EP1782437B1 - Magneto-rheological materials having a high switch factor and use thereof - Google Patents
Magneto-rheological materials having a high switch factor and use thereof Download PDFInfo
- Publication number
- EP1782437B1 EP1782437B1 EP05782479A EP05782479A EP1782437B1 EP 1782437 B1 EP1782437 B1 EP 1782437B1 EP 05782479 A EP05782479 A EP 05782479A EP 05782479 A EP05782479 A EP 05782479A EP 1782437 B1 EP1782437 B1 EP 1782437B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- materials according
- magnetorheological materials
- particles
- mrf
- magnetorheological
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
- H01F1/447—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids
Definitions
- the present invention relates to high switching factor magnetorheological materials, and more particularly to high switching factor magnetorheological fluids (MRF), and their use.
- MRF high switching factor magnetorheological fluids
- MRF are materials that change their flow behavior under the influence of an external magnetic field.
- electrorheological fluids are usually non-colloidal suspensions of particles which can be polarized in a magnetic or electric field in a carrier liquid which optionally contains further additives.
- MRF brakes and different vibration and shock absorbers Mark R. Jolly, Jonathan W. Bender, and J. David Carlson, Properties and Applications of Commercial Magnetorheological Fluids, SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998 ). In the following some special properties of MRF and their influenceability are described.
- MRF are mostly non-colloidal suspensions of magnetizable particles, from about one micron to one millimeter in size in a carrier liquid.
- the MRF can also additives such.
- the particles are ideally homogeneous and isotropically distributed, so that the MRF has a low dynamic basis viscosity ⁇ o [measured in Pa.s] in the magnet-free space.
- ⁇ o measured in Pa.s
- the dynamic viscosity of an MRF is determined with a rotational viscometer.
- the shear stress ⁇ [measured in Pa] is measured at different magnetic field strengths and given shear rate D [in s -1 ].
- the changes in the flow behavior of the MRF depend on the concentration and type of magnetizable particles, their shape, size and size distribution; but also the properties of the carrier liquid, the additional additives, the applied field, the temperature and other factors.
- the mutual interrelations of all these parameters are extremely complex, so that individual improvements of an MRF with respect to a specific target size have been the subject of investigations and optimization efforts again and again.
- B ⁇ r ⁇ ⁇ O ⁇ H
- ⁇ r relative permeability of the medium whose magnetic flux density is to be determined
- ⁇ o 4 ⁇ ⁇ ⁇ 10 -7
- V ⁇ s / A ⁇ m absolute permeability.
- the switching factor w D can thus be considered as a measure of the feasibility of a magnetic excitation in a rheological state change of the MRF.
- a "high" switching factor means that a small change in the magnetic flux density B results in a large change in the shear stress ⁇ B / ⁇ O or the dynamic viscosity ⁇ B / ⁇ O in the MRF.
- MRF spherical particles of carbonyl iron
- MRF magnetizable substances and mixtures of substances known. That's how it describes WO 02/45102 A1 an MRF with a mixture of high-purity iron particles and ferrite particles, in order to simultaneously optimize the properties of the MRF with and without a magnetic field. No information is given on the particle shape and size. Furthermore, there are numerous patents on specific particle geometries and distributions.
- US 6,610,404 B2 describes a magnetorheological material of magnetic particles with defined geometric features such as cylinder or prism shapes, among others. The production of such particles is very expensive. For strongly asymmetric particles, a high base viscosity of the MRF is also to be expected.
- US 6,395,193 B1 and WO 01/84568 A2 Magnetorheological compositions are described with nonspherical magnetic particles, but these are not combined with spherical magnetic particles.
- a magnetorheological composition which contains soft magnetic spherical carbonyl iron particles (1 - 10 microns) and hard magnetic iron oxide or chromium dioxide particles (0.1 - 1 micron).
- magnetorheological materials in particular MRF, with two types of magnetisable particles are proposed, wherein the first particle fraction p consists of irregularly shaped non-spherical particles and the second fraction q consists of spherical particles.
- the combination of irregularly shaped non-spherical particles and spherical particles in the carrier medium surprisingly achieves both a low base viscosity without field and a high shear stress in the external magnetic field. That is, the magnetorheological materials of the invention have an exceptionally high switching factor.
- the production of the irregular is shaped particle fraction p little expensive and thus extremely inexpensive.
- the average particle size of the fraction p is equal to or greater than that of the fraction q. The use of irregularly shaped, non-spherical particles thus creates a significant cost advantage compared to the production of known materials.
- the mean particle size of the fraction p preferably has at least twice the average particle size of the fraction q. Furthermore, it is favorable if the average particle sizes of the fractions p and q are between 0.01 ⁇ m and 1000 ⁇ m, preferably between 0.1 ⁇ m and 100 ⁇ m.
- a further advantageous embodiment of the magnetorheological materials according to the invention provides that the volume ratio of fractions p and q is between 1:99 and 99: 1, preferably between 10:90 and 90:10.
- the magnetizable particles of soft magnetic particles according to the state made of engineering.
- the magnetisable particles both from the amount of soft magnetic metallic materials such as iron, cobalt, nickel (even in non-pure form) and alloys thereof such as iron-cobalt, iron-nickel; magnetic steel;
- mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg or CuMg ferrites.
- the magnetizable particles can also consist of iron carbide or iron nitride particles and of alloys of vanadium, tungsten, copper and manganese as well as of mixtures of the mentioned particle materials or of mixtures of different magnetizable types of solids.
- the soft magnetic materials may also be present all or partially in contaminated form.
- carrier liquids and fats, gels or elastomers are considered.
- carrier liquids the liquids known from the prior art, such as water, mineral oils, synthetic oils, such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and copolymers thereof or mixtures of these liquids.
- inorganic particles such as SiO 2 , TiO 2 , iron oxides, layered silicates or organic additives and combinations thereof may be added to the suspension to reduce sedimentation.
- a further advantageous embodiment of the magnetorheological materials according to the invention provides that the inorganic particles are at least partially organically modified.
- the suspension contains particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfite and combinations thereof in order to reduce abrasion phenomena.
- the suspension for use in the surface treatment of workpieces may contain special abrasive and / or chemical caustic additives, e.g. Corundum, cerium oxides, silicon carbide or diamond contains.
- the proportion of magnetizable particles between 10 and 70 vol .-%, preferably between 20 and 60 vol .-%, is; the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume, and the proportion of nonmagnetizable additives is between 0.001 and 20% by mass, preferably between 0.01 and 15 mass% (based on the magnetizable solids), is.
- the invention further relates to the use of the materials described in more detail above.
- magnetorheological materials according to the invention provides for their use in adaptive shock and vibration dampers, controllable brakes, clutches and in sports or training equipment. Special materials can also be used for the surface treatment of workpieces.
- the magnetorheological materials can also be used to generate and / or display haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, for simulating viscous, elastic and / or viscoelastic properties or the consistency distribution of an object, in particular for training purposes. and / or research and / or for medical applications.
- haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, for simulating viscous, elastic and / or viscoelastic properties or the consistency distribution of an object, in particular for training purposes. and / or research and / or for medical applications.
- MRF magnetorheological fluid
- the rheological and magnetorheological measurements were carried out in a Searle Systems MCR 300 from Paar Physica.
- the rheological properties were carried out without applied magnetic field in a measuring system with coaxial cylinder geometry, while the measurements were carried out in the magnetic field in a plate-plate arrangement perpendicular to the field lines.
- illustration 1 shows the shear stress ⁇ O as a function of the shear rate D for the inventive MRF 3 and the two comparative approaches MRF 1 and MRF 2 without applied magnetic field. It can be seen that the flow curve of the MRF 3 according to the invention is below that of MRF 1 and MRF 2 at all shear rates outside the quasistatic range (D> 1 s -1 ). This means that the MRF 3 according to the invention has the lowest dynamic basic viscosity ⁇ O in magnetic-field-free space at a fixed shear rate D in comparison with the other approaches (compare equation (1) of the description).
- the MRF 3 according to the invention has higher shear stresses ⁇ B over the entire measuring range than the comparative batch MRF 2, which contains only irregularly shaped iron particles (p).
- the MRF 3 according to the invention has the highest shear stresses ⁇ B overall in the magnetic field in comparison with the lugs MRF 1 and MRF 2 without particle mixtures.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
Die vorliegende Erfindung bezieht sich auf magnetorheologische Materialien mit hohem Schaltfaktor, insbesondere auf magnetorheologische Flüssigkeiten (MRF) mit hohem Schaltfaktor, sowie deren Verwendung.The present invention relates to high switching factor magnetorheological materials, and more particularly to high switching factor magnetorheological fluids (MRF), and their use.
MRF sind Materialien, die unter Einwirkung eines äußeren Magnetfeldes ihr Fließverhalten ändern. Wie bei ihren elektrorheologischen Analoga, den sogenannten elektrorheologischen Flüssigkeiten (ERF) handelt es sich in der Regel um nicht-kolloidale Suspensionen aus in einem magnetischen bzw. elektrischen Feld polarisierbaren Teilchen in einer Trägerflüssigkeit, die gegebenenfalls weitere Additive enthält.MRF are materials that change their flow behavior under the influence of an external magnetic field. As with their electrorheological analogs, the so-called electrorheological fluids (ERF) are usually non-colloidal suspensions of particles which can be polarized in a magnetic or electric field in a carrier liquid which optionally contains further additives.
Die Grundlagen der MRF und erste Vorrichtungen zur Ausnutzung des magnetorheologischen Effekts gehen auf Jacob Rabinow im Jahr 1948 zurück (
MRF sind meist nicht-kolloidale Suspensionen magnetisierbarer Teilchen, von ca. einem Mikrometer bis zu einem Millimeter Größe in einer Trägerflüssigkeit. Zur Stabilisierung der Partikel gegenüber Sedimentation und zur Verbesserung der Anwendungseigenschaften kann die MRF außerdem Additive wie z. B. Dispergierhilfsmittel und verdickend wirkende Zusatzstoffe enthalten. Ohne äußeres Magnetfeld sind die Partikel idealerweise homogen und isotrop verteilt, so dass die MRF im magnetfreien Raum eine geringe dynamische Basisviskosität ηo [gemessen in Pa·s] aufweist. Bei Anlegen eines äußeren Magnetfeldes H ordnen sich die magnetisierbaren Teilchen in kettenartigen Strukturen parallel zu den magnetischen Feldlinien an. Dadurch wird das Fließvermögen der Suspension eingeschränkt, was sich makroskopisch als Viskositätsanstieg bemerkbar macht. Die feldabhängige dynamische Viskosität ηH nimmt dabei in der Regel monoton mit der applizierten Magnetfeldstärke H zu.MRF are mostly non-colloidal suspensions of magnetizable particles, from about one micron to one millimeter in size in a carrier liquid. To stabilize the particles against sedimentation and to improve the application properties, the MRF can also additives such. B. dispersants and thickening additives. Without external magnetic field, the particles are ideally homogeneous and isotropically distributed, so that the MRF has a low dynamic basis viscosity η o [measured in Pa.s] in the magnet-free space. When an external magnetic field H is applied, the magnetizable particles arrange in chain-like structures parallel to the magnetic field lines. This restricts the fluidity of the suspension, which manifests itself macroscopically as an increase in viscosity. As a rule, the field-dependent dynamic viscosity η H increases monotonically with the applied magnetic field strength H.
In der Praxis wird die dynamische Viskosität einer MRF mit einem Rotationsviskosimeter bestimmt. Hierzu wird die Schubspannung τ [gemessen in Pa] bei verschiedenen Magnetfeldstärken und vorgegebener Scherrate D [in s-1] gemessen. Dabei wird die dynamische Viskosität η [in Pa·s] durch
definiert.In practice, the dynamic viscosity of an MRF is determined with a rotational viscometer. For this purpose, the shear stress τ [measured in Pa] is measured at different magnetic field strengths and given shear rate D [in s -1 ]. In this case, the dynamic viscosity η [in Pa · s] by
Are defined.
Die Änderungen im Fließverhalten der MRF hängen von der Konzentration und Art der magnetisierbaren Teilchen ab, von ihrer Form, Größe und Größenverteilung; aber auch von den Eigenschaften der Trägerflüssigkeit, den zusätzlichen Additiven, dem angelegten Feld, der Temperatur und anderen Faktoren. Die gegenseitigen Wechselbeziehungen all dieser Parameter sind äußerst komplex, so dass einzelne Verbesserungen einer MRF im Hinblick auf eine spezielle Zielgröße immer wieder Gegenstand von Untersuchungen und Optimierungsbemühungen gewesen sind.The changes in the flow behavior of the MRF depend on the concentration and type of magnetizable particles, their shape, size and size distribution; but also the properties of the carrier liquid, the additional additives, the applied field, the temperature and other factors. The mutual interrelations of all these parameters are extremely complex, so that individual improvements of an MRF with respect to a specific target size have been the subject of investigations and optimization efforts again and again.
Ein Forschungsschwerpunkt war dabei die Entwicklung von MRF mit hohem Schaltfaktor. In Gleichung (2) wird der Schaltfaktor wD bei einer festen Scherrate D definiert als Verhältnis der Schubspannung τH der MRF im externen Magnetfeld H zur Schubspannung τO ohne Magnetfeld:
Die externe Magnetfeldstärke H [gemessen in A/m] ist nach Gleichung (3) mit der magnetischen Flussdichte B [gemessen in N/A·m = T] korreliert
Mit
µr: relative Permeabilität des Mediums, dessen magnetische Flussdichte bestimmt werden soll,
µo = 4 · π · 10-7 V·s/A·m : absolute Permeabilität.The external magnetic field strength H [measured in A / m] is correlated with the magnetic flux density B [measured in N / A · m = T] according to equation (3)
With
μ r : relative permeability of the medium whose magnetic flux density is to be determined
μ o = 4 · π · 10 -7 V · s / A · m: absolute permeability.
Da es sich in der Praxis als nützlich erwiesen hat, magnetische Kennzahlen als Funktion der magnetischen Flussdichte B anzugeben, wird nachfolgend auch der Schaltfaktor auf dieses Bezugssystem transformiert.
Mit
τB: Schubspannung der MRF im externen Magnetfeld
H mit der magnetischen Flussdichte B.Since it has proven to be useful in practice to specify magnetic characteristics as a function of the magnetic flux density B, the switching factor is subsequently also transformed to this reference system.
With
τ B : shear stress of the MRF in the external magnetic field
H with the magnetic flux density B.
Der Schaltfaktor wD kann somit als Maß für die Umsetzbarkeit einer magnetischen Anregung in eine rheologische Zustandsänderung der MRF angesehen werden. Ein "hoher" Schaltfaktor bedeutet, dass mit einer geringen magnetischen Flussdichteänderung B eine große Änderung der Schubspannung τB/τO bzw. der dynamischen Viskosität ηB/ηO in der MRF erzielt wird. In der Vergangenheit hat es zahlreiche Ansätze gegeben, den Schaltfaktor durch geeignete Wahl der magnetisierbaren Teilchen im Hinblick auf eine höhere Effektivität der MRF zu optimieren.The switching factor w D can thus be considered as a measure of the feasibility of a magnetic excitation in a rheological state change of the MRF. A "high" switching factor means that a small change in the magnetic flux density B results in a large change in the shear stress τ B / τ O or the dynamic viscosity η B / η O in the MRF. In the past, there have been numerous attempts to optimize the switching factor by suitable choice of the magnetizable particles with a view to a higher efficiency of the MRF.
In der Regel werden für MRF kugelförmige Partikel aus Carbonyleisen eingesetzt. Es sind aber auch MRF mit anderen magnetisierbaren Stoffen sowie Stoffgemischen bekannt. So beschreibt die
Aus
Aus
Allen genannten MRF ist gemeinsam, dass sie zur Erzielung eines hohen Schaltfaktors auf spezielle Partikelgrößen bzw. Partikelgrößenverteilungen und/oder definierte Teilchengeometrien angewiesen sind. Dadurch wird ihre Präparation aufwendig und entsprechend kostspielig.All mentioned MRF have in common that they are dependent on special particle sizes or particle size distributions and / or defined particle geometries in order to achieve a high switching factor. As a result, their preparation is complex and correspondingly expensive.
Hiervon ausgehend ist es die Aufgabe der vorliegenden Erfindung magnetorheologische Materialien mit hohem Schaltfaktor, insbesondere MRF mit hohem Schaltfaktor, vorzuschlagen, deren Präparation weniger aufwendig und damit kostengünstig ist.On this basis, it is the object of the present invention to propose magnetorheological materials with a high switching factor, in particular MRF with a high switching factor, whose preparation is less complicated and thus cost-effective.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen derartig hergestellter magnetorheologischer Materialien, insbesondere MRF, werden in den abhängigen Ansprüchen beschrieben. Desweiteren geben die Patentansprüche 17 bis 19 Verwendungsmöglichkeiten derartig hergestellter magnetorheologischer Materialien an.This object is solved by the characterizing features of
Erfindungsgemäß werden somit magnetorheologische Materialien, insbesondere MRF, mit zwei Arten von magnetisierbaren Partikeln vorgeschlagen, wobei die erste Partikelfraktion p aus unregelmäßig geformten nichtsphärischen Teilchen besteht und die zweite Fraktion q aus sphärischen Teilchen. Durch die Kombination von unregelmäßig geformten nichtsphärischen Partikeln und sphärischen Partikeln in dem Trägermedium werden überraschenderweise sowohl eine niedrige Basisviskosität ohne Feld als auch eine hohe Schubspannung im externen Magnetfeld erreicht. Das heißt, die erfindungsgemäßen magnetorheologischen Materialien weisen einen außergewöhnlich hohen Schaltfaktor auf. Außerdem ist die Herstellung der unregelmäßig geformten Partikelfraktion p wenig aufwendig und somit äußerst preisgünstig. Bevorzugt ist die mittlere Partikelgröße der Fraktion p gleich oder größer als diejenige der Fraktion q. Durch den Einsatz von unregelmäßig geformten, nichtsphärischen Teilchen entsteht also ein signifikanter Kostenvorteil im Vergleich zur Herstellung bekannter Materialien.According to the invention, therefore, magnetorheological materials, in particular MRF, with two types of magnetisable particles are proposed, wherein the first particle fraction p consists of irregularly shaped non-spherical particles and the second fraction q consists of spherical particles. The combination of irregularly shaped non-spherical particles and spherical particles in the carrier medium surprisingly achieves both a low base viscosity without field and a high shear stress in the external magnetic field. That is, the magnetorheological materials of the invention have an exceptionally high switching factor. Besides, the production of the irregular is shaped particle fraction p little expensive and thus extremely inexpensive. Preferably, the average particle size of the fraction p is equal to or greater than that of the fraction q. The use of irregularly shaped, non-spherical particles thus creates a significant cost advantage compared to the production of known materials.
Es hat sich herausgestellt, dass z.B. bei einer MRF, die zum Vergleich nur kleine kugelförmige Partikel enthält, die Basisviskosität deutlich erhöht ist. Dagegen werden bei einer anderen MRF, die nur die großen unregelmäßig geformten Partikel enthält, deutlich geringere Schubspannungen im Magnetfeld festgestellt. Die MRF mit einer Kombination aus großen unregelmäßig geformten, nichtsphärischen Teilchen und kleinen sphärischen Teilchen weist damit ein deutlich verbessertes Eigenschaftsprofil auf.It has been found that e.g. in the case of an MRF, which contains only small spherical particles for comparison, the basic viscosity is markedly increased. In contrast, in another MRF, which contains only the large irregularly shaped particles, significantly lower shear stresses in the magnetic field are detected. The MRF with a combination of large irregularly shaped, non-spherical particles and small spherical particles thus has a significantly improved property profile.
Eine vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht vor, dass die mittlere Partikelgröße der Fraktion p bevorzugt mindestens den doppelten Wert der mittleren Partikelgröße der Fraktion q aufweist. Weiterhin ist es günstig, wenn die mittleren Partikelgrößen der Fraktionen p und q zwischen 0,01 µm und 1000 µm, bevorzugt zwischen 0,1 µm und 100 µm, liegen.An advantageous embodiment of the magnetorheological materials according to the invention provides that the mean particle size of the fraction p preferably has at least twice the average particle size of the fraction q. Furthermore, it is favorable if the average particle sizes of the fractions p and q are between 0.01 μm and 1000 μm, preferably between 0.1 μm and 100 μm.
Eine weitere vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht vor, dass das Volumenverhältnis der Fraktionen p und q zwischen 1 : 99 und 99 : 1, bevorzugt zwischen 10 : 90 und 90 : 10, liegt.A further advantageous embodiment of the magnetorheological materials according to the invention provides that the volume ratio of fractions p and q is between 1:99 and 99: 1, preferably between 10:90 and 90:10.
Erfindungsgemäß werden die magnetisierbaren Partikel aus weichmagnetischen Partikeln nach dem Stand der Technik gebildet. Dies bedeutet, dass die magnetisierbaren Partikel sowohl aus der Menge der weichmagnetischen metallischen Werkstoffe wie Eisen, Cobalt, Nickel (auch in nichtreiner Form) und Legierungen daraus wie Eisen-Cobalt, Eisen-Nickel; magnetischer Stahl; Eisen-Silizium ausgewählt werden können als auch aus der Menge der weichmagnetischen oxidkeramischen Werkstoffe wie den kubischen Ferriten, den Perowskiten und den Granaten der allgemeinen Formel
MO·Fe2O3
mit einem oder mehreren Metallen aus der Gruppe M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd oder Mg.According to the invention, the magnetizable particles of soft magnetic particles according to the state made of engineering. This means that the magnetisable particles both from the amount of soft magnetic metallic materials such as iron, cobalt, nickel (even in non-pure form) and alloys thereof such as iron-cobalt, iron-nickel; magnetic steel; Iron-silicon can be selected as well as from the amount of soft magnetic oxide ceramic materials such as the cubic ferrites, the perovskites and the garnets of the general formula
MO · Fe 2 O 3
with one or more metals from the group M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd or Mg.
Daneben können aber auch Mischferrite wie MnZn-, NiZn-, NiCo-, NiCuCo-, NiMg- oder CuMg-Ferrite eingesetzt werden.In addition, however, it is also possible to use mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg or CuMg ferrites.
Die magnetisierbaren Partikel können aber auch aus Eisencarbid- oder Eisennitridpartikeln bestehen sowie aus Legierungen von Vanadium, Wolfram, Kupfer und Mangan sowie aus Mischungen aus den genannten Partikelmaterialien oder aus Mischungen unterschiedlicher magnetisierbarer Feststoffarten. Dabei können die weichmagnetischen Werkstoffe auch alle oder teilweise in verunreinigter Form vorliegen.However, the magnetizable particles can also consist of iron carbide or iron nitride particles and of alloys of vanadium, tungsten, copper and manganese as well as of mixtures of the mentioned particle materials or of mixtures of different magnetizable types of solids. In this case, the soft magnetic materials may also be present all or partially in contaminated form.
Als Trägermedium im Sinne der Erfindung werden Trägerflüssigkeiten sowie Fette, Gele oder Elastomere angesehen. Als Trägerflüssigkeiten können die aus dem Stand der Technik bekannten Flüssigkeiten, wie Wasser, Mineralöle, synthetische Öle wie Polyalphaolefine, Kohlenwasserstoffe, Siliconöle, Ester, Polyether, fluorierte Polyether, Polyglykole, fluorierte Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, fluorierte Silicone, organisch modifizierte Silicone sowie Copolymere daraus oder Mischungen aus diesen Flüssigkeiten eingesetzt werden.As a carrier medium in the context of the invention carrier liquids and fats, gels or elastomers are considered. As carrier liquids, the liquids known from the prior art, such as water, mineral oils, synthetic oils, such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and copolymers thereof or mixtures of these liquids.
In einer vorteilhaften Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien können der Suspension zur Herabsetzung der Sedimentation anorganische Partikel wie SiO2, TiO2, Eisenoxide, Schichtsilicate oder organische Additive sowie Kombinationen daraus zugegeben werden.In an advantageous embodiment of the magnetorheological materials according to the invention, inorganic particles such as SiO 2 , TiO 2 , iron oxides, layered silicates or organic additives and combinations thereof may be added to the suspension to reduce sedimentation.
Eine weitere vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht vor, dass die anorganischen Partikel mindestens zum Teil organisch modifiziert sind.A further advantageous embodiment of the magnetorheological materials according to the invention provides that the inorganic particles are at least partially organically modified.
Weitere besondere Ausführungsformen der magnetorheologischen Materialien sehen vor, dass die Suspension zur Herabsetzung von Abrasionserscheinungen partikelförmige Additive wie Graphit, Perfluorethylen oder Molybdänverbindungen wie Molybdändisulfit sowie Kombinationen daraus enthält. Es ist auch möglich, dass die Suspension zum Einsatz für die Oberflächenbehandlung von Werkstücken spezielle abrasiv wirkende und/oder chemisch ätzende Zusatzstoffe wie z.B. Korund, Ceroxide, Siliziumcarbid oder Diamant enthält.Further particular embodiments of the magnetorheological materials envisage that the suspension contains particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfite and combinations thereof in order to reduce abrasion phenomena. It is also possible that the suspension for use in the surface treatment of workpieces may contain special abrasive and / or chemical caustic additives, e.g. Corundum, cerium oxides, silicon carbide or diamond contains.
Insgesamt hat es sich als vorteilhaft erwiesen, wenn der Anteil der magnetisierbaren Partikel zwischen 10 und 70 Vol.-%, bevorzugt zwischen 20 und 60 Vol.-%, liegt; der Anteil des Trägermediums zwischen 20 und 90 Vol.-%, bevorzugt zwischen 30 und 80 Vol.-%, liegt und der Anteil der nichtmagnetisierbaren Additive zwischen 0,001 und 20 Massen-%, bevorzugt zwischen 0,01 und 15 Massen-% (bezogen auf die magnetisierbaren Feststoffe), liegt.Overall, it has proven to be advantageous if the proportion of magnetizable particles between 10 and 70 vol .-%, preferably between 20 and 60 vol .-%, is; the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume, and the proportion of nonmagnetizable additives is between 0.001 and 20% by mass, preferably between 0.01 and 15 mass% (based on the magnetizable solids), is.
Die Erfindung betrifft weiterhin die Verwendung der vorstehend näher beschriebenen Materialien.The invention further relates to the use of the materials described in more detail above.
Eine vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht deren Verwendung in adaptiven Stoß- und Schwingungsdämpfern, steuerbaren Bremsen, Kupplungen sowie in Sport- oder Trainingsgeräten vor. Spezielle Materialien können auch zur Oberflächenbearbeitung von Werkstücken eingesetzt werden.An advantageous embodiment of the magnetorheological materials according to the invention provides for their use in adaptive shock and vibration dampers, controllable brakes, clutches and in sports or training equipment. Special materials can also be used for the surface treatment of workpieces.
Letztlich können die magnetorheologischen Materialien auch zur Erzeugung und/oder Darstellung haptischer Informationen wie Schriftzeichen, computersimulierter Objekte, Sensorsignale oder Bilder, in haptischer Form, zur Simulation von viskosen, elastischen und/oder viskoelastischen Eigenschaften bzw. der Konsistenzverteilung eines Objekts, insbesondere zu Trainings- und/oder Forschungszwecken und/oder für medizinische Anwendungen, eingesetzt werden.Finally, the magnetorheological materials can also be used to generate and / or display haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, for simulating viscous, elastic and / or viscoelastic properties or the consistency distribution of an object, in particular for training purposes. and / or research and / or for medical applications.
Im Folgenden wird ein Beispiel für die Herstellung der erfindungsgemäßen magnetorheologischen Materialien, insbesondere die Herstellung einer magnetorheologischen Flüssigkeit (MRF), beschrieben.An example of the production of the magnetorheological materials according to the invention, in particular the production of a magnetorheological fluid (MRF), is described below.
Eingesetzte Edukte:
- Polyalphaolefin mit einer
Dichte von 0,83 g/cm3 bei 15° C und einer kinematischen Viskosität von 48,5 mm/s2 bei 40° C, - unregelmäßig geformte Eisenpartikel (p) mit einer mittleren Teilchengröße von 41 µm, gemessen in Isopropanol mittels Laserbeugung mit Hilfe eines Mastersizers S der Firma Malvern Instruments,
- kugelförmige Eisenpartikel (q) mit einer mittleren Teilchengröße von 4,7 µm, gemessen in Isopropanol mittels Laserbeugung mit Hilfe eines Mastersizers S der Firma Malvern Instruments.
- Polyalphaolefin having a density of 0.83 g / cm 3 at 15 ° C and a kinematic viscosity of 48.5 mm / s 2 at 40 ° C,
- irregularly shaped iron particles (p) with a mean particle size of 41 μm, measured in isopropanol by means of laser diffraction with the aid of a Mastersizer S from Malvern Instruments,
- spherical iron particles (q) with an average particle size of 4.7 μm, measured in isopropanol by means of laser diffraction with the aid of a Mastersizer S from Malvern Instruments.
80 ml einer Suspension mit 35,00 Vol.-% Eisenpulver, davon 23,33 Vol-% unregelmäßig geformte Partikel (p) und 11,66 Vol.-% kugelförmige Partikel (q), in Polyalphaolefin werden wie folgt hergestellt:
- 43,16 g Polyalphaolefin werden in einem Stahlbehälter von 250 ml Inhalt auf 0,001 g Einwaagegenauigkeit eingewogen. Unter ständigem Rühren werden dann zuerst 146,96 g des unregelmäßig geformten Eisenpulvers (p) langsam eingestreut, anschließend erfolgt in gleicher Weise die Zugabe von 73,45 g der kugelförmigen Eisenpartikel (q). Die Dispergierung des Eisenpulvers im Öl erfolgt mit Hilfe eines Dispermat der Firma VMA-Getzmann GmbH mittels einer Dissolverscheibe mit einem Durchmesser von 30 mm, wobei ein Abstand zwischen der Dissolverscheibe und
dem Behälterboden von 1 mm besteht. Die Behandlungsdauer beträgt 3 min bei ca. 6500 Umdrehungen pro Minute. Die Rührgeschwindigkeit ist der Viskosität des Ansatzes dann optimal angepasst, wenn die Drehscheibe unter Bildung einer Trombe von oben deutlich sichtbar ist.
- 43.16 g of polyalphaolefin are weighed in a steel container of 250 ml content to 0.001 g weighing accuracy. With constant stirring, 146.96 g of the irregularly shaped iron powder (p) are then slowly interspersed first, followed by the addition of 73.45 g of the spherical iron particles (q) in the same manner. The dispersion of the iron powder in the oil takes place with the aid of a Dispermat from VMA-Getzmann GmbH by means of a dissolver disk with a diameter of 30 mm, whereby there is a distance between the dissolver disk and the container bottom of 1 mm. The treatment time is 3 min at about 6500 revolutions per minute. The stirring speed is the viscosity of the approach then optimally adapted when the turntable is clearly visible to form a Trombe from above.
Die derart hergestellte magnetorheologische Flüssigkeit MRF 3 mit der Eisenpartikelmischung (p) + (q) wurde anschließend hinsichtlich ihrer Eigenschaften charakterisiert und mit zwei weiteren entsprechend hergestellten magnetorheologischen Flüssigkeiten verglichen. Dabei enthielt
-
MRF 1 anstelle der Partikelmischung (p) + (q), 35 Vol.-% der reinen kugelförmigen Eisenpartikel (q) in Polyalphaolefin und -
MRF 2 anstelle der Partikelmischung (p) + (q), 35 Vol.-% der reinen unregelmäßig geformten Eisenpartikel (p) in Polyalphaolefin.
-
MRF 1 instead of the particle mixture (p) + (q), 35 vol.% Of the pure spherical iron particles (q) in polyalphaolefin and -
MRF 2 instead of the particle mixture (p) + (q), 35 vol.% Of the pure irregularly shaped iron particles (p) in polyalphaolefin.
Die rheologischen und magnetorheologischen Messungen erfolgten in einem Rotationsrheometer (Searle Systems) MCR 300 der Firma Paar Physica. Dabei wurden die rheologischen Eigenschaften ohne angelegtes Magnetfeld in einem Messsystem mit koaxialer Zylindergeometrie durchgeführt, während die Messungen im Magnetfeld in einer Platte-Platte Anordnung senkrecht zu den Feldlinien erfolgten.The rheological and magnetorheological measurements were carried out in a
Die Ergebnisse dieser Untersuchung sind in den Abbildungen 1 bis 3 zusammengefasst.The results of this study are summarized in Figures 1 to 3.
Zusammenfassend kann somit gesagt werden, dass die erfindungsgemäße MRF 3 im Magnetfeld im Vergleich zu den Ansätzen MRF1 und MRF2 ohne Partikelmischungen insgesamt die höchsten Schubspannungen τB aufweist.In summary, it can thus be said that the
Insgesamt bleibt festzuhalten, dass die erfindungsgemäße MRF 3 mit der Partikelmischung aus großen unregelmäßig geformten Eisenteilchen und kleihen kugelförmigen Eisenteilchen sowohl die geringste dynamische Basisviskosität ηo im feldfreien Raum als auch den größten Schaltfaktor wD im Magnetfeld im Verhältnis zu den Vergleichsansätzen MRF 1 und MRF 2 aufweist. Overall, it should be noted that the
Claims (19)
- Magnetorheological materials comprising at least one non-magnetisable carrier medium and soft magnetic magnetisable particles contained therein,
characterised in that
at least two magnetisable particle fractions p and q are contained as particles,
p being formed from non-spherical particles and q from spherical particles, the average particle size of p being greater than q. - Magnetorheological materials according to claim 1, characterised in that the average particle size of the fraction p has preferably at least twice the value of the average particle size of the fraction q.
- Magnetorheological materials according to one of the preceding claims, characterised in that the average particle sizes of the fractions p and q are between 0.01 µm and 1000 µm, preferably between 0.1 µm and 100 µm.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that the volume ratio of the fractions p and q is between 1 : 99 and 99 : 1, preferably between 10 : 90 and 90 : 10.
- Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from soft magnetic metallic materials, in particular from iron, cobalt, nickel (also in non-pure form) and alloys thereof, such as iron-cobalt, iron-nickel; magnetic steel; iron-silicon and/or mixtures thereof.
- Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from soft magnetic oxide-ceramic materials, in particular from cubic ferrites, perovskites and garnets of the general formula
MO · Fe2O3
with one or more metals from the group M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd or Mg and/or mixtures thereof. - Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from mixed ferrites, such as MnZn-, NiZn-, NiCo-, NiCuCo-, NiMg-, CuMg-ferrites and/or mixtures thereof.
- Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from iron carbide or iron nitride and also alloys of vanadium, tungsten, copper and manganese and/or mixtures thereof.
- Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are present in pure and/or impure form.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that the carrier medium is selected from- carrier fluids such as water, mineral oils, synthetic oils, such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and also copolymers thereof or fluid mixtures thereof,- fats or gels or- from elastomers.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain dispersion agents, antioxidants, defoamers and/or anti-abrasion agents as additives.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain inorganic particles such as SiO2, TiO2, iron oxides, phyllosilicates or organic supplements and also combinations thereof as further additives in order to reduce sedimentation.
- Magnetorheological materials according to claim 12, characterised in that the inorganic particles are at least in part organically modified.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain particulate supplements, such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulphite and combinations thereof as further additives in order to reduce abrasion phenomena.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain abrasively acting and/or chemically etching supplements, such as e.g. corundum, cerium oxides, silicon carbide and/or diamond as further additives for use in the surface treatment of workpieces.
- Magnetorheological materials according to one or more of the preceding claims, characterised in that- the proportion of magnetisable particles is between 10 and 70% by volume, preferably between 20 and 60% by volume,- the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume,- the proportion of additives is between 0.001 and 20% by mass, preferably between 0.01 and 15% by mass (relative to the magnetisable solids).
- Use of the magnetorheological materials according to one or more of the claims 1 to 16 in adaptive shock and vibration dampers, controllable brakes, clutches and also in sports or training appliances.
- Use of the magnetorheological materials according to one or more of the claims 1 to 16 for surface machining of workpieces.
- Use of the magnetorheological materials according to one or more of the claims 1 to 16 in order to generate and/or display haptic information, such as characters, computer-simulated objects, sensor signals or images; for simulation of viscous, elastic and/or visco-elastic properties or the consistency distribution of an object, in particular for training and/or research purposes and/or for medical applications.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004041650A DE102004041650B4 (en) | 2004-08-27 | 2004-08-27 | Magnetorheological materials with high switching factor and their use |
PCT/EP2005/009193 WO2006024455A1 (en) | 2004-08-27 | 2005-08-25 | Magneto-rheological materials having a high switch factor and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1782437A1 EP1782437A1 (en) | 2007-05-09 |
EP1782437B1 true EP1782437B1 (en) | 2010-02-17 |
Family
ID=35207498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05782479A Not-in-force EP1782437B1 (en) | 2004-08-27 | 2005-08-25 | Magneto-rheological materials having a high switch factor and use thereof |
Country Status (5)
Country | Link |
---|---|
US (1) | US7897060B2 (en) |
EP (1) | EP1782437B1 (en) |
AT (1) | ATE458256T1 (en) |
DE (2) | DE102004041650B4 (en) |
WO (1) | WO2006024455A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI606471B (en) * | 2011-04-07 | 2017-11-21 | 好根那公司 | Composite iron-based powder composition, compacted and heat treated component, and method for producing the same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004041650B4 (en) | 2004-08-27 | 2006-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological materials with high switching factor and their use |
DE102004041649B4 (en) * | 2004-08-27 | 2006-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological elastomers and their use |
DE102004041651B4 (en) * | 2004-08-27 | 2006-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological materials with magnetic and non-magnetic inorganic additives and their use |
DE102005034925B4 (en) * | 2005-07-26 | 2008-02-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological Elastomerkomposite and their use |
DE102007017589B3 (en) * | 2007-04-13 | 2008-10-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Damping device with field-controllable fluid |
DE102007017588A1 (en) | 2007-04-13 | 2008-10-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Blocking device with field-controllable fluid |
DE102007019584A1 (en) | 2007-04-25 | 2008-11-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological torque transmission device, its use and magnetorheological torque transmission method |
US8506837B2 (en) * | 2008-02-22 | 2013-08-13 | Schlumberger Technology Corporation | Field-responsive fluids |
DE102009007209B4 (en) | 2009-02-03 | 2014-07-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Switchable magnetorheological torque or power transmission device, its use and magnetorheological torque or power transmission method |
US9423009B2 (en) * | 2011-04-21 | 2016-08-23 | Ntn Corporation | Hydraulic auto-tensioner |
DE102012017423B4 (en) * | 2012-09-04 | 2015-07-09 | Inventus Engineering Gmbh | Magnetorheological transmission device |
JP6255715B2 (en) * | 2013-05-17 | 2018-01-10 | 国立大学法人 名古屋工業大学 | Magnetic functional fluid, damper and clutch using the same |
DE202014002171U1 (en) | 2014-03-08 | 2015-06-09 | Intorq Gmbh & Co. Kg | Torque-limiting element |
DE102016002171A1 (en) | 2016-02-24 | 2016-10-27 | Daimler Ag | Device for detecting a metallic object |
DE102017004615B4 (en) | 2017-03-31 | 2020-11-05 | Kastriot Merlaku | Pedal vehicles, bicycles or vehicles powered purely by muscle power for children |
KR102771530B1 (en) * | 2019-07-19 | 2025-02-20 | 현대자동차주식회사 | Magneto-Rheological Elastomer |
DE102019217151B4 (en) * | 2019-11-06 | 2022-02-03 | Magna Pt B.V. & Co. Kg | Method for coupling/decoupling an electric machine in a hybrid transmission |
Family Cites Families (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2575360A (en) * | 1947-10-31 | 1951-11-20 | Rabinow Jacob | Magnetic fluid torque and force transmitting device |
US2938183A (en) * | 1956-11-09 | 1960-05-24 | Bell Telephone Labor Inc | Single crystal inductor core of magnetizable garnet |
US3425666A (en) * | 1963-02-21 | 1969-02-04 | Chevron Res | Process for producing ferrimagnetic materials |
GB1428000A (en) * | 1972-03-07 | 1976-03-10 | Lignes Telegraph Telephon | Magnetic materials for magnetic circuits |
JPS6259564A (en) * | 1985-09-10 | 1987-03-16 | 日本碍子株式会社 | Molding aid for ceramics, molded body obtained using the same and production of ceramic product |
DE3890400T1 (en) | 1987-05-19 | 1989-05-24 | Bridgestone Corp., Tokio/Tokyo, Jp | |
US5158109A (en) * | 1989-04-18 | 1992-10-27 | Hare Sr Nicholas S | Electro-rheological valve |
US5161653A (en) * | 1989-04-18 | 1992-11-10 | Hare Sr Nicholas S | Electro-rheological shock absorber |
US5771013A (en) * | 1989-05-01 | 1998-06-23 | Dow Corning Corporation | Method for stabilizing compositions containing carbonyl iron powder |
US5002677A (en) | 1989-09-19 | 1991-03-26 | The B. F. Goodrich Company | Flexible high energy magnetic blend compositions based on ferrite particles in highly saturated nitrile rubber and methods of processing the same |
JPH03119041A (en) | 1989-09-30 | 1991-05-21 | Yokohama Rubber Co Ltd:The | Rubber composition for tire tread |
DE4101869A1 (en) | 1991-01-23 | 1992-07-30 | Basf Ag | PLASTIC MIXTURE WITH FERROMAGNETIC OR FERROELECTRIC FILLERS |
ES2105256T3 (en) * | 1992-04-14 | 1997-10-16 | Byelocorp Scient Inc | MAGNETORHEOLOGICAL FLUIDS AND METHODS FOR ITS PRODUCTION. |
GB2267947B (en) | 1992-06-17 | 1995-04-26 | Gec Alsthom Ltd | Controllable motion-damper |
CA2148000C (en) * | 1992-10-30 | 2000-10-10 | Keith D. Weiss | Thixotropic magnetorheological materials |
CA2148001A1 (en) | 1992-10-30 | 1994-05-11 | Keith D. Weiss | Magnetorheological materials utilizing surface-modified particles |
US5578238A (en) * | 1992-10-30 | 1996-11-26 | Lord Corporation | Magnetorheological materials utilizing surface-modified particles |
US5549837A (en) | 1994-08-31 | 1996-08-27 | Ford Motor Company | Magnetic fluid-based magnetorheological fluids |
ES2185710T3 (en) | 1995-07-28 | 2003-05-01 | Stewart Gregory Smith | INCLUDING CONTROL DEVICE FOR VEHICLES. |
US5900184A (en) * | 1995-10-18 | 1999-05-04 | Lord Corporation | Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device |
US5579837A (en) * | 1995-11-15 | 1996-12-03 | Ford Motor Company | Heat exchanger tube and method of making the same |
EP0784163B1 (en) | 1996-01-11 | 2002-07-03 | Ford Motor Company Limited | Variable stiffness bushing using magnetorheological elastomers |
DE19613194A1 (en) | 1996-04-02 | 1997-10-09 | Huels Chemische Werke Ag | Tire treads with low rolling resistance and improved ABS braking |
US5667715A (en) * | 1996-04-08 | 1997-09-16 | General Motors Corporation | Magnetorheological fluids |
DE19614140C1 (en) | 1996-04-10 | 1997-05-07 | B & F Formulier Und Abfuell Gm | Production of silicone-based sealing materials |
DE19725971A1 (en) | 1997-06-19 | 1998-12-24 | Huels Silicone Gmbh | RTV silicone rubber compounds |
US5878997A (en) * | 1997-09-10 | 1999-03-09 | Lucent Technologies Inc. | Compact low-inductance magnetorheological damper |
US5985168A (en) * | 1997-09-29 | 1999-11-16 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Magnetorheological fluid |
KR100236919B1 (en) * | 1997-10-09 | 2000-01-15 | 윤덕용 | Angle-limited rotary attenuator using magnetorheological fluid |
DE19801752C1 (en) | 1998-01-20 | 1999-05-12 | Dorma Gmbh & Co Kg | Locking device for emergency exit doors |
US5971835A (en) * | 1998-03-25 | 1999-10-26 | Qed Technologies, Inc. | System for abrasive jet shaping and polishing of a surface using magnetorheological fluid |
US6123633A (en) * | 1998-09-03 | 2000-09-26 | Wilson Sporting Goods Co. | Inflatable game ball with a lobular carcass and a relatively thin cover |
US6399193B1 (en) * | 1998-12-18 | 2002-06-04 | The University Of Massachusetts Lowell | Surfacing laminate with bonded with pigmented pressure sensitive adhesive |
DE19910782C2 (en) | 1999-03-11 | 2001-01-25 | Stabilus Gmbh | Door hinge with a blockage due to a field force |
US6203717B1 (en) * | 1999-07-01 | 2001-03-20 | Lord Corporation | Stable magnetorheological fluids |
US6132633A (en) * | 1999-07-01 | 2000-10-17 | Lord Corporation | Aqueous magnetorheological material |
IT1310127B1 (en) | 1999-07-20 | 2002-02-11 | Fiat Ricerche | CONTROLLED OSCILLATING DAMPER. |
US6599439B2 (en) * | 1999-12-14 | 2003-07-29 | Delphi Technologies, Inc. | Durable magnetorheological fluid compositions |
WO2001061713A1 (en) | 2000-02-18 | 2001-08-23 | The Board Of Regents Of The University And Community College System Of Nevada | Magnetorheological polymer gels |
US6395193B1 (en) * | 2000-05-03 | 2002-05-28 | Lord Corporation | Magnetorheological compositions |
DE10024439A1 (en) * | 2000-05-19 | 2001-12-06 | Koppe Franz | Casting or investment material with electromagnetic shielding properties for the production of electronic components |
US6451219B1 (en) * | 2000-11-28 | 2002-09-17 | Delphi Technologies, Inc. | Use of high surface area untreated fumed silica in MR fluid formulation |
EP1344229B1 (en) * | 2000-11-29 | 2008-03-05 | The Adviser Defence Research & Development Organisation, Ministry of Defence, Government of India | A magnetorheological fluid composition and a process for preparation thereof |
DE60018956T2 (en) | 2000-12-29 | 2006-03-23 | Mando Corp. | Twin-tube vibration damper filled with hydraulic fluid and magnetorheological fluid |
US6279702B1 (en) * | 2001-01-05 | 2001-08-28 | Mando Corporation | Shock absorber using a hydraulic fluid and a magnetorheological fluid |
US6610404B2 (en) * | 2001-02-13 | 2003-08-26 | Trw Inc. | High yield stress magnetorheological material for spacecraft applications |
JP3608612B2 (en) | 2001-03-21 | 2005-01-12 | 信越化学工業株式会社 | Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method |
US20030030026A1 (en) * | 2001-08-06 | 2003-02-13 | Golden Mark A. | Magnetorheological fluids |
US20030034475A1 (en) | 2001-08-06 | 2003-02-20 | Ulicny John C. | Magnetorheological fluids with a molybdenum-amine complex |
US6855426B2 (en) * | 2001-08-08 | 2005-02-15 | Nanoproducts Corporation | Methods for producing composite nanoparticles |
US20030042461A1 (en) | 2001-09-04 | 2003-03-06 | Ulicny John C. | Magnetorheological fluids with an additive package |
KR100611808B1 (en) | 2001-09-14 | 2006-08-11 | 쇼와 덴코 가부시키가이샤 | Resin composition |
US6592772B2 (en) * | 2001-12-10 | 2003-07-15 | Delphi Technologies, Inc. | Stabilization of magnetorheological fluid suspensions using a mixture of organoclays |
US20040126565A1 (en) * | 2002-05-09 | 2004-07-01 | Ganapathy Naganathan | Actively controlled impact elements |
US7560160B2 (en) * | 2002-11-25 | 2009-07-14 | Materials Modification, Inc. | Multifunctional particulate material, fluid, and composition |
US7261834B2 (en) * | 2003-05-20 | 2007-08-28 | The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno | Tunable magneto-rheological elastomers and processes for their manufacture |
DE102004007621A1 (en) | 2004-02-17 | 2005-09-01 | Trw Automotive Gmbh | Locking mechanism for safety systems in cars etc. with closure element movable from release position into blocking one, with generator of magnetic and electric field |
DE202004008024U1 (en) | 2004-05-19 | 2005-10-06 | Bauerfeind Ag | Adjustable motion damper |
US7521002B2 (en) * | 2004-08-13 | 2009-04-21 | Gm Global Technology Operations, Inc. | Magnetorheological fluid compositions |
US7419616B2 (en) * | 2004-08-13 | 2008-09-02 | Gm Global Technology Operations, Inc. | Magnetorheological fluid compositions |
DE102004041650B4 (en) | 2004-08-27 | 2006-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological materials with high switching factor and their use |
DE102004041651B4 (en) | 2004-08-27 | 2006-10-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological materials with magnetic and non-magnetic inorganic additives and their use |
DE102004041649B4 (en) * | 2004-08-27 | 2006-10-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological elastomers and their use |
DE102004043281A1 (en) | 2004-09-08 | 2006-03-09 | Fludicon Gmbh | Movably supported parts fixing device, has piston and cylinder between which contact area is formed and has chamber that is filled with rheologisch liquid and assigned with electrodes arrangement that causes change of properties of liquid |
DE102005034925B4 (en) | 2005-07-26 | 2008-02-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Magnetorheological Elastomerkomposite and their use |
US7393463B2 (en) * | 2005-09-16 | 2008-07-01 | Gm Global Technology Operations, Inc. | High temperature magnetorheological fluid compositions and devices |
US7354528B2 (en) * | 2005-09-22 | 2008-04-08 | Gm Global Technology Operations, Inc. | Magnetorheological fluid compositions |
DE102007017589B3 (en) | 2007-04-13 | 2008-10-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Damping device with field-controllable fluid |
DE102007017588A1 (en) | 2007-04-13 | 2008-10-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Blocking device with field-controllable fluid |
-
2004
- 2004-08-27 DE DE102004041650A patent/DE102004041650B4/en not_active Expired - Fee Related
-
2005
- 2005-08-25 EP EP05782479A patent/EP1782437B1/en not_active Not-in-force
- 2005-08-25 US US11/574,395 patent/US7897060B2/en not_active Expired - Fee Related
- 2005-08-25 WO PCT/EP2005/009193 patent/WO2006024455A1/en active Application Filing
- 2005-08-25 AT AT05782479T patent/ATE458256T1/en not_active IP Right Cessation
- 2005-08-25 DE DE502005009045T patent/DE502005009045D1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI606471B (en) * | 2011-04-07 | 2017-11-21 | 好根那公司 | Composite iron-based powder composition, compacted and heat treated component, and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
DE502005009045D1 (en) | 2010-04-01 |
EP1782437A1 (en) | 2007-05-09 |
DE102004041650B4 (en) | 2006-10-19 |
ATE458256T1 (en) | 2010-03-15 |
US20070252104A1 (en) | 2007-11-01 |
DE102004041650A1 (en) | 2006-03-02 |
WO2006024455A1 (en) | 2006-03-09 |
US7897060B2 (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1782437B1 (en) | Magneto-rheological materials having a high switch factor and use thereof | |
EP1782439B1 (en) | Magneto-rheological materials comprising magnetic and non-magnetic inorganic additives and use thereof | |
EP1899995B1 (en) | Magnetorheological liquid | |
DE69706742T2 (en) | Magnetorheological fluids | |
EP1782438B1 (en) | Magnetorheological elastomers and use thereof | |
DE69313273T2 (en) | MAGNETORHEOLOGICAL LIQUIDS AND MANUFACTURING METHOD | |
DE69619538T2 (en) | METHOD AND COMPILATION FOR A MAGNETORHEOLOGICAL LIQUID FOR POWER INCREASE IN A MAGNETORHEOLOGICAL DEVICE | |
DE69321247T2 (en) | MAGNETORHEOLOGICAL THIXOTROPE MATERIALS | |
DE112010003467B4 (en) | MAGNETORHEOLOGICAL FLUID AND METHOD FOR THE PRODUCTION THEREOF | |
DE60008533T2 (en) | STABLE MAGNETORHEOLOGICAL LIQUIDS | |
EP0534234B1 (en) | Magnetorheologic fluid | |
EP2067147B1 (en) | Magnetorheological formulation | |
DE10191871B4 (en) | Preparation of magnetorheological fluid useful in clutches, or vibration control units, involves dispersing magnetic particles coated with hydrophilic surfactant in a mobile phase of water in oil emulsion | |
WO2002025674A2 (en) | Magnetorheological grease composition | |
EP2591058A1 (en) | Lamina-like iron pigments, magnetorheological fluid and device | |
WO1998029521A1 (en) | Liquid composition and its use as magneto-rheological liquid | |
DE60220490T2 (en) | Stabilization of magnetorheological suspensions with a mixture of organic clay | |
Zhao et al. | Research on rheological properties and phenomenological theory-based constitutive model of magnetorheological shear thickening fluids | |
CN108352235B (en) | Nano magnetic rheological fluid and preparation equipment and method thereof | |
DE69008254T2 (en) | Liquid that reacts to a magnetic field. | |
EP0421249A1 (en) | High viscosity magnetic fluids | |
DE112010002358T5 (en) | Magnetorheological compositions comprising non-magnetic material | |
DE69321301T2 (en) | Liquid with both magnetic and electro-rheological effects | |
KR101602315B1 (en) | Magnetorheological fluid comprising plate-like iron particles | |
KR20090005931A (en) | Magnetorheological fluids with high yield stress at high shear rates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070119 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005009045 Country of ref document: DE Date of ref document: 20100401 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100217 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100528 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100617 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100518 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100517 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20101118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
BERE | Be: lapsed |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100818 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100825 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100217 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20150824 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20150824 Year of fee payment: 11 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160825 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190822 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005009045 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210302 |