EP1757405B1 - Method for machining of workpieces with curved surfaces, in particular for turbine blades, machine tool - Google Patents
Method for machining of workpieces with curved surfaces, in particular for turbine blades, machine tool Download PDFInfo
- Publication number
- EP1757405B1 EP1757405B1 EP06017125A EP06017125A EP1757405B1 EP 1757405 B1 EP1757405 B1 EP 1757405B1 EP 06017125 A EP06017125 A EP 06017125A EP 06017125 A EP06017125 A EP 06017125A EP 1757405 B1 EP1757405 B1 EP 1757405B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- axis
- workpiece
- machining
- machine tool
- workpieces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003754 machining Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000033001 locomotion Effects 0.000 claims abstract description 40
- 230000001133 acceleration Effects 0.000 claims description 11
- 238000012545 processing Methods 0.000 abstract description 7
- 230000008901 benefit Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000003534 oscillatory effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 241001416181 Axis axis Species 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B19/00—Single-purpose machines or devices for particular grinding operations not covered by any other main group
- B24B19/14—Single-purpose machines or devices for particular grinding operations not covered by any other main group for grinding turbine blades, propeller blades or the like
Definitions
- the invention relates to a method for machining curved surface workpieces, wherein the workpiece is traversed along a first axis and simultaneously rotated about a second axis that includes a finite angle with the first axis, and a machining tool along a third axis Axis is deliverable, which also includes a finite angle with the first axis and with the second axis.
- the invention further relates to a machine tool for machining workpieces having a curved surface, with a tool holder which can be moved along a first axis and at the same time is rotated about a second axis, wherein the second axis includes a finite angle with the first axis, and a machining tool that is deliverable along a third axis that also includes a finite angle with the first axis and with the second axis.
- the invention finally relates to a programming system.
- a method and a machine tool of the aforementioned type are known from DE 36 25 565 C2 known.
- the present invention relates generally to methods and machines for machining workpieces having curved surfaces.
- this will be explained below using the example of turbine blade grinding.
- Turbine blades consist of an airfoil and a foot attached to one end of the airfoil and used to secure the blade to the rotor. At the opposite end turbine blades may have a so-called. Platform which is provided with Abdichtprofilen to avoid flow losses.
- Turbine vanes on the other hand, have platforms at the inner and outer ends of the airfoil for attachment and sealing.
- Turbine blades usually occupy a circular sector of 6 to 15 °.
- the platforms have a large radius, which corresponds to the radius of the respective turbine.
- Such a grinding machine is described in which a workpiece holder is arranged on a carriage which can be moved vertically on a stand, while a grinding spindle can be moved in front of the stator along two horizontal directions which are perpendicular to one another and can additionally be pivoted about a vertical axis.
- this grinding machine can also grind circularly curved contact surfaces of turbine blades, but only under very limited conditions, because the adjustment options of the grinding machine are limited and allow only a small variation. The machine is also not intended for this application.
- One from the DE 36 11 103 A1 known, seven-axis grinding machine is designed specifically for grinding turbine blades.
- the machine has a workpiece holder, which can also be moved in a vertical direction on a stand, but in addition can also be rotated about a horizontal axis and can also be moved together with the stand along a horizontal axis.
- the grinding spindle in turn is movable against the stand and transversely thereto in the horizontal direction and rotatable about a vertical axis.
- the desired contact surfaces can be ground in this way.
- Another grinder for this application is in the EP 0 254 526 B1 described.
- the workpiece holder is in turn movable on a stand in the vertical direction and rotatable on the stand about a horizontal axis.
- the stand as a whole can move around a horizontal axis and be rotated about a vertical axis.
- the grinding spindle can be moved around two mutually perpendicular, horizontal axes.
- a CNC path control is provided.
- Another similar machine for the same purpose is from the EP 0 666 140 B1 known.
- This known machine has five axes and allows the alternate machining of two turbine blades, for which two workpiece holders are provided. These workpiece holders can be moved along a first horizontal axis and rotated about a vertical axis.
- the grinding spindle can be moved along a second, to the first transverse horizontal axis and along a vertical axis and rotated about this vertical axis.
- the deep grinding has the disadvantage that the contact length of the grinding wheel on the workpiece is also very large because of the large engagement thickness. This leads to high grinding forces and temperatures, high wear on the grinding wheel and a significant deviation in shape. If these quantities are kept within limits by a correspondingly smaller feed, this in turn restricts the achievable chip removal volume.
- a pendulum grinding machine is a surface grinding machine in which a flat workpiece is placed on a workpiece carriage which is periodically reciprocable in the direction of a horizontal axis, typically with stroke times of a few seconds. A grinding spindle disposed above the workpiece engages a grinding wheel on the workpiece being moved past. The purpose of this procedure is to divide this total allowance into several passes given a very large overall oversize of a grinding process. Pendulum grinding machines are used, for example, for grinding guide rails.
- the workpiece during the grinding process oscillates in a frequency range of 50 Hz to 40 MHz, referred to as ultrasound.
- a grinding wheel oscillates on the workpiece with a given stroke.
- the oscillation amplitude should be equal to half the pendulum stroke, on the other hand it should be 0.023 mm at an oscillation frequency of 1 MHz.
- the invention is based on the object of developing a method and a grinding machine of the type mentioned in such a way that the above-mentioned disadvantages of conventional grinding methods or machines are avoided.
- this object is achieved in that the workpiece is moved along the first axis in a fast oscillating motion, wherein the oscillating movement at a speed of more than 20 m / min, preferably more than 50 m / min, and a reversing acceleration of more than 3 m / s 2 , preferably of more than 10 m / s 2 , with an adjustable variable stroke length, the stroke length being substantially equal to the distance traveled by the machining tool during the respective oscillating movement in the Workpiece is.
- the tool holder is connected to a first carriage which moves the workpiece along the first axis in a fast oscillating motion, wherein the oscillating movement at a speed of more than 20 m / min, preferably of more than 50 m / min, and a reversal acceleration of more than 3 m / s 2 , preferably of more than 10 m / s 2 , is performed with an adjustable variable stroke length, wherein the stroke length is substantially equal to that in the respective oscillating movement of the machining tool traversed path in the workpiece.
- the fast oscillating movement of the workpiece ie by its rapid lifting movement in a direction substantially tangential to the machining tool direction that the material with significantly shorter contact length and lower machining forces is istspant, thereby reducing the processing temperature and the shape deviation.
- the material with significantly shorter contact length and lower machining forces is istspant, thereby reducing the processing temperature and the shape deviation.
- the invention has the advantage that the total grinding time is minimized by the specially set stroke length, because the stroke length is limited to the amount necessary for a complete material removal.
- the oscillating movement ( ⁇ X) is carried out with a frequency between 200 and 500 min -1 .
- first axis, the second axis and the third axis are perpendicular to each other.
- This measure has the advantage that conventional controls for three-axis machine tools can be used insofar as the three axes form a Cartesian coordinate system.
- a particularly simple control is achieved if the second axis encloses a right angle with the radius of curvature of the surface at an engagement point of the machining tool on the surface.
- This measure has the advantage that, for the essential portion of the total allowance, the method according to the invention is used with the already indicated advantages, while only a residual allowance which is unavoidable in the case of concave surfaces is removed in a conventional manner.
- the workpiece is additionally pivoted during machining about the second axis.
- This measure has the advantage that during the stroke of the workpiece, the material is removed along crescent-shaped arches, which in convex surfaces brings about an improvement in dimensional accuracy and a shortening of the processing time.
- machining tool also to be moved along a fourth axis which preferably runs parallel to the second axis and or to further rotate the machining tool about a fifth axis, which is preferably parallel to the first axis.
- two different tools may alternatively be brought into engagement with the workpiece by turning the machining tool about the fifth axis.
- the present invention is applicable to a variety of machining processes, it is preferably used when the workpieces are ground.
- the workpieces are preferably turbine blades, the surfaces being, in particular, cylindrical surfaces on a platform of the turbine blade.
- the method according to the invention and the grinding machine according to the invention can also be used, as already mentioned, for spatially arbitrarily curved surfaces, the so-called free-form surfaces.
- the so-called free-form surfaces are artificial joints, such as knee joints, called whose shape to grind along enveloping cuts.
- a fast oscillating movement also reduces the thermal effect of the grinding wheel on the workpiece.
- a high machine dynamics shortens the grinding time per enveloping cut and thus the processing time.
- different drives can be used for carrying out the oscillating stroke movement. It is preferred if the first carriage is coupled with a linear motor, a threaded or spindle drive, or with a crank drive.
- the first carriage runs on a machine bed along the first axis
- the machining tool runs on a second carriage on a cross member of a machine bed spanning portal along the third axis.
- This measure has the advantage that for the fast-moving axes, the lighter components, namely the tool carrier with its rotary drive, run directly on the machine bed, while for the slower moving axes, a heavy and highly stable gantry design is available.
- FIG. 1 Figure 10 as a whole indicates an embodiment of a machine tool according to the invention, illustrated in the case of a grinding machine suitable for grinding workpieces with curved surfaces.
- a grinding machine suitable for grinding workpieces with curved surfaces.
- the invention is described below with reference to the application example of a grinding process on turbine blades, it is understood that the invention is not limited to this type of machining, nor to this application or this type of workpiece.
- the grinding machine 10 has a machine base 12 which carries a machine bed 14. On the front of the grinding machine 10, a chip pan 16 is provided. In the rear area, the machine bed 14 carries a portal 18 with a cross member 20th
- first axis 26 On the cross member 20 parallel horizontal guide rails 22 and 24 are arranged, which constitute a first axis 26, the so-called. Z-axis.
- a first carriage 30 is movable in the Z direction.
- first carriage 30 parallel vertical guide rails 32 and 34 are arranged, which constitute a second axis 36, the so-called. Y-axis.
- a second carriage 40 is movable.
- the second carriage 40 carries a grinding spindle 42.
- the grinding spindle 42 is on the in FIG. 1 provided on the left side with a first grinding wheel 44.
- On the right side of the grinding spindle 42 is in FIG. 1 to recognize a stub shaft 46, which may carry a second grinding wheel 48 (see. FIG. 2 ).
- the grinding spindle is optionally rotatably mounted on the second carriage 40 about a third, horizontal axis 50, the so-called. A-axis.
- a guide 52 is arranged on this, which extends rearwardly into the area below the portal 18.
- the guide 52 has mutually parallel, horizontal guide rails 54 and 56, which represent a fourth axis 58, the so-called. X-axis.
- the fourth axis 58 (X) forms in the illustrated embodiment, together with the first axis 26 (Z) and the second axis 36 (Y) a Cartesian coordinate system.
- a third carriage 60 is movable.
- the third carriage 60 carries a turntable or turntable 62 which is rotatable about a fifth axis 64, the so-called. B-axis.
- On the turntable 62 is a workpiece holder 66, in which workpieces are clamped.
- the third carriage 60 with its components thereon is designed in lightweight construction. The workpiece is thus movable only in the X direction and rotatable about the B axis. This restriction to two axes benefits a high dynamic of the grinding machine 10, as will be explained.
- the linear drives of the first carriage 30 and the second carriage 40, as well as the rotary drives for the grinding spindle 42 and the turntable 62 are preferably of conventional design, as used for supports in machine tools. Therefore, they require no further explanation for the expert.
- the linear drive of the third carriage 60 is of a special design. Besides conventional control, this drive is capable of reciprocating the third carriage 60 together with the tool carrier 66 and the workpiece clamped therein in rapid oscillatory or reciprocating motion along the fourth axis 58 (X).
- a "fast" movement is to be understood as speeds of more than 20 m / min, preferably of more than 50 m / min, and reversal accelerations in the range of more than 3 m / s 2 , preferably more than 10 m / s 2 .
- this as a result of their dimensions to stroke rates between 200 and 500 min -1. It is understood that the above values are to be understood as an indication only. It may well be that as a result of new materials, both in the field of moving components as well as in the field of tools (abrasives) or new drive technologies in the future, other, especially higher values of speed and / or acceleration can be achieved. On the other hand, smaller values are possible for very large workpieces, without departing from the scope of the present invention.
- the front view in FIG. 2 shows that at the two ends of the grinding spindle 42 two different grinding wheels 44 and 48 can be arranged to grind the workpiece shown, namely a turbine blade 68, in particular their so-called platforms 69a and 69b. It can be seen in the dot-dashed representation that the grinding spindle 42 can be brought into engagement with the left platform 69a of the turbine blade 68 while maintaining its rotational position (A-axis 50) with the first grinding wheel 44 '. In contrast, when the grinding spindle 42 is rotated by 180 ° about the A-axis 50 and correspondingly moved in the Z-direction and possibly also in the Y-direction, the second grinding wheel 48 'can now machine the right-hand platform 69b.
- FIG. 1 Finally, on the right side of the grinding machine 10 is still a magazine 70 to recognize, in the different grinding wheels and / or workpieces and / or dressing tools are included to be switched on and replaced as needed.
- the exchangers and conveyors required for this purpose are likewise known to the person skilled in the art and are therefore not shown.
- These devices are preferably rotary dressing spindles with diamond dressing rollers. They can be permanently installed on the machine bed 14 so that the moving masses do not increase in the selected machine concept
- FIGS. 3 and 4 show in two views more details of the third carriage 60th
- the third carriage 60 can be driven via a first drive 72 along the guide 52 in the X direction.
- the first drive 72 is preferably a linear motor, but may also be a crank mechanism or the like.
- the first drive 72 is capable of rapidly moving the entire third carriage 60 with jigs and clamped workpiece with high stroke rate and registration along the fourth axis 58 (X-axis).
- a second drive 74 On the first carriage 60 is seated a second drive 74, namely a rotary drive, for the fifth axis (B-axis).
- the second drive 74 rotates the turntable 62 by predetermined angle or angle increments.
- the rotation of the workpiece 68 on the turntable 62 can be performed by a rotary table of known type, as in FIG. 2 indicated, or - as an alternative in the FIGS. 3 and 4 represented - by a pivoting device.
- the turntable 62 is in FIG. 3 guided and supported in an indicated there arcuate rotary guide 78.
- the second drive 74 can perform a slow rotational or pivotal movement, in embodiments of the invention but also a fast oscillatory movement, preferably superimposed on the slow rotational movement.
- so-called direct drives are advantageously used, which consist of electromotive rotors and stators, require no further mechanical transmission parts and allow high angular acceleration.
- the machine concept according to the invention is thus characterized overall by the following distribution of the machine axes X, Y, Z and B required for the path grinding and the pivot axis A required for positioning the grinding spindle 42:
- the workpiece 68 is clamped in the workpiece holder 66 on the turntable 62 (B-axis), which in turn is arranged on the X-carriage 60.
- the grinding spindle 42 is optionally arranged on a pivoting device (A-axis) and on a cross slide 22,24, 26, 30, 32, 34, 36, 40 in the Y and Z directions movable.
- the web feed tangential to the workpiece surface, which is to be particularly fast, is performed by the relatively light X-carriage 60, which is equipped with strong drive elements and rigidly supported against the massive machine bed 14.
- the X-carriage 60 carries only the turntable 62 (B-axis) with the workpiece holder 66th
- the velocity and acceleration vectors of the other slide units may be smaller by about a factor of 3 to 10, for example. These sled units are associated with the massive components.
- the grinding spindle 42 is movable on the cross slide 22, 24, 26, 30, 32, 34, 36, 40 in Y and Z directions.
- the elements of the cross slide 22,24, 26, 30, 32, 34, 36, 40, the grinding spindle 42, and an optionally installed pivoting device (A-axis) are usually considerably heavier than the workpiece holder 66 and the associated turntable 62nd In addition, their dynamics are limited by the generally larger projection.
- the gantry design of the grinding machine 10 according to FIG. 1 represents an advantageous embodiment of the machine dynamics embodiment. However, it is not the only conceivable design, because in the context of the present invention also alternatives are possible.
- FIG. 5 is drawn through a (here any) workpiece 79 shown in a first position.
- the workpiece 80 has a convexly shaped surface 80 in certain areas.
- 81 denotes an engagement point of the grinding wheel 44 on the convex surface 80, where a radius of curvature at R K is also drawn.
- the convex curved surface is a cylindrical surface
- the radius of curvature has R K is a constant size and includes a right angle with the fifth axis 64 (B-axis). For a conically shaped surface, this angle is finite, and for a surface with a higher order curvature, the angle is finite and dependent on the point of engagement.
- the workpiece 79 is rapidly oscillated and moved at a predetermined stroke along the fourth axis 58 (X-axis).
- This lifting movement is in FIG. 5 indicated by a double arrow and the symbol ⁇ X.
- the end positions of the workpiece within the lifting movement are represented by reference numerals 79 (solid line) and 79 '(dashed lines).
- FIG. 5 clearly that the oscillating movement of the workpiece 79, 79 'is effected such that the workpiece 79, 79' and the grinding wheel 44 are guided past each other substantially tangentially.
- the workpiece 79, 79 'additionally oscillated about the fifth axis (B-axis) can be pivoted, as indicated by a double arrow 82. Then there is a material removal in crescent-shaped areas, which is closer to the convex shape of the surface 80, 80 'and allows longer stroke lengths ⁇ X.
- the grinding wheel 44 is delivered along the first axis 26 (Z-axis) as indicated by the symbol ⁇ Z.
- This sets the desired partial allowance for each stroke, but also determines the shape of the machined surface 80, 80 'because at the same time the workpiece 79, 79' is slowly rotated about the fifth axis 64, 64 'as shown by an arrow B.
- the shape of the surface 80, 80 ', in the representation of FIG. 5 is generated from left to right, thus results from a superposition of the delivery (Z) and the slow rotational movement (B).
- FIGS. 6 to 8 illustrate on the basis of machining a turbine blade 68 a way to optimize the stroke length .DELTA.X.
- FIG. 6 In the presentation of FIG. 6 is the turbine blade 68 in a first rotational position in which a center line 84 of the turbine blade 68 is rotated by an angle B 1 in a clockwise direction with respect to a vertical.
- the grinding wheel 44 can only ablate a material region from a first engagement point 85a to a second engagement point 85b. Therefore, a stroke length ⁇ 1 X is set which corresponds to just the distance between the two engagement points 85a and 85b, to avoid an additional idle stroke that would take time.
- FIG. 7 shows a second rotational position in which the turbine blade 68 'has been rotated by the angle B 1 in the counterclockwise direction, so that now the center line 84' coincides with the vertical.
- the grinding wheel can now be guided over the entire width of the platform 69a, ie from a third engagement point 85c to a fourth engagement point 85d.
- the distance between these two engagement points 85c, 85d now also determines the stroke length ⁇ 2 X.
- FIG. 8 a third rotational position is shown in which the turbine blade against the second rotational position by an angle B 2 has been further rotated counterclockwise.
- the possible distance of the material removal between a fifth engagement point 85e and a sixth engagement point 85f is now limited by the reaching of the limit of the total allowance 83, and accordingly also the length of the now to be set stroke ⁇ 3 X.
- FIGS. 6 to 8 corresponding representation is, again in a slightly enlarged scale, the FIGS. 9 to 12 in the case of a concavely curved surface 86 on the opposite platform 69b of the turbine blade 68 to be removed with a total allowance 88.
- FIG. 9 is, analogous to FIG. 6 , a first rotational position of the turbine blade 68 is shown.
- FIG. 10 is, analogous to FIG. 7 , A second rotational position shown in which a third and a fourth engagement point 89c, 89d lie at the edges of the platform 69b and thus define a maximum distance or a maximum stroke ⁇ 2 X.
- FIG. 12 shows that the described approach reaches its limits on concave mold elements of the workpiece 68 ", if the dynamics of the linear axes are not sufficient to follow tight bends at the desired high speed
- Such crescent-shaped sections 90 can be finished with reduced web speed and correspondingly reduced removal rate This movement is in FIG. 12 indicated by an arrow 91.
- FIG. 13 in one too FIG. 5 sketched analogous manner for the general workpiece 79.
- the workpiece 79 (drawn in a solid line) is rotated in the clockwise direction about the fifth axis 64 (B-axis) by an angle ⁇ B and at the same time along the fourth axis 58 (X-axis) by a distance ⁇ X to the left, until it assumes a rotational position 79 "(shown by dashed lines)
- the grinding wheel 44 is simultaneously moved downwards along the first axis 26 (Z-axis) by a distance ⁇ Z until it assumes the position 44".
- the component "rotation" must be adapted to the workpiece curvature, the grinding wheel diameter and the acceleration capacity of the linear axes. It is favorable for the grinding process from the viewpoint of accuracy, if the engagement point 89, 89 'relative to the grinding wheel coordinates shifts only slightly, as in FIG. 13 entered as ⁇ U.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Milling Processes (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum spanabhebenden Bearbeiten von Werkstücken mit gekrümmter Oberfläche, bei dem das Werkstück entlang einer ersten Achse verfahren und gleichzeitig um eine zweite Achse gedreht wird, die mit der ersten Achse einen endlichen Winkel einschließt, und bei dem ein Bearbeitungswerkzeug entlang einer dritten Achse zustellbar ist, die mit der ersten Achse und mit der zweiten Achse ebenfalls einen endlichen Winkel einschließt.The invention relates to a method for machining curved surface workpieces, wherein the workpiece is traversed along a first axis and simultaneously rotated about a second axis that includes a finite angle with the first axis, and a machining tool along a third axis Axis is deliverable, which also includes a finite angle with the first axis and with the second axis.
Die Erfindung betrifft ferner eine Werkzeugmaschine zum spanabhebenden Bearbeiten von Werkstücken mit gekrümmter Oberfläche, mit einem entlang einer ersten Achse verfahrbaren und gleichzeitig um eine zweite Achse verdrehbaren Werkzeughalter, wobei die zweite Achse mit der ersten Achse einen endlichen Winkel einschließt, und mit einem Bearbeitungswerkzeug, das entlang einer dritten Achse zustellbar ist, die mit der ersten Achse und mit der zweiten Achse ebenfalls einen endlichen Winkel einschließt.The invention further relates to a machine tool for machining workpieces having a curved surface, with a tool holder which can be moved along a first axis and at the same time is rotated about a second axis, wherein the second axis includes a finite angle with the first axis, and a machining tool that is deliverable along a third axis that also includes a finite angle with the first axis and with the second axis.
Die Erfindung betrifft schließlich ein Programmiersystem.The invention finally relates to a programming system.
Ein Verfahren und eine Werkzeugmaschine der vorstehend genannten Art sind aus der
Die vorliegende Erfindung betrifft allgemein Verfahren und Maschinen zum spanabhebenden Bearbeiten von Werkstücken mit gekrümmten Oberflächen. Nur beispielhaft - und keinesfalls einschränkend zu verstehen - wird dies nachstehend am Beispiel des Schleifens von Turbinenschaufeln erläutert. Daneben sind auch Anwendungen bei vielen anderen Werkstücken, auch mit beliebig räumlich gekrümmter Oberfläche (Freiformfläche) zu verstehen, beispielsweise bei künstlichen Gelenken.The present invention relates generally to methods and machines for machining workpieces having curved surfaces. By way of example only and not by way of limitation, this will be explained below using the example of turbine blade grinding. In addition, applications in many other workpieces, even with any spatially curved surface (free-form surface) to understand, for example, in artificial joints.
Turbinenlaufschaufeln bestehen aus einem Schaufelblatt und einem Fuß, der an einem Ende des Schaufelblatts befestigt ist und zur Befestigung der Schaufel am Rotor dient. Am entgegen gesetzten Ende können Turbinenlaufschaufeln eine sog. Plattform aufweisen, die mit Abdichtprofilen versehen ist, um Strömungsverluste zu vermeiden.Turbine blades consist of an airfoil and a foot attached to one end of the airfoil and used to secure the blade to the rotor. At the opposite end turbine blades may have a so-called. Platform which is provided with Abdichtprofilen to avoid flow losses.
Turbinenleitschaufeln hingegen weisen am inneren und am äußeren Ende des Schaufelblatts Plattformen auf, die zur Befestigung und zur Abdichtung dienen.Turbine vanes, on the other hand, have platforms at the inner and outer ends of the airfoil for attachment and sealing.
Turbinenschaufeln nehmen üblicherweise einen Kreissektor von 6 bis 15° ein. Die Plattformen weisen einen großen Radius auf, der dem Radius der jeweiligen Turbine entspricht.Turbine blades usually occupy a circular sector of 6 to 15 °. The platforms have a large radius, which corresponds to the radius of the respective turbine.
Zum Schleifen von deren Anlageflächen hat man im Stand der Technik früher die Turbinenschaufeln auf einem drehbaren, kreisförmigen Werkstücktisch montiert, dessen Radius etwa dem Krümmungsradius der Anlageflächen entsprach, wobei die Anlageflächen längs des Umfanges des Werkstücktisches angeordnet waren. Dann konnten diese Anlageflächen mittels eines ebenfalls am Umfang des Werkstücktischs angeordneten, stationären Schleifwerkzeugs mit dem gewünschten Radius geschliffen werden. Diese Vorgehensweise hatte jedoch den Nachteil, dass sehr große Schleifmaschinen entstanden, die sehr umständlich zu handhaben waren und nur einen geringen Durchsatz ermöglichten.In order to grind their contact surfaces, in the prior art the turbine blades were previously mounted on a rotatable, circular workpiece table. its radius corresponded approximately to the radius of curvature of the contact surfaces, wherein the contact surfaces were arranged along the circumference of the workpiece table. Then these contact surfaces could be ground by means of a likewise arranged on the circumference of the workpiece table, stationary grinding tool with the desired radius. However, this approach had the disadvantage that very large grinding machines were created, which were very cumbersome to handle and only allowed a low throughput.
Im Zuge der Entwicklung von numerisch gesteuerten, mehrachsigen Werkzeugmaschinen sind dann später zahlreiche derartige Maschinen zum Schleifen von Turbinenschaufeln vorgeschlagen worden.In the course of the development of numerically controlled, multi-axis machine tools, numerous such machines for grinding turbine blades have been proposed later.
In der
Eine aus der
Eine weitere Schleifmaschine für diese Anwendung ist in der
Eine weitere ähnliche Maschine für den selben Einsatzzweck ist aus der
Ein etwas anderes Konzept ist bei einer Maschine zum Schleifen von Turbinenschaufeln vorgesehen, die in der eingangs genannten
Die vorstehend beschriebenen bekannten Maschinen haben gemeinsam, dass der Schleifprozeß im sog. Tiefschleifverfahren stattfindet, d.h. dass das gesamte Aufmaß in einem einzigen Durchgang der Schleifscheibe abgetragen wird. Das schließt natürlich nicht aus, dass nacheinander beispielsweise ein Schruppvorgang und ein Schlichtvorgang mit jeweils eigenem Gesamtaufmaß stattfinden.The known machines described above have in common that the grinding process takes place in the so-called. Tiefschleifverfahren, i. that the entire allowance is removed in a single pass of the grinding wheel. Of course, this does not exclude that, for example, a roughing process and a finishing process take place, each with its own total allowance.
Das Tiefschleifen hat jedoch den Nachteil, dass die Kontaktlänge der Schleifscheibe am Werkstück wegen der großen Eingriffsdicke ebenfalls sehr groß ist. Dies führt zu hohen Schleifkräften und -temperaturen, zu einem hohen Verschleiß an der Schleifscheibe sowie zu einer nicht unerheblichen Formabweichung. Hält man diese Größen durch einen entsprechend kleineren Vorschub in Grenzen, beschränkt dies wiederum das erreichbare Zeitspanvolumen.However, the deep grinding has the disadvantage that the contact length of the grinding wheel on the workpiece is also very large because of the large engagement thickness. this leads to high grinding forces and temperatures, high wear on the grinding wheel and a significant deviation in shape. If these quantities are kept within limits by a correspondingly smaller feed, this in turn restricts the achievable chip removal volume.
Aus der
Aus der
Der Erfindung liegt demgegenüber die Aufgabe zugrunde, ein Verfahren sowie eine Schleifmaschine der eingangs genannten Art dahingehend weiterzubilden, dass die oben genannten Nachteile herkömmlicher Schleifverfahren bzw. -maschinen vermieden werden. Insbesondere soll es möglich werden, auf einer kompakten Maschine Werkstücke mit gekrümmten Oberflächen, insbesondere Turbinenschaufeln, in hoher Formtreue mit hohem Zeitspanvolumen bei geringem Verschleiß der Schleifscheibe zu schleifen, indem die Schleifkräfte und -temperaturen vermindert werden.The invention is based on the object of developing a method and a grinding machine of the type mentioned in such a way that the above-mentioned disadvantages of conventional grinding methods or machines are avoided. In particular, it should be possible to grind on a compact machine workpieces with curved surfaces, in particular turbine blades, in high dimensional accuracy with high chip removal rate with low wear of the grinding wheel by the grinding forces and temperatures are reduced.
Bei einem Verfahren der eingangs genannten Art wird diese Aufgabe erfindungsgemäß dadurch gelöst, dass das Werkstück entlang der ersten Achse in einer schnell oszillierenden Bewegung verfahren wird, wobei die oszillierende Bewegung mit einer Geschwindigkeit von mehr als 20 m/min, vorzugsweise von mehr als 50 m/min, und einer Umkehrbeschleunigung von mehr als 3 m/s2, vorzugsweise von mehr als 10 m/s2, mit einer einstellbaren variablen Hublänge ausgeführt wird, wobei die Hublänge im Wesentlichen gleich dem bei der jeweiligen oszillierende Bewegung vom Bearbeitungswerkzeug durchfahrenen Weg im Werkstück ist.In a method of the type mentioned above, this object is achieved in that the workpiece is moved along the first axis in a fast oscillating motion, wherein the oscillating movement at a speed of more than 20 m / min, preferably more than 50 m / min, and a reversing acceleration of more than 3 m / s 2 , preferably of more than 10 m / s 2 , with an adjustable variable stroke length, the stroke length being substantially equal to the distance traveled by the machining tool during the respective oscillating movement in the Workpiece is.
Bei einer Werkzeugmaschine der eingangs genannten Art wird diese Aufgabe erfindungsgemäß dadurch gelöst, der Werkzeughalter mit einem ersten Schlitten verbunden ist, der das Werkstück entlang der ersten Achse in einer schnell oszillierenden Bewegung verfährt, wobei die oszillierende Bewegung mit einer Geschwindigkeit von mehr als 20 m/min, vorzugsweise von mehr als 50 m/min, und einer Umkehrbeschleunigung von mehr als 3 m/s2, vorzugsweise von mehr als 10 m/s2, mit einer einstellbaren variablen Hublänge ausgeführt wird, wobei die Hublänge im Wesentlichen gleich dem bei der jeweiligen oszillierende Bewegung vom Bearbeitungswerkzeug durchfahrenen Weg im Werkstück ist.In a machine tool of the type mentioned, this object is achieved according to the invention, the tool holder is connected to a first carriage which moves the workpiece along the first axis in a fast oscillating motion, wherein the oscillating movement at a speed of more than 20 m / min, preferably of more than 50 m / min, and a reversal acceleration of more than 3 m / s 2 , preferably of more than 10 m / s 2 , is performed with an adjustable variable stroke length, wherein the stroke length is substantially equal to that in the respective oscillating movement of the machining tool traversed path in the workpiece.
Die der Erfindung zugrunde liegende Aufgabe wird auf diese Weise vollkommen gelöst.The object underlying the invention is completely solved in this way.
Erfindungsgemäß wird nämlich durch die schnell oszillierende Bewegung des Werkstücks, d.h. durch dessen schnelle Hubbewegung in einer zum Bearbeitungswerkzeug im Wesentlichen tangentialen Richtung erreicht, dass das Material mit wesentlich kürzerer Kontaktlänge und geringeren Bearbeitungskräften abgespant wird, wodurch sich die Bearbeitungstemperatur und die Formabweichung vermindern. Im Vergleich zum herkömmlichen Flach-Pendelschleifen ergibt sich der Vorteil von kürzeren Überlaufzeiten und damit von einem größeren Zeitspanvolumen und einer insgesamt kürzeren Schleifzeit.According to the invention is achieved by the fast oscillating movement of the workpiece, ie by its rapid lifting movement in a direction substantially tangential to the machining tool direction that the material with significantly shorter contact length and lower machining forces is abgespant, thereby reducing the processing temperature and the shape deviation. In comparison to conventional flat pendulum grinding, there is the advantage of shorter overflow times and thus of a greater removal rate and an overall shorter grinding time.
Die Werte für die oszillierende Bewegung liegen wesentlich höher als vergleichbare Werte beim herkömmlichen Flach-Pendelschleifen, haben sich zur Lösung der oben angegebenen Aufgabe in Versuchen für heute verfügbare Bearbeitungswerkzeuge als optimal erwiesen.The values for the oscillatory motion are much higher than comparable values in conventional flat pendulum grinding, have proven to be the best solution to the above-mentioned problem in tests for machining tools available today.
Die Erfindung hat durch die speziell eingestellte Hublänge ferner den Vorteil, dass die Gesamt-Schleifzeit minimiert wird, weil die Hublänge auf den für einen vollständigen Materialabtrag notwendigen Betrag begrenzt ist.The invention has the advantage that the total grinding time is minimized by the specially set stroke length, because the stroke length is limited to the amount necessary for a complete material removal.
Für Werkstücke der hier interessierenden Art, insbesondere für Turbinenschaufeln, wird infolge deren Abmessungen die oszillierende Bewegung (ΔX) mit einer Frequenz zwischen 200 und 500 min-1 ausgeführt.For workpieces of the type of interest here, in particular for turbine blades, as a result of their dimensions, the oscillating movement (ΔX) is carried out with a frequency between 200 and 500 min -1 .
Weiterhin ist bevorzugt, wenn die erste Achse, die zweite Achse und die dritte Achse jeweils senkrecht aufeinander stehen.Furthermore, it is preferred if the first axis, the second axis and the third axis are perpendicular to each other.
Diese Maßnahme hat den Vorteil, dass insoweit herkömmliche Steuerungen für Dreiachsen-Werkzeugmaschinen verwendet werden können, bei denen die drei Achsen ein kartesisches Koordinatensystem bilden.This measure has the advantage that conventional controls for three-axis machine tools can be used insofar as the three axes form a Cartesian coordinate system.
Eine besonders einfache Steuerung wird erreicht, wenn die zweite Achse mit dem Krümmungsradius der Oberfläche in einem Eingriffspunkt des Bearbeitungswerkzeugs an der Oberfläche einen rechten Winkel einschließt.A particularly simple control is achieved if the second axis encloses a right angle with the radius of curvature of the surface at an engagement point of the machining tool on the surface.
Bei Ausführungsformen des erfindungsgemäßen Verfahrens wird berücksichtigt, dass beim Bearbeiten einer konkav gekrümmten Oberfläche ein Restaufmaß mittels Bahnsteuerung von Werkstück und Bearbeitungswerkzeug mit verminderter Bahngeschwindigkeit entfernt wird.In embodiments of the method according to the invention, it is taken into account that when machining a concavely curved surface, a residual allowance is removed by means of path control of workpiece and machining tool with reduced web speed.
Diese Maßnahme hat den Vorteil, dass für den wesentlichen Anteil des Gesamtaufmaßes nach dem erfindungsgemäßen Verfahren mit den bereits angegebenen Vorteilen gearbeitet wird, während nur ein bei konkaven Oberflächen unvermeidbares Restaufmaß in herkömmlicher Weise abgetragen wird.This measure has the advantage that, for the essential portion of the total allowance, the method according to the invention is used with the already indicated advantages, while only a residual allowance which is unavoidable in the case of concave surfaces is removed in a conventional manner.
Bei weiteren Ausführungsbeispielen der Erfindung wird das Werkstück beim Bearbeiten zusätzlich oszillierend um die zweite Achse verschwenkt.In further embodiments of the invention, the workpiece is additionally pivoted during machining about the second axis.
Diese Maßnahme hat den Vorteil, dass während des Hubes des Werkstücks das Material entlang von sichelförmigen Bögen abgetragen wird, was bei konvexen Oberflächen eine Verbesserung der Formtreue sowie eine Verkürzung der Bearbeitungszeit mit sich bringt.This measure has the advantage that during the stroke of the workpiece, the material is removed along crescent-shaped arches, which in convex surfaces brings about an improvement in dimensional accuracy and a shortening of the processing time.
Wenn in diesem Zusammenhang der oszillierenden Bewegung des Werkstücks eine Bahnsteuerung zwischen Werkstück und Bearbeitungswerkzeug überlagert wird, hat dies den Vorteil, dass auch konkave Oberflächen mit den vorstehend genannten Vorteilen bearbeitet werden können.In this context, if the workpiece oscillating movement is superimposed on a path control between the workpiece and the machining tool, this has the advantage that concave surfaces with the advantages mentioned above can also be machined.
Um hinsichtlich der Bearbeitung ein noch höheres Maß an Flexibilität zu erhalten und um auch Oberflächen mit Krümmungen höherer Ordnung bearbeiten zu können, ist bei weitern Ausführungsbeispielen der Erfindung vorgesehen, das Bearbeitungswerkzeug ferner entlang einer vierten Achse zu verfahren, die vorzugsweise parallel zur zweiten Achse verläuft und/oder das Bearbeitungswerkzeug ferner um eine fünfte Achse zu verdrehen, die vorzugsweise parallel zur ersten Achse verläuft.In order to obtain an even higher degree of flexibility in terms of processing and also to be able to process surfaces with higher-order curvatures, further embodiments of the invention provide for the machining tool also to be moved along a fourth axis which preferably runs parallel to the second axis and or to further rotate the machining tool about a fifth axis, which is preferably parallel to the first axis.
Im letztgenannten Fall können bevorzugt durch Verdrehen des Bearbeitungswerkzeugs um die fünfte Achse alternativ zwei unterschiedliche Werkzeuge in Eingriff mit dem Werkstück gebracht werden.In the latter case, two different tools may alternatively be brought into engagement with the workpiece by turning the machining tool about the fifth axis.
Mit dem erfindungsgemäßen Verfahren lassen sich nicht nur einfach gekrümmte Oberflächen, also zylindrische Oberflächen, sondern ganz allgemein beliebig im Raum gekrümmte Oberflächen, so genannte Freiformflächen, bearbeiten.With the method according to the invention not only simple curved surfaces, ie cylindrical surfaces, but quite generally arbitrarily in space curved surfaces, so-called free-form surfaces edit.
Obwohl die vorliegende Erfindung bei einer Vielzahl von spanabhebenden Bearbeitungsprozessen einsetzbar ist, wird sie bevorzugt dann eingesetzt, wenn die Werkstücke geschliffen werden.Although the present invention is applicable to a variety of machining processes, it is preferably used when the workpieces are ground.
Bevorzugt handelt es sich bei den Werkstücken um Turbinenschaufeln, wobei die Oberflächen insbesondere zylindrische Oberflächen an einer Plattform der Turbinenschaufel sind.The workpieces are preferably turbine blades, the surfaces being, in particular, cylindrical surfaces on a platform of the turbine blade.
Darüber hinaus lassen sich das erfindungsgemäße Verfahren und die erfindungsgemäße Schleifmaschine aber auch, wie bereits erwähnt, bei räumlich beliebig gekrümmten Flächen, den so genannten Freiformflächen, einsetzen. Als Beispiel dazu seien hier künstliche Gelenke, beispielsweise Kniegelenke, genannt, deren Form entlang einhüllender Schnitte zu schleifen ist. Eine schnell oszillierende Bewegung reduziert auch hier die thermische Einwirkung der Schleifscheibe auf das Werkstück. Eine hohe Maschinendynamik verkürzt die Schleifzeit pro Hüllschnitt und damit die Bearbeitungszeit.In addition, however, the method according to the invention and the grinding machine according to the invention can also be used, as already mentioned, for spatially arbitrarily curved surfaces, the so-called free-form surfaces. As an example, here are artificial joints, such as knee joints, called whose shape to grind along enveloping cuts. A fast oscillating movement also reduces the thermal effect of the grinding wheel on the workpiece. A high machine dynamics shortens the grinding time per enveloping cut and thus the processing time.
Bei Ausführungsbeispielen der erfindungsgemäßen Werkzeugmaschine können für das Ausführen der oszillierenden Hubbewegung unterschiedliche Antriebe verwendet werden. Bevorzugt ist, wenn der erste Schlitten mit einem Linearmotor, einem Gewinde- oder Spindeltrieb, oder mit einem Kurbeltrieb gekoppelt ist.In embodiments of the machine tool according to the invention, different drives can be used for carrying out the oscillating stroke movement. It is preferred if the first carriage is coupled with a linear motor, a threaded or spindle drive, or with a crank drive.
Bei Ausführungsformen der erfindungsgemäßen Werkzeugmaschine läuft der erste Schlitten auf einem Maschinenbett entlang der ersten Achse, und das Bearbeitungswerkzeug läuft auf einem zweiten Schlitten an einem Querträger eines das Maschinenbett überspannenden Portals entlang der dritten Achse.In embodiments of the machine tool according to the invention, the first carriage runs on a machine bed along the first axis, and the machining tool runs on a second carriage on a cross member of a machine bed spanning portal along the third axis.
Diese Maßnahme hat den Vorteil, dass für die schnell zu bewegenden Achsen die leichteren Komponenten, nämlich der Werkzeugträger mit seinem Drehantrieb, unmittelbar am Maschinenbett laufen, während für die langsamer zu bewegenden Achsen eine schwere und hochstabile Portalbauweise zur Verfügung steht.This measure has the advantage that for the fast-moving axes, the lighter components, namely the tool carrier with its rotary drive, run directly on the machine bed, while for the slower moving axes, a heavy and highly stable gantry design is available.
Weitere Vorteile ergeben sich aus der Beschreibung und der beigefügten Zeichnung.Further advantages will become apparent from the description and the accompanying drawings.
Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.It is understood that the features mentioned above and those yet to be explained below can be used not only in the particular combination given, but also in other combinations or in isolation, without departing from the scope of the present invention.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
- Figur 1:
- eine perspektivische Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen Schleifmaschine;
- Figur 2:
- eine schematisierte Vorderansicht der Schleifmaschine von
Figur 1 ; - Figur 3:
- eine schematisierte Vorderansicht auf einen Werkstückschlitten der Schleifmaschine von
Figur 1 und2 ; - Figur 4:
- eine Draufsicht auf den Werkstückschlitten von
Figur 3 ; - Figur 5:
- ein Diagramm zur Veranschaulichung eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens;
- Figur 6 bis 8:
- in vergrößerter Darstellung drei Diagramme zur weiteren Erläuterung des in
Figur 5 veranschaulichten Verfahrens für die Bearbeitung einer konvex gekrümmten Fläche; - Figur 9 bis 12:
- in weiter vergrößerter Darstellung vier Diagramme zur weiteren Erläuterung des in
Figur 5 veranschaulichten Verfahrens für die Bearbeitung einer konkav gekrümmten Fläche; und - Figur 13:
- eine Darstellung ähnlich
Figur 5 zur Erläuterung eines weiteren Verfahrensschritts bei der Bearbeitung einer konkav gekrümmter Oberfläche.
- FIG. 1:
- a perspective view of an embodiment of a grinding machine according to the invention;
- FIG. 2:
- a schematic front view of the grinding machine of
FIG. 1 ; - FIG. 3:
- a schematic front view of a workpiece carriage of the grinding machine of
FIG. 1 and2 ; - FIG. 4:
- a plan view of the workpiece carriage of
FIG. 3 ; - FIG. 5:
- a diagram illustrating an embodiment of a method according to the invention;
- FIGS. 6 to 8:
- in an enlarged view three diagrams for further explanation of in
FIG. 5 illustrated method for processing a convex curved surface; - FIGS. 9 to 12:
- in a further enlarged view four diagrams for further explanation of in
FIG. 5 illustrated method for machining a concave curved surface; and - FIG. 13:
- a representation similar
FIG. 5 to explain a further method step in the processing of a concave curved surface.
In
Die Schleifmaschine 10 weist einen Maschinenfuß 12 auf, der ein Maschinenbett 14 trägt. Auf der Vorderseite des Schleifmaschine 10 ist eine Spänewanne 16 vorgesehen. Im hinteren Bereich trägt das Maschinenbett 14 ein Portal 18 mit einem Querträger 20.The grinding
An dem Querträger 20 sind zueinander parallele, horizontale Führungsleisten 22 und 24 angeordnet, die eine erste Achse 26, die sog. Z-Achse, darstellen. Entlang der Führungsleisten 22, 24 ist ein erster Schlitten 30 in Z-Richtung verfahrbar.On the
An dem ersten Schlitten 30 sind zueinander parallele, vertikale Führungsleisten 32 und 34 angeordnet, die eine zweite Achse 36, die sog. Y-Achse, darstellen. Entlang der Führungsleisten 32, 34 ist ein zweiter Schlitten 40 verfahrbar.On the
Der zweite Schlitten 40 trägt eine Schleifspindel 42. Die Schleifspindel 42 ist auf der in
Im vorderen Bereich des Maschinenbetts 14 ist auf diesem eine Führung 52 angeordnet, die sich nach hinten bis in den Bereich unterhalb des Portals 18 erstreckt. Die Führung 52 weist zueinander parallele, horizontale Führungsleisten 54 und 56 auf, die eine vierte Achse 58, die sog. X-Achse darstellen.In the front region of the
Die vierte Achse 58 (X) bildet bei dem dargestellten Ausführungsbeispiel zusammen mit der ersten Achse 26 (Z) und der zweiten Achse 36 (Y) ein kartesisches Koordinatensystem.The fourth axis 58 (X) forms in the illustrated embodiment, together with the first axis 26 (Z) and the second axis 36 (Y) a Cartesian coordinate system.
Entlang der Führungsleisten 54, 56 ist ein dritter Schlitten 60 verfahrbar. Der dritte Schlitten 60 trägt einen Drehtisch oder Drehteller 62, der um eine fünfte Achse 64, die sog. B-Achse verdrehbar ist. Auf dem Drehteller 62 befindet sich ein Werkstückhalter 66, in dem Werkstücke einspannbar sind. Der dritte Schlitten 60 mit seinen darauf befindlichen Komponenten ist in Leichtbauweise ausgeführt. Das Werkstück ist somit nur in X-Richtung verfahrbar und um die B-Achse verdrehbar. Diese Beschränkung auf zwei Achsen kommt einer hohen Dynamik der Schleifmaschine 10 zugute, wie noch erläutert werden wird.Along the guide rails 54, 56, a
Die Linearantriebe des ersten Schlittens 30 und des zweiten Schlittens 40 sind, ebenso wie die Drehantriebe für die Schleifspindel 42 und den Drehteller 62 vorzugsweise von herkömmlicher Bauart, wie sie für Supporte in Werkzeugmaschinen verwendet werden. Sie bedürfen daher für den Fachmann keiner näheren Erläuterung.The linear drives of the
Der Linearantrieb des dritten Schlittens 60 hingegen ist besonderer Bauart. Neben einer herkömmlichen Steuerung ist dieser Antrieb in der Lage, den dritten Schlitten 60 zusammen mit dem Werkzeugträger 66 und dem darin eingespannten Werkstück in schneller Oszillations- oder Hubbewegung entlang der vierten Achse 58 (X) hin und her zu bewegen.The linear drive of the
Unter einer "schnellen" Bewegung sind dabei Geschwindigkeiten von mehr als 20 m/min, vorzugsweise von mehr als 50 m/min zu verstehen sowie Umkehrbeschleunigungen im Bereich von mehr als 3 m/s2, vorzugsweise von mehr als 10 m/s2. Bei den im Ausführungsbeispiel dargestellten und beschriebenen Werkstücken (Turbinenschaufeln) führt dies infolge von deren Abmessungen zu Hubfrequenzen zwischen 200 und 500 min-1. Dabei versteht sich, dass die vorstehend genannten Werte nur als Anhalt zu verstehen sind. So kann es durchaus sein, dass als Folge von neuen Werkstoffen, sowohl im Bereich der bewegten Komponenten als auch im Bereich der Werkzeuge (Schleifmittel) oder neuen Antriebstechniken zukünftig auch andere, insbesondere höhere Werte der Geschwindigkeit und/oder der Beschleunigung erzielbar sind. Andererseits sind bei sehr großen Werkstücken auch kleinere Werte möglich, ohne den Rahmen der vorliegenden Erfindung zu verlassen.A "fast" movement is to be understood as speeds of more than 20 m / min, preferably of more than 50 m / min, and reversal accelerations in the range of more than 3 m / s 2 , preferably more than 10 m / s 2 . In the illustrated embodiment, and in the described workpieces (turbine blades), this as a result of their dimensions to stroke rates between 200 and 500 min -1. It is understood that the above values are to be understood as an indication only. It may well be that as a result of new materials, both in the field of moving components as well as in the field of tools (abrasives) or new drive technologies in the future, other, especially higher values of speed and / or acceleration can be achieved. On the other hand, smaller values are possible for very large workpieces, without departing from the scope of the present invention.
Die Vorderansicht in
In
Ebenfalls nicht dargestellt sind die notwendigen Einrichtungen zum Abrichten der Schleifscheiben 44 und 48. Diese Einrichtungen sind vorzugsweise rotierende Abrichtspindeln mit Diamantabrichtrollen. Sie können auf dem Maschinenbett 14 fest installiert sein, so dass sich bei dem gewählten Maschinenkonzept die bewegten Massen nicht erhöhenAlso not shown are the necessary means for dressing the grinding
Die
Man erkennt, dass der dritte Schlitten 60 über einen ersten Antrieb 72 entlang der Führung 52 in X-Richtung antreibbar ist. Der erste Antrieb 72 ist vorzugsweise ein Linearmotor, kann aber auch ein Kurbeltrieb oder dergleichen sein. Wichtig ist, dass der erste Antrieb 72 in der Lage ist, den gesamten dritten Schlitten 60 mit Aufbauten und eingespanntem Werkstück mit hoher Hubfrequenz und Lagegenauigkeit schnell oszillierend entlang der vierten Achse 58 (X-Achse) zu bewegen.It can be seen that the
Auf dem ersten Schlitten 60 sitzt ein zweiter Antrieb 74, nämlich ein Dreh- bzw. Schwenkantrieb, für die fünfte Achse (B-Achse). Der zweite Antrieb 74 dreht den Drehteller 62 um vorgegebene Winkel bzw. Winkelinkremente. Die Drehung des Werkstücks 68 Auf dem Drehteller 62 kann durch einen Rundtisch bekannter Art ausgeführt werden, wie in
Der Drehteller 62 ist in
Das erfindungsgemäße Maschinenkonzept ist somit insgesamt gekennzeichnet durch die folgende Verteilung der für das Bahnschleifen erforderlichen Maschinenachsen X, Y, Z und B sowie der zum Positionieren der Schleifspindel 42 erforderlichen Schwenkachse A:The machine concept according to the invention is thus characterized overall by the following distribution of the machine axes X, Y, Z and B required for the path grinding and the pivot axis A required for positioning the grinding spindle 42:
Das Werkstück 68 wird im Werkstückhalter 66 auf dem Drehteller 62 (B-Achse) gespannt, der seinerseits auf dem X-Schlitten 60 angeordnet ist. Die Schleifspindel 42 ist optional auf einer Schwenkvorrichtung (A-Achse) angeordnet und auf einem Kreuzschlitten 22,24, 26, 30, 32, 34, 36, 40 in Y- und Z-Richtung verfahrbar.The
Der Bahnvorschub tangential zur Werkstückoberfläche, der besonders schnell erfolgen soll, wird durch den verhältnismäßig leichten X-Schlitten 60 ausgeführt, der mit starken Antriebselementen ausgerüstet und steif gegen das massereiche Maschinenbett 14 abgestützt ist. Der X-Schlitten 60 trägt lediglich den Drehteller 62 (B-Achse) mit dem Werkstückhalter 66.The web feed tangential to the workpiece surface, which is to be particularly fast, is performed by the relatively light X-carriage 60, which is equipped with strong drive elements and rigidly supported against the
Die Geschwindigkeits- und Beschleunigungsvektoren der anderen Schlitteneinheiten können etwa um den Faktor 3 bis 10 kleiner sein. Diesen Schlitteneinheiten sind die massereichen Bauelemente zugeordnet. Die Schleifspindel 42 ist auf dem Kreuzschlitten 22,24, 26, 30, 32, 34, 36, 40 in Y- und in Z-Richtung verfahrbar. Die Elemente des Kreuzschlittens 22,24, 26, 30, 32, 34, 36, 40, die Schleifspindel 42, sowie eine optional installierte Schwenkvorrichtung (A-Achse) sind in der Regel erheblich schwerer als der Werkstückhalter 66 und der damit verbundene Drehteller 62. Außerdem wird deren Dynamik durch die in der Regel größere Auskragung begrenzt. Die zahlreichen Versorgungs- und Steuerleitungen, die zur Schleifspindel zu führen und bei deren Bewegungen mitzuschleppen sind, schränken deren Beschleunigungsvermögen weiter ein.The velocity and acceleration vectors of the other slide units may be smaller by about a factor of 3 to 10, for example. These sled units are associated with the massive components. The grinding
Das im Rahmen der vorliegenden Erfindung entwickelte Konzept stellt somit eine besonders vorteilhafte Anordnung der Maschinenachsen dar. Keine andere Achsfolge böte vergleichbar günstige Voraussetzungen für hohe Bahngeschwindigkeiten und Bahnbeschleunigungen sowie schnelle Oszillationshübe.The concept developed in the context of the present invention thus represents a particularly advantageous arrangement of the machine axes. No other axle sequence would offer comparable favorable conditions for high web speeds and path accelerations as well as fast oscillation strokes.
Die Portalbauweise der Schleifmaschine 10 gemäß
Ein Ausführungsbeispiel des erfindungsgemäßen Verfahrens, wie es auf der Schleifmaschine gemäß den
In
Um die konvexe Oberfläche 80 zu schleifen, wird das Werkstück 79 schnell oszillierend und mit vorbestimmtem Hub entlang der vierten Achse 58 (X-Achse) bewegt. Diese Hubbewegung ist in
Man erkennt aus
Gleichzeitig wird die Schleifscheibe 44 entlang der ersten Achse 26 (Z-Achse) zugestellt, wie mit dem Symbol ΔZ angedeutet. Dadurch wird das gewünschte Teilaufmaß für jeden Hub eingestellt, aber auch die Form der bearbeiteten Oberfläche 80, 80' bestimmt, weil gleichzeitig das Werkstück 79, 79' langsam um die fünfte Achse 64, 64' gedreht wird, wie mit einem Pfeil B gezeigt. Die Form der Oberfläche 80, 80', die in der Darstellung von
Die
In der Darstellung von
In
Eine den
In
In
Der Materialabtrag kann nun mit jeweils maximalem Hub fortgesetzt werden, der sich infolge der sich in Z-Richtung erweiternden Form der Plattform 69b noch geringfügig bis zu einem Wert Δ3X vergrößert, bis die Grenze des Gesamtaufmaßes 88 erreicht ist, wie
Alternativ kann an solchen konkaven Abschnitten eine höhere Bahngeschwindigkeit erreicht werden, wenn das Werkstück eine zusätzliche Schwenkbewegung ausführt, wie in
Zur Optimierung der Bahngeschwindigkeit ist die Komponente "Drehung" auf die Werkstückkrümmung, den Schleifscheibendurchmesser und das Beschleunigungsvermögen der Linearachsen abzustimmen. Dabei ist es für den Schleifprozess aus Sicht der Genauigkeit günstig, wenn sich der Eingriffspunkt 89, 89' relativ zu den Schleifscheibenkoordinaten nur geringfügig verlagert, wie in
Claims (27)
- Method for machining of workpieces (68; 79) with a curved surface (80, 86), in which the workpiece (68; 79) is moved along a first axis (58; X) and at the same time is rotated about a second axis (64; B) which encloses a finite angle with the first axis (58; X), and in which a machining tool can be advanced along a third axis (26; Z) which likewise encloses a finite angle with the first axis (58; X) and with the second axis (64; B), characterized in that the workpiece (68; 79) is moved along the first axis (58; X) in a rapidly oscillating movement (ΔX), the oscillating movement (ΔX) being executed at a speed of more than 20 m/min, preferably of more than 50 m/min, and a reverse acceleration of more than 3 m/s2, preferably of more than 10 m/s2, with an adjustable, variable stroke length (Δ1X, Δ2X, Δ3X), the stroke length (Δ1X, Δ2X, Δ3X) being substantially identical to the path traversed in the workpiece (68; 79) by the machining tool during the respective oscillating movement (ΔX).
- Method according to Claim 1, characterized in that the oscillating movement (ΔX) is executed at a frequency of between 200 and 500 min-1.
- Method according to Claim 1 or 2, characterized in that the first axis (58; X), the second axis (64; B) and the third axis (26; Z) are each perpendicular to one another.
- Method according to one or more of Claims 1 to 3, characterized in that the second axis (64; B) encloses a right angle with the radius of curvature (RK) of the surface (80; 86) in an engagement point (81; 89) of the machining tool on the surface (80; 86).
- Method according to one or more of Claims 1 to 4, characterized in that, during the machining of a concavely curved surface (86), a residual oversize (90) is removed at a reduced path speed by means of continuous-path control of the workpiece (68) and machining tool.
- Method according to one or more of Claims 1 to 5, characterized in that, during the machining, the workpiece (68; 79) is additionally pivoted in an oscillating manner about the second axis (64; B).
- Method according to one or more of Claims 1 to 6, characterized in that a continuous-path control between the workpiece (68, 79) and machining tool is superimposed on the oscillating movement (ΔX) of the workpiece (68, 79).
- Method according to one or more of Claims 1 to 7, characterized in that the machining tool is furthermore moved along a fourth axis (36; Y) which preferably runs parallel to the second axis (64; B).
- Method according to one or more of Claims 1 to 8, characterized in that the machining tool is furthermore rotated about a fifth axis (50; A) which preferably runs parallel to the first axis (58; X).
- Method according to Claim 9, characterized in that, by rotation of the machining tool about the fifth axis (50; A), two different tools are alternatively brought into engagement with the workpiece (68).
- Method according to one or more of Claims 1 to 10, characterized in that surfaces having any curvature on the workpieces (68; 79) are machined.
- Method according to one or more of Claims 1 to 11, characterized in that the workpieces (68; 79) are ground.
- Method according to one or more of Claims 1 to 12, characterized in that the workpieces are turbine blades (68).
- Method according to Claim 13, characterized in that the surfaces (80, 86) are cylindrical surfaces on a platform of the turbine blades (68).
- Machine tool for machining of workpieces (68; 79) with a curved surface (80, 86), with a tool holder (66) which is movable along a first axis (58; X) and at the same time is rotatable about a second axis (64; B), wherein the second axis (64; B) encloses a finite angle with the first axis (58; X), and with a machining tool which can be advanced along a third axis (26; Z) which likewise encloses a finite angle with the first axis (58; X) and with the second axis (64; B), characterized in that the tool holder (66) is connected to a first slide (30) which moves the workpiece (68; 79) along the first axis (58; X) in a rapidly oscillating movement (ΔX), the oscillating movement (ΔX) being executed at a speed of more than 20 m/min, preferably of more than 50 m/min, and a reverse acceleration of more than 3 m/s2, preferably of more than 10 m/s2, with an adjustable, variable stroke length (Δ1X, Δ2X, Δ3X), the stroke length (Δ1X, Δ2X, Δ3X) being substantially identical to the path traversed in the workpiece (68; 79) by the machining tool during the respective oscillating movement (ΔX).
- Machine tool according to Claim 15, characterized in that it executes an oscillating movement (ΔX) at a frequency of between 200 and 500 min-1.
- Machine tool according to Claim 15 or 16, characterized in that the first slide (30) is coupled to a linear motor (72).
- Machine tool according to one or more of Claims 15 to 17, characterized in that the first slide is coupled to a crank drive.
- Machine tool according to one or more of Claims 15 to 18, characterized in that the first axis (58; X), the second axis (64; B) and the third axis (26; Z) are each perpendicular to one another.
- Machine tool according to one or more of Claims 15 to 19, characterized in that the second axis (64; B) encloses a right angle with the radius of curvature (RK) of the surface (80; 86) in an engagement point (81; 89) of the machining tool on the surface (80; 86).
- Machine tool according to one or more of Claims 15 to 20, characterized in that the tool holder (66) is provided with a rotary drive (76) which can be operated continuously or in an oscillating manner selectively.
- Machine tool according to one or more of Claims 15 to 21, characterized in that the machining tool can furthermore be moved along a fourth axis (36; Y) which preferably runs parallel to the second axis (64; B).
- Machine tool according to one or more of Claims 15 to 22, characterized in that the machining tool can furthermore be rotated about a fifth axis (50; A) which preferably runs parallel to the first axis (58; X).
- Machine tool according to one or more of Claims 15 to 23, characterized in that the first slide (60) runs along the first axis (58; X) on a machine bed (14), and in that the machining tool runs along the third axis (26; Z) on a second slide (30) on a transverse support (20) of a portal (18) spanning the machine bed (14).
- Machine tool according to one or more of Claims 15 to 24, characterized in that the machining tool is at least one grinding wheel (44, 48) with which the workpieces (68; 79) are ground.
- Machine tool according to one or more of Claims 15 to 25, characterized in that the workpieces are turbine blades (68).
- Machine tool according to Claim 26, characterized in that the surfaces (80; 86) are substantially cylindrical surfaces on a platform of the turbine blades (68).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005041031A DE102005041031A1 (en) | 2005-08-24 | 2005-08-24 | Method for machining workpieces with curved surfaces, in particular for grinding turbine blades, machine tool and programming system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1757405A1 EP1757405A1 (en) | 2007-02-28 |
EP1757405B1 true EP1757405B1 (en) | 2009-10-07 |
Family
ID=37075787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06017125A Active EP1757405B1 (en) | 2005-08-24 | 2006-08-17 | Method for machining of workpieces with curved surfaces, in particular for turbine blades, machine tool |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1757405B1 (en) |
AT (1) | ATE444832T1 (en) |
DE (2) | DE102005041031A1 (en) |
ES (1) | ES2331709T3 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006034123B4 (en) | 2006-07-24 | 2009-02-12 | Deckel Maho Seebach Gmbh | Milling and drilling machine and workpiece table arrangement |
DE102007022467A1 (en) * | 2007-05-08 | 2008-11-13 | Rolls-Royce Deutschland Ltd & Co Kg | Method and device for blade tip grinding of a trained in BLISK design impeller |
DE102008054309A1 (en) * | 2008-11-03 | 2010-05-06 | Mtu Aero Engines Gmbh | Grinding process and grinding device |
CN103100950B (en) * | 2013-01-10 | 2015-04-22 | 北京航空航天大学 | Cantilever grinding machining method for vane using three-axis linkage interpolation |
CN103317415A (en) * | 2013-07-04 | 2013-09-25 | 北京航空航天大学 | Grinding method for impeller profile processing |
CN104440464A (en) * | 2014-12-01 | 2015-03-25 | 北京航空航天大学 | Method for three-axis linked double-spindle symmetric cantilever grinding machining of blade |
CN107263254B (en) * | 2017-06-23 | 2021-01-05 | 电子科技大学 | Automatic grinding machine for full-profile of blades and flow channel between blades of aviation engine blisk |
CN110561196A (en) * | 2019-09-04 | 2019-12-13 | 广州博雕数控机床有限公司 | Five-axis CNC metal processing equipment |
CN111113122A (en) * | 2020-01-22 | 2020-05-08 | 科德数控股份有限公司 | A blisk machining center |
CN111360552A (en) * | 2020-04-23 | 2020-07-03 | 天津三合智能装备制造有限公司 | Seven-axis machine tool |
CN111890148A (en) * | 2020-08-04 | 2020-11-06 | 湖南碳谷新材料有限公司 | Carbon-carbon rotary body surface precision grinding equipment and its use method |
CN112296769A (en) * | 2020-11-19 | 2021-02-02 | 泰州市利优精密机械有限公司 | Five-axis numerical control tool grinding machine and using method thereof |
CN112355864A (en) * | 2020-11-26 | 2021-02-12 | 深圳西可实业有限公司 | Multi-station curved surface polishing machine and using method thereof |
CN112643467A (en) * | 2020-12-25 | 2021-04-13 | 深圳市久久犇自动化设备股份有限公司 | Intelligent grinding and inspecting production line for cover plate |
CN113245971A (en) * | 2021-05-31 | 2021-08-13 | 台州中驰智谷科技有限公司 | High-speed aviation rotor blade tip grinding machine |
CN113977279A (en) * | 2021-11-22 | 2022-01-28 | 江苏科技大学 | Robot and method for machining blade root of propeller hub of ship |
CN115070457B (en) * | 2022-06-13 | 2023-06-27 | 长浦智能装备(广东)有限公司 | Machining center of high accuracy processing |
CN116652794B (en) * | 2023-06-16 | 2024-06-07 | 浙江大学 | A seven-axis six-linkage structure flexible grinding and polishing machine tool |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993015877A1 (en) * | 1992-02-06 | 1993-08-19 | Ppv-Verwaltungs-Ag | Workpiece grinder |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2527285A (en) * | 1947-03-18 | 1950-10-24 | Bristol Aeroplane Co Ltd | Grinding, milling, or the like machine for producing parts of complex shape, more particularly the blades of axial compressors or turbines |
US3910159A (en) * | 1974-02-15 | 1975-10-07 | Floyd R Gladwin | Apparatus for forming large radius, compound curved surfaces upon large plate-like workpieces |
JPS5169284A (en) * | 1974-11-19 | 1976-06-15 | Tahara Shoei Kiko Kk | Jidonaraikensakuseigyosochi |
DE2537707A1 (en) * | 1975-08-23 | 1977-03-03 | Bryant Grinder Corp | Machining tool for internal grinder - uses one slide mechanism for both longitudinal and cross movement |
DE3625565A1 (en) * | 1986-07-29 | 1988-03-03 | Hauni Werke Koerber & Co Kg | METHOD FOR GRINDING CURVED SURFACES ON WORKPIECES |
DE4341498A1 (en) * | 1993-12-06 | 1995-06-08 | Paul Dipl Ing Steinhart | Grinding machine |
GB9705134D0 (en) | 1997-03-12 | 1997-04-30 | Jones & Shipman Plc | Grinding or like machine tool |
DE19833085A1 (en) * | 1998-07-23 | 2000-01-27 | Dankwart Lehr | Making numerically controlled cylindrical adjustments during machining of work pieces on rotary grinding machine, by interpolating machine adjustment axis with work piece machining direction axis |
-
2005
- 2005-08-24 DE DE102005041031A patent/DE102005041031A1/en not_active Ceased
-
2006
- 2006-08-17 ES ES06017125T patent/ES2331709T3/en active Active
- 2006-08-17 AT AT06017125T patent/ATE444832T1/en active
- 2006-08-17 EP EP06017125A patent/EP1757405B1/en active Active
- 2006-08-17 DE DE502006005018T patent/DE502006005018D1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993015877A1 (en) * | 1992-02-06 | 1993-08-19 | Ppv-Verwaltungs-Ag | Workpiece grinder |
Also Published As
Publication number | Publication date |
---|---|
ES2331709T3 (en) | 2010-01-13 |
DE502006005018D1 (en) | 2009-11-19 |
ATE444832T1 (en) | 2009-10-15 |
EP1757405A1 (en) | 2007-02-28 |
DE102005041031A1 (en) | 2007-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1757405B1 (en) | Method for machining of workpieces with curved surfaces, in particular for turbine blades, machine tool | |
EP1719585B1 (en) | Machine for machining optical workpieces, by name plastic spectacle lenses | |
EP1526946B1 (en) | Method and system for grinding a rotationally symmetric machine part comprising a longitudinal borehole | |
EP1590712B1 (en) | Method for controlling relative displacements of a tool against a workpiece | |
DE19921785B4 (en) | Method for grinding convex running surfaces and outer diameters on shafts with at least one disk-shaped shaft section and grinding machine for carrying out the method | |
WO2003022521A1 (en) | Method and device for grinding central bearing positions on crankshafts | |
EP2794156B1 (en) | Machine and method for turning at least flat shoulders of a crankshaft that surround bearing pins | |
WO2011023293A2 (en) | Method for machining by lathing, and lathe | |
DE102010060220A1 (en) | Method for milling processing of free formed surfaces i.e. turbine blades, involves changing spatial alignment of portions at rotational axis of tools to change amount smaller than other change amount | |
EP3332737A1 (en) | Method for generating a dental restoration part and dental processing machine | |
EP3738713B1 (en) | Method for the surface treatment of a rock and / or concrete surface | |
DE102010036470B4 (en) | Device for honing running surfaces on roller bearing rings | |
DE19538663B4 (en) | High-speed dressing machine for machining the blades of the rotor of a turbine or the like | |
EP1319458B1 (en) | Method of manufacturing an internally toothed honing tool | |
EP1595628B1 (en) | Tool for chip removing machining | |
DE3309424C2 (en) | Method for grinding a conical cam and machine for carrying out the method | |
DD255296A1 (en) | TOOTHING MACHINE WITH CNC CONTROL FOR THE PRODUCTION OF CONE HEADS | |
DE10126796C5 (en) | Method and device for centerless cylindrical grinding | |
EP3330026B1 (en) | Rotary broach | |
DE102017129651A1 (en) | Method for tooth machining a workpiece | |
WO1988004973A1 (en) | Stock-removal machining process for workpiece blanks used in the manufacture of spiral compressor blades of intake air compressors of motor vehicles | |
EP1393855B1 (en) | Method for producing an optical lens | |
DE3611103A1 (en) | Grinding machine | |
DE102015121280A1 (en) | Method and device for machining rotatable workpieces | |
DE19832724A1 (en) | Method for producing polished lenses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070820 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20081017 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR MACHINING OF WORKPIECES WITH CURVED SURFACES, IN PARTICULAR FOR TURBINE BLADES, MACHINE TOOL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BLOHM JUNG GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502006005018 Country of ref document: DE Date of ref document: 20091119 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2331709 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100207 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100208 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100107 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
26N | No opposition filed |
Effective date: 20100708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100108 |
|
BERE | Be: lapsed |
Owner name: BLOHM JUNG G.M.B.H. Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100408 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091007 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 444832 Country of ref document: AT Kind code of ref document: T Effective date: 20110817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20180625 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240925 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240822 Year of fee payment: 19 |