[go: up one dir, main page]

EP1820197B1 - Method and device for isolating a chemically and radiochemically cleaned 68ga-radio nuclide and for marking a marking precursor with the 68ga-radio nuclide - Google Patents

Method and device for isolating a chemically and radiochemically cleaned 68ga-radio nuclide and for marking a marking precursor with the 68ga-radio nuclide Download PDF

Info

Publication number
EP1820197B1
EP1820197B1 EP05823617A EP05823617A EP1820197B1 EP 1820197 B1 EP1820197 B1 EP 1820197B1 EP 05823617 A EP05823617 A EP 05823617A EP 05823617 A EP05823617 A EP 05823617A EP 1820197 B1 EP1820197 B1 EP 1820197B1
Authority
EP
European Patent Office
Prior art keywords
vessel
labelling
radionuclide
radiopharmaceutical
cation exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05823617A
Other languages
German (de)
French (fr)
Other versions
EP1820197A2 (en
Inventor
Frank RÖSCH
Dimitri Vladimirovich Filosofov
Konstantin Zhernosekov
Marc Jennewein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johannes Gutenberg Universitaet Mainz
Original Assignee
Johannes Gutenberg Universitaet Mainz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36055712&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1820197(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Johannes Gutenberg Universitaet Mainz filed Critical Johannes Gutenberg Universitaet Mainz
Publication of EP1820197A2 publication Critical patent/EP1820197A2/en
Application granted granted Critical
Publication of EP1820197B1 publication Critical patent/EP1820197B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/0005Isotope delivery systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application

Definitions

  • the invention relates to a method and apparatus for isolating a 68 Ga radionuclide from a 68 Ge / Ga generator eluate and for labeling a label precursor with the 68 Ga radionuclide to form a radiopharmaceutical.
  • PET positron emission tomography
  • Radionuldidgeneratoren are used, wherein the obtained daughter Radionuldide generally have short half-times T 1 ⁇ 2 in comparison with their parent radionuclides.
  • Such radionuclide generators are based on a concept of effective radiochemical separation of decaying mother and daughter radionuldides in such a way that the daughter void should be obtained in radionuclidically and radiochemically as pure a form as possible.
  • radionuclide generators Compared to in-house radionuclide production facilities such as accelerators or nuclear reactors, the availability of short-lived radionuclides from radionuclide generators offers a cheap and easy alternative.
  • radionuclide generators over the last three decades has always been shaped by the growing spectrum of applications of radionuclides and labeled agents in medicine, particularly for nuclear medicine diagnostics and therapy.
  • promising applications of generator-based therapeutic radionuclides in nuclear medicine, oncology and cardiology have been developed in recent years. This growing importance of radionuclide generators has stimulated a broad development of radionuclide production for radionuclide generators, for adequate radiochemical separations as well as for reliable engineering design of radionuclide generator systems.
  • Radionuclide generator developments have often been systematized. Detailed reports have covered several aspects: parent-daughter half-lives, reactor-produced Nuldides, accelerator-produced Nuldide, generator mother nuclide cyclotron production, ultra-short-lived generator-produced radionuclides, generator-based positron-emitting radionuclides, clinical applications.
  • the initial generator systems separated 68 Ga as an EDTA complex of 68 Ge adsorbed on alumina or zirconia, with the resultant neutral [ 68 Ga] EDTA solution serving to image tumors.
  • 68 Ge was retained on antimony oxide Sb 2 O 5 and 68 Ga was eluted with oxalate solutions.
  • Anion exchange resins and dilute HF solutions as eluent allowed highly effective separations due to the significant Differences in the distribution coefficients of the elements.
  • the breakthrough of 68 Ge was below 10 -4 percent for up to 600 elutions; the 68 Ga yield was greater than 90%.
  • 68 Ge / 68 Ga generators were developed leading to ionic 68 Ga 3+ eluates.
  • 68 Ge was fixed on inorganic matrices such as alumina Al (OH) 3 and Fe (OH) 3 , on SnO 2 , ZrO 2 , TiO 2 or CeO 2 .
  • Tin (IV) oxide SnO 2 showed the best parameters for 68 Ge breakthrough (10 -6 -10 -5 % by bolus) and 68 Ga 3+ elution yield (70-80%) in 1 M HCl.
  • the 68 Ge content defines the radiochemical purity of the separated 68 Ga fraction. Even an initial contamination of about 10 -2 %, corresponding to, for example, 1 ⁇ Ci 68 Ge in a 68 Ga fraction of a 10 mCi 68 Ge / Ga generator system, already seems marginal with regard to a subsequent medical application.
  • 68 Ga eluate volume and chemical purity are further important data for the use of 68 Ga for the synthesis of radiopharmaceuticals.
  • this contamination is also radiochemically relevant, particularly with regard to potential medical applications.
  • the post-elution procedure should therefore explicitly include a chemical strategy for further separation of the 68 Ge.
  • the 68 Ga-labeling of potential radiophannaka plays a central role, for which the corresponding chemical reaction parameters have to be optimized.
  • the trivalent gallium already hydrolyzes above pH> 2 and has a pronounced tendency to adsorb on surfaces of glass and polymers at pH> 3, in particular in the state of low 68 Ga concentrations ( no-carrier-added ), as they result from the generator system results.
  • special reaction conditions have to be chosen because of the complexing kinetics as well as because of the aqua-chemistry of the Ga (III) cation.
  • impurities contained therein may also interfere with high labeling yields, even in the buffer systems typically used in 68 Ga tags.
  • solvent evaporation processes to reduce the volumes of the generator eluates or the final solutions of the 68 Ga radiopharmaceuticals can lead to loss of activity, both by the associated longer process time and by adsorption losses on the vessel walls.
  • This fraction is then added to 10-20 nmol of DOTATOC in a small volume of 1M HEPES or other aqueous buffer solution. Again, potential contamination by the concentrated buffer system can not be excluded.
  • the object of the invention is to provide a method and an apparatus to provide the high purity 68 Ga eluate, which is largely free of chemical and radiochemical impurities, with high yield and very low Eluatvolumen available.
  • the chemical reaction parameters such as the pH of the 68 Ga for the labeling of marker precursors to be optimized.
  • a method for labeling potential radiopharmaceuticals for positron emission tomography is to be provided.
  • This object is achieved in accordance with the invention by a process in which the initial 68 Ge / Ga generator eluate is fed directly to a cation exchanger and 68 Ga is quantitatively adsorbed on the cation exchanger, simultaneously chemically and radiochemically purified and the 68 Ga radionuclide with a marketed precursor from a ligand or a a peptide or protein covalently linked to a ligand is combined to form a radiopharmaceutical.
  • the cation exchanger from the group of strongly acidic cation exchanger polystyrene / divinylbenzene (DVB) resins is selected with a DVB content of 2 to 20%, based on the crosslinked polymers of the resins, and becomes the matrix of the cation exchanger with 68 Ga loaded.
  • the sulfonated polystyrene / divinylbenzene (DVB) resins have a gel-like structure and permanently have negatively charged sulfonic acid groups. Each of these active groups has a fixed electrical charge and is in equilibrium with a number of equivalent oppositely charged ions which are free to exchange with other ions of the same charge.
  • the 68 Ga fraction adsorbed on the cation exchanger is cleaned with acid solutions of the HCl / acetone or HCl / ethanol or analog systems type so that chemical impurities such as Fe (III) and Zn (II) elute from the cation exchanger become.
  • chemical impurities such as Fe (III) and Zn (II) elute from the cation exchanger become.
  • elution 68 Ga remains completely on the cation exchanger, and there is a substantial separation of initially eluted Ti (IV).
  • the chemically and radiochemically pure 68 Ga radionuclide obtained by the elution can be used directly for the synthesis of radiopharmaceuticals.
  • the apparatus for isolating a chemically and radiochemically purified 68 Ga radionuclide from a 68 Ge / Ga generator eluate and for labeling a label precursor with the 68 Ga radionuclide in an embodiment of the invention, includes a conveyor connected by a line to a 68 Ge / Ga generator a number of conveyor means for purifying the 68 Ga fraction adsorbed on a cation exchanger, a synthesis device, into which a line leads from the exit of the cation exchanger, and in which the 68 Ga radionuclide and the labeling precursor are converted into a radiopharmaceutical, and for cleaning the radiopharmaceutical a cartridge, at the input conveyors are connected via lines and their output via a 3rd Way valve is connected to a line leading out of the synthesis device, a storage vessel and a product container for receiving the radiopharmaceutical.
  • the device after Fig. 1 includes a 68 Ge / Ga generator 1, which is preceded by a conveyor 2, for example in the form of a piston, a syringe or a peristaltic pump (peristaltic pump), via a line.
  • the conveyor 2 is connected in a manner not shown with a liquid-filled storage or reservoir, if it is a Schlauchradpumpe. In the case of a piston or a syringe these are filled directly with a liquid.
  • the output of the generator 1 is connected via a first 3-way valve 12 to the cation exchanger 14 on the input side.
  • conveyors 3, 4, 5, 6, 7 are connected via lines to the 3-way valve 12.
  • 68 Ge / Ga radionuclide generators it is preferred, in a manner not shown, several 68 Ge / Ga radionuclide generators simultaneously or sequentially eluted and the common initial eluates transferred to the cation exchanger 14.
  • the 68 Ge / Ga generators can still be operated or used even if their initial 68 Ga eluate already contains an impermissibly high amount of 68 Ge. This significantly extends the useful life of a 68 Ge / Ga generator, especially for generators with 50 or more mCi 68 Ge.
  • the cation exchanger 14 is connected on the output side to a second 3-way valve 15.
  • a line 25 leads from the 3-way valve 15 to a waste container 19
  • a further line 23 leads from the 3-way valve 15 in a marking vessel 21, which is arranged in a synthesis device 20 of the device.
  • the heatable synthesis device 20 is equipped with a heater 22 and is seated on a vertically movable table 27. By lowering the table 27 access to the marking vessel 21 is facilitated.
  • the components of the device described so far are used to isolate the 68 Ga eluate, its volume reduction and purification.
  • a stable plate can accommodate the synthesis device 20, as well as a laterally movable on rails or rollers slide.
  • a line 24 leads from the marking vessel 21 to a third 3-way valve 13.
  • the 3-way valve 13 is connected on the input side to a cartridge 11. From the 3-way valve 13 further leads a line 25 to a storage vessel 18 for the purified Mark istsagens.
  • Another line 26 connects the storage vessel 18 with the product vessel 17. In this line 26, a filter 16 is arranged before entering the product vessel 17. In the product vessel 17, the radiopharmaceutical is provided for administration and may be withdrawn therefrom at any time.
  • the unit of filter 16, product vessel 17, line 26 is used for sterile filtration, which is an independent process step that can be performed in isolation. If necessary, therefore, the unit 16, 17 decoupled from the overall device and operated independently.
  • the operation of the device is based on the flowchart according to FIG. 2 described.
  • the cation exchanger is a strongly acidic cation exchanger from the group polystyrene / divinylbenzene (DVB) resins with a DVB content of 2 to 20%, based on the crosslinked polymers of the resins.
  • the sulfonated polystyrene / divinylbenzene (DVB) resins have a gel-like structure and permanently have negatively charged sulfonic acid groups. Each of these active groups has a fixed electrical charge and is in equilibrium with a number of equivalent oppositely charged ions which are free to exchange with other ions of the same charge.
  • this solution is fed through the 3-way valve 12 to the cation exchanger 14 through the conveyor 5, which is filled with a second acidic solution of HCl / acetone or HCl / ethanol or analog systems, and through this acidic solution 68 Ga eluted from the cation exchanger and introduced via the 3-way valve 15 and line 23 into the marking vessel 21.
  • the remaining residues of Ti (IV) on the cation exchanger 14 are at first rinsed with HCl from the conveyors 6 at the appropriate time and sensed in the waste container 19; Subsequently, the cation exchanger is washed analogously with water from the conveyors 7, whereby the cation exchanger is finally ready for a new procedure.
  • the optimum temperature is equal / higher than 95 ° C.
  • the pH of the label precursor in the labeling vessel 21 is in the range of 2 to 5.
  • a preferred pH is, for example, 2.3.
  • the pH is adjusted by the volume of water and labeling precursor, preferably without a buffer solution, and the supplied HCl / acetone or HCl / ethanol solution or analogous systems.
  • the amount of the label precursor of a ligand or ligand covalently linked to a peptide or protein, such as DOTATOC, in the labeling vessel 21 is about 1 to 100 nmol, preferably 7 to 14 nmol, plus an appropriate volume of water or buffer or HEPES or analogous systems to adjust the pH.
  • the liquid-containing conveyor 8 is operated with open 3-way valve 13 so that via the line 24 from the marker vessel 21, the radiopharmaceutical is applied to the cartridge 11 and is fixed. Thereafter, the 3-way valve 13 closes the line 24 and opens the line 25, which leads into the storage vessel 18 - or optionally in another, not shown storage vessel.
  • the cartridge 11 is washed with pure water or analogous solvents which elute free 68 Ga or other unlabeled 68 Ga species, and removed in a manner not shown, for example, back into the now no longer required 21 Mark istsgefpiping.
  • the conveyor 10 containing less than 0.5 ml of ethanol or analogous solvents, the elution of the radiopharmaceutical, for example 68 Ga-DOTATOC, from the cartridge 11 and its introduction into the storage vessel 18 containing an isotonic saline solution , Alternatively, the specified fraction can also be eluted into an empty storage vessel 18, which in principle allows the removal of the ethanol or analogous solvent.
  • the radiopharmaceutical for example 68 Ga-DOTATOC
  • the 3-way valve 13 closes the line 25 and by means of a device, not shown, the radiopharmaceutical is drawn through the conduit 26 from the storage vessel 18 and introduced via a filter 16 into the product vessel 17.
  • a filter 16 is a sterile filtering, so that thereafter the radiopharmaceutical is ready for use.
  • the binding of the 68 Ga to the labeling precursor is more than 75%, based on the decay-corrected activity of the initial 68 Ge / Ga generator eluate.
  • the reactivity of the label precursor at 10 mCi of the 68 Ge / Ga generator elute is up to 80%, 90% and more than 95% after one, five and ten minutes.
  • the duration of the procedure from application of the initial generator eluate to the provision of the radiopharmaceutical is about 20 minutes.
  • the conveyors 2 to 10 and the lines connected to them can be subjected to negative pressure in order to transport the solutions through the lines.
  • the octapeptide octreotide has a high affinity for the sstr2 subtype of human somatostatin receptor-expressing tumors, and the conjugated macrocyclic bifunctional chelator DOTA coordinately binds the trivalent 68 Ga 3+ with high thermodynamic and kinetic stability also in vivo.
  • this type of 68 Ga-labeled compounds allows excellent visualization of tumors and small metastases.
  • This 68 Ga tumor targeting approach may potentially be extended to a variety of other tumors, using other peptides.
  • 68 Ga also finds applications in myocardial perfusion diagnostics in the form of the [ 68 Ga] BAT-TECH complex as a perfusion tracer. This shows that, in principle, any type of 68 Ga labeling via ligand structures can be used for nuclear medical diagnostics altogether or will be in the future.
  • the "kit” -like synthesis offers another advantage, as does the use of PET independent of in-house direct production from established positron emitters such as 18F .
  • the device is also suitable for concentrating and purifying radiogallium solutions. It is also suitable for cleaning, volume reduction of gallium radioisotopes and labeling of marrow precursors with the 66 Ga or 67 Ga radioisotope.
  • the device is equally well suited for labeling ligands or ligand-covalently linked peptide or protein with radionuclides other than 68 Ga.
  • radionuclides other than 68 Ga.
  • An example of this is 90 Y, which requires purification of the eluate from other metals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cephalosporin Compounds (AREA)

Abstract

The invention relates to initial 68Ge/Ga-generator elute which is guided directly to a cation exchanger, whereon 68Ga is quantitatively absorbed and is cleaned simultaneously in a chemical and radio chemical manner. Subsequently, the 68Ga-radio nuclide is combined with a radio pharmaceutical substance by a marking precursor made of a ligand or a peptide or a protein which is cross-linked in a covalent manner to a ligand.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Isolierung eines 68Ga-Radionuklids aus einem 68Ge/Ga-Generatoreluat und zum Markieren eines Markierungsvorläufers mit dem 68Ga-Radionuklid zu einem Radiopharmakon.The invention relates to a method and apparatus for isolating a 68 Ga radionuclide from a 68 Ge / Ga generator eluate and for labeling a label precursor with the 68 Ga radionuclide to form a radiopharmaceutical.

Das Positron-emittierende 68Ga- Radionuklid mit T½ = 68 min ist von großer praktischer Bedeutung für die klinisch Positronen-Emission-Tomographie (PET). Für die Erzeugung von Radionukliden werden bekannte Radionuldidgeneratoren eingesetzt, wobei die erhaltenen Tochter-Radionuldide im Allgemeinen kurze Halbwertszeiten T½ im Vergleich mit ihren Mutter-Radionukliden haben.The positron-emitting 68 Ga radionuclide with T ½ = 68 min is of great practical importance for clinical positron emission tomography (PET). For the production of radionuclides known Radionuldidgeneratoren are used, wherein the obtained daughter Radionuldide generally have short half-times T ½ in comparison with their parent radionuclides.

Solchen Radionuklidgeneratoren liegt ein Konzept der effektiven radiochemischen Separation zerfallender Mutter- und Tochter-Radionuldide in solcher Weise zugrunde, dass das Tochternuldid in radionuklidisch und radiochemisch möglichst reiner Form erhalten werden soll.Such radionuclide generators are based on a concept of effective radiochemical separation of decaying mother and daughter radionuldides in such a way that the daughter void should be obtained in radionuclidically and radiochemically as pure a form as possible.

Im Vergleich zu in-house-Radionuklidproduktionsanlagen wie Beschleunigern oder Nuklearreaktoren bietet die Verfügbarkeit kurzlebiger Radionuklide von Radionuklidgeneratoren eine preiswerte und einfache Alternative.Compared to in-house radionuclide production facilities such as accelerators or nuclear reactors, the availability of short-lived radionuclides from radionuclide generators offers a cheap and easy alternative.

Die Entwicklung von Radionuldidgeneratoren der letzten drei Jahrzehnte war stets geprägt durch das wachsende Spektrum der Anwendung von Radionuldiden und markierten Agenzien in der Medizin, insbesondere für die nuklearmedizinische Diagnostik und Therapie. Zusätzlich wurden in den letzten Jahren viel versprechende Anwendungen von Generator-basierten therapeutischen Radionukliden in der Nuklearmedizin, Onkologie und Kardiologie entwickelt. Diese wachsende Bedeutung von Radionuklidgeneratoren hat eine breite Entwicklung der Produktion von Radionukliden für Radionuklidgeneratoren, für adequate radiochemische Separationen wie auch für ein zuverlässiges technisches Design von Radionuklidgeneratorsystemen stimuliert. Der erste Generator für Anwendungen in den Lebenswissenschaften wurde schon 1920 entwickelt und machte über 226Ra (T½ = 1.60 · 103 a) für die Herstellung von Radon-Seeds für die Strahlentherapie die Tochter ) 222Rn (T½ = 3.825 d) verfügbar.The development of radionuclide generators over the last three decades has always been shaped by the growing spectrum of applications of radionuclides and labeled agents in medicine, particularly for nuclear medicine diagnostics and therapy. In addition, promising applications of generator-based therapeutic radionuclides in nuclear medicine, oncology and cardiology have been developed in recent years. This growing importance of radionuclide generators has stimulated a broad development of radionuclide production for radionuclide generators, for adequate radiochemical separations as well as for reliable engineering design of radionuclide generator systems. The first generator for life science applications was developed as early as 1920 and made available over 226 Ra (T ½ = 1.60 · 10 3 a) for the production of radon seeds for radiotherapy the daughter) 222 Rn (T ½ = 3,825 d) ,

Praktische Bedeutung haben Radionuldidgeneratoren jedoch erst 1951 in Form des 132Te (T½ = 3.26 d) / 132I (T½ = 1.39 h) Generators, und in viel bedeutenderem Maße 1957 durch die wegweisende Entwicklung des 99Mo/99mTc Generators (Stang et al. 1954, 1957) erreicht. Schnell wurde das Potenzial des Tochternuklids Technetium für medizinische Nutzungen deutlich und tatsächlich wurden erste klinische Anwendungen bereits 1961 beschrieben, die seitdem die radiopharmazeutische Chemie und Nuldearmedizin revolutioniert haben.Radionuldide generators, however, were of practical importance only in 1951 in the form of the 132 Te (T ½ = 3.26 d) / 132 I (T ½ = 1.39 h) generator, and to a much greater extent in 1957 by the groundbreaking development of the 99 Mo / 99m Tc generator (Stang et al., 1954, 1957). The potential of the daughter's technetium for medical uses soon became apparent, and in fact, the first clinical applications were described as early as 1961, which have since revolutionized radiopharmaceutical chemistry and nugary medicine.

Die breite Nutzung des 99Mo/99Tc-Generatorsystems in der Nuklearmedizin ist ein typisches Beispiel für die Bedeutung von Radionuldidgeneratoren für Klinika und Radiopharmakahersteller für eine breite Palette diagnostischer Radiopharmaka. Mehr als 3 5 000 diagnostische Studien mit 99mTc werden täglich allein in den USA, das sind mehr als 12 Millionen Anwendungen pro Jahr, geschätzter Weise durchgeführt.The widespread use of the 99 Mo / 99 Tc generator system in nuclear medicine is a typical example of the importance of radionuclide generators for clinicians and radiopharmaceutical manufacturers for a wide range of diagnostic radiopharmaceuticals. More than 3 5 000 diagnostic studies using 99m Tc are performed valued daily in the US alone, which is more than 12 million applications a year, estimated.

Radionuldidgenerator-Entwicklungen sind oft systematisiert worden. Detaillierte Berichte hierüber haben sich verschiedenen Aspekten gewidmet: Mutter-Tochter-Halbwertszeiten, Reaktor-produzierte Nuldide, Beschleuniger-produzierte Nuldide, Zyklotron-Produktion von Generatormutter- Nukliden, ultrakurzlebige Generator-produzierte Radionuklide, Generatorbasierte Positron-emittierende Radionuldide, klinische Anwendungen.Radionuclide generator developments have often been systematized. Detailed reports have covered several aspects: parent-daughter half-lives, reactor-produced Nuldides, accelerator-produced Nuldide, generator mother nuclide cyclotron production, ultra-short-lived generator-produced radionuclides, generator-based positron-emitting radionuclides, clinical applications.

Inzwischen wurden verschiedene andere Generatorsysteme entwickelt und einige davon haben signifikante praktische Bedeutung erlangt. Zurzeit bestimmen 68Ge (T½ = 270.8 d) / 68Ga (T½ = 68 min)-Generatorsysteme den Stand der Technik. Verschiedene Separationstypen, 68Ga-Ausbeuten und 68Ge-Gehalte sind nachfolgend angerührt.Meanwhile, various other generator systems have been developed and some of them have gained significant practical importance. At present, 68Ge (T ½ = 270.8 d) / 68 Ga (T ½ = 68 min) generator systems determine the state of the art. Various types of separation, 68 Ga yields and 68 Ge contents are mixed below.

Die anfänglichen Generatorsysteme trennten 68Ga als EDTA-Komplex von 68Ge ab, das auf Aluminia oder Zirkoniumoxid adsorbiert war, wobei die resultierende neutrale [68Ga]EDTA-Lösung zur Darstellung von Tumoren dient. Nach analogem Konzept wurde 68Ge auf Antimonoxid Sb2O5 zurückgehalten und 68Ga mit Oxalat-Lösungen eluiert. Anionaustausch-Harze und verdünnte HF-Lösungen als Eluens erlaubten hoch-effektive Separationen aufgrund der signifikanten Unterschiede der Verteilungskoeffizienten der Elemente. Der Durchbruch an 68Ge lag unter 10-4 Prozent für bis zu 600 Elutionen; die 68Ga-Ausbeute war größer 90%.The initial generator systems separated 68 Ga as an EDTA complex of 68 Ge adsorbed on alumina or zirconia, with the resultant neutral [ 68 Ga] EDTA solution serving to image tumors. According to an analogous concept, 68 Ge was retained on antimony oxide Sb 2 O 5 and 68 Ga was eluted with oxalate solutions. Anion exchange resins and dilute HF solutions as eluent allowed highly effective separations due to the significant Differences in the distribution coefficients of the elements. The breakthrough of 68 Ge was below 10 -4 percent for up to 600 elutions; the 68 Ga yield was greater than 90%.

In all diesen Generatorsystemen war eine weitere direkte Nutzung der Generatoreluate für 68Ga-Markierungen nicht möglich. Daher wurden 68Ge/68Ga-Generatoren entwickelt, die zu ionischen 68Ga3+-Eluaten führten. In diesen Fällen wurde 68Ge auf anorganischen Matrizen wie Alumina Al(OH)3 und Fe(OH)3, auf SnO2, ZrO2, TiO2 oder CeO2 fixiert. Zinn(IV)oxid SnO2 zeigte die besten Parameter hinsichtlich des 68Ge-Durchbruchs (10-6-10-5 % per Bolus) und der 68Ga3+-Elutionsausbeute (70-80 %) in 1 M HCl. Da Ge(IV) bekanntermaßen stabile Komplexe mit Phenol-Gruppen bildet, wurde auch die 68Ge(VI)-Adsorption auf 1,2,3-trihydroxybenzen(pyrogallol)-formaldehyd-Harzen ausgenutzt. Damit wurden für einen 370 MBq (10 mCi)-Generator 68Ga3+-Elutionsausbeuten von größer 50 % und 68Ge-Durchbrüche von niedriger als 0.01 ppm im Verlauf der ersten Nutzungen beschrieben.In all these generator systems, further direct use of the generator eluates for 68 Ga markers was not possible. Therefore, 68 Ge / 68 Ga generators were developed leading to ionic 68 Ga 3+ eluates. In these cases, 68 Ge was fixed on inorganic matrices such as alumina Al (OH) 3 and Fe (OH) 3 , on SnO 2 , ZrO 2 , TiO 2 or CeO 2 . Tin (IV) oxide SnO 2 showed the best parameters for 68 Ge breakthrough (10 -6 -10 -5 % by bolus) and 68 Ga 3+ elution yield (70-80%) in 1 M HCl. Since Ge (IV) is known to form stable complexes with phenolic groups, 68 Ge (VI) adsorption to 1,2,3-trihydroxybenzene (pyrogallol) -formaldehyde resins has also been exploited. Thus, for a 370 MBq (10 mCi) generator, 68 Ga 3+ elution yields of greater than 50% and 68 Ge breakthroughs of less than 0.01 ppm were described in the course of the first uses.

Der 68Ge-Gehalt definiert die radiochemische Reinheit der separierten 68Ga-Fraktion. Selbst eine initiale Kontamination von etwa 10-2 %, entsprechend beispielsweise 1 µCi 68Ge in einer 68Ga-Fraktion eines 10 mCi-68Ge/Ga-Generatorsystems, erscheint in Hinblick auf eine anschließende medizinische Anwendung bereits grenzwertig.The 68 Ge content defines the radiochemical purity of the separated 68 Ga fraction. Even an initial contamination of about 10 -2 %, corresponding to, for example, 1 μCi 68 Ge in a 68 Ga fraction of a 10 mCi 68 Ge / Ga generator system, already seems marginal with regard to a subsequent medical application.

68Ga-Eluatvolumen und chemische Reinheit sind weitere maßgebliche Größen für die Verwendung von 68Ga zur Synthese von Radiopharmaka. 68 Ga eluate volume and chemical purity are further important data for the use of 68 Ga for the synthesis of radiopharmaceuticals.

In allen derzeit kommerziell erhältlichen 68Ge/Ga-Generatorsystemen sind Elutionsvolumina von mehreren ml unterschiedlicher HCl-Lösungen erforderlich. Neben den beträchtlichen Volumina ist die chemische Reinheit dieser 68Ga-Eluate ein weiterer kritischer Aspekt von 68Ge/Ga-Generatorsystemen.All currently commercially available 68 Ge / Ga generator systems require elution volumes of several ml of different HCl solutions. In addition to the considerable volumes, the chemical purity of these 68 Ga eluates is another critical aspect of 68 Ge / Ga generator systems.

Höchste chemische Reinheiten, insbesondere ein minimaler Gehalt an diversen metallischen Kationen, sind erforderlich für effiziente Markierungsreaktionen mit hohen Ausbeuten. Dies gilt speziell in den Fällen, wo die Markierungschemie über bifunktionelle Chelatbildner konzipiert ist. Dabei können bereits geringe Gehalte an stabilem 68Zn als unmittelbares Zerfallsprodukt des 68Ga, an Titan, in den Fällen, wo die 68Ge/Ga-Generatorsystem-Ionenaustauschersäule aus TiO2 gebildet ist, und speziell auch an Eisen, hohe Markierungsausbeuten verhindern.Highest chemical purities, especially a minimal content of various metallic cations, are required for efficient labeling reactions with high yields. This is especially true in cases where the labeling chemistry is designed via bifunctional chelating agents is. Already small contents of stable 68 Zn as direct decay product of 68 Ga, on titanium, in cases where the 68 Ge / Ga generator system ion exchange column is formed of TiO 2 , and especially iron, can prevent high labeling yields.

Derzeit verfügbare kommerzielle 68Ge/Ga-Generatorysteme beschränken sich auf effektive 68Ga-Elutionen und beinhalten nicht die Modalitäten für Volumenminimierung und Reinigung der Generatoreluate sowie Markierungen potenzieller Radiopharmaka.Currently available commercial 68 Ge / Ga generator systems are limited to effective 68 Ga elutions and do not include the modalities for volume minimization and purification of the generator eluates as well as markers of potential radiopharmaceuticals.

Initiale Volumina der Eluate liegen bei wenigen ml bis hin zu 10 ml von HCl-Lösungen unterschiedlicher Konzentrationen. Sowohl Markierungsreaktionen als auch Befüllungen von Ballons erfordern in der Regel kleinere Volumina von etwa 0.5 ml bis 0.1 ml. Daher sind chemische bzw. technologische Strategien erforderlich, die unmittelbar anschließend an die initiale Generatorelution das Eluatvolumen verringern.Initial volumes of the eluates range from a few ml up to 10 ml of HCl solutions of different concentrations. Both labeling reactions and filling of balloons usually require smaller volumes of about 0.5 ml to 0.1 ml. Therefore, chemical or technological strategies are required, which reduce the eluate volume immediately after the initial generator elution.

Zum zweiten kann das Generatoreluat chemische und radiochemische Verunreinigungen enthalten, die effiziente radiochemische Markierungsausbeuten mit hoher Ausbeute verhindern. Diese chemischen Verunreinigungen können stammen aus:

  • dem Generatorsäulenmaterial (beispielsweise TiO2);
  • trivalentem Fe, das in Spuren allgegenwärtig ist und insbesondere mit diversen Elelctrolyten während der Generatorherstellung oder -benutzung eingeführt werden kann;
  • 68Zn als stabile metallische Verunreinigung, die systeminhärent kontinuierlich als Zerfallsprodukt des 68Ga auf der Generatorsäule generiert wird;
  • 68Ge als Mutter-Radionuklid, wobei selbst geringe Kontaminationen von weniger als 0,01 % des 68Ge im Eluat eine ähnliche Zahl von Atomen repräsentieren wie das 68Ga selbst,
  • und welche radiotoxisch und chemisch toxisch wirken können.
Second, the generator eluate may contain chemical and radiochemical contaminants that prevent efficient high yielding radiochemical labeling yields. These chemical contaminants can come from:
  • the generator column material (eg, TiO 2 );
  • trivalent Fe, which is ubiquitous in trace amounts and, in particular, can be introduced with various eletrolytics during generator production or use;
  • 68 Zn as a stable metallic contaminant that is systemically inherently generated as a decay product of the 68 Ga on the generator column;
  • 68 Ge as parent radionuclide, with even minor contaminations of less than 0.01% of the 68 Ge in the eluate representing a similar number of atoms as the 68 Ga itself,
  • and which can be radiotoxic and chemically toxic.

Neben dem Aspekt der chemischen Verunreinigung durch 68Ge im Generatoreluat ist diese Kontamination auch radiochemisch relevant besonders hinsichtlich der potenziellen medizinischen Anwendungen. Die post-Elutions-Prozedur sollte daher explizit eine chemische Strategie zur weiteren Separation des 68Ge beinhalten.In addition to the chemical impurity aspect of 68 Ge in the generator eluate, this contamination is also radiochemically relevant, particularly with regard to potential medical applications. The post-elution procedure should therefore explicitly include a chemical strategy for further separation of the 68 Ge.

Drittens spielt die 68Ga-Markierung potenzieller Radiophannaka eine zentrale Rolle, wofür die entsprechenden chemischen Reaktionsparameter optimiert werden müssen.Third, the 68 Ga-labeling of potential radiophannaka plays a central role, for which the corresponding chemical reaction parameters have to be optimized.

Das trivalente Gallium hydrolysiert bereits ab pH > 2 und besitzt eine ausgeprägte Tendenz zur Adsorption an Oberflächen von Glas und Polymeren bei pH > 3, insbesondere im Zustand der geringen 68Ga-Konzentrationen (no-carrier-added), wie sie sich aus dem Generatorsystem ergibt. Schließlich sind im Fall der Markierungschemie von targeting-Vektoren über bifunktionelle Chelatoren wie beispielsweise DOTA wegen der Komplexierungskinetik sowie wegen der Aqua-Chemie des Ga(III)-Kations spezielle Reaktionsbedingungen auszuwählen.The trivalent gallium already hydrolyzes above pH> 2 and has a pronounced tendency to adsorb on surfaces of glass and polymers at pH> 3, in particular in the state of low 68 Ga concentrations ( no-carrier-added ), as they result from the generator system results. Finally, in the case of the labeling chemistry of targeting vectors via bifunctional chelators such as DOTA, special reaction conditions have to be chosen because of the complexing kinetics as well as because of the aqua-chemistry of the Ga (III) cation.

Zusätzlich zu den mit dem Betrieb des Generatorsystems verbundenen metallischen Verunreinigungen, die mit dem 68Ga eluiert werden, können auch bei den in der Regel bei 68Ga-Markierungen verwendeten Puffersystemen dort enthaltene Verunreinigungen u.U. hohe Markierungsausbeuten behindern.In addition to the metallic impurities associated with the operation of the generator system, which are eluted with the 68 Ga, impurities contained therein may also interfere with high labeling yields, even in the buffer systems typically used in 68 Ga tags.

Auch Prozesse der Solvensverdampfungen zur Reduzierung der Volumina der Generatoreluate oder der finalen Lösungen der 68Ga-Radiopharmaka können zu Aktivitätsverlusten führen, sowohl durch die damit verbundene längere Prozessdauer als auch durch Adsorptionsverluste an den Gefäßwänden.Also, solvent evaporation processes to reduce the volumes of the generator eluates or the final solutions of the 68 Ga radiopharmaceuticals can lead to loss of activity, both by the associated longer process time and by adsorption losses on the vessel walls.

Es sind vereinzelt experimentelle Konzeptionen zur Minimierung des Eluatvolumens für 6gGe/Ga-Generatorsysteme entwickelt worden. Einige dieser Realisierungen (Meyer et al. 2004, Velikyan et al. 2004) minimieren das initiale Eluatvolumen durch Mischung mit einigen ml konzentrierter HCl, wobei eine insgesamt 6 M HCl-Lösung eines erhöhten Volumens von ca. 15 ml resultiert. Dieses große Volumen wird anschließend auf eine Anionaustauscher-Säule transferiert, auf der 68Ga adsorbiert wird. Danach wird 68Ga mit weniger als 1 ml Wasser eluiert. Zwar realisiert diese zeitaufwendige Prozedur eine Verringerung des Volumens der 68Ga-Fraktion, jedoch gibt es keine offensichtliche parallele Strategie zur Separation chemischer Verunreinigungen aus dem initialen Generatoreluat.Sporadic experimental designs have been developed to minimize the eluate volume for 6g Ge / Ga generator systems. Some of these realizations (Meyer et al., 2004, Velikyan et al., 2004) minimize the initial eluate volume by mixing with a few ml of concentrated HCl, resulting in a total 6M HCl solution of increased volume of about 15 ml. This large volume is then transferred to an anion exchange column on which 68 Ga is adsorbed. Thereafter, 68 Ga is eluted with less than 1 ml of water. While this time-consuming procedure does reduce the volume of the 68 Ga fraction, there is no obvious parallel strategy for separating chemical contaminants from the initial generator eluate.

Dieser Fraktion wird anschließend 10-20 nmol DOTATOC in einem kleinen Volumen einer wässrigen 1 M HEPES- oder anderen Pufferlösung zugegeben. Auch hier können potenzielle Verunreinigungen durch das konzentrierte Puffersystem nicht ausgeschlossen werden.This fraction is then added to 10-20 nmol of DOTATOC in a small volume of 1M HEPES or other aqueous buffer solution. Again, potential contamination by the concentrated buffer system can not be excluded.

Diese Faktoren können die Ursache dafür sein, dass unter Standard-Erhitzungsprotokollen Markierungsausbeuten von 68Ga-DOTATOC und analoger Verbindungen von lediglich 58±20 % erreicht werden (Meyer et al. 2004). Höhere Ausbeuten werden durch Mikrowellen-unterstützte Erhitzung beschrieben (Velikyan et al. 2004).These factors may be the reason why under standard heating protocols, labeling yields of 68 Ga-DOTATOC and analogues of only 58 ± 20% are achieved (Meyer et al., 2004). Higher yields are described by microwave assisted heating (Velikyan et al., 2004).

Ein weiteres Verfahren, das ein organisches Polymer als Adsorbens verwendt, ist in Nakayama et al., Applied Radiation and Isotopes 58 (2003) 9-14 offenbart. Ein Beispiel einer Vorrichtung zum Isolieren eines 68Ga-Radionuklids aus einem 68Ge/Ga-Generatoreluat ist in WO 99/49935 offenbart.Another method using an organic polymer as the adsorbent is in Nakayama et al., Applied Radiation and Isotopes 58 (2003) 9-14 disclosed. An example of an apparatus for isolating a 68 Ga radionuclide from a 68 Ge / Ga generator eluate is in US Pat WO 99/49935 disclosed.

Keines der derzeit verfügbaren kommerziellen Generatorsysteme enthält in der Summe die entsprechenden chemischen oder technologischen Strategien, um die erwähnten Probleme insgesamt zu lösen.None of the currently available commercial generator systems, on the whole, contain the appropriate chemical or technological strategies to solve the above problems altogether.

Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zu schaffen, die hochreines 68Ga-Eluat, das weitgehend frei von chemischen und radiochemischen Verunreinigungen ist, mit hoher Ausbeute und sehr geringem Eluatvolumen zur Verfügung zu stellen. Im Rahmen dieser Aufgabe sollen auch die chemischen Reaktionsparameter wie der pH-Wert des 68Ga für die Markierung von Markierungsvorläufern optimiert werden. Des Weiteren soll ein Verfahren zur Markierung potenzieller Radiopharmaka für die Positronen-Emission-Tomographie bereitgestellt werden.The object of the invention is to provide a method and an apparatus to provide the high purity 68 Ga eluate, which is largely free of chemical and radiochemical impurities, with high yield and very low Eluatvolumen available. As part of this task, the chemical reaction parameters such as the pH of the 68 Ga for the labeling of marker precursors to be optimized. Furthermore, a method for labeling potential radiopharmaceuticals for positron emission tomography is to be provided.

Dabei sollen alle Prozessschritte den Anforderungen einer einfachen und routinemäßigen Nutzung in einem medizinischen Umfeld genügen.All process steps should meet the requirements of simple and routine use in a medical environment.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, bei dem initiales 68Ge/Ga-Generatoreluat direkt einem Kationenaustauscher zugeführt und 68Ga auf dem Kationenaustauscher quantitativ adsorbiert, gleichzeitig chemisch und radiochemisch gereinigt und das 68Ga-Radionuklid mit einem Marktierungsvorläufer aus einem Ligand oder einem mit einem Liganden kovalent verknüpften Peptid oder Protein zu einem Radiopharmakon kombiniert wird.This object is achieved in accordance with the invention by a process in which the initial 68 Ge / Ga generator eluate is fed directly to a cation exchanger and 68 Ga is quantitatively adsorbed on the cation exchanger, simultaneously chemically and radiochemically purified and the 68 Ga radionuclide with a marketed precursor from a ligand or a a peptide or protein covalently linked to a ligand is combined to form a radiopharmaceutical.

In Weiterbildung des Verfahrens wird der Kationenaustauscher aus der Gruppe der stark sauren Kationenaustauscher Polystyrol/Divinylbenzen (DVB)-Harze mit einem DVB-Anteil von 2 bis 20 %, bezogen auf die vernetzten Polymere der Harze, ausgewählt und wird die Matrix des Kationenaustauschers mit 68Ga beladen. Die sulfonierten Polystyrol/Divinylbenzen (DVB)-Harze besitzen eine gelartige Struktur und weisen permanent negativ geladene Sulfonsäure-Gruppen auf. Jede dieser aktiven Gruppen hat eine festgelegte elektrische Ladung und ist im Gleichgewicht mit einer Anzahl von äquivalenten entgegengesetzt geladenen Ionen, die frei sind mit anderen Ionen der gleichen Ladung sich auszutauschen.In a further development of the process, the cation exchanger from the group of strongly acidic cation exchanger polystyrene / divinylbenzene (DVB) resins is selected with a DVB content of 2 to 20%, based on the crosslinked polymers of the resins, and becomes the matrix of the cation exchanger with 68 Ga loaded. The sulfonated polystyrene / divinylbenzene (DVB) resins have a gel-like structure and permanently have negatively charged sulfonic acid groups. Each of these active groups has a fixed electrical charge and is in equilibrium with a number of equivalent oppositely charged ions which are free to exchange with other ions of the same charge.

Bereits während der Absorption von 68Ga auf dem Kationenaustauscher erfolgt eine chemische Reinigung dadurch, dass das initial eluierte 68Ge nicht adsorbiert wird und damit die radiochemische 68Ge-Kontamination bis auf einen Wert kleiner 10-8 Prozent verringert wird.Already during the absorption of 68 Ga on the cation exchanger, a chemical purification takes place in that the initially eluted 68 Ge is not adsorbed and thus the radiochemical 68 Ge contamination is reduced to a value less than 10 -8 percent.

In Ausführung des Verfahrens wird weiterhin die auf dem Kationenaustauscher adsorbierte 68Ga-Fraktion mit sauren Lösungen des Typs HCl/Aceton oder HCl/Ethanol oder analogen Systemen so gereinigt, dass chemische Verunreinigungen wie Fe(III) und Zn(II) von dem Kationenaustauscher eluiert werden. Während der Eluierung verbleibt 68Ga vollständig auf dem Kationenaustauscher, und es erfolgt eine weitgehend Abtrennung von initial eluiertem Ti(IV).In carrying out the process, further, the 68 Ga fraction adsorbed on the cation exchanger is cleaned with acid solutions of the HCl / acetone or HCl / ethanol or analog systems type so that chemical impurities such as Fe (III) and Zn (II) elute from the cation exchanger become. During the elution 68 Ga remains completely on the cation exchanger, and there is a substantial separation of initially eluted Ti (IV).

Das durch die Eluierung erhaltene chemisch und radiochemisch reine 68Ga-Radionuklid kann unmittelbar zur Synthese von Radiopharmaka eingesetzt werden.The chemically and radiochemically pure 68 Ga radionuclide obtained by the elution can be used directly for the synthesis of radiopharmaceuticals.

Die weitere Ausgestaltung dieses Verfahrens ergibt sich aus den Merkmalen der Patentansprüche 6 bis 16.The further embodiment of this method results from the features of the claims 6 to 16.

Die Vorrichtung zur Isolierung eines chemisch und radiochemisch gereinigten 68Ga-Radionuklids aus einem 68Ge/Ga-Generatoreluat und zum Markieren eines Markierungsvorläufers mit dem 68Ga-Radionuklid enthält in Ausgestaltung der Erfindung eine über eine Leitung mit einem 68Ge/Ga Generator verbundene Fördereinrichtung, eine Anzahl von Fordereinrichtungen zur Reinigung der auf einem Kationenaustauscher adsorbierten 68Ga-Fraktion, eine Synthese-Einrichtung, in die eine Leitung von dem Ausgang des Kationenaustauschers führt, und in der das 68Ga-Radionuklid und der Markierungsvorläufer zu einem Radiopharmakon umgesetzt werden, sowie zur Reinigung des Radiopharmakons eine Kartusche, an deren Eingang Fördereinrichtungen über Leitungen angeschlossen sind und deren Ausgang über ein 3-Wege-Ventil mit einer Leitung verbunden ist, die aus der Synthese-Einrichtung herausführt, ein Vorratsgefäß und ein Produktgefäß für die Aufnahme des Radiopharmakons.The apparatus for isolating a chemically and radiochemically purified 68 Ga radionuclide from a 68 Ge / Ga generator eluate and for labeling a label precursor with the 68 Ga radionuclide, in an embodiment of the invention, includes a conveyor connected by a line to a 68 Ge / Ga generator a number of conveyor means for purifying the 68 Ga fraction adsorbed on a cation exchanger, a synthesis device, into which a line leads from the exit of the cation exchanger, and in which the 68 Ga radionuclide and the labeling precursor are converted into a radiopharmaceutical, and for cleaning the radiopharmaceutical a cartridge, at the input conveyors are connected via lines and their output via a 3rd Way valve is connected to a line leading out of the synthesis device, a storage vessel and a product container for receiving the radiopharmaceutical.

An Hand der Figuren 1 und 2 wird die Vorrichtung und ihre Arbeitsweise zum Isolieren einer 68Ga-Fraktion aus einem 68Ge/Ga-Generator, deren Reinigung und Volumenreduzieung zur Gewinnung des 68Ga-Radionuklids sowie die Markierung von Markierungsvorläufern mit dem gereinigten 68Ga-Radionuklid beschrieben. Es zeigen:

  • Fig. 1 schematisch die erfindungsgemäße Vorrichtung, und
  • Fig. 2 das Ablaufschema der Arbeitsweise der Vorrichtung.
Based on FIGS. 1 and 2 describes the device and its operation for isolating a 68 Ga fraction from a 68 Ge / Ga generator, its purification and volume reduction to obtain the 68 Ga radionuclide, and marking marker precursors with the purified 68 Ga radionuclide. Show it:
  • Fig. 1 schematically the device according to the invention, and
  • Fig. 2 the flow chart of the operation of the device.

Entsprechend der relativ kurzen Halbwertszeit von 68 min des 68Ga muss die gesamte Prozedur der Generatorelution, Reinigung, Volumenreduzierung, sowie Markierung optimiert werden: Alle 10 min zerfallen mehr als 10 % der 68Ga-Radioaktivität. Viele der derzeit etablierten Generatorsysteme mit anschließender Markierungsreaktion benötigen bis zu einer Stunde bis zum Abschluss der Gesamtprozedur. Alternative Verfahren mit beispielsweise der Hälfte dieser Gesamtzeit bedeuten bereits eine signifikante Erhöhung der finalen Radioaktivität des 68Ga-markierten Radiopharmakons. Dies ist insbesondere deshalb relevant, weil dies auch eine entsprechende Minimierung der initial benötigten 68Ge-Aktivität des Generatorsystems zur Folge haben kann, was sich als Kostenfaktor auswirkt.According to the relatively short half-life of 68 min of the 68 Ga, the entire procedure of generator elution, purification, volume reduction, and labeling must be optimized: every 10 min, more than 10% of the 68 Ga radioactivity decays. Many of the currently established generator systems with subsequent labeling reaction take up to one hour to complete the entire procedure. Alternative methods with, for example, half of this total time already signify a significant increase in the final radioactivity of the 68 Ga-labeled radiopharmaceutical. This is particularly relevant because it can also result in a corresponding minimization of the initially required 68 Ge activity of the generator system, which has the effect of a cost factor.

Die Vorrichtung nach Fig. 1 unfasst einen 68Ge/Ga-Generator 1, dem eine Fördereinrichtung 2, beispielsweise in Gestalt eines Kolbens, einer Spritze oder einer peristaltischen Pumpe (Schlauchradpumpe), über eine Leitung vorgeschaltet ist. Die Fördereinrichtung 2 ist in nicht gezeigter Weise mit einem flüssigkeitsgefüllten Speicher bzw. Vorratsbehälter verbunden, wenn es sich um eine Schlauchradpumpe handelt. Im Fall eines Kolbens oder einer Spritze sind diese direkt mit einer Flüssigkeit gefüllt. Der Ausgang des Generators 1 ist über ein erstes 3-Wege-Ventil 12 mit dem Kationenaustauscher 14 eingangsseitig verbunden. Des Weiteren sind Fördereinrichtungen 3, 4, 5, 6, 7 über Leitungen an das 3-Wege-Ventil 12 angeschlossen. Für diese Fördereinrichtungen, ebenso wie für nachfolgend beschriebene Fördereinrichtungen, gelten die zur Fördereinrichtung 2 gemachten Aussagen gleichfalls. An Stelle eines 3-Wege-Ventils kann auch ein Mehrwegschieber zum Einsatz gelangen. Ebenso ist es möglich in die einzelnen Leitungen Regelventile, Auf-Zu-Ventile oder Hähne einzubauen, die die einzelne Leitung bei Bedarf unterschiedlich weit öffnen bzw. voll öffnen oder komplett absperren.The device after Fig. 1 includes a 68 Ge / Ga generator 1, which is preceded by a conveyor 2, for example in the form of a piston, a syringe or a peristaltic pump (peristaltic pump), via a line. The conveyor 2 is connected in a manner not shown with a liquid-filled storage or reservoir, if it is a Schlauchradpumpe. In the case of a piston or a syringe these are filled directly with a liquid. The output of the generator 1 is connected via a first 3-way valve 12 to the cation exchanger 14 on the input side. Furthermore, conveyors 3, 4, 5, 6, 7 are connected via lines to the 3-way valve 12. For these conveyors, as well as for conveyors described below, the statements made to the conveyor 2 also apply. Instead of a 3-way valve, a returnable valve can also be used. It is also possible to install in the individual lines control valves, open-close valves or taps that open the single line differently wide if necessary or fully open or completely shut off.

Es werden bevorzugt, in nicht gezeigter Weise, mehrere 68Ge/Ga-Radionuklidgeneratoren gleichzeitig oder nacheinander eluiert und die gemeinsamen initialen Eluate auf den Kationenaustauscher 14 überführt. Die 68Ge/Ga-Generatoren können dabei auch dann noch betrieben werden bzw. benutzt werden, wenn deren initiales 68Ga-Eluat bereits unzulässig viel 68Ge enthält. Dies verlängert die Nutzungsdauer eines 68Ge/Ga-Generators, vor allem bei Generatoren mit 50 oder mehr mCi 68Ge, signifikant.It is preferred, in a manner not shown, several 68 Ge / Ga radionuclide generators simultaneously or sequentially eluted and the common initial eluates transferred to the cation exchanger 14. The 68 Ge / Ga generators can still be operated or used even if their initial 68 Ga eluate already contains an impermissibly high amount of 68 Ge. This significantly extends the useful life of a 68 Ge / Ga generator, especially for generators with 50 or more mCi 68 Ge.

Der Kationenaustauscher 14 ist ausgangsseitig an ein zweites 3-Weg-Ventil 15 angeschlossen. Eine Leitung 25 führt von dem 3-Weg-Ventil 15 zu einem Abfallgefäß 19, eine weitere Leitung 23 führt von dem 3-Wege-Ventil 15 in ein Markierungsgefäß 21, das in einer Synthese-Einrichtung 20 der Vorrichtung angeordnet ist. Die beheizbare Synthese-Einrichtung 20 ist mit einer Heizung 22 ausgerüstet und sitzt auf einem senkrecht verfahrbaren Tisch 27 auf. Durch Absenken des Tisches 27 wird der Zugang zu dem Markierungsgefäß 21 erleichtert. Die bisher beschriebenen Komponenten der Vorrichtung dienen der Isolierung des 68Ga-Eluats, seiner Volumemeduzierung und Reinigung. An Stelle eines vertikal verfahrbaren Tisches kann eine lagefeste Platte die Synthese-Einrichtung 20 aufnehmen, ebenso ein seitlich auf Schienen oder Rollen verfahrbarer Schlitten.The cation exchanger 14 is connected on the output side to a second 3-way valve 15. A line 25 leads from the 3-way valve 15 to a waste container 19, a further line 23 leads from the 3-way valve 15 in a marking vessel 21, which is arranged in a synthesis device 20 of the device. The heatable synthesis device 20 is equipped with a heater 22 and is seated on a vertically movable table 27. By lowering the table 27 access to the marking vessel 21 is facilitated. The components of the device described so far are used to isolate the 68 Ga eluate, its volume reduction and purification. Instead of a vertically movable table, a stable plate can accommodate the synthesis device 20, as well as a laterally movable on rails or rollers slide.

Eine Leitung 24 führt aus dem Markierungsgefäß 21 zu einem dritten 3-Wege-Ventil 13. Das 3-Wege-Ventil 13 ist eingangsseitig mit einer Kartusche 11 verbunden. Von dem 3-Wege-Ventil 13 führt des Weiteren eine Leitung 25 zu einem Vorratsgefäß 18 für das gereinigte Markierungsagens. Eine weitere Leitung 26 verbindet das Vorratsgefäß 18 mit dem Produktgefäß 17. In dieser Leitung 26 ist vor dem Eintritt in das Produktgefäß 17 ein Filter 16 angeordnet. In dem Produktgefäß 17 wird das Radiopharmakon zur Verabreichung bereitgestellt und kann daraus jederzeit entnommen werden.A line 24 leads from the marking vessel 21 to a third 3-way valve 13. The 3-way valve 13 is connected on the input side to a cartridge 11. From the 3-way valve 13 further leads a line 25 to a storage vessel 18 for the purified Markierungsagens. Another line 26 connects the storage vessel 18 with the product vessel 17. In this line 26, a filter 16 is arranged before entering the product vessel 17. In the product vessel 17, the radiopharmaceutical is provided for administration and may be withdrawn therefrom at any time.

Die Einheit aus Filter 16, Produktgefäß 17, Leitung 26 dient der Sterilfiltration, bei der es sich um einen selbständigen Prozessschritt handelt, der isoliert ausgeführt werden kann. Bei Bedarf kann daher die Einheit 16, 17 aus der Gesamtvorrichtung entkoppelt und selbständig betrieben werden.The unit of filter 16, product vessel 17, line 26 is used for sterile filtration, which is an independent process step that can be performed in isolation. If necessary, therefore, the unit 16, 17 decoupled from the overall device and operated independently.

Die Arbeitsweise der Vorrichtung wird an Hand des Ablaufschemas gemäß Figur 2 beschrieben.The operation of the device is based on the flowchart according to FIG. 2 described.

Von der Fördereinrichtung 2 wird in nicht gezeigter Weise Druck auf das Elutionsmittel zur initialen 68Ge/Ga-Generatorelution aus dem 68Ge/Ga-Generator 1 ausgeübt. Das Eluat gelangt über das erste 3-Wege-Ventil 12 auf den Kationenaustauscher 14 und weiter über die Komponenten 15 und 25 in das Gefäß 19.From the conveyor 2, pressure is applied to the eluent for the initial 68 Ge / Ga generator elution from the 68 Ge / Ga generator 1 in a manner not shown. The eluate passes via the first 3-way valve 12 to the cation exchanger 14 and further via the components 15 and 25 into the vessel 19th

Der Kationenaustauscher ist ein stark saurer Kationenaustauscher aus der Gruppe Polystyrol/Divinylbenzen (DVB)-Harze mit einem DVB-Anteil von 2 bis 20 %, bezogen auf die vernetzten Polymere der Harze. Die sulfonierte Polystyrol/Divinylbenzen (DVB)-Harze besitzen eine gelartige Struktur und weisen permanent negativ geladene Sulfonsäure-Gruppen auf. Jede dieser aktiven Gruppen hat eine festgelegte elektrische Ladung und ist im Gleichgewicht mit einer Anzahl von äquivalenten entgegengesetzt geladenen Ionen, die frei sind mit anderen Ionen der gleichen Ladung sich auszutauschen.The cation exchanger is a strongly acidic cation exchanger from the group polystyrene / divinylbenzene (DVB) resins with a DVB content of 2 to 20%, based on the crosslinked polymers of the resins. The sulfonated polystyrene / divinylbenzene (DVB) resins have a gel-like structure and permanently have negatively charged sulfonic acid groups. Each of these active groups has a fixed electrical charge and is in equilibrium with a number of equivalent oppositely charged ions which are free to exchange with other ions of the same charge.

Auf dem Kationenaustauscher 14 wird zunächst 68Ga3+ adsorbiert, das initial u. a. mit Fe(III), Zn(II), Ti(IV) und 68Ge kontaminiert ist. Es folgt dabei gleichzeitig die Elution des gesamten Volumens des initialen Generatoreluats. Dabei wird gleichzeitig der darin enthaltene Anteil an 68Ge entfernt.On the cation exchanger 14, first 68 Ga 3+ is adsorbed, which is initially contaminated inter alia with Fe (III), Zn (II), Ti (IV) and 68 Ge. At the same time, the elution of the entire volume of the initial generator eluate follows. At the same time, the proportion of 68 Ge contained therein is removed.

Es folgt die Elution der Anteile an Fe(III) und Zn(II), die gemeinsam mit 68Ga auf dem Kationenaustauscher adsorbiert wurden. Hierzu wird durch die Fördereinrichtungen 3 eine saure Lösung aus HCl/Aceton oder HCl/Ethanol oder analogen Systemen über das erste 3-Wege-Ventil 12 in den Kationenaustauscher 14 gedrückt und Fe(III) und Zn(II) ausgespült und über das geöffnete zweite 3-Wege-Ventil 15 in das Abfallgefäß 19 geleitet.This is followed by the elution of the fractions of Fe (III) and Zn (II), which were adsorbed on the cation exchanger together with 68 Ga. For this purpose, an acidic solution of HCl / acetone or HCl / ethanol or analogous systems is forced through the first 3-way valve 12 into the cation exchanger 14 by the delivery devices 3 and Fe (III) and Zn (II) are flushed out and over the opened second 3-way valve 15 passed into the waste container 19.

Danach wird durch die Fördereinrichtung 4 Luft durch die Leitungen gedrückt, um diese zu spülen und eventuelle Rückstände an Fe(III) und Zn(II) zu entfernen.Thereafter air is forced through the conduits by the conveyor 4 to purge them and remove any residue of Fe (III) and Zn (II).

Im nachfolgenden Schritt wird durch die Fördereinrichtung 5, die mit einer zweiten sauren Lösung aus HCl/Aceton oder HCl/Ethanol oder analogen Systemen gefüllt ist, diese Lösung durch das 3-Wege-Ventil 12 dem Kationenaustauscher 14 zugeführt und durch diese saure Lösung 68Ga von dem Kationenaustauscher eluiert und über das 3-Wege-Ventil 15 sowie Leitung 23 in das Markierungsgefäß 21 eingeleitet.In the subsequent step, this solution is fed through the 3-way valve 12 to the cation exchanger 14 through the conveyor 5, which is filled with a second acidic solution of HCl / acetone or HCl / ethanol or analog systems, and through this acidic solution 68 Ga eluted from the cation exchanger and introduced via the 3-way valve 15 and line 23 into the marking vessel 21.

Danach wird wieder über die Fördereinrichtung 4 Luft durch die Leitungen gedrückt, um diese zu spülen und eventuelle Rückstände an 68Ga zu erfassen und in das Markierungsgefäß 21 einzuleiten.Thereafter, air is again forced through the lines via the conveying device 4 in order to rinse them and to detect possible residues of 68 Ga and to introduce them into the marking vessel 21.

Die beschriebenen Prozesse bewirken, das initial von Generator eluiertes Ti(IV) nicht gemeinsam mit der 68Ga-Fraktion in das Markierungsgefäß gelangen kann, womit eine weitere chemische Reinigung gegeben ist.The processes described cause the initially eluted from generator Ti (IV) can not get together with the 68 Ga fraction in the labeling vessel, which is given a further dry cleaning.

Die noch vorhandenen Rückstände an Ti(IV) auf dem Kationenaustauscher 14 werden zu gegebener Zeit zuerst mit HCl aus der Fördereinrichtungen 6 ausgespült und in das Abfallgefäß 19 abgefühlt; anschließend der Kationenaustauscher analog mit Wasser aus der Fördereinrichtungen 7 gewaschen, wodurch der Kationenaustauscher schließlich für eine neue Prozedur bereit steht.The remaining residues of Ti (IV) on the cation exchanger 14 are at first rinsed with HCl from the conveyors 6 at the appropriate time and sensed in the waste container 19; Subsequently, the cation exchanger is washed analogously with water from the conveyors 7, whereby the cation exchanger is finally ready for a new procedure.

Das Markierungsgefäß kann entweder leer sein und dann zur Befüllung von Ballons mit dem jetzt minimierten 68Ga-Volumen oder zur Synthese von Radiopharmaka genutzt werden. Der letzte Fall wird im Weiteren beschrieben:

  • In dem Markierungsgefäß 21 erfolgt die Markierung des Markierungsvorläufers mit dem gereinigten 68Ga-Radionuklid zu dem Radiopharmakon. Dieser Vorläufer besteht aus einem Liganden oder einem mit einem Liganden kovalent verknüpften Peptid oder Protein oder einer anderen Komponente, wobei das 68Ga-Radionuklid von dem Liganden chemisch gebunden wird. Der Ligand wird u.a. aus der Gruppe linearer oder zyklischer Plyaminopolycarbonsäuren (DTPA, EDTA oder DOTA u.a) oder anderer, auch Phosphor und Schwefel als Donoratome enthaltenden Ligandenstrukturen ausgewählt, das Peptid aus der Gruppe Octreotid, Bombesin, Gastrin und v.a.m., wobei das jeweils gewählte Peptid eine möglichst hohe Affinität zu Tumorzellen bzw. Tumorzellmembran-ständigen Rezeptoren wie auch zu Rezeptoren an anderen Organen haben. Analog können modifizierte Proteine in Form von Antikörpern zur Bindung an Tumorantigene verwendet werden.
The labeling vessel can either be empty and then used to fill balloons with the now minimized 68 Ga volume or for the synthesis of radiopharmaceuticals. The last case is described below:
  • In the labeling vessel 21, the marker precursor is labeled with the purified 68 Ga radionuclide to the radiopharmaceutical. This precursor consists of a ligand or ligand covalently linked to a peptide or protein or other component, wherein the 68 Ga radionuclide is chemically bound by the ligand. The ligand is selected, inter alia, from the group of linear or cyclic plyaminopolycarboxylic acids (DTPA, EDTA or DOTA, etc.) or other, also phosphorus and sulfur donor atoms containing ligand structures, the peptide from the group octreotide, bombesin, gastrin and vam, wherein the respective selected peptide have the highest possible affinity for tumor cells or tumor cell membrane receptors as well as receptors on other organs. Analogously, modified proteins in the form of antibodies can be used for binding to tumor antigens.

Für die Reaktion des 68Ga-Radionuklids mit dem Liganden des Markierungsvorläufers ist eine gewisse kinetische Energie erforderlich, die durch Aufheizen des Markierungsvorläufervolumens in der Synthese-Einrichtung 20 auf eine geeignete Temperatur erzeugt wird. Für DOTATOC beispielsweise ist die optimale Temperatur gleich/höher 95 °C.For the reaction of the 68 Ga radionuclide with the ligand of the label precursor, some kinetic energy is required, which is generated by heating the label precursor volume in the synthesizer 20 to an appropriate temperature. For DOTATOC, for example, the optimum temperature is equal / higher than 95 ° C.

Der pH-Wert des Markierungsvorläufers in dem Markierungsgefäß 21 liegt im Bereich von 2 bis 5. Für das Radiopharmakon 68Ga-DOTATOC beträgt ein bevorzugter pH-Wert beispielsweise 2,3. Der pH-Wert wird durch das Volumen an Wasser und Markierungsvorläufer, bevorzugt ohne eine Pufferlösung, und der zugeführten HCl/Aceton- oder HCl/Ethanol-Lösung oder analoger Systeme eingestellt. Es ist aber auch möglich, den pH-Wert mit Hilfe einer Pufferlösung oder z.B. HEPES einzustellen, wodurch sich ein veränderter optimaler pH-Wert ergeben kann.The pH of the label precursor in the labeling vessel 21 is in the range of 2 to 5. For the radiopharmaceutical 68 Ga-DOTATOC, a preferred pH is, for example, 2.3. The pH is adjusted by the volume of water and labeling precursor, preferably without a buffer solution, and the supplied HCl / acetone or HCl / ethanol solution or analogous systems. However, it is also possible to adjust the pH with the aid of a buffer solution or, for example, HEPES, which may result in a changed optimal pH.

Die Menge des Markierungsvorläufers aus einem Ligand oder einem mit einem Liganden kovalent verknüpften Peptid oder Protein, beispielsweise DOTATOC, im Markierungsgefäß 21 beträgt etwa 1 bis 100 nmol, bevorzugt 7 bis 14 nmol, hinzu kommt noch ein entsprechendes Volumen an Wasser bzw. Puffer oder HEPES oder analoger Systeme, um den pH-Wert einzustellen.The amount of the label precursor of a ligand or ligand covalently linked to a peptide or protein, such as DOTATOC, in the labeling vessel 21 is about 1 to 100 nmol, preferably 7 to 14 nmol, plus an appropriate volume of water or buffer or HEPES or analogous systems to adjust the pH.

Nach erfolgter Markierung des Markierungsvorläufers mit der gereinigten 68Ga-Fraktion zu dem Radiopharmakon wird die keine Flüssigkeit enthaltende Fördereinrichtung 8 bei geöffneten 3-Wege-Ventil 13 so betrieben, dass über die Leitung 24 aus dem Markierungsgefäß 21 das Radiopharmakon auf die Kartusche 11 aufgebracht und fixiert wird. Danach schließt das 3-Wege-Ventil 13 die Leitung 24 und öffnet die Leitung 25, die in das Vorratsgefäß 18 - oder optional in ein weiteres, nicht gezeigtes Vorratsgefäß - führt. Durch Betätigen der Fördereinrichtung 9 wird die Kartusche 11 mit reinem Wasser oder analogen Lösungsmitteln gewaschen, die freies 68Ga- oder andere, nichtmarkierte 68Ga-Spezies eluieren, und in nicht gezeigter Weise abführen, beispielsweise in das nun nicht mehr benötigte Markierungsgefaß 21 zurück.After marking the marker precursor with the purified 68 Ga fraction to the radiopharmaceutical, the liquid-containing conveyor 8 is operated with open 3-way valve 13 so that via the line 24 from the marker vessel 21, the radiopharmaceutical is applied to the cartridge 11 and is fixed. Thereafter, the 3-way valve 13 closes the line 24 and opens the line 25, which leads into the storage vessel 18 - or optionally in another, not shown storage vessel. By operating the conveyor 9, the cartridge 11 is washed with pure water or analogous solvents which elute free 68 Ga or other unlabeled 68 Ga species, and removed in a manner not shown, for example, back into the now no longer required 21 Markierungsgefaß.

Danach erfolgt durch Betätigen der Fördereinrichtung 10, die weniger als 0,5 ml Ethanol oder analoge Lösungsmittel enthält, die Elution des Radiopharmakons, beispielsweise von 68Ga-DOTATOC, von der Kartusche 11 und dessen Einleiten in das Vorratsgefäß 18, das eine isotonische Kochsalzlösung enthält. Alternativ kann die angegebene Fraktion auch in ein leeres Vorratsgefäß 18 eluiert werden, was prinzipiell die Entfernung des Ethanol oder analoger Lösungsmittel erlaubt.Thereafter, by operating the conveyor 10 containing less than 0.5 ml of ethanol or analogous solvents, the elution of the radiopharmaceutical, for example 68 Ga-DOTATOC, from the cartridge 11 and its introduction into the storage vessel 18 containing an isotonic saline solution , Alternatively, the specified fraction can also be eluted into an empty storage vessel 18, which in principle allows the removal of the ethanol or analogous solvent.

Danach schließt das 3-Wege-Ventil 13 die Leitung 25 und mittels einer nicht gezeigten Vorrichtung wird das Radiopharmakon durch die Leitung 26 aus dem Vorratsgefäß 18 gezogen und über ein Filter 16 in das Produktgefäß 17 eingeleitet. Durch das Filter 16 erfolgt eine sterile Filterung, so dass danach das Radiopharmakon für die Anwendung bereit steht.Thereafter, the 3-way valve 13 closes the line 25 and by means of a device, not shown, the radiopharmaceutical is drawn through the conduit 26 from the storage vessel 18 and introduced via a filter 16 into the product vessel 17. Through the filter 16 is a sterile filtering, so that thereafter the radiopharmaceutical is ready for use.

Die Bindung des 68Ga am Markierungsvorläufer beträgt mehr als 75 %, bezogen auf die zerfallskorrigierte Aktivität des initialen 68Ge/Ga-Generatoreluats. Beispielsweise beträgt die Reaktivität des Markierungsvorläufers bei 10 mCi des 68Ge/Ga-Generatoreluats nach einer, fünf und zehn Minuten bis zu 80 %, 90 % und mehr als 95 %.The binding of the 68 Ga to the labeling precursor is more than 75%, based on the decay-corrected activity of the initial 68 Ge / Ga generator eluate. For example, the reactivity of the label precursor at 10 mCi of the 68 Ge / Ga generator elute is up to 80%, 90% and more than 95% after one, five and ten minutes.

Die Dauer des Verfahrens vom Aufbringen des initialen Generatoreluats bis zur Bereitstellung des Radiopharmakons beträgt etwa 20 min.The duration of the procedure from application of the initial generator eluate to the provision of the radiopharmaceutical is about 20 minutes.

Die Fördereinrichtungen 2 bis 10 und die mit ihnen verbundenen Leitungen können mit Unterdruck beaufschlagt werden, um die Lösungen durch die Leitungen zu transportieren.The conveyors 2 to 10 and the lines connected to them can be subjected to negative pressure in order to transport the solutions through the lines.

Selbstverständlich ist der gesamte Ablauf der Vorrichtung vollautomatisiert und wird beispielsweise über eine Computerprogramm gesteuert.Of course, the entire process of the device is fully automated and is controlled for example via a computer program.

Speziell für die Bildgebung neuroendokriner Tumore mit Markierungsreagenzien wie [68Ga]DOTA-DPhe1-Tyr3-Octreotid ([68Ga]DOTATOC) und PET bzw. analogen Verbindungen mit veränderten Chelatoren oder veränderten Peptidaminosäuresequenzen hat sich seit etwa dem Jahr 2000 eine hervorragende neue Anwendung der 68Ge/Ga-Generatoreluate ergeben, die als Tumortargeting-Vektoren verwendet werden. Das Octapeptid Octreotid besitzt eine hohe Affinität zum sstr2-Subtyp von humanen Somatostatinrezeptor-exprimierenden Tumoren, und der konjugierte makrozylische bifunktionelle Chelator DOTA bindet das trivalente 68Ga3+ koordinativ mit hoher thermodynamischer und kinetischer Stabilität auch in vivo. Trotz der relativ kurzen Halbwertszeit des 68Ga erlaubt dieser Typ der 68Ga-markierten Verbindungen eine exzellente Visualisierung von Tumoren und kleinen Metastasen. Dieser Ansatz des Tumortargetings mit 68Ga kann möglicherweise auf eine Vielzahl von anderen Tumoren ausgedehnt werden, wobei dann andere Peptide eingesetzt werden.Specifically for the imaging of neuroendocrine tumors with labeling reagents such as [ 68 Ga] DOTA-DPhe 1 -Tyr 3 octreotide ([ 68 Ga] DOTATOC) and PET or analogous compounds with altered chelators or altered Peptidaminosäuresequenzen since about the year 2000 an excellent new application of the 68 Ge / Ga generator eluates used as tumor targeting vectors. The octapeptide octreotide has a high affinity for the sstr2 subtype of human somatostatin receptor-expressing tumors, and the conjugated macrocyclic bifunctional chelator DOTA coordinately binds the trivalent 68 Ga 3+ with high thermodynamic and kinetic stability also in vivo. Despite the relatively short half-life of 68 Ga, this type of 68 Ga-labeled compounds allows excellent visualization of tumors and small metastases. This 68 Ga tumor targeting approach may potentially be extended to a variety of other tumors, using other peptides.

68Ga findet auch Anwendungen in der myocardialen Perfusionsdiagnostik in Form des [68Ga]BAT-TECH-Komplexes als Perfusions-Tracer. Dies zeigt, dass grundsätzlich jede Art der 68Ga-Markierung über Ligandstrukturen für die nuklearmedizinische Diagnostik insgesamt verwendbar sind bzw. in Zukunft sein werden. 68 Ga also finds applications in myocardial perfusion diagnostics in the form of the [ 68 Ga] BAT-TECH complex as a perfusion tracer. This shows that, in principle, any type of 68 Ga labeling via ligand structures can be used for nuclear medical diagnostics altogether or will be in the future.

Die "kit"-artige Synthese bietet ebenso einen weiteren Vorteil wie die Nutzung der PET unabhängig von einer in-house-Direktproduktion von etablierten Positronemittern wie beispielsweise 18F.The "kit" -like synthesis offers another advantage, as does the use of PET independent of in-house direct production from established positron emitters such as 18F .

Parallel dazu findet derzeit eine starke Verbesserung der molekularen Bildgebung durch die Kombination von PET und der Computer-Tomographie statt, was ebenfalls das Anwendungpotenzial 68Ga-markierter Imaging-tracer vergrößert. Aus diesen Gründen wird die Verfügbarkeit von optimierten 68Ge/Ga-Generatorsystemen mehr und mehr bedeutsam. Die effektive Produktion des 68Ge nimmt unter radiochemischen und ökonomischen Aspekten zur Zeit eine Schlüsselstellung ein.At the same time, there is currently a strong improvement in molecular imaging through the combination of PET and computed tomography, which also has application potential 68 Ga-marked imaging tracer enlarged. For these reasons, the availability of optimized 68 Ge / Ga generator systems becomes more and more significant. Effective production of the 68 Ge is currently key among radiochemical and economic aspects.

Eine interessante und potentiell bedeutende Anwendung des 68Ga ohne Markierungschemie liegt im Bereich der 68Ga-gefüllten Angioplasty-Behälter für die Inhibierung der arteriellen Restenose nach koronarer Angioplastie. Diese Anwendung von höher-energetischen Positronemittern folgt den bekannten Anwendungen mit 188Re und anderen medium- und hoch-energetischen β-Emittern. Da hier die flüssigen 68Ga-Eluate eingesetzt werden, bieten minimale Volumina der 68Ge/Ga-Generatoreluate optimale Voraussetzungen.An interesting and potentially significant application of 68 Ga without labeling chemistry is in the area of the 68 Ga-filled angioplasty containers for the inhibition of arterial restenosis following coronary angioplasty. This application of higher energy positron emitters follows the familiar 188 Re and other medium and high energy β emitters applications. Since the liquid 68 Ga eluates are used here, minimal volumes of the 68 Ge / Ga generator eluates offer optimum conditions.

Die Vorrichtung ist auch dafür geeignet, Radiogallium-Lösungen aufzukonzentrieren und zu reinigen. Ebenso ist sie zum Reinigen, zur Volumenreduktion von Gallium-Radioisotopen und zur Markierung von Markienmgsvorläufern mit dem 66Ga- oder 67Ga-Radioisotop geeignet.The device is also suitable for concentrating and purifying radiogallium solutions. It is also suitable for cleaning, volume reduction of gallium radioisotopes and labeling of marrow precursors with the 66 Ga or 67 Ga radioisotope.

Selbstverständlich ist die Vorrichtung genau so zum Markieren von Liganden oder von einem mit einem Liganden kovalent verknüpften Peptid oder Protein mit anderen Radionukliden als 68Ga geeignet. Ein Beispiel hierfür ist 90Y, bei dem eine Reinigung des Eluats von anderen Metallen vorgenommen werden muss.Of course, the device is equally well suited for labeling ligands or ligand-covalently linked peptide or protein with radionuclides other than 68 Ga. An example of this is 90 Y, which requires purification of the eluate from other metals.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

  • 1 = 68Ge/Ga Generator1 = 68 Ge / Ga generator
  • 2 = Fördereinrichtung2 = conveyor
  • 3 = ) Förderein-3 =)
  • 4 = ) richtungen4 =) directions
  • 5 = ) (Pumpe,5 =) (pump,
  • 6 = ) Spritze,6 =) syringe,
  • 7 = ) Kolben)7 =) piston)
  • 8 = ) Fördereinrichtungen,8 =) conveyors,
  • 9 = ) (Pumpe, Spritze9 =) (pump, syringe
  • 10=) Kolben)10 =) piston)
  • 11 = Kartusche11 = cartridge
  • 12 = ) 3-Wege-12 =) 3 way
  • 13 = ) Ventile13 =) valves
  • 14 = Kationenaustauscher14 = cation exchanger
  • 15 = 3-Wege-Ventil15 = 3-way valve
  • 16 = Filter16 = filter
  • 17 = Produktgefäß17 = product vessel
  • 18 = Vorratsgefäß18 = storage vessel
  • 19 = Abfallgefäß19 = waste container
  • 20 = Synthese-Einrichtung20 = synthesis device
  • 21 = Markierungsgefäß21 = marking vessel
  • 22 = Heizung22 = heating
  • 23=)= 23)
  • 24 = ) Leitungen24 =) lines
  • 25 = )25 =)
  • 26=)26 =)
  • 27 = Tisch27 = table

Claims (29)

  1. Method for extracting a 68Ga radionuclide from a 68Ge/Ga generator eluate which contains 68Ga in ionic form, whereby the initial 68Ge/Ga generator eluate is fed directly into an exchanger and 68Ga is adsorbed quantitatively on the exchanger, and is simultaneously chemically and radiochemically purified and the 68Ga radionuclide is combined with a labelling precursor from a ligand into a radiopharmaceutical, characterized in that, as an exchanger, a cation exchanger from the group of highly acidic cation exchangers polystyrene/divinylbenzene (DVB) resins, with a DVB concentration from 2 to over 20 % in reference to the cross-linked polymers of the resins, is selected, and the matrix of the cation exchanger is loaded with 68Ga.
  2. Method according to claim 1, characterized in that the 68Ga radionuclide is combined with a labelling precursor from a peptide or protein cross-linked in a covalent manner with a ligand into a radiopharmaceutical.
  3. Method according to claim 1, characterized in that several 68Ge/Ga radionuclide generators are simultaneously or sequentially eluted and the common initial eluates are transferred to the cation exchanger.
  4. Method according to claim 1, characterized in that the initially eluated 68Ge is not adsorbed, a chemical purification of the 68Ga takes place on the cation exchanger during which the radiochemical 68Ge contamination is reduced to a value smaller 10-8 percent.
  5. Method according to claim 3, characterized in that 68Ge/Ga generators remain in operating condition if their initial 68Ga-eluate already contains 50 or more mCi 68Ge.
  6. Method according to claim 4, characterized in that with acidic solutions of the type HCl/acetone or HCl/ethanol or analogous systems the purification is such that chemical contaminations such as Fe(ITI) and Zn(II) are eluted from the cation exchanger.
  7. Method according to claim 4, characterized in that during the elution processes of 68Ga a substantial separation of initially eluted Ti(IV) occurs.
  8. Method according to claim 1, characterized in that the purified and volume-reduced 68Ga radionuclide is directly eluted into a labelling vessel in which the labelling precursors and pure water or buffer systems have been introduced.
  9. Method according to claim 1, characterized in that the purified and volume-reduced 68Ga radionuclide is directly eluted into a vessel from which the filling of balloons can occur.
  10. Method according to claim 1, characterized in that the labelling precursor contains a ligand from the group of chelators with suitable thermodynamic and kinetic stability for the formation of the corresponding Ga ligand complexes DTPA, DOTA-, NOTA, DFO and many more others as well as their derivates.
  11. Method according to claim 10, characterized in that the Ga ligand complexes from the group DTPA, DOTA-, NOTA, DFO and many more others as well as their derivates are selected.
  12. Method according to claim 8, characterized in that the labelling precursor comprises a ligand or a peptide or protein covalently cross-linked with a ligand or other compounds in a quantity of roughly 1 to 100nmol, especially from 7 to 14 nmol, is introduced into the labelling vessel.
  13. Method according to claims 8 to 10, characterized in that the bonding of the 68Ga to the labelling precursor amounts to more than 75% in relation to the decay-corrected activity of the initial 68Ge/Ga generator eluate.
  14. Method according to claim 8, characterized in that the radiopharmaceutical from the labelling vessel is transferred to a cartridge onto which the radiopharmaceutical is fixed and the free 68Ga and/or other 68Ga species is eluated on the cartridge.
  15. Method according to claim 14, characterized in that the cartridge is washed with a liquid, in particular with water or analogous systems and is purified of free 68Ga and/or other 68Ga species.
  16. Method according to claim 14, characterized in that the radiopharmaceutical is eluated with less than 0.5 ml ethanol or analogous systems.
  17. Method according to claim 14, that the radiopharmaceutical from the cartridge, eluated in an empty vessel for subsequent individual processes or in a vessel with a corresponding volume of isotonic physiological sodium chloride solution, is sterile filtered out of this and made available for use.
  18. Method according to claim 8, characterized in that the pH value of the solutions for synthesizing the radiopharmaceutical in the labelling vessel is set to a value of 2.0 to 5.0, in particular to 2.3, and that at the same time either only water or also buffer systems or HEPES solutions, among others, are used.
  19. Device for isolating a chemically and radiochemically purified 68Ga radionuclide from a 68Ge/Ga generator eluate, comprising a conveyance apparatus (2) connected by a conduit to a 68Ge/Ga generator (1), a synthesis apparatus (20), into which a conduit (23) leads from the outlet of the exchanger (14) and in which the 68Ga radionuclide is reacted into a radiopharmaceutical, a 3-way valve (13), that is connected by a conduit (24) to the synthesis apparatus (20) and leads out of the synthesis apparatus (20), a reservoir (18) and a product vessel (17), characterized in that the exchanger is a cation exchanger (14) and is connected to a number of conveyance facilities (3, 4, 5, 6, 7) for the purification of the 68Ga fraction adsorbed on the cation exchanger (14), in the synthesis apparatus (20) a labelling precursor is labelled with a 68Ga, 66Ga, or 67Ga radionuclide and is reacted into a radiopharmaceutical and that for the purification of the radiopharmaceutical a cartridge (11), at whose inlet conveyance facilities (8, 9, 10) are connected by means of conduits and whose outlet is connected via the 3-way valve (13) to the conduit (24) which leads out of the synthesis apparatus (20).
  20. Device according to claim 19, characterized in that the conveyance facilities (2 to 10) are bidirectional acting pistons, syringes or peristaltic pumps.
  21. Device according to claim 19, characterized in that by means of the conveyance facilities (2 to 19) the transport occurs by means of underpressure.
  22. Device according to claim 19, characterized in that the synthesis apparatus (20) contains a labelling vessel (21) into which the conduit (23) penetrates which is connected to a 3-way valve (15) which is connected to the outlet of the cation exchanger (14) and a conduit to a waste vessel (19).
  23. Device according to claim 19, characterized in that a conduit (25) leads from the 3-way valve (13) into the reservoir (18).
  24. Device according to claim 19, characterized in that a conduit (26) connects the reservoir (18) via a filter (16) to the product vessel (17).
  25. Device according to claim 19, characterized in that the outlets of the conveyance facilities (3, 4, 5, 6, 7) open into a common conduit which is connected to a 3-way valve (12) which is connected both to the 68Ge/Ga generator (1) and to the cation exchanger (14).
  26. Device according to one of the claims 19 to 25, characterized in that the overall process is automated.
  27. Device according to claim 19, characterized in that the matrix of the cation exchanger (14) is selected from the group of polystyrene/divinylbenzene (DVB) resins.
  28. Use of the device according to claim 19 for the concentration and purification of gallium isotope solutions.
  29. Use of the device according to claim 19 for the purification, the volume reduction of gallium radioisotopes and labelling of labelling precursors with the 66Ga or 67Ga radioisotope.
EP05823617A 2004-11-26 2005-11-22 Method and device for isolating a chemically and radiochemically cleaned 68ga-radio nuclide and for marking a marking precursor with the 68ga-radio nuclide Not-in-force EP1820197B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004057225A DE102004057225B4 (en) 2004-11-26 2004-11-26 A method and apparatus for isolating a chemically and radiochemically purified 68Ga radionuclide and labeling a label precursor with the 68Ga radionuclide
PCT/EP2005/012471 WO2006056395A2 (en) 2004-11-26 2005-11-22 Method and device for isolating a chemically and radiochemically cleaned 68ga-radio nuclide and for marking a marking precursor with the 68ga-radio nuclide

Publications (2)

Publication Number Publication Date
EP1820197A2 EP1820197A2 (en) 2007-08-22
EP1820197B1 true EP1820197B1 (en) 2009-09-23

Family

ID=36055712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05823617A Not-in-force EP1820197B1 (en) 2004-11-26 2005-11-22 Method and device for isolating a chemically and radiochemically cleaned 68ga-radio nuclide and for marking a marking precursor with the 68ga-radio nuclide

Country Status (7)

Country Link
US (1) US8147804B2 (en)
EP (1) EP1820197B1 (en)
AT (1) ATE443916T1 (en)
DE (2) DE102004057225B4 (en)
DK (1) DK1820197T3 (en)
ES (1) ES2333893T3 (en)
WO (1) WO2006056395A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0922492D0 (en) 2009-12-23 2010-02-03 Hammersmith Imanet Ltd Method for obtaining 68GA
DE102009049108B4 (en) * 2009-10-12 2016-12-08 Johannes Gutenberg-Universität Mainz Method and apparatus for obtaining a radionuclide
WO2011106846A1 (en) * 2010-03-03 2011-09-09 Australian Nuclear Science And Technology Organisation Gallium-68 purification
US9670563B2 (en) 2010-03-03 2017-06-06 Australian Nuclear Science And Technology Organisation Sorbent material
DE102010037964B3 (en) * 2010-10-05 2012-03-22 ITM Isotopen Technologien München AG 68Ga generator
DE202010017082U1 (en) 2010-12-08 2011-05-12 ITM Isotopen Technologien München AG Apparatus for labeling molecules with radionuclides and using same to produce a radiopharmaceutical compound
ITFI20110180A1 (en) * 2011-08-12 2013-02-13 Advanced Accelerator Applic S A PROCESS FOR THE PREPARATION OF COMPLEXES OF 68GA.
FR2980193B1 (en) 2011-09-15 2014-02-14 Guerbet Sa PROCESS FOR PURIFYING CONTRAST PRODUCTS
RU2464043C1 (en) * 2011-09-26 2012-10-20 Федеральное государственное бюджетное учреждение "Федеральный медицинский биофизический центр имени А.И. Бурназяна" METHOD FOR PREPARING HIGH-PURITY 68Ga SOLUTIONS
US8802014B2 (en) * 2011-10-03 2014-08-12 Institute Of Nuclear Energy Research Ga-68 radionuclide generator structure
JP6052681B2 (en) * 2011-10-21 2016-12-27 国立大学法人 長崎大学 68Ge-68Ga generator and method for producing 68Ga-containing liquid using the same
DE102012208375B4 (en) * 2012-05-18 2015-07-23 Zentralklinik Bad Berka Gmbh Set and method of making a radiopharmaceutical
DE102012208376C5 (en) * 2012-05-18 2018-02-01 Zentralklinik Bad Berka Gmbh Set and method of making a radiopharmaceutical
DE102012208378B4 (en) * 2012-05-18 2015-07-23 Zentralklinik Bad Berka Gmbh Set and method of making a radiopharmaceutical
DE102012208377B4 (en) * 2012-05-18 2015-07-23 Zentralklinik Bad Berka Gmbh Set and method of making a radiopharmaceutical
US9161998B2 (en) * 2012-05-18 2015-10-20 Zentralklinik Bad Berka Gmbh Method and kit for preparing a radiopharmaceutical
DE102012019714B4 (en) * 2012-10-08 2022-04-28 Johannes Gutenberg-Universität Mainz Process for preparing pharmacological metal-ligand conjugates
JP6162063B2 (en) * 2014-03-17 2017-07-12 住友重機械工業株式会社 Radioisotope purification apparatus and radioisotope purification method
ES2892034T3 (en) * 2015-01-30 2022-02-01 Advanced Accelerator Applications Int S A Process for the purification of Ga-68 from the eluate derived from 68Ge/ 68Ga generators
SI3343570T1 (en) 2016-12-27 2019-10-30 Itm Isotopen Tech Muenchen Ag 68ge/68ga generator
TW201832750A (en) * 2017-03-02 2018-09-16 美商511製藥公司 Radiopharmaceutical labeling device
CN113144225A (en) * 2021-03-30 2021-07-23 广东回旋医药科技股份有限公司 With high purity of radioactive nucleus68Ga-GaCl3Method for preparing solution and application
CN113173595B (en) * 2021-03-30 2023-09-15 广东回旋医药科技股份有限公司 Cyclotron preparation 68 Purification method of Ga crude product
CN116272367B (en) * 2023-04-06 2025-07-15 中国工程物理研究院核物理与化学研究所 Based on166Dy-166Ho generator separation166Ho method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2932948C2 (en) * 1979-08-14 1982-11-18 Stiftung Deutsches Krebsforschungszentrum, 6900 Heidelberg Process for the production of an ion exchanger and its use
NL8000125A (en) 1980-01-09 1981-08-03 Byk Mallinckrodt Cil Bv PROCESS FOR PREPARING A RADIOISOTOPIC LIQUID FOR RADIOPHARMACEUTICAL USE AND ISOTOPE GENERATOR SUITABLE FOR PREPARING THIS LIQUID
US6267717B1 (en) 1998-03-31 2001-07-31 Advanced Research & Technology Institute Apparatus and method for treating a body structure with radiation
US7011816B2 (en) * 2001-12-26 2006-03-14 Immunomedics, Inc. Labeling targeting agents with gallium-68 and gallium-67
GB0308407D0 (en) * 2003-04-11 2003-05-21 Amersham Plc Method of obtaining 68 GA

Also Published As

Publication number Publication date
WO2006056395B1 (en) 2007-03-15
DK1820197T3 (en) 2010-01-25
DE502005008206D1 (en) 2009-11-05
WO2006056395A3 (en) 2007-01-25
DE102004057225A1 (en) 2006-06-08
ATE443916T1 (en) 2009-10-15
WO2006056395A2 (en) 2006-06-01
EP1820197A2 (en) 2007-08-22
DE102004057225B4 (en) 2006-10-12
ES2333893T3 (en) 2010-03-02
US8147804B2 (en) 2012-04-03
US20080277350A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
EP1820197B1 (en) Method and device for isolating a chemically and radiochemically cleaned 68ga-radio nuclide and for marking a marking precursor with the 68ga-radio nuclide
DE102011051868B4 (en) Process for the preparation of carrier-free high-purity 177Lu compounds and carrier-free 177Lu compounds
DE60209818T2 (en) METHOD AND DEVICE FOR SEPARATING IONES OF METALLIC ELEMENTS IN AQUEOUS SOLUTION
US7087206B2 (en) Multicolumn selectivity inversion generator for production of high purity actinium for use in therapeutic nuclear medicine
AU712051B2 (en) Technetium-99m generator system
JPS60194399A (en) Method of treating initial pertechnetium acid salt aqueous solution
DE102009049108B4 (en) Method and apparatus for obtaining a radionuclide
CN113874101A (en) System and method for separating radium from lead, bismuth and thorium
Guseva Radioisotope generators of short-lived α-emitting radionuclides promising for use in nuclear medicine
US10946310B2 (en) Alternating flow column chromatography apparatus and method of use
CN1327926C (en) Method for preparing a solution of a desired daughter radionuclide substantially free of impurities
Dvorakova Production and chemical processing of Lu-177 for nuclear medicine at the Munich research reactor FRM-II
Ruiz Quiros A Chromatographic Method to Separate Sc (III) from Zn (II) Ions: A Step in the Purification of Sc-44 (an isotope of medical interest)
Patra et al. Emerging role of electrochemistry in radiochemical separation of medically important radiometals: state of the art
DE10344101B3 (en) Producing carrier-free arsenic-72, e.g. useful for positron emission tomography, comprises irradiating target to produce selenium-72 and generating arsenic-72 by radioactive decay
WO2021158491A1 (en) Systems and methods for separating yttrium and strontium
DE2213137A1 (en) Procedure for recharging a technetium-99m generator
CN111500861A (en) Method for extracting technetium from neutral molybdenum solution by using activated carbon fiber
HK1190818B (en) Method for producing carrier-free highly pure 177lu compounds and carrier-free 177lu compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070917

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005008206

Country of ref document: DE

Date of ref document: 20091105

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2333893

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100125

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090923

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20171129

Year of fee payment: 13

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201126

Year of fee payment: 16

Ref country code: AT

Payment date: 20201124

Year of fee payment: 16

Ref country code: IT

Payment date: 20201127

Year of fee payment: 16

Ref country code: SE

Payment date: 20201123

Year of fee payment: 16

Ref country code: FR

Payment date: 20201120

Year of fee payment: 16

Ref country code: GB

Payment date: 20201125

Year of fee payment: 16

Ref country code: ES

Payment date: 20201202

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20201119

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210127

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008206

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 443916

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211122

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630