[go: up one dir, main page]

EP1811479B1 - Magnetic traffic control system - Google Patents

Magnetic traffic control system Download PDF

Info

Publication number
EP1811479B1
EP1811479B1 EP07100200A EP07100200A EP1811479B1 EP 1811479 B1 EP1811479 B1 EP 1811479B1 EP 07100200 A EP07100200 A EP 07100200A EP 07100200 A EP07100200 A EP 07100200A EP 1811479 B1 EP1811479 B1 EP 1811479B1
Authority
EP
European Patent Office
Prior art keywords
sensors
set forth
device set
vehicle
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07100200A
Other languages
German (de)
French (fr)
Other versions
EP1811479A1 (en
Inventor
Viviane Cattin
Roland Blanpain
Bruno Flament
Bernard Guilhamat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1811479A1 publication Critical patent/EP1811479A1/en
Application granted granted Critical
Publication of EP1811479B1 publication Critical patent/EP1811479B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/042Detecting movement of traffic to be counted or controlled using inductive or magnetic detectors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles

Definitions

  • the invention relates to a method and a device for classification of vehicles from their electromagnetic signature.
  • the main disadvantages of this device are its cost, a lack of robustness (especially with respect to climatic conditions), a difficult maintenance (due in particular to the wear of current loops) and an average classification error rate.
  • the invention also allows the identification of particular vehicles, for example for the regulation of car traffic, the monitoring of the use of a road, the optimization of traffic, the monitoring of a vehicle on a limited road area ( pedestrian zone) or in a car park, the allocation to the identified vehicle of a particular service (private parking space, subscription to a gas station, etc.).
  • Another application of the invention is the authentication of particular vehicles: for example it may be a vehicle equipped with a remote identification system (RFID badge for example) which is validated via the reading and the authentication of the magnetic signature of the vehicle (this signature being obtained by a device or a method according to the invention).
  • RFID badge for example
  • Magnetic traffic control systems rely on the use of the magnetic signature of a vehicle.
  • An automobile is a magnetic mass that modifies the field lines because the field Magnetic tends to take the path of greater magnetic permeability.
  • an automobile may include ferrous materials that alter the direction and intensity of the magnetic field.
  • the vehicle is generally represented by a set of magnetic dipoles, which add to the earth's magnetic field quiescent (that is to say at rest temporarily) and which create a magnetic anomaly that can be measured by magnetic sensors.
  • Each class can be characterized by a number of parameters, of which the most commonly used are the number of axles, the inter-axle distances, the length of the vehicle, the distances between the roadway and the sills and / or between the axles.
  • the patent FR-2811789 describes a vehicle classification system for detecting the electromagnetic signature from a single current loop. This signature is scanned, sequenced, and dated. The speed of a vehicle can also be calculated, looking for the moment when the pace of the signature stops following an exponential law.
  • This calculation is not precise enough and does not allow to check if the vehicle stopped on the sensor.
  • the measured characteristics are restricted to amplitudes of the signal in its temporal representation and in its frequency representation.
  • the patent US 5331276 discloses a velocity measurement system comprising two biaxial FluxGate magnetometers, separated by a known distance and oriented precisely with respect to each other.
  • the speed of the vehicle traveling in the vicinity of the system is calculated by forming the ratio between the time derivative of the measured field (given by the time derivative of a B signal of one of the magnetometers) and the spatial derivative of the measured signals (calculated by the instantaneous difference of the two B signals measured on the two magnetometers). So that the spatial difference of the fields of the two sensors is approximately equal to the spatial gradient, the spacing between the two sensors must be neither too short, not too big (it must be at most equal to 1/10 of the distance to the nearest point of passage of the vehicle). This constraint limits the use of this device to specific trajectories and vehicles, with a little equivalent magnetic moment.
  • the patent EP 0770978 discloses such a multi-sensor vehicle detection system disposed in a floor or a ceiling, placed in tubes arranged transversely to the path of the vehicle.
  • the distance between two adjacent sensors in a tube is less than or substantially equal to the normal width of a tire, so as to detect twin wheels of vehicles.
  • the patent US4509131 offers to use a correlation to perform a comparable calculation, the device being placed on the vehicle and exploiting the magnetic signatures of the ground.
  • the patent EP 0841647A1 describes a multi-point measuring device arranged transversely to the road. It allows to map the vehicle, in time and space. A data count reduction calculation is used to extract from the map a set of characteristic values of each vehicle, regardless of its size or the number of axles. This device is used to identify each vehicle for the purpose of monitoring road traffic. This is not a classification system. In addition, this method, while establishing a temporal / spatial relationship, does not make it possible to obtain an image of the object.
  • the U.S. Patent 5,392,034 describes a multi-sensor vehicle identification system.
  • a multi-sensor device is used and spatial and temporal information is exploited to extract the characteristics of the magnetic signatures of the vehicles.
  • first magnetic measurements are used in the direction of displacement to obtain a law between the time and the position of the sensors, then this law is applied to another series of measurements made in at least one other direction.
  • the temporal notion disappears and we obtain a spatial image of the object, but which is not a photo of the object at a time t since, in a way, the time has been "stretched" on the first sensors.
  • At least one second direction may be perpendicular to the first direction.
  • a device according to the invention may further comprise a third set of sensors intended to be arranged in at least a third direction, which intersects the first at a point at which is disposed a common sensor belonging to the first and third sets.
  • the calculation means can furthermore make it possible to calculate the speed of the vehicle.
  • a device may comprise a plurality of first sets of sensors and a plurality of second sets of sensors forming a 2D matrix of sensors, the matrix being able to be hollow.
  • the device according to the invention may comprise a first set of sensors, at least one second set of sensors, and at least one 2D array of sensors arranged on at least one of the sides of the first set.
  • At least one field or field gradient sensor, 1D, or 2D or 3D may be arranged in the vertical direction, or be offset.
  • the calculation means may make it possible to form a spatial representation of the signature of the vehicles, and / or to extract from said spatial representation of the vehicle identification parameters, for example, by thresholding said spatial representation, the length and / or the width of the vehicle, or, by detecting the intensity maxima, the number of axles of the vehicle, and / or calculating the energy of the signature and / or at least part of its Fourier coefficients and / or the angle traveled by the magnetic field vector (using, in addition, a triaxial field sensor), and / or the drift of the signature P (X, Y) along X and / or a gradient map and / or a vertical gradient of the field and the ratio of this gradient to the field.
  • the invention also relates to a method for recognizing the magnetic signature of a moving object comprising the implementation of a device according to the invention, as described above.
  • first magnetic measurements are used in the direction of displacement to obtain a law between the time and the position of the sensors, then this law is applied to another series of measurements made in at least one other direction.
  • the temporal notion disappears and we obtain a spatial image of the object, but which is not a photo of the object at a time t since, in a way, the time has been "stretched" on the first sensors.
  • a first embodiment of the invention implements a multi-sensor device.
  • Each sensor is an element capable of measuring one or more components of the local magnetic field or the local magnetic gradient (such as FluxGate magnetometers for example).
  • These sensors are distributed, as illustrated on the figure 2 on at least one line 2 oriented parallel to the running direction (X direction, C x i sensors) and on at least one line 4 oriented differently (Y direction, C Y i sensors), these lines comprising at least one common sensor C xy 0 .
  • the sensors are available for example in the form of a "T" (case of the figure 2 ).
  • These two lines 2, 4 have at least one sensor C XY 0 in common at their intersection.
  • This can be located anywhere along lines 2 and 4.
  • the figure 2 locates the sensor C XY 0 at the beginning of the line 2 and in the center of the line 4, but other arrangements are possible, the line 4 may for example be located between the ends of the line 2 (see position 4 'on the figure 2 ) with a sensor C XY 0 ' in common between the lines 2 and 4'.
  • the sensors can be uniformly distributed on each line, or arranged with a variable pitch.
  • line 4 it is interesting to concentrate the density of sensors in the areas where, statistically, the wheels of the vehicles can pass, in order to have in particular the signatures of the axles, important elements in the automotive classification. It is this particular case that is represented on the figure 2 .
  • the measurements from the sensors C x i arranged along the line 2 provide a spatial profile S o (x), or section along X, of the signature of the vehicle.
  • a pre-processing, of the thresholding type, for example, makes it possible to detect the beginning and the end of the useful magnetic signature.
  • Each spatial profile is, in whole or in part, comparable to the time measurement S o (t), resulting from the sensor C xy 0 when the vehicle passes above the intersection of the lines 2, 4.
  • the main difference comes from the temporal deformation of the spatial signature related to the speed of the vehicle. Minor dissimilarities can also appear locally along the magnetic signature, since S o (t) is a developed of the local signature (in C xy 0 ) of the vehicle, whereas S o (x) is a snapshot.
  • the signal S o (t) can be seen as a compressed version of the signal S o (x) (if the vehicle accelerates), dilated (if it brakes), constant (if it stops), or even returned (if the vehicle backs up), and possibly deformed in pieces.
  • P (X, Y) is a time course of the signature, placed in space, without having to determine the speed of the vehicle or without making any hypothesis on its trajectory.
  • the basic device can take other forms, and the invention described above can be applied in different configurations of the sensors.
  • a "hollow" matrix device is formed: n lines 2, 2 1 , 2 2 , 2 3 ..., 2 n are arranged parallel to one another in the direction of movement of the vehicles, whereas m lines 4, 4 1 , 4 2 , 4 3 ..., 4 m are arranged in the direction Y, parallel to each other. These m lines could be arranged other than perpendicular to the X axis.
  • a sensor is disposed at each intersection 2 i - 4 j .
  • the device forms a 2D matrix, or a carpet, of sensors which are distributed under the roadway, uniformly or otherwise.
  • This matrix is "hollow” in some places: it lacks sensors or their density is not satisfactory for the precision required by the application. We then use the principle described above ("morphing") to complete the missing data.
  • two lines as described above are chosen to form a two-line system at the intersection of which a sensor is located, and the morphing technique is used to reconstruct the missing data in the chosen zone. This can be repeated at several places in the matrix.
  • a fourth embodiment is a system with several basic devices ( figure 7 ).
  • a small sensor array 300 placed on one side (or both sides) of the "T", and occupying a length l x .
  • this matrix provides the spatial unwinding of one or more sets axle + wheel + tire of a car or a truck.
  • the matrix M ij also makes it possible to capture the signatures of small vehicles that could provide a very weak signal on the line 2 of sensors. This can happen in particular when a motorcycle circulates in a toll channel by tightening well on one side to make the transaction.
  • the 2D photo from the sensors of the matrix can locate the bike. Preprocessing provides the beginning and end of the useful signature.
  • This line can then be used with the sensor line 4 to form a new "T” device, as explained above, of dimension and positioning more adapted to this vehicle.
  • a method of "morphing” identical to that already presented above it is then possible to recover the photo P (X, Y) of the magnetic spatial signature of the motorcycle.
  • At least one sensor (field or gradient field, 1D, 2D or 3D) in the vertical direction is added to one of the devices described above.
  • This system makes it possible to measure, at a distance D z , one or more components of the field (or gradient) in at least one plane different from that of one of the devices described above. This information may be relevant for having vehicle height data.
  • a sixth exemplary embodiment is a device with a remote reference.
  • the device described above is added to the reference measurement means (field or field gradient 1D, or 2D or 3D) remote. This means that these means are located far enough from the measurement zone not to be sensitive to the passage of the vehicle.
  • This reference measurement makes it possible to improve measurement accuracy by subtracting geomagnetic and surrounding noise (industrial noise, streetcar, electrical network, etc.)
  • the sensors can for example be grouped into lines, which are seen as branches of the tree system that manages the acquisition and storage of data.
  • a line comprises 1 or more nodes, each comprising a mono, bi or tri-axis sensor and the associated electronics (filtering, amplification, digitization, multiplexing). Each node is linked on a digital high speed information exchange bus (USB for example).
  • USB digital high speed information exchange bus
  • a central system 50 ( figure 6 ), for example a microcomputer specially programmed for this purpose, for example offset at the edge of the roadway, manages the multiplexing, the timing of acquisitions, and the storage of data. It also embeds means or the processing system which carries out the exploitation of the measurements (pretreatment, morphing, extraction of the parameters, classification).
  • the lines may be in the form of tubes buried under the roadway or bars inserted into grooves on the surface of a road surface.
  • This mechanism has the advantage of greater ease of implementation of the classification device and less maintenance compared to current loops (which undergo "hard” deformation of the road and the incessant passages of vehicles). If a sensor proves defective, the line is removed from the ground, and the sensor easily replaced.
  • the central system 50 is not modified. Similarly, all or part of the lines can be used, depending on the needs of the classification system, without having to intervene on the roadway.
  • the parameters identifying the vehicle, or its type are extracted from the photo. This provides the image of the distribution of the characteristic dipoles of the signature.
  • the spatial dimensions of the signature in the Y and X direction provide the width and length of the vehicle, regardless of its speed, whether it is running, stopped, or even in reverse.
  • Detection of intensity maxima provides the number of axles, as well as their 2D positioning and relative spacing.
  • the data obtained in the X direction can be strongly oversampled with no additional installation costs related to the sensors and the associated electronics, since they come from a time acquisition.
  • these parameters are used in a classification algorithm.
  • One solution is based on the implementation of learning-restitution type neural network, for example.
  • a device 50 such as a microcomputer, is programmed to implement one of the methods described above, from the measurements delivered by the sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)

Abstract

The device has a set of sensors (C power x i) designed to be arranged along a direction (2). Another set of sensors (C power y j) is arranged along another direction (4), that intersects the former direction at a point at which common sensor (C power xy o) is placed. A microcomputer calculates a relation between a time signature of a vehicle e.g. car, passing above the common sensor and a spatial profile resulting from measurements made by the former sensors. The microcomputer is used to extract the length and the width of the vehicle by thresholding a spatial representation.

Description

DOMAINE TECHNIQUE ET ART ANTÉRIEURTECHNICAL FIELD AND PRIOR ART

L'invention concerne un procédé et un dispositif de classification de véhicules à partir de leur signature électromagnétique.The invention relates to a method and a device for classification of vehicles from their electromagnetic signature.

Elle permet de recueillir des données routières, et par exemple de compter et/ou classifier des véhicules automobiles au cours de leurs trajets sur une chaussée.It collects road data, for example to count and / or classify motor vehicles during their journeys on a roadway.

L'invention concerne donc le domaine de l'étude et du contrôle du trafic routier, dont les applications sont larges. Citons à titre d'exemple:

  • l'identification et la classification par type de véhicule: un exemple caractéristique est la classification au péage autoroutier pour paiement automatique. Le système utilisé actuellement sur les autoroutes est basé sur l'association de plusieurs types de capteurs :
  • un interrupteur magnétique, formé de deux boucles de courant, qui permet de détecter la présence d'un véhicule,
  • un capteur de type piézoélectrique, disposé à la surface de la chaussée, qui permet de détecter le passage des essieux d'un véhicule pour les compter,
  • un capteur optique qui forme un rideau placé transversalement à la route: lorsque le véhicule le traverse, il fournit une estimation de sa hauteur.
The invention therefore relates to the field of study and control of road traffic, whose applications are broad. As an example:
  • identification and classification by type of vehicle: a typical example is the motorway toll classification for automatic payment. The system currently used on motorways is based on the combination of several types of sensors:
  • a magnetic switch, formed by two current loops, which makes it possible to detect the presence of a vehicle,
  • a piezoelectric type sensor, disposed on the surface of the roadway, which makes it possible to detect the passage of the axles of a vehicle for counting them,
  • an optical sensor that forms a curtain placed transversely to the road: when the vehicle passes through it, it provides an estimate of its height.

Les principaux inconvénients de ce dispositif sont son coût, un manque de robustesse (notamment par rapport aux conditions climatiques), un entretien difficile (du fait notamment de l'usure des boucles de courant) et un taux d'erreur de classification moyen.The main disadvantages of this device are its cost, a lack of robustness (especially with respect to climatic conditions), a difficult maintenance (due in particular to the wear of current loops) and an average classification error rate.

L'invention permet également l'identification de véhicules particuliers, par exemple pour la régulation du trafic automobile, la surveillance de la fréquentation d'une route, l'optimisation de la circulation, le suivi d'un véhicule sur une zone routière limitée (zone piétonne) ou dans un parking, l'attribution au véhicule identifié d'un service particulier (place de parking privée, abonnement à une station d'essence, ...).The invention also allows the identification of particular vehicles, for example for the regulation of car traffic, the monitoring of the use of a road, the optimization of traffic, the monitoring of a vehicle on a limited road area ( pedestrian zone) or in a car park, the allocation to the identified vehicle of a particular service (private parking space, subscription to a gas station, etc.).

Une autre application de l'invention est l'authentification de véhicules particuliers: par exemple il peut s'agir d'un véhicule muni d'un système d'identification à distance (badge RFID par exemple) qui est validé via la lecture et l'authentification de la signature magnétique du véhicule (cette signature étant obtenue par un dispositif ou un procédé selon l'invention) .Another application of the invention is the authentication of particular vehicles: for example it may be a vehicle equipped with a remote identification system (RFID badge for example) which is validated via the reading and the authentication of the magnetic signature of the vehicle (this signature being obtained by a device or a method according to the invention).

Il existe des systèmes basés sur des magnétorésistances ou des réseaux de boucles de courant. Mais, ils sont soit coûteux, soit peu performants en matière de reconnaissance des véhicules.There are systems based on magnetoresistances or networks of current loops. But, they are either expensive or poorly performing in terms of vehicle recognition.

Les systèmes magnétiques de contrôle de trafic reposent sur l'exploitation de la signature magnétique d'un véhicule. Une automobile est une masse magnétique qui modifie les lignes de champ car le champ magnétique a tendance à emprunter le parcours de plus grande perméabilité magnétique. De plus, une automobile peut comporter des matériaux ferreux qui modifient la direction et l'intensité du champ magnétique. Le véhicule est globalement représenté par un ensemble de dipôles magnétiques, qui s'ajoutent au champ magnétique terrestre quiescent (c'est-à-dire au repos temporairement) et qui créent une anomalie magnétique qui peut être mesurée par des capteurs magnétiques.Magnetic traffic control systems rely on the use of the magnetic signature of a vehicle. An automobile is a magnetic mass that modifies the field lines because the field Magnetic tends to take the path of greater magnetic permeability. In addition, an automobile may include ferrous materials that alter the direction and intensity of the magnetic field. The vehicle is generally represented by a set of magnetic dipoles, which add to the earth's magnetic field quiescent (that is to say at rest temporarily) and which create a magnetic anomaly that can be measured by magnetic sensors.

Ces signaux sont utilisés ensuite dans un système de détection/classification dont l'objectif peut être de compter les véhicules ou les identifier. Chaque classe peut être caractérisée par un certain nombre de paramètres, dont les plus couramment utilisés sont le nombre d'essieux, les distances inter-essieux, la longueur du véhicule, les distances entre chaussée et bas de caisse et/ou entre les essieux.These signals are then used in a detection / classification system whose objective may be to count the vehicles or identify them. Each class can be characterized by a number of parameters, of which the most commonly used are the number of axles, the inter-axle distances, the length of the vehicle, the distances between the roadway and the sills and / or between the axles.

Une des difficultés des systèmes de classification repose sur la correspondance temps/espace. En effet, les signatures sont acquises par les capteurs magnétiques au cours du temps. Elles sont donc dépendantes de la vitesse du véhicule: elles peuvent être comprimées si le véhicule accélère, dilatées s'il freine, ou même constantes s'il s'arrête, comme illustré sur la figure 1, sur laquelle les courbes I et II représentent, respectivement, les déformées temporelles de la signature d'un véhicule passant rapidement sur un capteur, et lentement, avec arrêt, sur un autre. A contrario, la signature magnétique spatiale du véhicule est constante.One of the difficulties of classification systems is the time / space correspondence. Indeed, signatures are acquired by magnetic sensors over time. They are therefore dependent on the speed of the vehicle: they can be compressed if the vehicle accelerates, dilated if it brakes, or even if it stops, as shown on the diagram. figure 1 , on which the curves I and II represent, respectively, the temporal deformations of the signature of a vehicle passing quickly on one sensor, and slowly, with stop, on another. Conversely, the spatial magnetic signature of the vehicle is constant.

On cherche donc une méthode pour passer les signatures temporelles dans le domaine spatial, ceci indépendamment de la vitesse et de la trajectoire du véhicule.We are therefore looking for a method to pass temporal signatures in the spatial domain, regardless of the speed and trajectory of the vehicle.

Le brevet FR-2811789 décrit un système de classification de véhicules permettant d'en détecter la signature électromagnétique à partir d'une seule boucle de courant. Cette signature est numérisée, séquencée, puis datée. La vitesse d'un véhicule peut aussi être calculée, en recherchant l'instant où l'allure de la signature cesse de suivre une loi exponentielle.The patent FR-2811789 describes a vehicle classification system for detecting the electromagnetic signature from a single current loop. This signature is scanned, sequenced, and dated. The speed of a vehicle can also be calculated, looking for the moment when the pace of the signature stops following an exponential law.

Ce calcul n'est pas assez précis et ne permet pas de contrôler si le véhicule s'est arrêté sur le capteur. Les caractéristiques mesurées sont restreintes à des amplitudes du signal dans sa représentation temporelle et dans sa représentation fréquentielle.This calculation is not precise enough and does not allow to check if the vehicle stopped on the sensor. The measured characteristics are restricted to amplitudes of the signal in its temporal representation and in its frequency representation.

Le brevet US 5331276 décrit un système de mesure de la vitesse comprenant deux magnétomètres FluxGate biaxiaux, séparés d'une distance connue et orientés précisément l'un par rapport l'autre. La vitesse du véhicule roulant à proximité du système est calculée en formant le rapport entre la dérivée temporelle du champ mesuré (donnée par la dérivée temporelle d'un signal B d'un des magnétomètres) et la dérivée spatiale des signaux mesurés (calculée par la différence instantanée des deux signaux B mesurés sur les deux magnétomètres). Afin que la différence spatiale des champs des deux capteurs soit approximativement égale au gradient spatial, il faut que l'espacement entre les deux capteurs ne soit ni trop court, ni trop grand (il doit être au plus égal à 1/10 de la distance au point de passage le plus proche du véhicule). Cette contrainte limite l'utilisation de ce dispositif à des trajectoires et à des véhicules spécifiques, de moment magnétique équivalent peu variable.The patent US 5331276 discloses a velocity measurement system comprising two biaxial FluxGate magnetometers, separated by a known distance and oriented precisely with respect to each other. The speed of the vehicle traveling in the vicinity of the system is calculated by forming the ratio between the time derivative of the measured field (given by the time derivative of a B signal of one of the magnetometers) and the spatial derivative of the measured signals (calculated by the instantaneous difference of the two B signals measured on the two magnetometers). So that the spatial difference of the fields of the two sensors is approximately equal to the spatial gradient, the spacing between the two sensors must be neither too short, not too big (it must be at most equal to 1/10 of the distance to the nearest point of passage of the vehicle). This constraint limits the use of this device to specific trajectories and vehicles, with a little equivalent magnetic moment.

Plusieurs systèmes de classification de véhicules proposent de déterminer la vitesse en exploitant la différence de temps entre deux signatures mesurées par des capteurs placés à des distances connues. Mais pour que le décalage temporel des signatures donne une bonne estimée de sa vitesse, il faut que celle-ci soit constante sur la base de calcul (distance inter-capteurs). Or dans les conditions normales de trafic routier, les véhicules suivent rarement un mouvement uniforme, surtout à proximité des péages autoroutiers par exemple.Several vehicle classification systems propose to determine the speed by exploiting the time difference between two signatures measured by sensors placed at known distances. But for the temporal offset of the signatures to give a good estimate of its speed, it must be constant on the basis of calculation (inter-sensor distance). However, in normal road traffic conditions, vehicles rarely follow a uniform movement, especially near motorway tolls, for example.

Le brevet EP 0770978 décrit un tel système de détection de véhicule à plusieurs capteurs disposés dans un sol ou un plafond, placés dans des tubes disposés transversalement à la trajectoire du véhicule. La distance entre deux capteurs voisins dans un tube est inférieure ou sensiblement égale à la largeur normale d'un pneu, de façon à détecter des roues jumelées de véhicules. En plaçant deux tubes de détecteurs parallèles entre eux, transversaux par rapport à la direction longitudinale de la chaussée, et séparés d'une distance connue, il est possible d'identifier les instants de détection d'un véhicule et de calculer le temps mis par le véhicule pour aller d'un dispositif à l'autre. Le brevet US4509131 propose d'utiliser une corrélation pour effectuer un calcul comparable, le dispositif étant placé sur le véhicule et exploitant les signatures magnétiques du sol.The patent EP 0770978 discloses such a multi-sensor vehicle detection system disposed in a floor or a ceiling, placed in tubes arranged transversely to the path of the vehicle. The distance between two adjacent sensors in a tube is less than or substantially equal to the normal width of a tire, so as to detect twin wheels of vehicles. By placing two detector tubes parallel to each other, transverse to the longitudinal direction of the roadway, and separated by a known distance, it is possible to identify the instants of detection of a vehicle and to calculate the time taken by the vehicle to go from one device to another. The patent US4509131 offers to use a correlation to perform a comparable calculation, the device being placed on the vehicle and exploiting the magnetic signatures of the ground.

Le brevet EP 0841647A1 décrit un dispositif de mesure multipoints disposé transversalement à la route. Il permet de réaliser une cartographie du véhicule, en temps et en espace. Un calcul de réduction du nombre de données est utilisé pour extraire de la cartographie un ensemble de valeurs caractéristiques de chaque véhicule, indépendamment de ses dimensions ou du nombre d'essieux. Ce dispositif est utilisé pour identifier chaque véhicule dans le but de surveiller le trafic routier. Ce n'est pas un système de classification. En outre ce procédé, bien qu'établissant une relation temporelle/spatiale, ne permet pas d'obtenir une image de l'objet.The patent EP 0841647A1 describes a multi-point measuring device arranged transversely to the road. It allows to map the vehicle, in time and space. A data count reduction calculation is used to extract from the map a set of characteristic values of each vehicle, regardless of its size or the number of axles. This device is used to identify each vehicle for the purpose of monitoring road traffic. This is not a classification system. In addition, this method, while establishing a temporal / spatial relationship, does not make it possible to obtain an image of the object.

Le brevet US 5 392 034 décrit un système d'identification de véhicule à plusieurs capteurs.The U.S. Patent 5,392,034 describes a multi-sensor vehicle identification system.

Il se pose donc le problème de trouver un procédé et un dispositif permettant d'obtenir une telle image spatiale de la signature magnétique du véhicule.There is therefore the problem of finding a method and a device for obtaining such a spatial image of the magnetic signature of the vehicle.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

Selon l'invention, on utilise un dispositif multicapteurs et on exploite des informations spatiales et temporelles pour extraire les caractéristiques des signatures magnétiques des véhicules.According to the invention, a multi-sensor device is used and spatial and temporal information is exploited to extract the characteristics of the magnetic signatures of the vehicles.

L'invention concerne d'abord un dispositif de mesure de signatures magnétiques de véhicules, comportant :

  • au moins un premier ensemble de capteurs (Cx i), destinés à être disposés le long d'au moins une première direction,
  • au moins un deuxième ensemble de capteurs (Cy j), destinés à être disposés selon au moins une deuxième direction, qui coupe la première en un point auquel est disposé un capteur commun (Cxy 0), appartenant au premier et au deuxième ensemble,
  • des moyens de calcul, pour calculer une relation entre la signature temporelle So (t) d'un véhicule passant au-dessus du capteur commun et un profil spatial So(x) résultant des mesures effectuées par les capteurs du premier ensemble de capteurs.
The invention firstly relates to a device for measuring magnetic signatures of vehicles, comprising:
  • at least a first set of sensors (C x i ), intended to be arranged along at least one first direction,
  • at least a second set of sensors (C y j ), intended to be arranged in at least a second direction, which intersects the first at a point at which is disposed a common sensor (C xy 0 ) belonging to the first and second sets ,
  • calculating means, for calculating a relationship between the time signature S o (t) of a vehicle passing over the common sensor and a spatial profile S o (x) resulting from the measurements made by the sensors of the first set of sensors .

Selon l'invention, on utilise des premières mesures magnétiques selon la direction de déplacement pour obtenir une loi entre le temps et la position des capteurs, puis on applique cette loi à une autre série de mesures réalisées dans au moins une autre direction. La notion temporelle disparaît et on obtient une image spatiale de l'objet, mais qui n'est pas une photo de l'objet à un instant t puisque, en quelque sorte, le temps a été « étiré » sur les premiers capteurs.According to the invention, first magnetic measurements are used in the direction of displacement to obtain a law between the time and the position of the sensors, then this law is applied to another series of measurements made in at least one other direction. The temporal notion disappears and we obtain a spatial image of the object, but which is not a photo of the object at a time t since, in a way, the time has been "stretched" on the first sensors.

Au moins une deuxième direction peut être perpendiculaire à la première direction. Un dispositif selon l'invention peut en outre comporter un troisième ensemble de capteurs destinés à être disposés selon au moins une troisième direction, qui coupe la première en un point auquel est disposé un capteur commun, appartenant au premier et au troisième ensemble.At least one second direction may be perpendicular to the first direction. A device according to the invention may further comprise a third set of sensors intended to be arranged in at least a third direction, which intersects the first at a point at which is disposed a common sensor belonging to the first and third sets.

Les moyens de calcul peuvent en outre permettre de calculer la vitesse du véhicule.The calculation means can furthermore make it possible to calculate the speed of the vehicle.

Un dispositif selon l'invention peut comporter une pluralité de premiers ensembles de capteurs et une pluralité de deuxièmes ensembles de capteurs formant une matrice 2D de capteurs, la matrice pouvant être creuse.A device according to the invention may comprise a plurality of first sets of sensors and a plurality of second sets of sensors forming a 2D matrix of sensors, the matrix being able to be hollow.

Selon une variante, dispositif selon l'invention peut comporter un premier ensemble de capteurs, au moins un deuxième ensemble de capteurs, et au moins une matrice 2D de capteurs disposée sur au moins un des côtés du premier ensemble.According to a variant, the device according to the invention may comprise a first set of sensors, at least one second set of sensors, and at least one 2D array of sensors arranged on at least one of the sides of the first set.

Au moins un capteur de champ ou de gradient du champ, 1D, ou 2D ou 3D peut être disposé suivant la direction verticale, ou être déporté.At least one field or field gradient sensor, 1D, or 2D or 3D may be arranged in the vertical direction, or be offset.

Les moyens de calculs peuvent permettre de former une représentation spatiale de la signature des véhicules, et/ou d'extraire de ladite représentation spatiale des paramètres d'identification du véhicule, par exemple, par seuillage de ladite représentation spatiale, la longueur et/ou la largeur du véhicule, ou, par détection des maxima d'intensité, le nombre d'essieux du véhicule, et/ou de calculer l'énergie de la signature et/ou au moins une partie de ses coefficients de Fourier et/ou l'angle parcouru par le vecteur champ magnétique (à l'aide, en outre, d'un capteur de champ triaxe), et/ou la dérive de la signature P(X,Y) suivant X et/ou une carte de gradients et/ou un gradient vertical du champ et le rapport de ce gradient au champ.The calculation means may make it possible to form a spatial representation of the signature of the vehicles, and / or to extract from said spatial representation of the vehicle identification parameters, for example, by thresholding said spatial representation, the length and / or the width of the vehicle, or, by detecting the intensity maxima, the number of axles of the vehicle, and / or calculating the energy of the signature and / or at least part of its Fourier coefficients and / or the angle traveled by the magnetic field vector (using, in addition, a triaxial field sensor), and / or the drift of the signature P (X, Y) along X and / or a gradient map and / or a vertical gradient of the field and the ratio of this gradient to the field.

Ces paramètres peuvent être utilisés dans un algorithme de classification.These parameters can be used in a classification algorithm.

L'invention concerne également un procédé de reconnaissance de la signature magnétique d'un objet en déplacement comprenant la mise en oeuvre d'un dispositif selon l'invention, tel que décrit ci-dessus.The invention also relates to a method for recognizing the magnetic signature of a moving object comprising the implementation of a device according to the invention, as described above.

Selon l'invention, on utilise des premières mesures magnétiques selon la direction de déplacement pour obtenir une loi entre le temps et la position des capteurs, puis on applique cette loi à une autre série de mesures réalisées dans au moins une autre direction. La notion temporelle disparaît et on obtient une image spatiale de l'objet, mais qui n'est pas une photo de l'objet à un instant t puisque, en quelque sorte, le temps a été « étiré » sur les premiers capteurs.According to the invention, first magnetic measurements are used in the direction of displacement to obtain a law between the time and the position of the sensors, then this law is applied to another series of measurements made in at least one other direction. The temporal notion disappears and we obtain a spatial image of the object, but which is not a photo of the object at a time t since, in a way, the time has been "stretched" on the first sensors.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

  • La figure 1 représente un exemple simulé de la déformée temporelle d'une signature d'un véhicule passant rapidement sur un capteur, et lentement, avec arrêt, sur un autre,The figure 1 represents a simulated example of the temporal deformity of a signature of a vehicle passing rapidly on one sensor, and slowly, with stop, on another,
  • la figure 2 représente un dispositif, selon l'invention, en « T », à deux lignes,the figure 2 represents a device, according to the invention, in "T", with two lines,
  • la figure 3 représente un « morphing », permettant de relier une fonction temporelle S0(t) et une fonction spatiale S0(x),the figure 3 represents a "morphing", making it possible to connect a temporal function S 0 (t) and a spatial function S 0 (x),
  • les figures 4A - 4I représentent des images pour 3 composantes, avant et après transformation de type « morphing »,the Figures 4A - 4I represent images for 3 components, before and after transformation of "morphing" type,
  • les figures 5A - 5C représentent des variantes de dispositifs selon l'invention,the Figures 5A - 5C represent variants of devices according to the invention,
  • la figure 6 illustre un mode de réalisation d'un dispositif bimatricie,the figure 6 illustrates an embodiment of a bimatric device,
  • la figure 7 illustre un mode de réalisation d'un dispositif à plusieurs « T ».the figure 7 illustrates an embodiment of a device with several "T".
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

Un dispositif selon l'invention et différentes variantes ainsi que leur mise en oeuvre vont d'abord être décrits.A device according to the invention and different variants and their implementation will first be described.

On décrit ensuite le traitement des données.The data processing is then described.

Un premier mode de réalisation de l'invention met en oeuvre un dispositif multicapteurs.A first embodiment of the invention implements a multi-sensor device.

Des informations spatiales et temporelles sont exploitées, afin d'extraire les caractéristiques des signatures magnétiques des véhicules. Chaque capteur est un élément capable de mesurer une ou plusieurs composantes du champ magnétique local ou du gradient magnétique local (comme des magnétomètres de type « FluxGate » par exemple).Spatial and temporal information is used to extract the characteristics of the magnetic signatures of vehicles. Each sensor is an element capable of measuring one or more components of the local magnetic field or the local magnetic gradient (such as FluxGate magnetometers for example).

Ces capteurs sont répartis, comme illustré sur la figure 2, sur au moins une ligne 2 orientée parallèlement à la direction de roulage (sens noté X, capteurs Cx i) et sur au moins une ligne 4 orientée différemment (sens noté Y, capteurs CY i), ces lignes comportant au moins un capteur Cxy 0 commun.These sensors are distributed, as illustrated on the figure 2 on at least one line 2 oriented parallel to the running direction (X direction, C x i sensors) and on at least one line 4 oriented differently (Y direction, C Y i sensors), these lines comprising at least one common sensor C xy 0 .

On dispose alors d'informations temporelles et spatiales, qui peuvent être reliées par une technique dite de « morphing », telle que par exemple décrite dans l'article de C.S.Myers et al. « a comparative study of several dynamic time-warping algorithms for connected - word recognition », The Bell System technical Journal, vol. 60 , No7, 1981 . On peut ainsi construire la photo spatiale 2D de la signature du véhicule.We then have temporal and spatial information, which can be linked by a technique called "morphing", such as for example described in the article of CSMyers et al. "The comparative study of several dynamic time-warping algorithms for connected-word recognition", The Bell System Technical Journal, Vol. 60, No7, 1981 . It is thus possible to build the 2D spatial photo of the vehicle signature.

La disposition décrite ci-dessus couvre un ensemble de cas, dont certains sont illustrés à titre d'exemple dans les paragraphes suivants.The provision described above covers a set of cases, some of which are illustrated by way of example in the following paragraphs.

Selon un premier exemple de réalisation, appelée dispositif de base, on dispose les capteurs par exemple en forme de «T» (cas de la figure 2).According to a first exemplary embodiment, called a basic device, the sensors are available for example in the form of a "T" (case of the figure 2 ).

Dans une première version, le nombre de capteurs est réduit : on se limite à deux lignes, contrairement au cas général où on peut avoir plus de deux lignes. On dispose :

  • Nx (>1) capteurs CX i sur une seule ligne 2,
  • Ny (>1) capteurs CY i sur une seule ligne 4.
In a first version, the number of sensors is reduced: it is limited to two lines, unlike the general case where we can have more than two lines. We dispose :
  • N x (> 1) C X i sensors on a single line 2,
  • N y (> 1) C Y i sensors on a single line 4.

Sur la figure 2, Y est perpendiculaire à X, donc transverse au sens de roulage.On the figure 2 Y is perpendicular to X, thus transverse to the rolling direction.

Ces deux lignes 2, 4 ont au moins un capteur CXY 0 en commun, à leur intersection. Celle-ci peut être située n'importe où le long des lignes 2 et 4. Par exemple, la figure 2 situe le capteur CXY 0 au début de la ligne 2 et au centre de la ligne 4, mais d'autres dispositions sont possibles, la ligne 4 pouvant par exemple être située entre les extrémités de la ligne 2 (voir position 4' sur la figure 2) avec un capteur CXY 0' en commun entre les lignes 2 et 4'.These two lines 2, 4 have at least one sensor C XY 0 in common at their intersection. This can be located anywhere along lines 2 and 4. For example, the figure 2 locates the sensor C XY 0 at the beginning of the line 2 and in the center of the line 4, but other arrangements are possible, the line 4 may for example be located between the ends of the line 2 (see position 4 'on the figure 2 ) with a sensor C XY 0 ' in common between the lines 2 and 4'.

En outre, les capteurs peuvent être uniformément répartis sur chaque ligne, ou disposés avec un pas variable. Notamment, sur la ligne 4, il est intéressant de concentrer la densité de capteurs dans les zones où, statistiquement, les roues des véhicules peuvent passer, afin de disposer notamment des signatures des essieux, éléments importants dans la classification automobile. C'est ce cas particulier qui est représenté sur la figure 2.In addition, the sensors can be uniformly distributed on each line, or arranged with a variable pitch. In particular, on line 4, it is interesting to concentrate the density of sensors in the areas where, statistically, the wheels of the vehicles can pass, in order to have in particular the signatures of the axles, important elements in the automotive classification. It is this particular case that is represented on the figure 2 .

A chaque instant, les mesures issues des capteurs Cx i disposés le long de la ligne 2 fournissent un profil spatial So(x), ou coupe suivant X, de la signature du véhicule.At each moment, the measurements from the sensors C x i arranged along the line 2 provide a spatial profile S o (x), or section along X, of the signature of the vehicle.

Un pré-traitement, de type seuillage par exemple, permet de détecter le début et la fin de la signature magnétique utile.A pre-processing, of the thresholding type, for example, makes it possible to detect the beginning and the end of the useful magnetic signature.

Chaque profil spatial est, en tout ou en partie, comparable à la mesure temporelle So(t), issue du capteur Cxy 0 lorsque le véhicule passe au-dessus de l'intersection des lignes 2, 4. La principale différence provient de la déformation temporelle de la signature spatiale liée à la vitesse du véhicule. Des dissemblances mineures peuvent aussi apparaître localement le long de la signature magnétique, puisque So(t) est un développé de la signature locale (en Cxy 0) du véhicule, alors que So(x) est un instantané. Globalement, le signal So(t) peut être vu comme une version comprimée du signal So(x) (si le véhicule accélère), dilatée (s'il freine), constante (s'il s'arrête), voire même retournée (si le véhicule recule), et éventuellement déformée ainsi par morceaux.Each spatial profile is, in whole or in part, comparable to the time measurement S o (t), resulting from the sensor C xy 0 when the vehicle passes above the intersection of the lines 2, 4. The main difference comes from the temporal deformation of the spatial signature related to the speed of the vehicle. Minor dissimilarities can also appear locally along the magnetic signature, since S o (t) is a developed of the local signature (in C xy 0 ) of the vehicle, whereas S o (x) is a snapshot. Overall, the signal S o (t) can be seen as a compressed version of the signal S o (x) (if the vehicle accelerates), dilated (if it brakes), constant (if it stops), or even returned (if the vehicle backs up), and possibly deformed in pieces.

On peut utiliser une technique de « morphing » (comme par exemple l'algorithme « Direct Time Warping » utilisé en traitement de la parole, voir référence bibliographique donnée précédemment, article de C.S. Myers et al.) pour déterminer la relation L(t - x) entre ces deux signaux So(x) et So(t).One can use a "morphing" technique (as for example the "Direct Time Warping" algorithm used in speech processing, see bibliographic reference given above, article by CS Myers et al.) To determine the relationship L (t - x) between these two signals S o (x) and S o (t).

Un algorithme de « morphing » cherche la correspondance point à point entre deux formes, comme illustré sur la figure 3, sur laquelle les courbes I' et II' représentent respectivement So(x) et So(t). L'algorithme permet de retrouver un point de la signature spatiale So(x) ayant subit:

  • un éloignement plus ou moins fort par rapport au point voisin (accélération ou freinage),
  • une répétition pendant un certain temps (arrêt),
  • un éloignement en sens opposé (recul).
A "morphing" algorithm seeks point-to-point correspondence between two forms, as shown in figure 3 , on which the curves I 'and II' respectively represent S o (x) and S o (t). The algorithm makes it possible to find a point of the spatial signature S o (x) having undergone:
  • a distance more or less strong compared to the next point (acceleration or braking),
  • a repetition for a while (stop),
  • a distance in the opposite direction (recoil).

La technique de « morphing » s'applique bien à ce problème car l'ensemble des dipôles magnétiques qui forment un véhicule suit la même cinétique.The technique of "morphing" applies well to this problem because the set of magnetic dipoles that form a vehicle follows the same kinetics.

Il s'agit d'une technique permettant de passer progressivement d'un signal à un autre, de la façon la plus continue possible. Une telle technique est par exemple décrite dans le document de C.S.Myers déjà cité ci-dessus.This is a technique to progressively move from one signal to another, in the most continuous way possible. Such a technique is for example described in the C.S.Myers document already cited above.

De plus, la relation L(t - x) est également caractéristique du profil de vitesse du véhicule lors de son passage au dessus du capteur Cxy 0. A l'issue de l'étape de « morphing », on obtient la relation donnant x en fonction de t, x=f(t). La vitesse résulte de l'intégration de cette fonction.Moreover, the relation L (t - x) is also characteristic of the velocity profile of the vehicle when it passes over the sensor C xy 0 . At the end of the "morphing" step, we obtain the relation giving x as a function of t, x = f (t). The speed results from the integration of this function.

Ensuite, les données issues des capteurs Cy i sont exploitées.Then, the data from the sensors C y i are used.

Au cours du temps, ces mesures forment une image I (t, Y) répartie suivant le temps et sur la ligne 4. On peut appliquer la relation L(t-x), déterminée précédemment, à chaque colonne i de I(t,Y) c'est-à-dire à chaque signal temporel issu des capteurs Cy i.In the course of time, these measurements form an image I (t, Y) distributed according to time and on line 4. It is possible to apply the relation L (tx), determined previously, at each column i of I (t, Y), that is to say at each time signal coming from the sensors C y i .

On obtient ainsi une photo P(X,Y) de la signature du véhicule, issue d'une seule ligne de capteurs. Ainsi sont représentées :

  • en figures 4A - 4C : les images I(t, Y) pour les 3 composantes Bx, By, Bz du champ ;
  • en figures 4D - 4F : les coupes centrales illustrant S0(t) après « morphing » (en trait fin) à S0(x) (en trait gras) (pour chaque composante Bx, By, Bz).
  • en figures 4G - 4I : les images P(X,Y) spatiales issues des capteurs Cy i. (Là encore : pour chaque composante Bx, By, Bz).
This gives a photo P (X, Y) of the vehicle signature, from a single line of sensors. Thus are represented:
  • in Figures 4A - 4C : the images I (t, Y) for the 3 components B x , B y , B z of the field;
  • in Figures 4D - 4F : the central sections illustrating S 0 (t) after "morphing" (in fine lines) to S 0 (x) (in bold lines) (for each component B x , B y , B z ).
  • in Figures 4G - 4I spatial P (X, Y) images from C y i sensors. (Again: for each component B x , B y , B z ).

P(X,Y) est un déroulé temporel de la signature, replacé dans l'espace, sans avoir à déterminer la vitesse du véhicule ou sans émettre aucune hypothèse sur sa trajectoire.P (X, Y) is a time course of the signature, placed in space, without having to determine the speed of the vehicle or without making any hypothesis on its trajectory.

Son acquisition est donc indépendante de la vitesse de roulage et de la trajectoire du véhicule.Its acquisition is therefore independent of the driving speed and the trajectory of the vehicle.

Selon l'invention, un procédé de reconnaissance de la signature magnétique d'un objet en déplacement comprend :

  • la mesure temporelle So(t) par un capteur magnétique Co (le capteur CXY0) placé sur la trajectoire de l'objet,
  • la mesure S(x) à un instant ta par des premiers capteurs magnétiques Cx i alignés avec Co selon la direction 2 de déplacement selon X,
  • la comparaison point à point du signal temporel So(t) et du signal spatial S(x),
  • l'élaboration d'une relation t(x) entre les temps t et les sites ou les positions x le long de la direction de déplacement,
  • les mesures Sy(t) au cours du temps par des seconds capteurs magnétiques Cy i alignés avec Co selon une direction Y (direction 4 ou 4') différente de la direction de déplacement 2,
  • la transformation par la relation t(x) des mesures Sy(t) en un signal spatial Sy(x), image magnétique spatiale de l'objet.
According to the invention, a method for recognizing the magnetic signature of a moving object comprises:
  • the temporal measurement So (t) by a magnetic sensor Co (the sensor C XY 0) placed on the trajectory of the object,
  • the measurement S (x) at an instant ta by first magnetic sensors C x i aligned with Co in the direction of displacement 2 along X,
  • the point-to-point comparison of the time signal So (t) and the spatial signal S (x),
  • the development of a relation t (x) between the times t and the sites or the positions x along the direction of displacement,
  • the measurements Sy (t) over time by second magnetic sensors C y i aligned with Co in a direction Y (direction 4 or 4 ') different from the direction of movement 2,
  • the transformation by the relation t (x) of the measurements Sy (t) into a spatial signal Sy (x), spatial magnetic image of the object.

Selon un deuxième exemple de réalisation, le dispositif de base peut prendre d'autres formes, et l'invention décrite ci-dessus peut être appliquée dans différentes configurations des capteurs.According to a second exemplary embodiment, the basic device can take other forms, and the invention described above can be applied in different configurations of the sensors.

On cherche, dans les différentes configurations, à avoir une ligne 2 disposée dans le sens du roulage du véhicule (sens X), et un capteur commun avec une autre ligne 8 de capteurs, le long de laquelle sera appliqué le « morphing ».In the various configurations, it is sought to have a line 2 arranged in the direction of the vehicle running (X direction), and a common sensor with another line 8 of sensors, along which will be applied the "morphing".

Les figures 5A - 5C présentent plusieurs exemples de géométrie selon cette réalisation:

  • figure 5A : système à lignes de capteurs 2, 40 formant un « V » ;
  • figure 5B : système à lignes de capteurs 2, 42 formant un demi « T » transverse;
  • figure 5C : système à plusieurs lignes « Y » 42, 44, 46, chacune faisant un angle avec la ligne 2 ; Comme pour le cas de la figure 2, la technique de « morphing » peut être appliquée pour chaque ligne « Y » 42, 44, 46 à partir de la signature S(x) et de chaque signature temporelle issue du capteur commun entre chaque ligne « Y » et la ligne des capteurs formant S(x).
The Figures 5A - 5C present several examples of geometry according to this embodiment:
  • Figure 5A : sensor line system 2, 40 forming a "V";
  • Figure 5B : sensor line system 2, 42 forming a transverse half "T";
  • Figure 5C : multi-line "Y" system 42, 44, 46, each at an angle to line 2; As for the case of figure 2 , the "morphing" technique can be applied for each "Y" line 42, 44, 46 from the signature S (x) and from each time signature resulting from the sensor common between each line "Y" and the line of sensors forming S (x).

Selon un troisième exemple de réalisation (figure 6), on forme un dispositif matriciel « creux » : n lignes 2, 21, 22, 23..., 2n sont disposées parallèlement entre elles, dans le sens de déplacement des véhicules, tandis que m lignes 4, 41, 42, 43..., 4m sont disposées selon la direction Y, parallèlement entre elles. Ces m lignes pourraient être disposées autrement que perpendiculairement à l'axe X. Un capteur est disposé à chaque intersection 2i - 4j.According to a third embodiment ( figure 6 ), a "hollow" matrix device is formed: n lines 2, 2 1 , 2 2 , 2 3 ..., 2 n are arranged parallel to one another in the direction of movement of the vehicles, whereas m lines 4, 4 1 , 4 2 , 4 3 ..., 4 m are arranged in the direction Y, parallel to each other. These m lines could be arranged other than perpendicular to the X axis. A sensor is disposed at each intersection 2 i - 4 j .

On utilise le faible coût et la compacité des capteurs mis en oeuvre pour réunir une plus grande quantité d'information: le dispositif forme une matrice 2D, ou un tapis, de capteurs qui sont répartis sous la chaussée, de façon uniforme ou non.The low cost and compactness of the sensors used to gather a greater amount of information is used: the device forms a 2D matrix, or a carpet, of sensors which are distributed under the roadway, uniformly or otherwise.

Cette matrice est « creuse » à certains endroits : il manque des capteurs ou leur densité n'est pas satisfaisante pour la précision requise par l'application. On utiliser alors le principe décrit ci-dessus (« morphing ») pour compléter les données manquantes.This matrix is "hollow" in some places: it lacks sensors or their density is not satisfactory for the precision required by the application. We then use the principle described above ("morphing") to complete the missing data.

On choisit, dans la matrice, deux lignes telles que décrites précédemment pour former un système à deux lignes à l'intersection desquelles se trouve un capteur, et on applique la technique du morphing permettant de reconstruire les données manquantes dans la zone choisie. On peut répéter cette opération à plusieurs endroits de la matrice.In the matrix, two lines as described above are chosen to form a two-line system at the intersection of which a sensor is located, and the morphing technique is used to reconstruct the missing data in the chosen zone. This can be repeated at several places in the matrix.

A chaque instant, les mesures réalisées par tous les capteurs forment une photo spatiale P (X, Y) de la signature du véhicule, complétée à certains endroits par la technique selon la présente invention.At every moment, the measurements made by all the sensors form a spatial photo P (X, Y) of the signature of the vehicle, completed in some places by the technique according to the present invention.

Comme précédemment, l'acquisition de cette photo est indépendante de la vitesse de roulage et de la trajectoire du véhicule.As before, the acquisition of this photo is independent of the running speed and the trajectory of the vehicle.

Un quatrième exemple de réalisation est un système à plusieurs dispositifs de base (figure 7).A fourth embodiment is a system with several basic devices ( figure 7 ).

On ajoute à un des dispositifs de base (sur la figure 7 : un dispositif en « T »), décrits ci-dessus en liaison avec les figures et 5A - 5C, une petite matrice 300 de capteurs (notée Mij) placée sur un des côtés (ou les deux côtés) du « T », et occupant une longueur lx.One adds to one of the basic devices (on the figure 7 a "T" device) described above in connection with FIGS. 5A-5C, a small sensor array 300 (denoted M ij ) placed on one side (or both sides) of the "T", and occupying a length l x .

Ainsi, on peut obtenir localement une image instantanée d'une partie de la signature des véhicules. En particulier, si lx vaut environ 3 m, cette matrice fournit le déroulé spatial d'un ou plusieurs ensembles essieu + roue + pneu d'une voiture ou d'un camion.Thus, it is possible locally to obtain a snapshot of part of the vehicle signature. In particular, if l x is approximately 3 m, this matrix provides the spatial unwinding of one or more sets axle + wheel + tire of a car or a truck.

De plus, la matrice Mij permet également de capter les signatures de petits véhicules qui pourraient fournir un signal très faible sur la ligne 2 de capteurs. Ceci peut notamment arriver lorsqu'une moto circule dans un chenal de péage en se serrant bien d'un côté pour effectuer la transaction.In addition, the matrix M ij also makes it possible to capture the signatures of small vehicles that could provide a very weak signal on the line 2 of sensors. This can happen in particular when a motorcycle circulates in a toll channel by tightening well on one side to make the transaction.

A chaque instant, la photo 2D issue des capteurs de la matrice permet de localiser la moto. Un pré-traitement fournit le début et la fin de la signature utile.At every moment, the 2D photo from the sensors of the matrix can locate the bike. Preprocessing provides the beginning and end of the useful signature.

On peut ainsi déterminer quelle ligne de capteurs Mi de la matrice coïncide le mieux avec l'axe de roulage de la moto.It is thus possible to determine which line of sensors M i of the matrix coincides best with the running axis of the motorcycle.

Cette ligne peut alors être utilisée avec la ligne de capteur 4 pour former à nouveau un dispositif en «T», comme expliqué ci-dessus, de dimension et de positionnement plus adaptés à ce véhicule. Par un procédé de « morphing » identique à celui déjà présenté ci-dessus, on peut alors récupérer la photo P(X,Y) de la signature magnétique spatiale de la moto.This line can then be used with the sensor line 4 to form a new "T" device, as explained above, of dimension and positioning more adapted to this vehicle. By a method of "morphing" identical to that already presented above, it is then possible to recover the photo P (X, Y) of the magnetic spatial signature of the motorcycle.

Selon un cinquième exemple de réalisation, on ajoute à l'un des dispositifs décrits ci-dessus au moins un capteur (de champ ou de gradient du champ, 1D, 2D ou 3D) suivant la direction verticale. Ce système permet de mesurer, à une distance Dz, une ou plusieurs composantes du champ (ou du gradient) dans au moins un plan différent de celui d'un des dispositifs décrits précédemment. Cette information peut être pertinente pour disposer de données relative à la hauteur des véhicules.According to a fifth exemplary embodiment, at least one sensor (field or gradient field, 1D, 2D or 3D) in the vertical direction is added to one of the devices described above. This system makes it possible to measure, at a distance D z , one or more components of the field (or gradient) in at least one plane different from that of one of the devices described above. This information may be relevant for having vehicle height data.

Un sixième exemple de réalisation est un dispositif avec une référence déportée.A sixth exemplary embodiment is a device with a remote reference.

Dans cette version, on ajoute au dispositif décrit précédemment des moyens de mesure de référence (champ ou gradient de champ 1D, ou 2D ou 3D) déportée. Ceci signifie que ces moyens sont situés suffisamment loin de la zone de mesure pour ne pas être sensibles au passage du véhicule. Cette mesure de référence permet d'améliorer la précision de mesure en soustrayant le bruit géomagnétique et environnant (bruit industriel, tramway, réseau électrique, ...)In this version, the device described above is added to the reference measurement means (field or field gradient 1D, or 2D or 3D) remote. This means that these means are located far enough from the measurement zone not to be sensitive to the passage of the vehicle. This reference measurement makes it possible to improve measurement accuracy by subtracting geomagnetic and surrounding noise (industrial noise, streetcar, electrical network, etc.)

Lors de la mise en place du dispositif, les capteurs peuvent être par exemple regroupés en lignes, qui sont vues comme des branches du système arborescent qui gère l'acquisition et le stockage des données.During the installation of the device, the sensors can for example be grouped into lines, which are seen as branches of the tree system that manages the acquisition and storage of data.

Une ligne comporte 1 ou plusieurs noeuds, chacun comportant un capteur mono, bi ou tri axe et l'électronique associée (filtrage, amplification, numérisation, multiplexage). Chaque noeud est mis en liaison sur un bus numérique d'échange d'information haut débit (USB par exemple).A line comprises 1 or more nodes, each comprising a mono, bi or tri-axis sensor and the associated electronics (filtering, amplification, digitization, multiplexing). Each node is linked on a digital high speed information exchange bus (USB for example).

Un système central 50 (figure 6), par exemple un microordinateur spécialement programmé à cet effet, par exemple déporté au bord de la chaussée, gère le multiplexage, le cadencement des acquisitions, et le stockage de données. Il embarque également des moyens ou le système de traitement qui réalise l'exploitation des mesures (prétraitement, morphing, extraction des paramètres, classification).A central system 50 ( figure 6 ), for example a microcomputer specially programmed for this purpose, for example offset at the edge of the roadway, manages the multiplexing, the timing of acquisitions, and the storage of data. It also embeds means or the processing system which carries out the exploitation of the measurements (pretreatment, morphing, extraction of the parameters, classification).

Physiquement, les lignes peuvent se présenter sous la forme de tubes enfouis sous la chaussée ou des barrettes insérées dans des rainures pratiquées à la surface d'un revêtement routier. Ce mécanisme présente l'avantage d'une plus grande facilité de mise en place du dispositif de classification et un entretien moindre par rapport aux boucles de courant (qui subissent « durement» la déformation de la route et les passages incessants des véhicules). Si un capteur s'avère défectueux, la ligne est extraite du sol, et le capteur aisément remplacé. Le système central 50 n'est pas modifié. De même, on peut utiliser tout ou une partie des lignes, en fonction des besoins du système de classification, sans devoir intervenir sur la chaussée.Physically, the lines may be in the form of tubes buried under the roadway or bars inserted into grooves on the surface of a road surface. This mechanism has the advantage of greater ease of implementation of the classification device and less maintenance compared to current loops (which undergo "hard" deformation of the road and the incessant passages of vehicles). If a sensor proves defective, the line is removed from the ground, and the sensor easily replaced. The central system 50 is not modified. Similarly, all or part of the lines can be used, depending on the needs of the classification system, without having to intervene on the roadway.

L'exploitation des données va maintenant être décrite.The exploitation of the data will now be described.

Tous les dispositifs et procédés décrits précédemment permettent de capturer la photo 2D spatiale P(X,Y) du véhicule. Dans le cas où plusieurs composantes du champ ou de gradient sont enregistrées, on obtient autant d'images que de composantes.All the devices and methods described above make it possible to capture the spatial 2D photo P (X, Y) of the vehicle. In the case where several components of the field or of gradient are recorded, one obtains as many images as of components.

Dans un premier temps, les paramètres identifiant le véhicule, ou son type, sont extraits de la photo. Celle-ci fournit l'image de la répartition des dipôles caractéristiques de la signature.At first, the parameters identifying the vehicle, or its type, are extracted from the photo. This provides the image of the distribution of the characteristic dipoles of the signature.

Par exemple, par seuillage, les dimensions spatiales de la signature dans le sens Y et X fournissent les largeur et longueur du véhicule, quelle que soit sa vitesse, qu'il soit en roulage, arrêté, ou même en marche arrière.For example, by thresholding, the spatial dimensions of the signature in the Y and X direction provide the width and length of the vehicle, regardless of its speed, whether it is running, stopped, or even in reverse.

La détection des maxima d'intensité fournit le nombre d'essieux, ainsi que leur positionnement 2D et leur écartement relatif.Detection of intensity maxima provides the number of axles, as well as their 2D positioning and relative spacing.

L'exploitation du contenu spectral de l'image donne l'énergie de la signature et ses principaux coefficients de Fourier.The exploitation of the spectral content of the image gives the energy of the signature and its main Fourier coefficients.

Si l'on dispose de trois photos, issues de capteurs de champ tri-axes, il est également possible de calculer l'angle parcouru par le vecteur champ magnétique total du véhicule B = Bx + By + Bz. Celui-ci est caractéristique du caractère doux ou perturbé de la signature, et peut être indicatif de la hauteur entre véhicule et sol.If we have three photos, from tri-axis field sensors, it is also possible to calculate the angle traveled by the vector total magnetic field of the vehicle B = B x + B y + B z . This one is characteristic of the soft or disturbed character of the signature, and can be indicative of the height between vehicle and ground.

Avec un dispositif selon l'invention, les données obtenues dans la direction X peuvent être fortement sur-échantillonnées sans coût d'installation supplémentaire lié aux capteurs et à l'électronique associée, puisqu'elles sont issues d'une acquisition temporelle. On peut alors facilement approximer la dérive de P(X,Y) suivant X en calculant la différence P(Xi, Y) - P (Xi-1,Y). On obtient alors une carte de gradients dont l'exploitation peut permettre de mieux localiser les essieux du véhicule.With a device according to the invention, the data obtained in the X direction can be strongly oversampled with no additional installation costs related to the sensors and the associated electronics, since they come from a time acquisition. We can then easily approximate the drift of P (X, Y) along X by calculating the difference P (X i , Y) - P (X i-1 , Y). This gives a gradients map whose operation can better locate the vehicle axles.

Par prolongement d'une carte de gradients (mesurés ou calculés), on peut obtenir le gradient vertical et calculer, via le rapport du gradient vertical sur le champ, une indication de la distance séparant les sources magnétique qui caractérisent le véhicule des capteurs, c'est à dire une grandeur liée à la hauteur du véhicule.By extending a map of gradients (measured or calculated), we can obtain the vertical gradient and calculate, via the ratio of the vertical gradient on the field, an indication of the distance separating the magnetic sources that characterize the vehicle from the sensors. is a magnitude related to the height of the vehicle.

Dans un deuxième temps, ces paramètres sont utilisés dans un algorithme de classification. Une solution repose sur la mise en oeuvre des apprentissage-restitution de type réseau de neurones, par exemple.In a second step, these parameters are used in a classification algorithm. One solution is based on the implementation of learning-restitution type neural network, for example.

Un dispositif 50, tel qu'un microordinateur, est programmé pour mettre en oeuvre l'un des procédés décrits ci-dessus, à partir des mesures délivrées par les capteurs.A device 50, such as a microcomputer, is programmed to implement one of the methods described above, from the measurements delivered by the sensors.

Claims (19)

  1. Device for measuring the magnetic signatures of vehicles including:
    - at least a first set of sensors (Cx i), designed to be arranged along at least a first direction (2),
    - at least a second set of sensors (Cy j), designed to be arranged along at least a second direction (4), that intersects the first direction at a point at which a common sensor (Cxy 0) is placed, belonging to the first and the second set,
    - calculation means (50) to calculate a relation between the time signature So(t) of a vehicle passing above the common sensor and a spatial profile So(x) resulting from measurements made by the sensors in the first set of sensors.
  2. Device set forth in claim 1, at least one second direction being perpendicular to the first direction.
  3. Device set forth in claim 1 or 2, including a third set of sensors designed to be arranged along at least a third direction, that intersects the first direction at a point at which a common sensor (Cxy 1) is placed, belonging to the first and third set.
  4. Device set forth in any one of claims 1 to 3, the calculation means being also used to calculate the vehicle speed.
  5. Device set forth in any one of claims 1 to 4, including a plurality of first sets of sensors and a plurality of second sets of sensors forming a 2D matrix of sensors.
  6. Device set forth in claim 5, the matrix being hollow.
  7. Device set forth in any one of claims 1 to 4, including a first set of sensors, at least one second set of sensors, and at least one 2D matrix of sensors arranged on at least one of the sides of the first set.
  8. Device set forth in any one of claims 1 to 7, also including at least one 1D, or 2D or 3D field sensor or field gradient sensor along the vertical direction.
  9. Device set forth in any one of claims 1 to 8, including at least one 1D, or 2D or 3D offset field sensor or field gradient sensor.
  10. Device set forth in any one of claims 1 to 9, the calculation means being used to form a spatial representation of the signature of vehicles.
  11. Device set forth in claim 10, the calculation means being used to extract vehicle identification parameters from said spatial representation.
  12. Device set forth in claim 11, the calculation means being used to extract the length and/or the width of the vehicle by thresholding said spatial representation.
  13. Device set forth in claim 11 or 12, the calculation means being used to extract the number of vehicle axles by detection of intensity maxima.
  14. Device set forth in any one of claims 11 to 13, the calculation means being used to calculate the energy of the signature and/or at least part of its Fourier coefficients.
  15. Device set forth in any one of claims 11 to 14, also including a triaxial field sensor, the calculation means being used to calculate the angle crossed by the magnetic field vector.
  16. Device set forth in any one of claims 11 to 15, the calculation means being used to calculate the derivative of the signature P(X,Y) along X.
  17. Device set forth in claim 16, the calculation means being used to calculate a map of gradients.
  18. Device set forth in claim 16 or 17, the calculation means being used to calculate a vertical gradient of the field and the ratio of this gradient to the field.
  19. Device set forth in any one of claims 11 to 18, said parameters being used in a classification algorithm.
EP07100200A 2006-01-11 2007-01-08 Magnetic traffic control system Not-in-force EP1811479B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0650097A FR2896070B1 (en) 2006-01-11 2006-01-11 MAGNETIC SYSTEM FOR CONTROLLING TRAFFIC

Publications (2)

Publication Number Publication Date
EP1811479A1 EP1811479A1 (en) 2007-07-25
EP1811479B1 true EP1811479B1 (en) 2009-08-19

Family

ID=36975605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07100200A Not-in-force EP1811479B1 (en) 2006-01-11 2007-01-08 Magnetic traffic control system

Country Status (7)

Country Link
US (1) US7765056B2 (en)
EP (1) EP1811479B1 (en)
JP (1) JP5068546B2 (en)
AT (1) ATE440354T1 (en)
DE (1) DE602007001985D1 (en)
ES (1) ES2332068T3 (en)
FR (1) FR2896070B1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2576316A2 (en) * 2010-05-31 2013-04-10 Central Signal, LLC Train detection
US20120089462A1 (en) * 2010-10-12 2012-04-12 Alber Hot Traffic light electronic display interface system and method
CN102034357A (en) * 2010-12-01 2011-04-27 北京握奇数据系统有限公司 Vehicle monitoring device as well as device, system and method for detecting regulation-violating vehicles
MY180285A (en) * 2010-12-15 2020-11-26 Mimos Berhad System and method for traffic violation detection
BR112014007388B1 (en) * 2011-09-27 2020-10-20 Intelligent Imaging Systems Inc vehicle identification
US10223909B2 (en) * 2012-10-18 2019-03-05 Uber Technologies, Inc. Estimating time travel distributions on signalized arterials
JP6271044B2 (en) * 2015-01-16 2018-01-31 三菱電機株式会社 Train radio system and train length calculation method
GB201503855D0 (en) * 2015-03-06 2015-04-22 Q Free Asa Vehicle detection
EP3091372A1 (en) * 2015-05-05 2016-11-09 Centro de Cálculo Igs Software S.L. Vehicle detection system
CN105023441A (en) * 2015-07-27 2015-11-04 苏州大学 Traffic vehicle detection system based on magnetic sensor and method
US10672266B2 (en) * 2016-01-05 2020-06-02 TollSense, LLC Systems and methods for monitoring roadways using magnetic signatures
US9934682B2 (en) * 2016-01-05 2018-04-03 TollSense, LLC Systems and methods for monitoring roadways using magnetic signatures
US11455838B2 (en) 2016-01-13 2022-09-27 Parkhub, Inc. System for monitoring arrival of a vehicle at a given location and associated methods
US11386780B2 (en) 2016-01-13 2022-07-12 Parkhub, Inc. System for monitoring arrival of a vehicle at a given location and associated methods
US10803423B2 (en) 2016-09-29 2020-10-13 The Parking Genius, Inc. System for managing parking of autonomous driving vehicles
US10299122B2 (en) 2016-11-23 2019-05-21 The Parking Genius, Inc. User validation system utilizing symbolic or pictographic representations of validation codes
DE102017215932B3 (en) * 2017-09-11 2019-02-28 Audi Ag Method for determining position information of a motor vehicle and motor vehicle
US10446024B2 (en) * 2017-09-21 2019-10-15 The Parking Genius, Inc. Parking sensors capable of determining direction and speed of vehicle entering or leaving a parking lot
US10325497B2 (en) 2017-09-21 2019-06-18 The Parking Genius, Inc. Parking sensors capable of determining direction and speed of vehicle entering or leaving a parking lot using magnetic signature recognition
CN108985271B (en) * 2018-08-16 2021-10-08 大连民族大学 A Pedestrian Determination Method Based on Magnetic Model
CN110211386B (en) * 2019-05-22 2021-03-23 东南大学 A classification method of expressway vehicles based on non-parametric test
EP4195176A1 (en) * 2021-12-13 2023-06-14 PhySens GmbH Method for identifying vehicles and vehicle identification device

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781664A (en) * 1972-10-24 1973-12-25 Develco Magnetic detection for an anti-shoplifting system utilizing combined magnetometer and gradiometer signals
US4509131A (en) 1982-06-01 1985-04-02 The United States Of America As Represented By The Secretary Of The Navy Geomagnetic velocimeter
JPH05225490A (en) * 1992-02-07 1993-09-03 Toshiba Corp Vehicle type discriminating device
FR2693301B1 (en) 1992-07-06 1994-08-05 Est Centre Tech Equip DEVICE FOR DETECTING ONE OR MORE WHEELS OF A ROLLING MOBILE MACHINE.
US5331276A (en) 1992-09-16 1994-07-19 Westinghouse Electric Corporation Apparatus for passively measuring the velocity of a ferrous vehicle along a path of travel
US5491475A (en) * 1993-03-19 1996-02-13 Honeywell Inc. Magnetometer vehicle detector
FR2740592B1 (en) 1995-10-27 1997-11-21 Jean Marc Coutellier METAL MASS DETECTION SYSTEM
DE19646632C1 (en) * 1996-11-12 1998-05-14 Deutsch Zentr Luft & Raumfahrt Traffic monitoring method and device
US6611210B2 (en) * 1996-12-03 2003-08-26 Inductive Signature Technologies, Inc. Automotive vehicle classification and identification by inductive signature
CA2254538C (en) * 1998-11-26 2006-02-07 Canpolar East Inc. Collision deformation sensor for use in the crush zone of a vehicle
DE19919925C2 (en) * 1999-04-30 2001-06-13 Siemens Ag Arrangement and method for the simultaneous measurement of the speed and the surface shape of moving objects
ES2158827B1 (en) * 2000-02-18 2002-03-16 Fico Mirrors Sa DEVICE FOR DETECTION OF PRESENCE OF OBJECTS.
FR2811789B1 (en) 2000-07-13 2003-08-15 France Etat Ponts Chaussees METHOD AND DEVICE FOR CLASSIFYING VEHICLES INTO SILHOUETTE CATEGORIES AND FOR DETERMINING THEIR SPEED, FROM THEIR ELECTROMAGNETIC SIGNATURE
US6897892B2 (en) * 2000-10-13 2005-05-24 Alexander L. Kormos System and method for forming images for display in a vehicle
EP1398601A3 (en) * 2002-09-13 2014-05-07 Canon Kabushiki Kaisha Head up display for navigation purposes in a vehicle
JP2005091137A (en) * 2003-09-17 2005-04-07 Nsk Ltd Rudder angle sensor
JP2005208743A (en) * 2004-01-20 2005-08-04 Hitachi Cable Ltd Passing vehicle detection device
JP4224411B2 (en) * 2004-03-02 2009-02-12 日立電線株式会社 Vehicle detection device
JP2006176084A (en) * 2004-12-24 2006-07-06 Advics:Kk Detection value correction method for vehicle behavior sensor
US7180418B1 (en) * 2004-12-27 2007-02-20 Erudite Holding Llc Active threat detection and elimination while in transit
US7668692B2 (en) * 2005-10-11 2010-02-23 Tatom Frank B Method for weighing vehicles crossing a bridge

Also Published As

Publication number Publication date
US7765056B2 (en) 2010-07-27
FR2896070B1 (en) 2008-02-15
US20070162218A1 (en) 2007-07-12
ES2332068T3 (en) 2010-01-25
JP2007188503A (en) 2007-07-26
JP5068546B2 (en) 2012-11-07
EP1811479A1 (en) 2007-07-25
FR2896070A1 (en) 2007-07-13
ATE440354T1 (en) 2009-09-15
DE602007001985D1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
EP1811479B1 (en) Magnetic traffic control system
CA2139577C (en) Device for detecting especially one or more wheels of a vehicle or rolling mobile equipment, and process implementing such device
EP3233540B1 (en) Method for detecting and alarming an under-inflated tire
FR3049560B1 (en) METHOD AND SYSTEM FOR ASSISTING THE CHANGE OF THE TRACK TRACK FOR A MOTOR VEHICLE
EP2642464B1 (en) Method for determining information
EP2521921B1 (en) Device for measuring the speed of displacement of an object deforming the lines of the terrestrial magnetic field
CN103116988B (en) Traffic flow and vehicle type detecting method based on TOF (time of flight) camera
Rajab et al. Classification and speed estimation of vehicles via tire detection using single‐element piezoelectric sensor
KR100939962B1 (en) Vehicle information recognition device and method
EP0770978B1 (en) Metallic mass detection system
EP3417398B1 (en) Device and method for estimating the attention level of a driver of a vehicle
FR3047589A1 (en) METHOD AND DEVICE FOR ESTIMATING THE LATERAL POSITION OF A VEHICLE IN A CIRCULATION PATH
KR101267991B1 (en) Automatic vehicle classification method
EP0810496B1 (en) Method and device for the identification and localisation of fixed objects along a path
FR2951676A1 (en) DEVICE FOR PROTECTING A MOTOR VEHICLE
WO2017216495A1 (en) Method for determining a reference driving class
FR2790834A1 (en) Magnetic image system to produce a magnetic image e.g. of vehicle, has group of magnetometers that are arranged along two axes of a plane and supply data to an analytical module which is able to produce high resolution information
JP3701603B2 (en) Vehicle detection device and vehicle detection method
FR2906211A1 (en) Route state detecting method for motor vehicle, involves combining two established independent diagnostics on given number of samples in sliding calculation window to establish reliable final diagnostics delivering state indication of route
EP1528409B1 (en) Method and system for measuring the speed of a vehicle on a curved trajectory
FR2617315A1 (en) Method and device for discerning the type of a motor vehicle while moving
FR2837599A1 (en) System reading route information for road vehicles, uses bars painted transversely along the roadway to encode information using the separation of the bars, and has reader and processing equipment fitted to vehicles
FR2679682A1 (en) Method for detecting the changes in occupancy status of a track
FR3085782A1 (en) METHOD AND DEVICE FOR IDENTIFYING OBSTACLES ON A MOTOR VEHICLE ROUTE
FR2956511A1 (en) Road vehicle characterizing system for road traffic quantification application, has detectors that are arranged along angle of ninety degrees relative to longitudinal axis of pavement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080114

17Q First examination report despatched

Effective date: 20080218

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602007001985

Country of ref document: DE

Date of ref document: 20091001

Kind code of ref document: P

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090819

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2332068

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100520

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100108

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150116

Year of fee payment: 9

Ref country code: ES

Payment date: 20150126

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210128

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210112

Year of fee payment: 15

Ref country code: GB

Payment date: 20210118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602007001985

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220108

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131