstructural stability with regard to the appearance of the sigma and mu phases, which is delayed beyond 500 hours of maintenance at 750 ° C.
Afin de limiter les risques de fissuration à la trempe, en particulier lors de traitements à une température supérieure à la température de solvus de la phase gamma prime, les compositions des alliages de l'invention ont une fraction volumique de phase gamma prime limitée et, de préférence, inférieure ou égale à 50%. La phase gamma prime devant néanmoins être en proportion suffisante, la fraction volumique de phase gamma prime est, de préférence, comprise entre 40 et 50%.In order to limit the risks of quenching cracking, in particular during treatments at a temperature above the solvus temperature of the gamma prime phase, the compositions of the alloys of the invention have a limited gamma prime phase volume fraction and, preferably, less than or equal to 50%. The gamma prime phase must nevertheless be in sufficient proportion, the volume fraction of gamma prime phase is preferably between 40 and 50%.
Avantageusement, pour obtenir une telle fraction volumique de phase gamma prime dans les alliages de l'invention, la somme des teneurs en Al, Ti et Nb, en pourcentages atomiques, est supérieure ou égale à 10,5% et inférieure ou égale à 13%, soit: 10,5% ≤ Al + Ti + Nb ≤ 13%.Advantageously, to obtain such a volume fraction of gamma prime phase in the alloys of the invention, the sum of the contents of Al, Ti and Nb, in atomic percentages, is greater than or equal to 10.5% and less than or equal to 13%, ie: 10.5% ≤ Al + Ti + Nb ≤ 13%.
Bien que la précipitation de la phase gamma prime dans les alliages à base de Ni relève exclusivement de la présence d'Al en concentration suffisante, les éléments Ti et Nb, qui, en se substituant à l'Al, sont constitutifs de cette phase, sont, au même titre que celui-ci, considérés comme des éléments favorables à la formation de la phase gamma prime et sont dits gamma prime-gènes. La valeur de la fraction volumique de la phase gamma prime est donc fonction de la somme des concentrations atomiques en Al, Ti et Nb.Although the precipitation of the gamma prime phase in Ni-based alloys depends exclusively on the presence of Al in sufficient concentration, the elements Ti and Nb, which, by substituting for Al, constitute this phase, are, like this one, considered as favorable elements for the formation of the gamma prime phase and are called gamma prime-genes. The value of the volume fraction of the gamma prime phase is therefore a function of the sum of the atomic concentrations of Al, Ti and Nb.
On notera que le tantale (Ta) est également un élément gamma primegène mais qu'il n'a pas été retenu dans la composition des alliages de l'invention. En effet, Ta est un élément de masse atomique élevée, ce qui nécessite de procéder à des ajustements complexes de composition dans le but de maintenir la masse volumique de l'alliage sous une limite raisonnable (de préférence inférieure ou égale à 8,3 kg/dm3). En outre, le coût de Ta est élevé et son rôle bénéfique sur la résistance à la fissuration n'a pas pu être clairement établi. Enfin, son effet de renforcement de la phase gamma prime n'apparaît pas supérieur à celui des éléments Ti et Nb. On a même pu constater que la résistance des alliages de l'invention était au moins équivalente à celle des alliages contenant Ta.It will be noted that tantalum (Ta) is also a gamma primegen element but that it has not been retained in the composition of the alloys of the invention. Indeed, Ta is an element of high atomic mass, which necessitates complex composition adjustments in order to maintain the density of the alloy under a reasonable limit (preferably less than or equal to 8.3 kg / dm 3 ). In addition, the cost of Ta is high and its beneficial role on crack resistance could not be clearly established. Finally, its enhancement effect of the gamma prime phase does not appear to be greater than that of the elements Ti and Nb. It has even been found that the resistance of the alloys of the invention was at least equivalent to that of the alloys containing Ta.
Avantageusement encore, les teneurs en Al, Ti et Nb, en pourcentages atomiques dans les alliages de l'invention, sont telles que le rapport entre la somme des teneurs en Ti et en Nb, et la teneur en Al, est supérieur ou égal à 0,9 et inférieur ou égal à 1,1, soit: 0,9 ≤ [(Ti + Nb)/Al] ≤ 1,1.Advantageously, the Al, Ti and Nb contents, in atomic percentages in the alloys of the invention, are such that the ratio between the sum of the contents of Ti and Nb, and the Al content, is greater than or equal to 0.9 and less than or equal to 1.1, ie: 0.9 ≤ [(Ti + Nb) / Al] ≤ 1.1.
Les atomes de Ti et de Nb se substituant à l'Al dans la phase gamma prime de base Ni3Al ont pour effet de renforcer celle-ci selon des mécanismes analogues à ceux du durcissement de solution solide. Ce durcissement est d'autant plus élevé que le rapport [(Ti+Nb)/Al] est élevé. Cependant, d'une part, au-delà d'une certaine valeur de la concentration en Ti, la phase ordonnée êta Ni3Ti précipite sous forme de plaquettes allongées qui ont un effet néfaste sur le comportement mécanique, notamment sur la ductilité des alliages qui en contiennent. D'autre part, la concentration en Nb doit être limitée car une teneur excessive en Nb est préjudiciable à la résistance à la propagation de fissures dans ce type d'alliages.The Al-substituted Ti and Nb atoms in the Ni 3 Al base gamma prime phase have the effect of reinforcing it by mechanisms similar to those of solid solution hardening. This hardening is even higher than the ratio [(Ti + Nb) / Al] is high. However, on the one hand, beyond a certain value of the Ti concentration, the ordered phase eta Ni 3 Ti precipitates in the form of elongated platelets which have a detrimental effect on the mechanical behavior, especially on the ductility of the alloys which contain them. On the other hand, the concentration of Nb must be limited because an excessive content of Nb is detrimental to the resistance to the propagation of cracks in this type of alloys.
Selon un autre aspect de l'invention, les teneurs en W, Mo, Cr et Co, en pourcentages atomiques, sont telles que la somme des teneurs en W, Mo, Cr et Co est supérieure ou égale à 30% et inférieure ou égale à 34%, et telles que la somme des teneurs en W et Mo est supérieure ou égale à 3% et inférieure ou égale à 4,5%, soit: 30% ≤ W+ Mo + Cr + Co ≤ 34% ; et 3% ≤ W + Mo ≤ 4,5 %.According to another aspect of the invention, the contents in W, Mo, Cr and Co, in atomic percentages, are such that the sum of the contents in W, Mo, Cr and Co is greater than or equal to 30% and less than or equal to at 34%, and such that the sum of the contents in W and Mo is greater than or equal to 3% and less than or equal to 4.5%, namely: 30% ≤ W + Mo + Cr + Co ≤ 34%; and 3% ≤ W + Mo ≤ 4.5%.
Les éléments qui, essentiellement, se substituent à Ni dans la solution solide gamma sont Cr, Co, Mo et W.The elements which essentially substitute for Ni in the gamma solid solution are Cr, Co, Mo and W.
Cr est indispensable à la tenue à l'oxydation et à la corrosion de l'alliage et participe, par effet de solution solide, au durcissement de la matrice gamma.Cr is essential for the resistance to oxidation and corrosion of the alloy and participates, as a solid solution, in the hardening of the gamma matrix.
Co améliore la résistance de ces alliages au fluage à haute température. De plus, l'augmentation de la concentration en Co, dans les limites de la stabilité de la structure de la phase gamma, permet d'abaisser la température de solvus de la phase gamma prime et ainsi de faciliter la mise en oeuvre des traitements thermiques de remise en solution partielle ou totale de celle-ci.Co improves the resistance of these alloys to creep at high temperatures. In addition, the increase in Co concentration, within the limits of the stability of the gamma phase structure, makes it possible to lower the solvus temperature of the gamma prime phase and thus to facilitate the implementation of heat treatments. partial or total solution of solution thereof.
Mo et W apportent un fort durcissement de la matrice gamma par effet de solution solide. Cependant ces éléments ont des masses atomiques élevées et leur substitution au Ni (en particulier la substitution du W au Ni) se traduit par une augmentation notable de la masse volumique de l'alliage.Mo and W provide a strong hardening of the gamma matrix by the effect of solid solution. However, these elements have high atomic masses and their substitution with Ni (in particular the substitution of W for Ni) results in a significant increase in the density of the alloy.
Les teneurs en Cr, Mo, Co et W dans les alliages de l'invention doivent donc être soigneusement ajustées les unes par rapport aux autres pour obtenir les effets désirés, en particulier un durcissement optimal de la matrice gamma, sans pour autant risquer de provoquer l'apparition prématurée des phases de composés intermétalliques fragiles, sigma et mu. Ces phases, lorsqu'elles se développent en quantité excessive, peuvent en effet entraîner une réduction significative de la ductilité et de la résistance mécanique des alliages.The contents of Cr, Mo, Co and W in the alloys of the invention must therefore be carefully adjusted with respect to each other to obtain the desired effects, in particular optimum curing of the gamma matrix, without thereby risking causing the premature appearance of the phases of fragile intermetallic compounds, sigma and mu. These phases, when they develop in excessive amounts, can indeed cause a significant reduction in the ductility and mechanical strength of the alloys.
Enfin, on notera que les éléments dits mineurs que sont C, B et Zr forment des ségrégations principalement aux joints de grains, par exemple sous forme de carbures ou de borures. Ils contribuent ainsi à accroître la résistance et la ductilité des alliages par modification de la chimie des joints de grains et leur absence serait préjudiciable. Toutefois une teneur en excès de ces éléments entraîne une réduction de la température de fusion commençante ainsi qu'une précipitation excessive de carbures et borures ce qui consomme des éléments d'alliage qui ne participent plus au durcissement de l'alliage. Les concentrations en carbone, bore et zirconium sont donc ajustées, avec en particulier des teneurs minimales non nulles en carbone et en bore, afin d'obtenir à haute température une résistance mécanique et une ductilité optimales pour les alliages de l'invention. Hf est également présent en quantité modérée car cet élément améliore la résistance à la fissuration intergranulaire à chaud.Finally, it will be noted that the so-called minor elements C, B and Zr form segregations mainly at the grain boundaries, for example in the form of carbides or borides. They contribute to increase the strength and ductility of alloys by changing the chemistry of grain boundaries and their absence would be detrimental. However an excess content of these elements leads to a reduction of the melting temperature beginning and excessive precipitation of carbides and borides which consumes alloy elements that no longer participate in the hardening of the alloy. The concentrations of carbon, boron and zirconium are therefore adjusted, in particular with non-zero minimum levels of carbon and boron, in order to obtain at high temperature optimum mechanical strength and ductility for the alloys of the invention. Hf is also present in moderate amounts because this element improves resistance to intergranular hot cracking.
L'invention a également pour objet un procédé de fabrication d'une pièce, plus particulièrement une pièce de turbomachine comme un disque de compresseur ou de turbine, caractérisé en ce qu'on réalise une ébauche de ladite pièce, ou la pièce elle-même, à partir d'une poudre d'un alliage selon l'invention, par une technique de métallurgie des poudres.The subject of the invention is also a method for manufacturing a part, more particularly a turbomachine part such as a compressor or turbine disk, characterized in that a blank of said part is produced, or the part itself from a powder of an alloy according to the invention, by a powder metallurgy technique.
Avantageusement, on fait subir à ladite ébauche où à ladite pièce, un traitement thermique de recristallisation selon lequel on amène l'ébauche ou la pièce, soit à une température inférieure à la température de solvus de la phase gamma prime dudit alliage, soit à une température supérieure à la température de solvus de la phase gamma prime dudit alliage, et inférieure à la température de début de fusion de cet alliage, de manière à favoriser le développement d'une microstructure à taille de grains adaptée aux conditions de sollicitation.Advantageously, said blank or said part is subjected to a recrystallization heat treatment according to which the blank or part is brought, either at a temperature below the solvus temperature of the gamma prime phase of said alloy, or at a temperature of less than a temperature greater than the solvus temperature of the gamma prime phase of said alloy, and less than the melting start temperature of this alloy, so as to promote the development of a grain size microstructure adapted to the stress conditions.
L'invention, ses applications et ses avantages seront mieux compris à la lecture de la description détaillée qui suit. Cette description fait référence aux figures annexées sur lesquelles :
- la figure 1 est un cliché obtenu par microscopie électronique à balayage montrant la microstructure de l'alliage A, décrit plus loin, et
- la figure 2 est un cliché obtenu par microscopie électronique à balayage montrant la microstructure de l'alliage C1, décrit plus loin.
- FIG. 1 is a photograph obtained by scanning electron microscopy showing the microstructure of alloy A, described below, and
- Figure 2 is a photograph obtained by scanning electron microscopy showing the microstructure of alloy C1, described below.
Les pièces réalisées à partir des alliages selon l'invention sont, de préférence, fabriquées par des techniques de métallurgie des poudres.The parts made from the alloys according to the invention are preferably manufactured by powder metallurgy techniques.
Par exemple, la réalisation d'un disque de compresseur ou de turbine, selon une technique de métallurgie des poudres, comprend les étapes suivantes :
- la fabrication d'un lingot d'alliage mère par mélange et fusion d'éléments métalliques purs (aux éventuelles impuretés près),
- la refusion du lingot et sa pulvérisation par gaz inerte ou la refusion du lingot et sa pulvérisation centrifuge par une technique connue d'électrode tournante, afin d'obtenir une poudre pré-alliée,
- la consolidation de cette poudre pré-alliée par compactage isostatique à chaud et/ou par filage,
- la mise en forme d'une ébauche de disque par forgeage isotherme,
- le traitement thermique de cette ébauche, et
- l'usinage final du disque.
- the manufacture of a parent alloy ingot by mixing and melting pure metal elements (with any impurities),
- the remelting of the ingot and its spraying by inert gas or the reflow of the ingot and its centrifugal spraying by a known rotary electrode technique, in order to obtain a pre-alloyed powder,
- the consolidation of this pre-alloyed powder by hot isostatic compaction and / or by spinning,
- the shaping of a disc blank by isothermal forging,
- the heat treatment of this blank, and
- the final machining of the disc.
A l'issue du forgeage isotherme, différentes étapes de traitement thermique peuvent être choisies de manière à obtenir la microstructure la mieux adaptée à l'application visée. La température du traitement de mise en solution de la phase gamma prime permet de contrôler la taille de grain métallurgique :
- avec un traitement à une température inférieure à la température de solvus de la phase gamma prime, on obtient une microstructure à petits grains (5 à 15 µm), et
- avec un traitement à une température comprise entre la température de solvus de la phase gamma prime et la température de début de fusion de l'alliage, on obtient une microstructure à gros grains (supérieure à 15 µm). Ce dernier traitement n'est réalisable industriellement que si l'écart entre les deux températures précitées, appelé "fenêtre de mise en solution ", est suffisamment important : on considère pour les alliages industriels qu'il doit être supérieur à 30°C et, de préférence, à 35°C.
- with a treatment at a temperature lower than the solvus temperature of the gamma prime phase, a microstructure with small grains (5 to 15 μm) is obtained, and
- with a treatment at a temperature between the solvus temperature of the gamma prime phase and the melting start temperature of the alloy, a coarse-grained microstructure (greater than 15 μm) is obtained. This last treatment is industrially feasible only if the difference between the two aforementioned temperatures, called the "dissolution window", is sufficiently important: it is considered for industrial alloys that it must be greater than 30 ° C and, preferably at 35 ° C.
La vitesse du refroidissement qui suit le traitement de mise en solution permet de contrôler la distribution des précipités intragranulaires de phase gamma prime.The rate of cooling following the dissolution treatment makes it possible to control the distribution of the intragranular precipitates of gamma prime phase.
Un ou plusieurs traitements de revenu permettent de contrôler la taille des précipités tertiaires de phase gamma prime et de relaxer les contraintes internes qui résultent de la trempe.One or more treatments of income make it possible to control the size of the tertiary precipitates of phase gamma prime and to relax the internal stresses which result from the quenching.
Les compositions nominales de deux alliages de l'art antérieur et de trois alliages conformes à l'invention, donnés à titre d'exemples, sont présentées dans le tableau I dans lequel les teneurs des éléments de chaque alliage sont indiquées en pourcentages atomiques, et dans le tableau II dans lequel les teneurs sont indiquées en pourcentages massiques. Les alliages C1, C2 et C3 ont une fenêtre de mise en solution supérieure à 50°C et peuvent donc être traités selon les deux types de traitement thermique présentés ci dessus, ce qui autorise une grande latitude de microstructures.
L'alliage A est l'alliage N18 et l'alliage B est commercialisé sous la référence René-88DT.The alloy A is the alloy N18 and the alloy B is sold under the reference Rene-88DT.
Pour mener des tests sur ces alliages, des pièces ont été élaborées par la voie de la métallurgie des poudres selon la procédure suivante :
- fabrication de lingots d'alliage mère par mélange et fusion d'éléments métalliques purs,
- pulvérisation centrifuge avec électrodes tournantes,
- consolidation des poudres pré-alliées par filage à chaud,
- traitements thermiques comprenant un traitement subsolvus ou supersolvus.
- manufacture of mother alloy ingots by mixing and melting pure metallic elements,
- centrifugal spraying with rotating electrodes,
- consolidation of the pre-alloyed powders by hot spinning,
- heat treatments comprising a subsolvus or supersolvus treatment.
Pour le traitement subsolvus, un traitement de mise en solution partielle de la phase gamma prime a été réalisé à une température inférieure à la température de solvus (Tsolvus) de la phase gamma prime (à environ Tsolvus - 25°C). La vitesse de refroidissement était de l'ordre de 100°C/min après la mise en solution. Ce traitement était suivi d'un revenu de 24 heures à 750°C et d'un refroidissement à l'air.For the subsolvus treatment, a partial solution treatment of the gamma prime phase was performed at a temperature below the solvus temperature (Tsolvus) of the gamma prime phase (at about Tsolvus - 25 ° C). The cooling rate was of the order of 100 ° C./min after dissolution. This treatment was followed by an income of 24 hours at 750 ° C and air cooling.
Pour le traitement supersolvus, un traitement de mise en solution totale de la phase gamma prime a été réalisé à une température supérieure au solvus gamma prime (à environ Tsolvus + 15 à 20°C). La vitesse de refroidissement était de l'ordre de 140°C/min après la mise en solution. Ce traitement était suivi d'un revenu de 8 heures à 760°C et d'un refroidissement à l'air.For the supersolvus treatment, a treatment of total dissolution of the gamma prime phase was performed at a temperature above the solvus gamma prime (at about Tsolvus + 15 at 20 ° C). The cooling rate was of the order of 140 ° C./min after the dissolution. This treatment was followed by an 8 hour income at 760 ° C and air cooling.
Dans les tableaux III et IV sont présentés quelques résultats d'essais mécaniques réalisés en traction, en fluage et en propagation de fissures, respectivement pour des alliages ayant reçu un traitement subsolvus (tableau III) et un traitement supersolvus (tableau IV).In Tables III and IV are presented some results of mechanical tests carried out in tension, in creep and in crack propagation, respectively for alloys having received a subsolvus treatment (Table III) and a supersolvus treatment (Table IV).
Les essais de traction ont été réalisés à l'air à 650°C pour le traitement subsolvus (tableau III) et à 700°C pour le traitement supersolvus (tableau IV) et Rm correspond à la contrainte maximale mesurée au cours de ces essais.The tensile tests were conducted in air at 650 ° C for the subsolvus treatment (Table III) and 700 ° C for the supersolvus treatment (Table IV) and Rm is the maximum stress measured during these tests.
Les essais de fluage ont été réalisés à l'air à 700°C sous une contrainte initiale de 550 MPa (650 MPa pour l'alliage C1). La donnée t0,2% est le temps de maintien en heures pour atteindre une déformation plastique de 0,2%.The creep tests were carried out in air at 700 ° C. under an initial stress of 550 MPa (650 MPa for the C1 alloy). The data t 0.2% is the holding time in hours to reach a plastic deformation of 0.2%.
Les essais de propagation de fissures ont été réalisés à l'air et à 650°C. Le cycle de sollicitation est le suivant : montée en charge en 10 secondes, temps de maintien de 300 secondes à la charge maximale et décharge en 10 secondes avec un rapport de charges (charge minimale/charge maximale) égal à 0,05. La donnée Vf35 est la vitesse de propagation de fissures, mesurée à une valeur de delta K égale à 35 MPa.m1/2.
Les résultats des tableaux III et IV montrent que les alliages de l'invention permettent de parvenir à une augmentation importante des propriétés mécaniques à chaud (traction et fluage) tout en préservant une résistance à la propagation de fissure identique ou meilleure que celle des alliages connus.The results of Tables III and IV show that the alloys of the invention make it possible to achieve a significant increase in the mechanical properties when hot (traction and creep) while preserving resistance to crack propagation that is identical to or better than that of known alloys. .
En référence aux figures 1 et 2, des examens microstructuraux ont été réalisés sur les alliages A et C1 ayant subi un traitement subsolvus, afin de détecter l'apparition de phases topologiquement compactes (c'est-à-dire de composés intermétalliques fragiles) après un traitement thermique de vieillissement de 500 heures à 750°C. Les observations ont été réalisées en microscopie électronique à balayage, en contraste d'électrons rétrodiffusés, sur des échantillons non attaqués. Le vieillissement sévère de 500 heures à 750°C provoque, dans l'alliage A, la formation inter et intra-granulaire de phases riches en éléments lourds. Ces phases apparaissent en contraste clair (liserés blancs) au niveau des joints de grains sur la figure 1. Ces phases, lorsqu'elles se forment en quantité excessive, peuvent entraîner une réduction significative de la ductilité et de la résistance mécanique des alliages. Les examens de l'alliage C1 ayant été soumis au même traitement de 500 heures à 750°C montrent que ces phases ne se sont pas formées pendant le vieillissement. Les alliages de l'invention présentent donc une meilleure stabilité que l'alliage A (N18) au regard de la formation des composés intermétalliques fragiles que sont les phases topologiquement compactes.With reference to FIGS. 1 and 2, microstructural examinations were performed on subsolvus-treated alloys A and C1 to detect the appearance of topologically compact phases (i.e., fragile intermetallic compounds) after an aging heat treatment of 500 hours at 750 ° C. The observations were made by scanning electron microscopy, backscattered electron contrast, on untouched samples. The severe aging of 500 hours at 750 ° C causes, in alloy A, the inter and intra-granular formation of phases rich in heavy elements. These phases appear in clear contrast (white edging) at the grain boundaries in Figure 1. These phases, when formed in excessive amounts, can cause a significant reduction in the ductility and mechanical strength of the alloys. Examinations of C1 alloy having been subjected to the same treatment of 500 hours at 750 ° C. show that these phases did not form during aging. The alloys of the invention thus have a better stability than the alloy A (N18) with respect to the formation of fragile intermetallic compounds which are the topologically compact phases.
Claims (11)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0651145A FR2899240B1 (en) | 2006-03-31 | 2006-03-31 | NICKEL ALLOY |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1840232A1 true EP1840232A1 (en) | 2007-10-03 |
EP1840232B1 EP1840232B1 (en) | 2009-05-13 |
Family
ID=36694327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07105258A Active EP1840232B1 (en) | 2006-03-31 | 2007-03-29 | Nickel-based alloy |
Country Status (7)
Country | Link |
---|---|
US (1) | US20070227630A1 (en) |
EP (1) | EP1840232B1 (en) |
JP (1) | JP5398123B2 (en) |
CA (1) | CA2583140C (en) |
DE (1) | DE602007001092D1 (en) |
FR (1) | FR2899240B1 (en) |
RU (1) | RU2433197C2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104561662A (en) * | 2014-11-17 | 2015-04-29 | 江苏环亚电热仪表有限公司 | Powder alloy and production technique thereof |
FR3098849A1 (en) * | 2019-07-16 | 2021-01-22 | Safran Aircraft Engines | Improved aircraft module housing |
WO2021116607A1 (en) | 2019-12-11 | 2021-06-17 | Safran | Nickel-based superalloy |
WO2023175266A1 (en) | 2022-03-17 | 2023-09-21 | Safran | Nickel-based superalloy |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100034692A1 (en) * | 2008-08-06 | 2010-02-11 | General Electric Company | Nickel-base superalloy, unidirectional-solidification process therefor, and castings formed therefrom |
US8992699B2 (en) | 2009-05-29 | 2015-03-31 | General Electric Company | Nickel-base superalloys and components formed thereof |
WO2012047352A2 (en) * | 2010-07-09 | 2012-04-12 | General Electric Company | Nickel-base alloy, processing therefor, and components formed thereof |
RU2477199C1 (en) * | 2011-12-14 | 2013-03-10 | Общество с ограниченной ответственностью "КОММЕТПРОМ" (ООО "КОММЕТПРОМ" "COMMETPROM") | Working wheel part and method of its fabrication |
WO2013143995A1 (en) * | 2012-03-27 | 2013-10-03 | Alstom Technology Ltd | Method for manufacturing components made of single crystal (sx) or directionally solidified (ds) nickelbase superalloys |
US10519529B2 (en) | 2013-11-20 | 2019-12-31 | Questek Innovations Llc | Nickel-based alloys |
GB201400352D0 (en) | 2014-01-09 | 2014-02-26 | Rolls Royce Plc | A nickel based alloy composition |
EP3042973B1 (en) | 2015-01-07 | 2017-08-16 | Rolls-Royce plc | A nickel alloy |
US20160326613A1 (en) * | 2015-05-07 | 2016-11-10 | General Electric Company | Article and method for forming an article |
GB2539957B (en) | 2015-07-03 | 2017-12-27 | Rolls Royce Plc | A nickel-base superalloy |
US10378087B2 (en) | 2015-12-09 | 2019-08-13 | General Electric Company | Nickel base super alloys and methods of making the same |
US10722946B2 (en) * | 2016-04-25 | 2020-07-28 | Thomas Strangman | Methods of fabricating turbine engine components |
US10415121B2 (en) * | 2016-08-05 | 2019-09-17 | Onesubsea Ip Uk Limited | Nickel alloy compositions for aggressive environments |
RU2676121C2 (en) * | 2016-12-28 | 2018-12-26 | Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") | Powdered heat-resistant alloys for producing bimetallic articles and composite disc made of these alloys |
WO2018216067A1 (en) | 2017-05-22 | 2018-11-29 | 川崎重工業株式会社 | High temperature component and method for producing same |
US10577679B1 (en) | 2018-12-04 | 2020-03-03 | General Electric Company | Gamma prime strengthened nickel superalloy for additive manufacturing |
FR3130294A1 (en) | 2021-12-15 | 2023-06-16 | Safran | Nickel base alloy |
FR3130292B1 (en) | 2021-12-15 | 2024-06-14 | Safran | Cobalt-free nickel-based alloy |
FR3130293A1 (en) | 2021-12-15 | 2023-06-16 | Safran | Nickel base alloy including tantalum |
CN115074557A (en) * | 2022-05-16 | 2022-09-20 | 北京科技大学 | Ultrahigh-plasticity low-yield-ratio high-density nickel alloy and preparation method thereof |
CN115156472B (en) * | 2022-06-27 | 2024-08-06 | 中国航发四川燃气涡轮研究院 | Preparation method of high-performance nickel-based alloy deformed turbine disc forging |
CN116875844B (en) * | 2023-07-28 | 2024-02-09 | 北京钢研高纳科技股份有限公司 | Disk-shaft integrated turbine disk and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593830A1 (en) * | 1986-02-06 | 1987-08-07 | Snecma | NICKEL-BASED MATRIX SUPERALLIAGE, ESPECIALLY IN POWDER METALLURGY, AND TURBOMACHINE DISK COMPRISING THE SAME |
US4825522A (en) * | 1987-08-12 | 1989-05-02 | Director General Of The Agency Of Industrial Science And Technology | Method of making heat resistant heavy-duty components of a turbine by superplasticity forging wherein different alloys are junctioned |
WO1995018875A1 (en) * | 1994-01-10 | 1995-07-13 | United Technologies Corporation | Superalloy forging process and related composition |
EP0849370A1 (en) * | 1996-12-17 | 1998-06-24 | United Technologies Corporation | High strength nickel base superalloy articles having machined surfaces |
EP1195446A1 (en) * | 2000-10-04 | 2002-04-10 | General Electric Company | Ni based superalloy and its use as gas turbine disks, shafts, and impellers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01165741A (en) * | 1987-12-21 | 1989-06-29 | Kobe Steel Ltd | Turbine disk consisting of homogeneous alloys having different crystal grain size |
JP3791395B2 (en) * | 2001-11-06 | 2006-06-28 | 三菱マテリアル株式会社 | Method for producing Ni-base superalloy ingot comprising small and uniform fine crystal grains |
-
2006
- 2006-03-31 FR FR0651145A patent/FR2899240B1/en not_active Expired - Fee Related
-
2007
- 2007-03-29 DE DE602007001092T patent/DE602007001092D1/en active Active
- 2007-03-29 EP EP07105258A patent/EP1840232B1/en active Active
- 2007-03-29 CA CA2583140A patent/CA2583140C/en active Active
- 2007-03-30 RU RU2007111861/02A patent/RU2433197C2/en active
- 2007-03-30 JP JP2007091967A patent/JP5398123B2/en active Active
- 2007-03-30 US US11/694,204 patent/US20070227630A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2593830A1 (en) * | 1986-02-06 | 1987-08-07 | Snecma | NICKEL-BASED MATRIX SUPERALLIAGE, ESPECIALLY IN POWDER METALLURGY, AND TURBOMACHINE DISK COMPRISING THE SAME |
US4825522A (en) * | 1987-08-12 | 1989-05-02 | Director General Of The Agency Of Industrial Science And Technology | Method of making heat resistant heavy-duty components of a turbine by superplasticity forging wherein different alloys are junctioned |
WO1995018875A1 (en) * | 1994-01-10 | 1995-07-13 | United Technologies Corporation | Superalloy forging process and related composition |
EP0849370A1 (en) * | 1996-12-17 | 1998-06-24 | United Technologies Corporation | High strength nickel base superalloy articles having machined surfaces |
EP1195446A1 (en) * | 2000-10-04 | 2002-04-10 | General Electric Company | Ni based superalloy and its use as gas turbine disks, shafts, and impellers |
Non-Patent Citations (1)
Title |
---|
FLAGEOLET ET AL: "On the role of gamma particles within gamma' precipitates on damage accumulation in the P/M nickel-base superalloy N18", MATERIALS SCIENCE AND ENGINEERING A: STRUCTURAL MATERIALS: PROPERTIES, MICROSTRUCTURE & PROCESSING, LAUSANNE, CH, vol. 399, no. 1-2, 15 June 2005 (2005-06-15), pages 199 - 205, XP005006437, ISSN: 0921-5093 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104561662A (en) * | 2014-11-17 | 2015-04-29 | 江苏环亚电热仪表有限公司 | Powder alloy and production technique thereof |
FR3098849A1 (en) * | 2019-07-16 | 2021-01-22 | Safran Aircraft Engines | Improved aircraft module housing |
WO2021116607A1 (en) | 2019-12-11 | 2021-06-17 | Safran | Nickel-based superalloy |
FR3104613A1 (en) | 2019-12-11 | 2021-06-18 | Safran | NICKEL BASED SUPERALLY |
US12180565B2 (en) | 2019-12-11 | 2024-12-31 | Safran | Nickel-based superalloy |
WO2023175266A1 (en) | 2022-03-17 | 2023-09-21 | Safran | Nickel-based superalloy |
FR3133623A1 (en) | 2022-03-17 | 2023-09-22 | Safran | Nickel-based superalloy |
Also Published As
Publication number | Publication date |
---|---|
US20070227630A1 (en) | 2007-10-04 |
JP5398123B2 (en) | 2014-01-29 |
RU2433197C2 (en) | 2011-11-10 |
DE602007001092D1 (en) | 2009-06-25 |
CA2583140C (en) | 2015-03-17 |
CA2583140A1 (en) | 2007-09-30 |
FR2899240B1 (en) | 2008-06-27 |
FR2899240A1 (en) | 2007-10-05 |
RU2007111861A (en) | 2008-10-10 |
JP2007277721A (en) | 2007-10-25 |
EP1840232B1 (en) | 2009-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1840232B1 (en) | Nickel-based alloy | |
EP3850118B1 (en) | Nickel-based superalloys | |
EP2393951B1 (en) | Method for producing a piece made from a superalloy based on nickel and corresponding piece | |
EP3007844B1 (en) | Method for manufacturing a titanium-aluminium alloy part | |
EP0971041B1 (en) | Single crystal nickel-based superalloy with high solvus gamma prime phase | |
FR2640285A1 (en) | FATTY GROWTH NICKEL-BASED ALLOY ARTICLE AND ALLOY AND METHOD OF MANUFACTURING THE SAME | |
FR2557147A1 (en) | PROCESS FOR FORGING HIGH-RESISTANCE NICKEL-BASED SUPERALLIER MATERIALS, ESPECIALLY IN MOLDED FORM | |
FR2625753A1 (en) | METHOD FOR THERMALLY TREATING NICKEL SUPERALLIAGE AND FATIGUE RESISTANT SUPERALLIATION ARTICLE | |
EP3710610B1 (en) | Nickel-based superalloy, single-crystal blade and turbomachine | |
EP1211335B1 (en) | Nickel based superalloy having a very high resistance to hot corrosion for single crystal turbine blades of industrial turbines | |
EP3710611B1 (en) | Nickel-based superalloy, single-crystal blade and turbomachine | |
EP4073283B1 (en) | Nickel-based superalloy | |
EP3802895B1 (en) | Nickel-based superalloy, single-crystal blade and turbomachine | |
EP3684530B1 (en) | Alloy turbine component comprising a max phase | |
EP1211336B1 (en) | Nickel based superalloy for single crystal turbine blades of industrial turbines having a high resistance to hot corrosion | |
EP3918101B1 (en) | Nickel based superalloy with high mechanical and environmental strength at elevated temperature and low density | |
EP3911773B1 (en) | Nickel based alloy with low density and mechanical and environmental strength at high temperature | |
FR3132913A1 (en) | Alloy powder, process for manufacturing a part based on this alloy and part thus obtained. | |
FR3132912A1 (en) | Alloy powder, process for manufacturing a part based on this alloy and part thus obtained. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070329 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17Q | First examination report despatched |
Effective date: 20080222 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 602007001092 Country of ref document: DE Date of ref document: 20090625 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100216 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20110501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES Effective date: 20170713 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240220 Year of fee payment: 18 Ref country code: GB Payment date: 20240220 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240220 Year of fee payment: 18 Ref country code: FR Payment date: 20240221 Year of fee payment: 18 |