[go: up one dir, main page]

EP1782437B1 - Magneto-rheological materials having a high switch factor and use thereof - Google Patents

Magneto-rheological materials having a high switch factor and use thereof Download PDF

Info

Publication number
EP1782437B1
EP1782437B1 EP05782479A EP05782479A EP1782437B1 EP 1782437 B1 EP1782437 B1 EP 1782437B1 EP 05782479 A EP05782479 A EP 05782479A EP 05782479 A EP05782479 A EP 05782479A EP 1782437 B1 EP1782437 B1 EP 1782437B1
Authority
EP
European Patent Office
Prior art keywords
materials according
magnetorheological materials
particles
mrf
magnetorheological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05782479A
Other languages
German (de)
French (fr)
Other versions
EP1782437A1 (en
Inventor
Holger Böse
Alexandra-Maria Trendler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1782437A1 publication Critical patent/EP1782437A1/en
Application granted granted Critical
Publication of EP1782437B1 publication Critical patent/EP1782437B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
    • H01F1/447Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids characterised by magnetoviscosity, e.g. magnetorheological, magnetothixotropic, magnetodilatant liquids

Definitions

  • the present invention relates to high switching factor magnetorheological materials, and more particularly to high switching factor magnetorheological fluids (MRF), and their use.
  • MRF high switching factor magnetorheological fluids
  • MRF are materials that change their flow behavior under the influence of an external magnetic field.
  • electrorheological fluids are usually non-colloidal suspensions of particles which can be polarized in a magnetic or electric field in a carrier liquid which optionally contains further additives.
  • MRF brakes and different vibration and shock absorbers Mark R. Jolly, Jonathan W. Bender, and J. David Carlson, Properties and Applications of Commercial Magnetorheological Fluids, SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998 ). In the following some special properties of MRF and their influenceability are described.
  • MRF are mostly non-colloidal suspensions of magnetizable particles, from about one micron to one millimeter in size in a carrier liquid.
  • the MRF can also additives such.
  • the particles are ideally homogeneous and isotropically distributed, so that the MRF has a low dynamic basis viscosity ⁇ o [measured in Pa.s] in the magnet-free space.
  • ⁇ o measured in Pa.s
  • the dynamic viscosity of an MRF is determined with a rotational viscometer.
  • the shear stress ⁇ [measured in Pa] is measured at different magnetic field strengths and given shear rate D [in s -1 ].
  • the changes in the flow behavior of the MRF depend on the concentration and type of magnetizable particles, their shape, size and size distribution; but also the properties of the carrier liquid, the additional additives, the applied field, the temperature and other factors.
  • the mutual interrelations of all these parameters are extremely complex, so that individual improvements of an MRF with respect to a specific target size have been the subject of investigations and optimization efforts again and again.
  • B ⁇ r ⁇ ⁇ O ⁇ H
  • ⁇ r relative permeability of the medium whose magnetic flux density is to be determined
  • ⁇ o 4 ⁇ ⁇ ⁇ 10 -7
  • V ⁇ s / A ⁇ m absolute permeability.
  • the switching factor w D can thus be considered as a measure of the feasibility of a magnetic excitation in a rheological state change of the MRF.
  • a "high" switching factor means that a small change in the magnetic flux density B results in a large change in the shear stress ⁇ B / ⁇ O or the dynamic viscosity ⁇ B / ⁇ O in the MRF.
  • MRF spherical particles of carbonyl iron
  • MRF magnetizable substances and mixtures of substances known. That's how it describes WO 02/45102 A1 an MRF with a mixture of high-purity iron particles and ferrite particles, in order to simultaneously optimize the properties of the MRF with and without a magnetic field. No information is given on the particle shape and size. Furthermore, there are numerous patents on specific particle geometries and distributions.
  • US 6,610,404 B2 describes a magnetorheological material of magnetic particles with defined geometric features such as cylinder or prism shapes, among others. The production of such particles is very expensive. For strongly asymmetric particles, a high base viscosity of the MRF is also to be expected.
  • US 6,395,193 B1 and WO 01/84568 A2 Magnetorheological compositions are described with nonspherical magnetic particles, but these are not combined with spherical magnetic particles.
  • a magnetorheological composition which contains soft magnetic spherical carbonyl iron particles (1 - 10 microns) and hard magnetic iron oxide or chromium dioxide particles (0.1 - 1 micron).
  • magnetorheological materials in particular MRF, with two types of magnetisable particles are proposed, wherein the first particle fraction p consists of irregularly shaped non-spherical particles and the second fraction q consists of spherical particles.
  • the combination of irregularly shaped non-spherical particles and spherical particles in the carrier medium surprisingly achieves both a low base viscosity without field and a high shear stress in the external magnetic field. That is, the magnetorheological materials of the invention have an exceptionally high switching factor.
  • the production of the irregular is shaped particle fraction p little expensive and thus extremely inexpensive.
  • the average particle size of the fraction p is equal to or greater than that of the fraction q. The use of irregularly shaped, non-spherical particles thus creates a significant cost advantage compared to the production of known materials.
  • the mean particle size of the fraction p preferably has at least twice the average particle size of the fraction q. Furthermore, it is favorable if the average particle sizes of the fractions p and q are between 0.01 ⁇ m and 1000 ⁇ m, preferably between 0.1 ⁇ m and 100 ⁇ m.
  • a further advantageous embodiment of the magnetorheological materials according to the invention provides that the volume ratio of fractions p and q is between 1:99 and 99: 1, preferably between 10:90 and 90:10.
  • the magnetizable particles of soft magnetic particles according to the state made of engineering.
  • the magnetisable particles both from the amount of soft magnetic metallic materials such as iron, cobalt, nickel (even in non-pure form) and alloys thereof such as iron-cobalt, iron-nickel; magnetic steel;
  • mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg or CuMg ferrites.
  • the magnetizable particles can also consist of iron carbide or iron nitride particles and of alloys of vanadium, tungsten, copper and manganese as well as of mixtures of the mentioned particle materials or of mixtures of different magnetizable types of solids.
  • the soft magnetic materials may also be present all or partially in contaminated form.
  • carrier liquids and fats, gels or elastomers are considered.
  • carrier liquids the liquids known from the prior art, such as water, mineral oils, synthetic oils, such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and copolymers thereof or mixtures of these liquids.
  • inorganic particles such as SiO 2 , TiO 2 , iron oxides, layered silicates or organic additives and combinations thereof may be added to the suspension to reduce sedimentation.
  • a further advantageous embodiment of the magnetorheological materials according to the invention provides that the inorganic particles are at least partially organically modified.
  • the suspension contains particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfite and combinations thereof in order to reduce abrasion phenomena.
  • the suspension for use in the surface treatment of workpieces may contain special abrasive and / or chemical caustic additives, e.g. Corundum, cerium oxides, silicon carbide or diamond contains.
  • the proportion of magnetizable particles between 10 and 70 vol .-%, preferably between 20 and 60 vol .-%, is; the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume, and the proportion of nonmagnetizable additives is between 0.001 and 20% by mass, preferably between 0.01 and 15 mass% (based on the magnetizable solids), is.
  • the invention further relates to the use of the materials described in more detail above.
  • magnetorheological materials according to the invention provides for their use in adaptive shock and vibration dampers, controllable brakes, clutches and in sports or training equipment. Special materials can also be used for the surface treatment of workpieces.
  • the magnetorheological materials can also be used to generate and / or display haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, for simulating viscous, elastic and / or viscoelastic properties or the consistency distribution of an object, in particular for training purposes. and / or research and / or for medical applications.
  • haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, for simulating viscous, elastic and / or viscoelastic properties or the consistency distribution of an object, in particular for training purposes. and / or research and / or for medical applications.
  • MRF magnetorheological fluid
  • the rheological and magnetorheological measurements were carried out in a Searle Systems MCR 300 from Paar Physica.
  • the rheological properties were carried out without applied magnetic field in a measuring system with coaxial cylinder geometry, while the measurements were carried out in the magnetic field in a plate-plate arrangement perpendicular to the field lines.
  • illustration 1 shows the shear stress ⁇ O as a function of the shear rate D for the inventive MRF 3 and the two comparative approaches MRF 1 and MRF 2 without applied magnetic field. It can be seen that the flow curve of the MRF 3 according to the invention is below that of MRF 1 and MRF 2 at all shear rates outside the quasistatic range (D> 1 s -1 ). This means that the MRF 3 according to the invention has the lowest dynamic basic viscosity ⁇ O in magnetic-field-free space at a fixed shear rate D in comparison with the other approaches (compare equation (1) of the description).
  • the MRF 3 according to the invention has higher shear stresses ⁇ B over the entire measuring range than the comparative batch MRF 2, which contains only irregularly shaped iron particles (p).
  • the MRF 3 according to the invention has the highest shear stresses ⁇ B overall in the magnetic field in comparison with the lugs MRF 1 and MRF 2 without particle mixtures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

The invention relates to magnetorheological materials comprising at least one non-magnetisable carrier medium and magnetisable particles contained therein, at least two magnetisable particles fractions being contained as particles and these being formed from non-spherical particles and from spherical particles.

Description

Die vorliegende Erfindung bezieht sich auf magnetorheologische Materialien mit hohem Schaltfaktor, insbesondere auf magnetorheologische Flüssigkeiten (MRF) mit hohem Schaltfaktor, sowie deren Verwendung.The present invention relates to high switching factor magnetorheological materials, and more particularly to high switching factor magnetorheological fluids (MRF), and their use.

MRF sind Materialien, die unter Einwirkung eines äußeren Magnetfeldes ihr Fließverhalten ändern. Wie bei ihren elektrorheologischen Analoga, den sogenannten elektrorheologischen Flüssigkeiten (ERF) handelt es sich in der Regel um nicht-kolloidale Suspensionen aus in einem magnetischen bzw. elektrischen Feld polarisierbaren Teilchen in einer Trägerflüssigkeit, die gegebenenfalls weitere Additive enthält.MRF are materials that change their flow behavior under the influence of an external magnetic field. As with their electrorheological analogs, the so-called electrorheological fluids (ERF) are usually non-colloidal suspensions of particles which can be polarized in a magnetic or electric field in a carrier liquid which optionally contains further additives.

Die Grundlagen der MRF und erste Vorrichtungen zur Ausnutzung des magnetorheologischen Effekts gehen auf Jacob Rabinow im Jahr 1948 zurück ( Rabinow, J., Magnetic Fluid Clutch, National Bureau of Standards Technical News Bulletin 33(4) 54-60, 1948 ; U.S. Patent 2,575,360 ). Nach anfänglich großem Aufsehen ebbte das Interesse an MRF zunächst ab, um ab Mitte der neunziger Jahre eine Renaissance zu erleben ( Bullough, W.A. (Editor), Proceedings of the 5th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Associated Technology (1.), Singapore, New Jersey, London, Hong Kong: World Scientific Publishing, 1996 ). Inzwischen sind zahlreiche magnetorheologische Flüssigkeiten und Systeme kommerziell erhältlich wie z. B. MRF-Bremsen sowie unterschiedliche Vibrations- und Stossdämpfer ( Mark R. Jolly, Jonathan W. Bender, and J. David Carlson, Properties and Applications of Commercial Magnetorheological Fluids, SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998 ). Nachfolgend werden einige spezielle Eigenschaften von MRF und deren Beeinflussbarkeit beschrieben.The basics of the MRF and the first devices to exploit the magnetorheological effect go back to Jacob Rabinow in 1948 ( Rabinow, J., Magnetic Fluid Clutch, National Bureau of Standards Technical News Bulletin 33 (4) 54-60, 1948 ; U.S. Patent 2,575,360 ). After initially causing a stir, interest in MRF initially ebbed to see a renaissance from the mid-nineties ( Bullough, WA (Editor), Proceedings of the 5th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Associated Technology (1st), Singapore, New Jersey, London, Hong Kong: World Scientific Publishing, 1996 ). Meanwhile, numerous magnetorheological fluids and systems are commercially available such. B. MRF brakes and different vibration and shock absorbers ( Mark R. Jolly, Jonathan W. Bender, and J. David Carlson, Properties and Applications of Commercial Magnetorheological Fluids, SPIE 5th Annual Int Symposium on Smart Structures and Materials, San Diego, CA, March 15, 1998 ). In the following some special properties of MRF and their influenceability are described.

MRF sind meist nicht-kolloidale Suspensionen magnetisierbarer Teilchen, von ca. einem Mikrometer bis zu einem Millimeter Größe in einer Trägerflüssigkeit. Zur Stabilisierung der Partikel gegenüber Sedimentation und zur Verbesserung der Anwendungseigenschaften kann die MRF außerdem Additive wie z. B. Dispergierhilfsmittel und verdickend wirkende Zusatzstoffe enthalten. Ohne äußeres Magnetfeld sind die Partikel idealerweise homogen und isotrop verteilt, so dass die MRF im magnetfreien Raum eine geringe dynamische Basisviskosität ηo [gemessen in Pa·s] aufweist. Bei Anlegen eines äußeren Magnetfeldes H ordnen sich die magnetisierbaren Teilchen in kettenartigen Strukturen parallel zu den magnetischen Feldlinien an. Dadurch wird das Fließvermögen der Suspension eingeschränkt, was sich makroskopisch als Viskositätsanstieg bemerkbar macht. Die feldabhängige dynamische Viskosität ηH nimmt dabei in der Regel monoton mit der applizierten Magnetfeldstärke H zu.MRF are mostly non-colloidal suspensions of magnetizable particles, from about one micron to one millimeter in size in a carrier liquid. To stabilize the particles against sedimentation and to improve the application properties, the MRF can also additives such. B. dispersants and thickening additives. Without external magnetic field, the particles are ideally homogeneous and isotropically distributed, so that the MRF has a low dynamic basis viscosity η o [measured in Pa.s] in the magnet-free space. When an external magnetic field H is applied, the magnetizable particles arrange in chain-like structures parallel to the magnetic field lines. This restricts the fluidity of the suspension, which manifests itself macroscopically as an increase in viscosity. As a rule, the field-dependent dynamic viscosity η H increases monotonically with the applied magnetic field strength H.

In der Praxis wird die dynamische Viskosität einer MRF mit einem Rotationsviskosimeter bestimmt. Hierzu wird die Schubspannung τ [gemessen in Pa] bei verschiedenen Magnetfeldstärken und vorgegebener Scherrate D [in s-1] gemessen. Dabei wird die dynamische Viskosität η [in Pa·s] durch η = τ / D

Figure imgb0001

definiert.In practice, the dynamic viscosity of an MRF is determined with a rotational viscometer. For this purpose, the shear stress τ [measured in Pa] is measured at different magnetic field strengths and given shear rate D [in s -1 ]. In this case, the dynamic viscosity η [in Pa · s] by η = τ / D
Figure imgb0001

Are defined.

Die Änderungen im Fließverhalten der MRF hängen von der Konzentration und Art der magnetisierbaren Teilchen ab, von ihrer Form, Größe und Größenverteilung; aber auch von den Eigenschaften der Trägerflüssigkeit, den zusätzlichen Additiven, dem angelegten Feld, der Temperatur und anderen Faktoren. Die gegenseitigen Wechselbeziehungen all dieser Parameter sind äußerst komplex, so dass einzelne Verbesserungen einer MRF im Hinblick auf eine spezielle Zielgröße immer wieder Gegenstand von Untersuchungen und Optimierungsbemühungen gewesen sind.The changes in the flow behavior of the MRF depend on the concentration and type of magnetizable particles, their shape, size and size distribution; but also the properties of the carrier liquid, the additional additives, the applied field, the temperature and other factors. The mutual interrelations of all these parameters are extremely complex, so that individual improvements of an MRF with respect to a specific target size have been the subject of investigations and optimization efforts again and again.

Ein Forschungsschwerpunkt war dabei die Entwicklung von MRF mit hohem Schaltfaktor. In Gleichung (2) wird der Schaltfaktor wD bei einer festen Scherrate D definiert als Verhältnis der Schubspannung τH der MRF im externen Magnetfeld H zur Schubspannung τO ohne Magnetfeld: w D = τ H / τ O .

Figure imgb0002
A research focus was the development of MRF with a high switching factor. In equation (2), the switching factor w D at a fixed shear rate D is defined as the ratio of the shear stress τ H of the MRF in the external magnetic field H to the shear stress τ O without magnetic field: w D = τ H / τ O ,
Figure imgb0002

Die externe Magnetfeldstärke H [gemessen in A/m] ist nach Gleichung (3) mit der magnetischen Flussdichte B [gemessen in N/A·m = T] korreliert B = μ r μ o H .

Figure imgb0003

Mit
µr: relative Permeabilität des Mediums, dessen magnetische Flussdichte bestimmt werden soll,
µo = 4 · π · 10-7 V·s/A·m : absolute Permeabilität.The external magnetic field strength H [measured in A / m] is correlated with the magnetic flux density B [measured in N / A · m = T] according to equation (3) B = μ r μ O H ,
Figure imgb0003

With
μ r : relative permeability of the medium whose magnetic flux density is to be determined
μ o = 4 · π · 10 -7 V · s / A · m: absolute permeability.

Da es sich in der Praxis als nützlich erwiesen hat, magnetische Kennzahlen als Funktion der magnetischen Flussdichte B anzugeben, wird nachfolgend auch der Schaltfaktor auf dieses Bezugssystem transformiert. W D = τ B / τ O .

Figure imgb0004

Mit
τB: Schubspannung der MRF im externen Magnetfeld
H mit der magnetischen Flussdichte B.Since it has proven to be useful in practice to specify magnetic characteristics as a function of the magnetic flux density B, the switching factor is subsequently also transformed to this reference system. W D = τ B / τ O ,
Figure imgb0004

With
τ B : shear stress of the MRF in the external magnetic field
H with the magnetic flux density B.

Der Schaltfaktor wD kann somit als Maß für die Umsetzbarkeit einer magnetischen Anregung in eine rheologische Zustandsänderung der MRF angesehen werden. Ein "hoher" Schaltfaktor bedeutet, dass mit einer geringen magnetischen Flussdichteänderung B eine große Änderung der Schubspannung τBO bzw. der dynamischen Viskosität ηBO in der MRF erzielt wird. In der Vergangenheit hat es zahlreiche Ansätze gegeben, den Schaltfaktor durch geeignete Wahl der magnetisierbaren Teilchen im Hinblick auf eine höhere Effektivität der MRF zu optimieren.The switching factor w D can thus be considered as a measure of the feasibility of a magnetic excitation in a rheological state change of the MRF. A "high" switching factor means that a small change in the magnetic flux density B results in a large change in the shear stress τ B / τ O or the dynamic viscosity η B / η O in the MRF. In the past, there have been numerous attempts to optimize the switching factor by suitable choice of the magnetizable particles with a view to a higher efficiency of the MRF.

In der Regel werden für MRF kugelförmige Partikel aus Carbonyleisen eingesetzt. Es sind aber auch MRF mit anderen magnetisierbaren Stoffen sowie Stoffgemischen bekannt. So beschreibt die WO 02/45102 A1 eine MRF mit einer Mischung aus hochreinen Eisenpartikeln und Ferritpartikeln, um die Eigenschaften der MRF mit und ohne Magnetfeld gleichzeitig zu optimieren. Über die Partikelform und -größe werden keine Angaben gemacht. Desweiteren gibt es zahlreiche Patente zu speziellen Teilchengeometrien und -verteilungen.As a rule, spherical particles of carbonyl iron are used for MRF. But there are also MRF with other magnetizable substances and mixtures of substances known. That's how it describes WO 02/45102 A1 an MRF with a mixture of high-purity iron particles and ferrite particles, in order to simultaneously optimize the properties of the MRF with and without a magnetic field. No information is given on the particle shape and size. Furthermore, there are numerous patents on specific particle geometries and distributions.

Aus US 5,667,715 sind MRF bekannt, die kugelförmige Teilchen mit einer bimodalen Partikelgrößenverteilung enthalten, wobei das Verhältnis der mittleren Partikelgrößen der beiden Fraktionen zwischen 5 und 10 liegt. Außerdem darf die Breite der Partikelgrößenverteilungen der beiden Einzelfraktionen den Wert von zwei Drittel der jeweiligen mittleren Partikelgrößen nicht überschreiten. In US 5,900,184 und US 6,027,664 werden ebenfalls MRF mit bimodalen Partikelgrößenverteilungen beschrieben, wobei das Verhältnis der mittleren Partikelgrößen der beiden Fraktionen zwischen 3 und 15 liegt. In EP 1 283 530 A2 wird die Konzentration der magnetisierbaren Partikel, die wiederum in bimodaler Größenverteilung vorliegen, mit 86 - 90 Massen-% angegeben.Out US 5,667,715 For example, MRFs containing spherical particles with a bimodal particle size distribution are known, with the ratio of the average particle sizes of the two fractions being between 5 and 10. In addition, the width of the particle size distributions of the two individual fractions must not exceed the value of two-thirds of the respective average particle sizes. In US 5,900,184 and US 6,027,664 are also described MRF with bimodal particle size distributions, wherein the ratio of the average particle sizes of the two fractions is between 3 and 15. In EP 1 283 530 A2 the concentration of magnetisable particles, which in turn are in bimodal size distribution, is given as 86-90% by mass.

US 6,610,404 B2 beschreibt ein magnetorheologisches Material aus magnetischen Partikeln mit definierten geometrischen Merkmalen wie z.B. Zylinder- oder Prismenformen u. a.. Die Herstellung derartiger Partikel ist sehr aufwendig. Bei stark asymmetrischen Teilchen ist außerdem mit einer hohen Basisviskosität der MRF zu rechnen. In US 6,395,193 B1 und WO 01/84568 A2 werden magnetorheologische Zusammensetzungen mit nichtsphärischen magnetischen Teilchen beschrieben, doch werden diese nicht mit kugelförmigen magnetischen Teilchen kombiniert. US 6,610,404 B2 describes a magnetorheological material of magnetic particles with defined geometric features such as cylinder or prism shapes, among others. The production of such particles is very expensive. For strongly asymmetric particles, a high base viscosity of the MRF is also to be expected. In US 6,395,193 B1 and WO 01/84568 A2 Magnetorheological compositions are described with nonspherical magnetic particles, but these are not combined with spherical magnetic particles.

Aus WO 93/21644 ist eine magnetorheologische Zusammensetzung bekannt, die weichmagnetische sphärische Karbonyleisenpartikel (1 - 10μm) und hartmagnetische Eisenoxid- oder Chromdioxidpartikel (0.1 - 1μm) enthält.Out WO 93/21644 a magnetorheological composition is known which contains soft magnetic spherical carbonyl iron particles (1 - 10 microns) and hard magnetic iron oxide or chromium dioxide particles (0.1 - 1 micron).

Allen genannten MRF ist gemeinsam, dass sie zur Erzielung eines hohen Schaltfaktors auf spezielle Partikelgrößen bzw. Partikelgrößenverteilungen und/oder definierte Teilchengeometrien angewiesen sind. Dadurch wird ihre Präparation aufwendig und entsprechend kostspielig.All mentioned MRF have in common that they are dependent on special particle sizes or particle size distributions and / or defined particle geometries in order to achieve a high switching factor. As a result, their preparation is complex and correspondingly expensive.

Hiervon ausgehend ist es die Aufgabe der vorliegenden Erfindung magnetorheologische Materialien mit hohem Schaltfaktor, insbesondere MRF mit hohem Schaltfaktor, vorzuschlagen, deren Präparation weniger aufwendig und damit kostengünstig ist.On this basis, it is the object of the present invention to propose magnetorheological materials with a high switching factor, in particular MRF with a high switching factor, whose preparation is less complicated and thus cost-effective.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Weiterbildungen derartig hergestellter magnetorheologischer Materialien, insbesondere MRF, werden in den abhängigen Ansprüchen beschrieben. Desweiteren geben die Patentansprüche 17 bis 19 Verwendungsmöglichkeiten derartig hergestellter magnetorheologischer Materialien an.This object is solved by the characterizing features of claim 1. Advantageous developments of magnetorheological materials produced in this way, in particular MRF, are described in the dependent claims. Furthermore, the claims 17 to 19 indicate uses of magnetorheological materials produced in this way.

Erfindungsgemäß werden somit magnetorheologische Materialien, insbesondere MRF, mit zwei Arten von magnetisierbaren Partikeln vorgeschlagen, wobei die erste Partikelfraktion p aus unregelmäßig geformten nichtsphärischen Teilchen besteht und die zweite Fraktion q aus sphärischen Teilchen. Durch die Kombination von unregelmäßig geformten nichtsphärischen Partikeln und sphärischen Partikeln in dem Trägermedium werden überraschenderweise sowohl eine niedrige Basisviskosität ohne Feld als auch eine hohe Schubspannung im externen Magnetfeld erreicht. Das heißt, die erfindungsgemäßen magnetorheologischen Materialien weisen einen außergewöhnlich hohen Schaltfaktor auf. Außerdem ist die Herstellung der unregelmäßig geformten Partikelfraktion p wenig aufwendig und somit äußerst preisgünstig. Bevorzugt ist die mittlere Partikelgröße der Fraktion p gleich oder größer als diejenige der Fraktion q. Durch den Einsatz von unregelmäßig geformten, nichtsphärischen Teilchen entsteht also ein signifikanter Kostenvorteil im Vergleich zur Herstellung bekannter Materialien.According to the invention, therefore, magnetorheological materials, in particular MRF, with two types of magnetisable particles are proposed, wherein the first particle fraction p consists of irregularly shaped non-spherical particles and the second fraction q consists of spherical particles. The combination of irregularly shaped non-spherical particles and spherical particles in the carrier medium surprisingly achieves both a low base viscosity without field and a high shear stress in the external magnetic field. That is, the magnetorheological materials of the invention have an exceptionally high switching factor. Besides, the production of the irregular is shaped particle fraction p little expensive and thus extremely inexpensive. Preferably, the average particle size of the fraction p is equal to or greater than that of the fraction q. The use of irregularly shaped, non-spherical particles thus creates a significant cost advantage compared to the production of known materials.

Es hat sich herausgestellt, dass z.B. bei einer MRF, die zum Vergleich nur kleine kugelförmige Partikel enthält, die Basisviskosität deutlich erhöht ist. Dagegen werden bei einer anderen MRF, die nur die großen unregelmäßig geformten Partikel enthält, deutlich geringere Schubspannungen im Magnetfeld festgestellt. Die MRF mit einer Kombination aus großen unregelmäßig geformten, nichtsphärischen Teilchen und kleinen sphärischen Teilchen weist damit ein deutlich verbessertes Eigenschaftsprofil auf.It has been found that e.g. in the case of an MRF, which contains only small spherical particles for comparison, the basic viscosity is markedly increased. In contrast, in another MRF, which contains only the large irregularly shaped particles, significantly lower shear stresses in the magnetic field are detected. The MRF with a combination of large irregularly shaped, non-spherical particles and small spherical particles thus has a significantly improved property profile.

Eine vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht vor, dass die mittlere Partikelgröße der Fraktion p bevorzugt mindestens den doppelten Wert der mittleren Partikelgröße der Fraktion q aufweist. Weiterhin ist es günstig, wenn die mittleren Partikelgrößen der Fraktionen p und q zwischen 0,01 µm und 1000 µm, bevorzugt zwischen 0,1 µm und 100 µm, liegen.An advantageous embodiment of the magnetorheological materials according to the invention provides that the mean particle size of the fraction p preferably has at least twice the average particle size of the fraction q. Furthermore, it is favorable if the average particle sizes of the fractions p and q are between 0.01 μm and 1000 μm, preferably between 0.1 μm and 100 μm.

Eine weitere vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht vor, dass das Volumenverhältnis der Fraktionen p und q zwischen 1 : 99 und 99 : 1, bevorzugt zwischen 10 : 90 und 90 : 10, liegt.A further advantageous embodiment of the magnetorheological materials according to the invention provides that the volume ratio of fractions p and q is between 1:99 and 99: 1, preferably between 10:90 and 90:10.

Erfindungsgemäß werden die magnetisierbaren Partikel aus weichmagnetischen Partikeln nach dem Stand der Technik gebildet. Dies bedeutet, dass die magnetisierbaren Partikel sowohl aus der Menge der weichmagnetischen metallischen Werkstoffe wie Eisen, Cobalt, Nickel (auch in nichtreiner Form) und Legierungen daraus wie Eisen-Cobalt, Eisen-Nickel; magnetischer Stahl; Eisen-Silizium ausgewählt werden können als auch aus der Menge der weichmagnetischen oxidkeramischen Werkstoffe wie den kubischen Ferriten, den Perowskiten und den Granaten der allgemeinen Formel

        MO·Fe2O3

mit einem oder mehreren Metallen aus der Gruppe M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd oder Mg.
According to the invention, the magnetizable particles of soft magnetic particles according to the state made of engineering. This means that the magnetisable particles both from the amount of soft magnetic metallic materials such as iron, cobalt, nickel (even in non-pure form) and alloys thereof such as iron-cobalt, iron-nickel; magnetic steel; Iron-silicon can be selected as well as from the amount of soft magnetic oxide ceramic materials such as the cubic ferrites, the perovskites and the garnets of the general formula

MO · Fe 2 O 3

with one or more metals from the group M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd or Mg.

Daneben können aber auch Mischferrite wie MnZn-, NiZn-, NiCo-, NiCuCo-, NiMg- oder CuMg-Ferrite eingesetzt werden.In addition, however, it is also possible to use mixed ferrites such as MnZn, NiZn, NiCo, NiCuCo, NiMg or CuMg ferrites.

Die magnetisierbaren Partikel können aber auch aus Eisencarbid- oder Eisennitridpartikeln bestehen sowie aus Legierungen von Vanadium, Wolfram, Kupfer und Mangan sowie aus Mischungen aus den genannten Partikelmaterialien oder aus Mischungen unterschiedlicher magnetisierbarer Feststoffarten. Dabei können die weichmagnetischen Werkstoffe auch alle oder teilweise in verunreinigter Form vorliegen.However, the magnetizable particles can also consist of iron carbide or iron nitride particles and of alloys of vanadium, tungsten, copper and manganese as well as of mixtures of the mentioned particle materials or of mixtures of different magnetizable types of solids. In this case, the soft magnetic materials may also be present all or partially in contaminated form.

Als Trägermedium im Sinne der Erfindung werden Trägerflüssigkeiten sowie Fette, Gele oder Elastomere angesehen. Als Trägerflüssigkeiten können die aus dem Stand der Technik bekannten Flüssigkeiten, wie Wasser, Mineralöle, synthetische Öle wie Polyalphaolefine, Kohlenwasserstoffe, Siliconöle, Ester, Polyether, fluorierte Polyether, Polyglykole, fluorierte Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe, fluorierte Silicone, organisch modifizierte Silicone sowie Copolymere daraus oder Mischungen aus diesen Flüssigkeiten eingesetzt werden.As a carrier medium in the context of the invention carrier liquids and fats, gels or elastomers are considered. As carrier liquids, the liquids known from the prior art, such as water, mineral oils, synthetic oils, such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and copolymers thereof or mixtures of these liquids.

In einer vorteilhaften Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien können der Suspension zur Herabsetzung der Sedimentation anorganische Partikel wie SiO2, TiO2, Eisenoxide, Schichtsilicate oder organische Additive sowie Kombinationen daraus zugegeben werden.In an advantageous embodiment of the magnetorheological materials according to the invention, inorganic particles such as SiO 2 , TiO 2 , iron oxides, layered silicates or organic additives and combinations thereof may be added to the suspension to reduce sedimentation.

Eine weitere vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht vor, dass die anorganischen Partikel mindestens zum Teil organisch modifiziert sind.A further advantageous embodiment of the magnetorheological materials according to the invention provides that the inorganic particles are at least partially organically modified.

Weitere besondere Ausführungsformen der magnetorheologischen Materialien sehen vor, dass die Suspension zur Herabsetzung von Abrasionserscheinungen partikelförmige Additive wie Graphit, Perfluorethylen oder Molybdänverbindungen wie Molybdändisulfit sowie Kombinationen daraus enthält. Es ist auch möglich, dass die Suspension zum Einsatz für die Oberflächenbehandlung von Werkstücken spezielle abrasiv wirkende und/oder chemisch ätzende Zusatzstoffe wie z.B. Korund, Ceroxide, Siliziumcarbid oder Diamant enthält.Further particular embodiments of the magnetorheological materials envisage that the suspension contains particulate additives such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulfite and combinations thereof in order to reduce abrasion phenomena. It is also possible that the suspension for use in the surface treatment of workpieces may contain special abrasive and / or chemical caustic additives, e.g. Corundum, cerium oxides, silicon carbide or diamond contains.

Insgesamt hat es sich als vorteilhaft erwiesen, wenn der Anteil der magnetisierbaren Partikel zwischen 10 und 70 Vol.-%, bevorzugt zwischen 20 und 60 Vol.-%, liegt; der Anteil des Trägermediums zwischen 20 und 90 Vol.-%, bevorzugt zwischen 30 und 80 Vol.-%, liegt und der Anteil der nichtmagnetisierbaren Additive zwischen 0,001 und 20 Massen-%, bevorzugt zwischen 0,01 und 15 Massen-% (bezogen auf die magnetisierbaren Feststoffe), liegt.Overall, it has proven to be advantageous if the proportion of magnetizable particles between 10 and 70 vol .-%, preferably between 20 and 60 vol .-%, is; the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume, and the proportion of nonmagnetizable additives is between 0.001 and 20% by mass, preferably between 0.01 and 15 mass% (based on the magnetizable solids), is.

Die Erfindung betrifft weiterhin die Verwendung der vorstehend näher beschriebenen Materialien.The invention further relates to the use of the materials described in more detail above.

Eine vorteilhafte Ausgestaltungsform der erfindungsgemäßen magnetorheologischen Materialien sieht deren Verwendung in adaptiven Stoß- und Schwingungsdämpfern, steuerbaren Bremsen, Kupplungen sowie in Sport- oder Trainingsgeräten vor. Spezielle Materialien können auch zur Oberflächenbearbeitung von Werkstücken eingesetzt werden.An advantageous embodiment of the magnetorheological materials according to the invention provides for their use in adaptive shock and vibration dampers, controllable brakes, clutches and in sports or training equipment. Special materials can also be used for the surface treatment of workpieces.

Letztlich können die magnetorheologischen Materialien auch zur Erzeugung und/oder Darstellung haptischer Informationen wie Schriftzeichen, computersimulierter Objekte, Sensorsignale oder Bilder, in haptischer Form, zur Simulation von viskosen, elastischen und/oder viskoelastischen Eigenschaften bzw. der Konsistenzverteilung eines Objekts, insbesondere zu Trainings- und/oder Forschungszwecken und/oder für medizinische Anwendungen, eingesetzt werden.Finally, the magnetorheological materials can also be used to generate and / or display haptic information such as characters, computer-simulated objects, sensor signals or images, in haptic form, for simulating viscous, elastic and / or viscoelastic properties or the consistency distribution of an object, in particular for training purposes. and / or research and / or for medical applications.

Im Folgenden wird ein Beispiel für die Herstellung der erfindungsgemäßen magnetorheologischen Materialien, insbesondere die Herstellung einer magnetorheologischen Flüssigkeit (MRF), beschrieben.An example of the production of the magnetorheological materials according to the invention, in particular the production of a magnetorheological fluid (MRF), is described below.

Beispiel 1example 1

Eingesetzte Edukte:

  • Polyalphaolefin mit einer Dichte von 0,83 g/cm3 bei 15° C und einer kinematischen Viskosität von 48,5 mm/s2 bei 40° C,
  • unregelmäßig geformte Eisenpartikel (p) mit einer mittleren Teilchengröße von 41 µm, gemessen in Isopropanol mittels Laserbeugung mit Hilfe eines Mastersizers S der Firma Malvern Instruments,
  • kugelförmige Eisenpartikel (q) mit einer mittleren Teilchengröße von 4,7 µm, gemessen in Isopropanol mittels Laserbeugung mit Hilfe eines Mastersizers S der Firma Malvern Instruments.
Used educts:
  • Polyalphaolefin having a density of 0.83 g / cm 3 at 15 ° C and a kinematic viscosity of 48.5 mm / s 2 at 40 ° C,
  • irregularly shaped iron particles (p) with a mean particle size of 41 μm, measured in isopropanol by means of laser diffraction with the aid of a Mastersizer S from Malvern Instruments,
  • spherical iron particles (q) with an average particle size of 4.7 μm, measured in isopropanol by means of laser diffraction with the aid of a Mastersizer S from Malvern Instruments.

80 ml einer Suspension mit 35,00 Vol.-% Eisenpulver, davon 23,33 Vol-% unregelmäßig geformte Partikel (p) und 11,66 Vol.-% kugelförmige Partikel (q), in Polyalphaolefin werden wie folgt hergestellt:

  • 43,16 g Polyalphaolefin werden in einem Stahlbehälter von 250 ml Inhalt auf 0,001 g Einwaagegenauigkeit eingewogen. Unter ständigem Rühren werden dann zuerst 146,96 g des unregelmäßig geformten Eisenpulvers (p) langsam eingestreut, anschließend erfolgt in gleicher Weise die Zugabe von 73,45 g der kugelförmigen Eisenpartikel (q). Die Dispergierung des Eisenpulvers im Öl erfolgt mit Hilfe eines Dispermat der Firma VMA-Getzmann GmbH mittels einer Dissolverscheibe mit einem Durchmesser von 30 mm, wobei ein Abstand zwischen der Dissolverscheibe und dem Behälterboden von 1 mm besteht. Die Behandlungsdauer beträgt 3 min bei ca. 6500 Umdrehungen pro Minute. Die Rührgeschwindigkeit ist der Viskosität des Ansatzes dann optimal angepasst, wenn die Drehscheibe unter Bildung einer Trombe von oben deutlich sichtbar ist.
80 ml of a suspension containing 35.00% by volume of iron powder, of which 23.33% by volume of irregularly shaped particles (p) and 11.66% by volume of spherical particles (q) in polyalphaolefin are prepared as follows:
  • 43.16 g of polyalphaolefin are weighed in a steel container of 250 ml content to 0.001 g weighing accuracy. With constant stirring, 146.96 g of the irregularly shaped iron powder (p) are then slowly interspersed first, followed by the addition of 73.45 g of the spherical iron particles (q) in the same manner. The dispersion of the iron powder in the oil takes place with the aid of a Dispermat from VMA-Getzmann GmbH by means of a dissolver disk with a diameter of 30 mm, whereby there is a distance between the dissolver disk and the container bottom of 1 mm. The treatment time is 3 min at about 6500 revolutions per minute. The stirring speed is the viscosity of the approach then optimally adapted when the turntable is clearly visible to form a Trombe from above.

Die derart hergestellte magnetorheologische Flüssigkeit MRF 3 mit der Eisenpartikelmischung (p) + (q) wurde anschließend hinsichtlich ihrer Eigenschaften charakterisiert und mit zwei weiteren entsprechend hergestellten magnetorheologischen Flüssigkeiten verglichen. Dabei enthielt

  • MRF 1 anstelle der Partikelmischung (p) + (q), 35 Vol.-% der reinen kugelförmigen Eisenpartikel (q) in Polyalphaolefin und
  • MRF 2 anstelle der Partikelmischung (p) + (q), 35 Vol.-% der reinen unregelmäßig geformten Eisenpartikel (p) in Polyalphaolefin.
The thus prepared magnetorheological fluid MRF 3 with the iron particle mixture (p) + (q) was then in terms of their properties characterized and compared with two other magnetorheological fluids prepared accordingly. It contained
  • MRF 1 instead of the particle mixture (p) + (q), 35 vol.% Of the pure spherical iron particles (q) in polyalphaolefin and
  • MRF 2 instead of the particle mixture (p) + (q), 35 vol.% Of the pure irregularly shaped iron particles (p) in polyalphaolefin.

Die rheologischen und magnetorheologischen Messungen erfolgten in einem Rotationsrheometer (Searle Systems) MCR 300 der Firma Paar Physica. Dabei wurden die rheologischen Eigenschaften ohne angelegtes Magnetfeld in einem Messsystem mit koaxialer Zylindergeometrie durchgeführt, während die Messungen im Magnetfeld in einer Platte-Platte Anordnung senkrecht zu den Feldlinien erfolgten.The rheological and magnetorheological measurements were carried out in a Searle Systems MCR 300 from Paar Physica. The rheological properties were carried out without applied magnetic field in a measuring system with coaxial cylinder geometry, while the measurements were carried out in the magnetic field in a plate-plate arrangement perpendicular to the field lines.

Die Ergebnisse dieser Untersuchung sind in den Abbildungen 1 bis 3 zusammengefasst.The results of this study are summarized in Figures 1 to 3.

Abbildung 1 zeigt die Schubspannung τO als Funktion der Scherrate D für die erfindungsgemäße MRF 3 sowie die beiden Vergleichsansätze MRF 1 und MRF 2 ohne angelegtes Magnetfeld. Man erkennt, dass die Fließkurve der erfindungsgemäßen MRF 3 bei allen Scherraten außerhalb des quasistatischen Bereichs (D > 1 s-1) unterhalb derer von MRF 1 und MRF 2 liegt. Dies bedeutet, dass die erfindungsgemäße MRF 3 im magnetfeldfreien Raum bei einer festen Scherrate D im Vergleich zu den übrigen Ansätzen die geringste dynamische Basisviskosität ηO aufweist (vgl. Gleichung (1) der Beschreibung). illustration 1 shows the shear stress τ O as a function of the shear rate D for the inventive MRF 3 and the two comparative approaches MRF 1 and MRF 2 without applied magnetic field. It can be seen that the flow curve of the MRF 3 according to the invention is below that of MRF 1 and MRF 2 at all shear rates outside the quasistatic range (D> 1 s -1 ). This means that the MRF 3 according to the invention has the lowest dynamic basic viscosity η O in magnetic-field-free space at a fixed shear rate D in comparison with the other approaches (compare equation (1) of the description).

Abbildung 2 zeigt die Schubspannung τB als Funktion der magnetischen Flussdichte B für die erfindungsgemäße MRF 3 sowie die beiden Vergleichsansätze MRF 1 und MRF 2 im quasistatischen Bereich (D = 1 s-1). Man erkennt, dass die erfindungsgemäße MRF 3 im gesamten Messbereich höhere Schubspannungen τB aufweist als der Vergleichsansatz MRF 2, der lediglich unregelmäßig geformte Eisenpartikel (p) enthält. Weiterhin erkennt man, dass die Schubspannung τB der erfindungsgemäßen MRF 3 bis zu einer Scherrate von D = 400 s-1 deckungsgleich mit derjenigen von MRF 1 verläuft, dann aber noch deren Werte übertrifft. Dies bedeutet, dass die erfindungsgemäße MRF 3 im Magnetfeld gleiche oder höhere Schubspannungen τB aufweist wie MRF 1, die lediglich kleine kugelförmige Eisenpartikel (q) enthält. Figure 2 shows the shear stress τ B as a function of the magnetic flux density B for the inventive MRF 3 and the two comparative approaches MRF 1 and MRF 2 in the quasistatic range (D = 1 s -1 ). It can be seen that the MRF 3 according to the invention has higher shear stresses τ B over the entire measuring range than the comparative batch MRF 2, which contains only irregularly shaped iron particles (p). Furthermore, it can be seen that the shear stress τ B of the MRF 3 according to the invention extends congruently with that of MRF 1 up to a shear rate of D = 400 s -1 , but then still exceeds its values. This means that the MRF 3 according to the invention has identical or higher shear stresses τ B in the magnetic field than MRF 1, which contains only small spherical iron particles (q).

Zusammenfassend kann somit gesagt werden, dass die erfindungsgemäße MRF 3 im Magnetfeld im Vergleich zu den Ansätzen MRF1 und MRF2 ohne Partikelmischungen insgesamt die höchsten Schubspannungen τB aufweist.In summary, it can thus be said that the MRF 3 according to the invention has the highest shear stresses τ B overall in the magnetic field in comparison with the lugs MRF 1 and MRF 2 without particle mixtures.

Abbildung 3 zeigt den Schaltfaktor wD als Funktion der magnetischen Flussdichte B für die erfindungsgemäße MRF 3 sowie die beiden Vergleichsansätze MRF 1 und MRF 2 bei einer konstanten Scherrate von D = 100 s-1. Man erkennt, dass der Schaltfaktor WD der erfindungsgemäßen MRF 3 im gesamten Messbereich diejenigen der Ansätze MRF 1 und MRF 2 übertrifft. So lässt sich beispielsweise bei einer Flussdichte von B = 500 mT eine Erhöhung des Schaltfaktors WD um den Faktor 3 im Verhältnis zu MRF 1 bzw. um den Faktor 5 im Verhältnis zu MRF 2 feststellen. Figure 3 shows the switching factor w D as a function of the magnetic flux density B for the inventive MRF 3 and the two comparative approaches MRF 1 and MRF 2 at a constant shear rate of D = 100 s -1 . It can be seen that the switching factor W D of the MRF 3 according to the invention exceeds those of the MRF 1 and MRF 2 approaches over the entire measuring range. For example, at a flux density of B = 500 mT, an increase in the switching factor W D can be determined by a factor of 3 in relation to MRF 1 or by a factor of 5 in relation to MRF 2.

Insgesamt bleibt festzuhalten, dass die erfindungsgemäße MRF 3 mit der Partikelmischung aus großen unregelmäßig geformten Eisenteilchen und kleihen kugelförmigen Eisenteilchen sowohl die geringste dynamische Basisviskosität ηo im feldfreien Raum als auch den größten Schaltfaktor wD im Magnetfeld im Verhältnis zu den Vergleichsansätzen MRF 1 und MRF 2 aufweist. Overall, it should be noted that the inventive MRF 3 with the particle mixture of large irregular formed iron particles and small spherical iron particles both the lowest dynamic basis viscosity η o in field-free space and the largest switching factor w D in the magnetic field in relation to the comparison approaches MRF 1 and MRF 2 has.

Claims (19)

  1. Magnetorheological materials comprising at least one non-magnetisable carrier medium and soft magnetic magnetisable particles contained therein,
    characterised in that
    at least two magnetisable particle fractions p and q are contained as particles,
    p being formed from non-spherical particles and q from spherical particles, the average particle size of p being greater than q.
  2. Magnetorheological materials according to claim 1, characterised in that the average particle size of the fraction p has preferably at least twice the value of the average particle size of the fraction q.
  3. Magnetorheological materials according to one of the preceding claims, characterised in that the average particle sizes of the fractions p and q are between 0.01 µm and 1000 µm, preferably between 0.1 µm and 100 µm.
  4. Magnetorheological materials according to one or more of the preceding claims, characterised in that the volume ratio of the fractions p and q is between 1 : 99 and 99 : 1, preferably between 10 : 90 and 90 : 10.
  5. Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from soft magnetic metallic materials, in particular from iron, cobalt, nickel (also in non-pure form) and alloys thereof, such as iron-cobalt, iron-nickel; magnetic steel; iron-silicon and/or mixtures thereof.
  6. Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from soft magnetic oxide-ceramic materials, in particular from cubic ferrites, perovskites and garnets of the general formula

            MO · Fe2O3

    with one or more metals from the group M = Mn, Fe, Co, Ni, Cu, Zn, Ti, Cd or Mg and/or mixtures thereof.
  7. Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from mixed ferrites, such as MnZn-, NiZn-, NiCo-, NiCuCo-, NiMg-, CuMg-ferrites and/or mixtures thereof.
  8. Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are selected from iron carbide or iron nitride and also alloys of vanadium, tungsten, copper and manganese and/or mixtures thereof.
  9. Magnetorheological materials according to one of the claims 1 - 4, characterised in that the magnetisable particles are present in pure and/or impure form.
  10. Magnetorheological materials according to one or more of the preceding claims, characterised in that the carrier medium is selected from
    - carrier fluids such as water, mineral oils, synthetic oils, such as polyalphaolefins, hydrocarbons, silicone oils, esters, polyethers, fluorinated polyethers, polyglycols, fluorinated hydrocarbons, halogenated hydrocarbons, fluorinated silicones, organically modified silicones and also copolymers thereof or fluid mixtures thereof,
    - fats or gels or
    - from elastomers.
  11. Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain dispersion agents, antioxidants, defoamers and/or anti-abrasion agents as additives.
  12. Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain inorganic particles such as SiO2, TiO2, iron oxides, phyllosilicates or organic supplements and also combinations thereof as further additives in order to reduce sedimentation.
  13. Magnetorheological materials according to claim 12, characterised in that the inorganic particles are at least in part organically modified.
  14. Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain particulate supplements, such as graphite, perfluoroethylene or molybdenum compounds such as molybdenum disulphite and combinations thereof as further additives in order to reduce abrasion phenomena.
  15. Magnetorheological materials according to one or more of the preceding claims, characterised in that they contain abrasively acting and/or chemically etching supplements, such as e.g. corundum, cerium oxides, silicon carbide and/or diamond as further additives for use in the surface treatment of workpieces.
  16. Magnetorheological materials according to one or more of the preceding claims, characterised in that
    - the proportion of magnetisable particles is between 10 and 70% by volume, preferably between 20 and 60% by volume,
    - the proportion of the carrier medium is between 20 and 90% by volume, preferably between 30 and 80% by volume,
    - the proportion of additives is between 0.001 and 20% by mass, preferably between 0.01 and 15% by mass (relative to the magnetisable solids).
  17. Use of the magnetorheological materials according to one or more of the claims 1 to 16 in adaptive shock and vibration dampers, controllable brakes, clutches and also in sports or training appliances.
  18. Use of the magnetorheological materials according to one or more of the claims 1 to 16 for surface machining of workpieces.
  19. Use of the magnetorheological materials according to one or more of the claims 1 to 16 in order to generate and/or display haptic information, such as characters, computer-simulated objects, sensor signals or images; for simulation of viscous, elastic and/or visco-elastic properties or the consistency distribution of an object, in particular for training and/or research purposes and/or for medical applications.
EP05782479A 2004-08-27 2005-08-25 Magneto-rheological materials having a high switch factor and use thereof Not-in-force EP1782437B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004041650A DE102004041650B4 (en) 2004-08-27 2004-08-27 Magnetorheological materials with high switching factor and their use
PCT/EP2005/009193 WO2006024455A1 (en) 2004-08-27 2005-08-25 Magneto-rheological materials having a high switch factor and use thereof

Publications (2)

Publication Number Publication Date
EP1782437A1 EP1782437A1 (en) 2007-05-09
EP1782437B1 true EP1782437B1 (en) 2010-02-17

Family

ID=35207498

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05782479A Not-in-force EP1782437B1 (en) 2004-08-27 2005-08-25 Magneto-rheological materials having a high switch factor and use thereof

Country Status (5)

Country Link
US (1) US7897060B2 (en)
EP (1) EP1782437B1 (en)
AT (1) ATE458256T1 (en)
DE (2) DE102004041650B4 (en)
WO (1) WO2006024455A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606471B (en) * 2011-04-07 2017-11-21 好根那公司 Composite iron-based powder composition, compacted and heat treated component, and method for producing the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004041650B4 (en) 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological materials with high switching factor and their use
DE102004041649B4 (en) * 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological elastomers and their use
DE102004041651B4 (en) * 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological materials with magnetic and non-magnetic inorganic additives and their use
DE102005034925B4 (en) * 2005-07-26 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological Elastomerkomposite and their use
DE102007017589B3 (en) * 2007-04-13 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Damping device with field-controllable fluid
DE102007017588A1 (en) 2007-04-13 2008-10-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Blocking device with field-controllable fluid
DE102007019584A1 (en) 2007-04-25 2008-11-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological torque transmission device, its use and magnetorheological torque transmission method
US8506837B2 (en) * 2008-02-22 2013-08-13 Schlumberger Technology Corporation Field-responsive fluids
DE102009007209B4 (en) 2009-02-03 2014-07-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Switchable magnetorheological torque or power transmission device, its use and magnetorheological torque or power transmission method
US9423009B2 (en) * 2011-04-21 2016-08-23 Ntn Corporation Hydraulic auto-tensioner
DE102012017423B4 (en) * 2012-09-04 2015-07-09 Inventus Engineering Gmbh Magnetorheological transmission device
JP6255715B2 (en) * 2013-05-17 2018-01-10 国立大学法人 名古屋工業大学 Magnetic functional fluid, damper and clutch using the same
DE202014002171U1 (en) 2014-03-08 2015-06-09 Intorq Gmbh & Co. Kg Torque-limiting element
DE102016002171A1 (en) 2016-02-24 2016-10-27 Daimler Ag Device for detecting a metallic object
DE102017004615B4 (en) 2017-03-31 2020-11-05 Kastriot Merlaku Pedal vehicles, bicycles or vehicles powered purely by muscle power for children
KR102771530B1 (en) * 2019-07-19 2025-02-20 현대자동차주식회사 Magneto-Rheological Elastomer
DE102019217151B4 (en) * 2019-11-06 2022-02-03 Magna Pt B.V. & Co. Kg Method for coupling/decoupling an electric machine in a hybrid transmission

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2575360A (en) * 1947-10-31 1951-11-20 Rabinow Jacob Magnetic fluid torque and force transmitting device
US2938183A (en) * 1956-11-09 1960-05-24 Bell Telephone Labor Inc Single crystal inductor core of magnetizable garnet
US3425666A (en) * 1963-02-21 1969-02-04 Chevron Res Process for producing ferrimagnetic materials
GB1428000A (en) * 1972-03-07 1976-03-10 Lignes Telegraph Telephon Magnetic materials for magnetic circuits
JPS6259564A (en) * 1985-09-10 1987-03-16 日本碍子株式会社 Molding aid for ceramics, molded body obtained using the same and production of ceramic product
DE3890400T1 (en) 1987-05-19 1989-05-24 Bridgestone Corp., Tokio/Tokyo, Jp
US5158109A (en) * 1989-04-18 1992-10-27 Hare Sr Nicholas S Electro-rheological valve
US5161653A (en) * 1989-04-18 1992-11-10 Hare Sr Nicholas S Electro-rheological shock absorber
US5771013A (en) * 1989-05-01 1998-06-23 Dow Corning Corporation Method for stabilizing compositions containing carbonyl iron powder
US5002677A (en) 1989-09-19 1991-03-26 The B. F. Goodrich Company Flexible high energy magnetic blend compositions based on ferrite particles in highly saturated nitrile rubber and methods of processing the same
JPH03119041A (en) 1989-09-30 1991-05-21 Yokohama Rubber Co Ltd:The Rubber composition for tire tread
DE4101869A1 (en) 1991-01-23 1992-07-30 Basf Ag PLASTIC MIXTURE WITH FERROMAGNETIC OR FERROELECTRIC FILLERS
ES2105256T3 (en) * 1992-04-14 1997-10-16 Byelocorp Scient Inc MAGNETORHEOLOGICAL FLUIDS AND METHODS FOR ITS PRODUCTION.
GB2267947B (en) 1992-06-17 1995-04-26 Gec Alsthom Ltd Controllable motion-damper
CA2148000C (en) * 1992-10-30 2000-10-10 Keith D. Weiss Thixotropic magnetorheological materials
CA2148001A1 (en) 1992-10-30 1994-05-11 Keith D. Weiss Magnetorheological materials utilizing surface-modified particles
US5578238A (en) * 1992-10-30 1996-11-26 Lord Corporation Magnetorheological materials utilizing surface-modified particles
US5549837A (en) 1994-08-31 1996-08-27 Ford Motor Company Magnetic fluid-based magnetorheological fluids
ES2185710T3 (en) 1995-07-28 2003-05-01 Stewart Gregory Smith INCLUDING CONTROL DEVICE FOR VEHICLES.
US5900184A (en) * 1995-10-18 1999-05-04 Lord Corporation Method and magnetorheological fluid formulations for increasing the output of a magnetorheological fluid device
US5579837A (en) * 1995-11-15 1996-12-03 Ford Motor Company Heat exchanger tube and method of making the same
EP0784163B1 (en) 1996-01-11 2002-07-03 Ford Motor Company Limited Variable stiffness bushing using magnetorheological elastomers
DE19613194A1 (en) 1996-04-02 1997-10-09 Huels Chemische Werke Ag Tire treads with low rolling resistance and improved ABS braking
US5667715A (en) * 1996-04-08 1997-09-16 General Motors Corporation Magnetorheological fluids
DE19614140C1 (en) 1996-04-10 1997-05-07 B & F Formulier Und Abfuell Gm Production of silicone-based sealing materials
DE19725971A1 (en) 1997-06-19 1998-12-24 Huels Silicone Gmbh RTV silicone rubber compounds
US5878997A (en) * 1997-09-10 1999-03-09 Lucent Technologies Inc. Compact low-inductance magnetorheological damper
US5985168A (en) * 1997-09-29 1999-11-16 University Of Pittsburgh Of The Commonwealth System Of Higher Education Magnetorheological fluid
KR100236919B1 (en) * 1997-10-09 2000-01-15 윤덕용 Angle-limited rotary attenuator using magnetorheological fluid
DE19801752C1 (en) 1998-01-20 1999-05-12 Dorma Gmbh & Co Kg Locking device for emergency exit doors
US5971835A (en) * 1998-03-25 1999-10-26 Qed Technologies, Inc. System for abrasive jet shaping and polishing of a surface using magnetorheological fluid
US6123633A (en) * 1998-09-03 2000-09-26 Wilson Sporting Goods Co. Inflatable game ball with a lobular carcass and a relatively thin cover
US6399193B1 (en) * 1998-12-18 2002-06-04 The University Of Massachusetts Lowell Surfacing laminate with bonded with pigmented pressure sensitive adhesive
DE19910782C2 (en) 1999-03-11 2001-01-25 Stabilus Gmbh Door hinge with a blockage due to a field force
US6203717B1 (en) * 1999-07-01 2001-03-20 Lord Corporation Stable magnetorheological fluids
US6132633A (en) * 1999-07-01 2000-10-17 Lord Corporation Aqueous magnetorheological material
IT1310127B1 (en) 1999-07-20 2002-02-11 Fiat Ricerche CONTROLLED OSCILLATING DAMPER.
US6599439B2 (en) * 1999-12-14 2003-07-29 Delphi Technologies, Inc. Durable magnetorheological fluid compositions
WO2001061713A1 (en) 2000-02-18 2001-08-23 The Board Of Regents Of The University And Community College System Of Nevada Magnetorheological polymer gels
US6395193B1 (en) * 2000-05-03 2002-05-28 Lord Corporation Magnetorheological compositions
DE10024439A1 (en) * 2000-05-19 2001-12-06 Koppe Franz Casting or investment material with electromagnetic shielding properties for the production of electronic components
US6451219B1 (en) * 2000-11-28 2002-09-17 Delphi Technologies, Inc. Use of high surface area untreated fumed silica in MR fluid formulation
EP1344229B1 (en) * 2000-11-29 2008-03-05 The Adviser Defence Research & Development Organisation, Ministry of Defence, Government of India A magnetorheological fluid composition and a process for preparation thereof
DE60018956T2 (en) 2000-12-29 2006-03-23 Mando Corp. Twin-tube vibration damper filled with hydraulic fluid and magnetorheological fluid
US6279702B1 (en) * 2001-01-05 2001-08-28 Mando Corporation Shock absorber using a hydraulic fluid and a magnetorheological fluid
US6610404B2 (en) * 2001-02-13 2003-08-26 Trw Inc. High yield stress magnetorheological material for spacecraft applications
JP3608612B2 (en) 2001-03-21 2005-01-12 信越化学工業株式会社 Electromagnetic wave absorbing heat conducting composition, heat softening electromagnetic wave absorbing heat radiation sheet, and heat radiation construction method
US20030030026A1 (en) * 2001-08-06 2003-02-13 Golden Mark A. Magnetorheological fluids
US20030034475A1 (en) 2001-08-06 2003-02-20 Ulicny John C. Magnetorheological fluids with a molybdenum-amine complex
US6855426B2 (en) * 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US20030042461A1 (en) 2001-09-04 2003-03-06 Ulicny John C. Magnetorheological fluids with an additive package
KR100611808B1 (en) 2001-09-14 2006-08-11 쇼와 덴코 가부시키가이샤 Resin composition
US6592772B2 (en) * 2001-12-10 2003-07-15 Delphi Technologies, Inc. Stabilization of magnetorheological fluid suspensions using a mixture of organoclays
US20040126565A1 (en) * 2002-05-09 2004-07-01 Ganapathy Naganathan Actively controlled impact elements
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
US7261834B2 (en) * 2003-05-20 2007-08-28 The Board Of Regents Of The University And Community College System Of Nevada On Behalf Of The University Of Nevada, Reno Tunable magneto-rheological elastomers and processes for their manufacture
DE102004007621A1 (en) 2004-02-17 2005-09-01 Trw Automotive Gmbh Locking mechanism for safety systems in cars etc. with closure element movable from release position into blocking one, with generator of magnetic and electric field
DE202004008024U1 (en) 2004-05-19 2005-10-06 Bauerfeind Ag Adjustable motion damper
US7521002B2 (en) * 2004-08-13 2009-04-21 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
US7419616B2 (en) * 2004-08-13 2008-09-02 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
DE102004041650B4 (en) 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological materials with high switching factor and their use
DE102004041651B4 (en) 2004-08-27 2006-10-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological materials with magnetic and non-magnetic inorganic additives and their use
DE102004041649B4 (en) * 2004-08-27 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological elastomers and their use
DE102004043281A1 (en) 2004-09-08 2006-03-09 Fludicon Gmbh Movably supported parts fixing device, has piston and cylinder between which contact area is formed and has chamber that is filled with rheologisch liquid and assigned with electrodes arrangement that causes change of properties of liquid
DE102005034925B4 (en) 2005-07-26 2008-02-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Magnetorheological Elastomerkomposite and their use
US7393463B2 (en) * 2005-09-16 2008-07-01 Gm Global Technology Operations, Inc. High temperature magnetorheological fluid compositions and devices
US7354528B2 (en) * 2005-09-22 2008-04-08 Gm Global Technology Operations, Inc. Magnetorheological fluid compositions
DE102007017589B3 (en) 2007-04-13 2008-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Damping device with field-controllable fluid
DE102007017588A1 (en) 2007-04-13 2008-10-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Blocking device with field-controllable fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI606471B (en) * 2011-04-07 2017-11-21 好根那公司 Composite iron-based powder composition, compacted and heat treated component, and method for producing the same

Also Published As

Publication number Publication date
DE502005009045D1 (en) 2010-04-01
EP1782437A1 (en) 2007-05-09
DE102004041650B4 (en) 2006-10-19
ATE458256T1 (en) 2010-03-15
US20070252104A1 (en) 2007-11-01
DE102004041650A1 (en) 2006-03-02
WO2006024455A1 (en) 2006-03-09
US7897060B2 (en) 2011-03-01

Similar Documents

Publication Publication Date Title
EP1782437B1 (en) Magneto-rheological materials having a high switch factor and use thereof
EP1782439B1 (en) Magneto-rheological materials comprising magnetic and non-magnetic inorganic additives and use thereof
EP1899995B1 (en) Magnetorheological liquid
DE69706742T2 (en) Magnetorheological fluids
EP1782438B1 (en) Magnetorheological elastomers and use thereof
DE69313273T2 (en) MAGNETORHEOLOGICAL LIQUIDS AND MANUFACTURING METHOD
DE69619538T2 (en) METHOD AND COMPILATION FOR A MAGNETORHEOLOGICAL LIQUID FOR POWER INCREASE IN A MAGNETORHEOLOGICAL DEVICE
DE69321247T2 (en) MAGNETORHEOLOGICAL THIXOTROPE MATERIALS
DE112010003467B4 (en) MAGNETORHEOLOGICAL FLUID AND METHOD FOR THE PRODUCTION THEREOF
DE60008533T2 (en) STABLE MAGNETORHEOLOGICAL LIQUIDS
EP0534234B1 (en) Magnetorheologic fluid
EP2067147B1 (en) Magnetorheological formulation
DE10191871B4 (en) Preparation of magnetorheological fluid useful in clutches, or vibration control units, involves dispersing magnetic particles coated with hydrophilic surfactant in a mobile phase of water in oil emulsion
WO2002025674A2 (en) Magnetorheological grease composition
EP2591058A1 (en) Lamina-like iron pigments, magnetorheological fluid and device
WO1998029521A1 (en) Liquid composition and its use as magneto-rheological liquid
DE60220490T2 (en) Stabilization of magnetorheological suspensions with a mixture of organic clay
Zhao et al. Research on rheological properties and phenomenological theory-based constitutive model of magnetorheological shear thickening fluids
CN108352235B (en) Nano magnetic rheological fluid and preparation equipment and method thereof
DE69008254T2 (en) Liquid that reacts to a magnetic field.
EP0421249A1 (en) High viscosity magnetic fluids
DE112010002358T5 (en) Magnetorheological compositions comprising non-magnetic material
DE69321301T2 (en) Liquid with both magnetic and electro-rheological effects
KR101602315B1 (en) Magnetorheological fluid comprising plate-like iron particles
KR20090005931A (en) Magnetorheological fluids with high yield stress at high shear rates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005009045

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100217

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100528

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100518

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100517

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150824

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160825

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005009045

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302