EP1751817A1 - High temperature solid electrolyte fuel cell and fuel cell installation built with said fuel cell - Google Patents
High temperature solid electrolyte fuel cell and fuel cell installation built with said fuel cellInfo
- Publication number
- EP1751817A1 EP1751817A1 EP05747895A EP05747895A EP1751817A1 EP 1751817 A1 EP1751817 A1 EP 1751817A1 EP 05747895 A EP05747895 A EP 05747895A EP 05747895 A EP05747895 A EP 05747895A EP 1751817 A1 EP1751817 A1 EP 1751817A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel cell
- fuel
- cell according
- cells
- flow direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 164
- 239000007784 solid electrolyte Substances 0.000 title claims description 13
- 238000009434 installation Methods 0.000 title description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 19
- 239000007789 gas Substances 0.000 claims description 14
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 239000002737 fuel gas Substances 0.000 claims description 5
- 238000007493 shaping process Methods 0.000 claims description 4
- 229910018487 Ni—Cr Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 239000004744 fabric Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 125000006850 spacer group Chemical group 0.000 claims 1
- 239000000919 ceramic Substances 0.000 abstract description 8
- 239000007787 solid Substances 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 142
- 238000005516 engineering process Methods 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000002346 layers by function Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000004379 membrane Anatomy 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910002119 nickel–yttria stabilized zirconia Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- -1 Anode Substances 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101100395494 Magnaporthe oryzae (strain 70-15 / ATCC MYA-4617 / FGSC 8958) HPD4 gene Proteins 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- DTDCCPMQHXRFFI-UHFFFAOYSA-N dioxido(dioxo)chromium lanthanum(3+) Chemical compound [La+3].[La+3].[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O.[O-][Cr]([O-])(=O)=O DTDCCPMQHXRFFI-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 210000002325 somatostatin-secreting cell Anatomy 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/122—Corrugated, curved or wave-shaped MEA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a high-temperature solid electrolyte fuel cell, in particular according to the tube or HPD concept.
- the invention also relates to an associated fuel cell system which is constructed from such fuel cells.
- SOFC Solid Oxide Fuel Cell
- SOFC fuel cells are known in planar and tubular design, the latter is described in detail in VIK reports "Fuel cells", No. 214, Nov. 1999, pages 49 ff.
- Planar fuel cells can be produced folded, whereby one Fuel cell system with a stack structure consisting of a large number of folded individual fuel cells in a monolithic block (Fuel Cells and Their Applications (VCH Verlagsgesellschaft mbH 1996, E4, Fig. E20.5). Such fuel cells have so far not been able to establish themselves.
- HPD High Power Density
- the functional layers in particular the solid ceramic electrolyte and the anode, are applied to the outside with parallel recesses
- the inner recesses of the cathode serve as an air electrode and the anode as a fuel electrode.
- interconnectors with nickel contacts are also interconnectors with nickel contacts on the flat side of such HPD cells.
- the HPD concept is more powerful, more compact and, in particular, easier to use.
- a fuel cell arrangement is also known from EP 0 320 087 B1, in which a zigzag geometry of the supporting structure is shown in FIG. The description focuses in particular on the intermediate structures for gas routing. The efficiency and power density of such a fuel cell arrangement is not discussed.
- the porous, electrically conductive material forms the support structure for the electrochemically active functional layers.
- Gas line ducts are integrated into this support structure.
- the part of the support structure surface that carries the functional layers is geometrically enlarged by shaping, so that there is an enlarged electrochemically active area.
- the surface structure has in one direction, i.e. in the pressing direction when shaping, a uniform shape. It can be extruded in this form. Alternatively, it can be assembled from two extrudates / foils.
- the surface structure can be enlarged further, e.g. after shaping.
- the surface structure is shaped in such a way that with coating processes or dipping processes, possibly in combination with sintering steps for subsequent densification, the electrochemically active layers, i.e. Anode, electrolyte, cathode, can be applied over the entire surface.
- the functional layers on the flat back are only interrupted by a gas-tight interconnect layer, which can also be applied with a coating or immersion process, for contacting the neighboring cell via suitable contact elements.
- Fully electrochemically functional individual cells are thus created.
- a wide variety of surface structures are possible with the invention. Examples of this are: corrugated iron (delta), wedge-shaped, cuboid (so-called “battlements”), semi-arched, meandering, stair-shaped / down-shaped and combinations in between.
- a support structure made of cathode material As an alternative to the support structure made of cathode material, a support structure made of anode material is possible.
- the gas-permeable support structure can also be electrochemically neutral, for example made of porous metal or porous ceramic. It is essential that in a fuel cell system according to the invention for stack formation, contact is made from individual cell to individual cell with flexible metallic moldings via the interconnector layers. Contact is made, for example, from the anode of one cell to the cathode of the other cell via the interconnector layer, for which purpose, for example, expanded metal, braids, knitted fabrics, felts, for example made of Ni or Ni or chromium alloys, can be used as the contact element between the cells.
- the supporting structure consists, for example, of doped LaCaMn0 3 (cathode-supported) or Ni-YSZ cermet (anode-supported).
- the electrolyte consists, for example, of Y- or Sc-stabilized zirconium oxide
- a fuel cell stack can be constructed by connecting the individual cells in series and / or in parallel with a flexible contact molded body and holding them together with boards.
- the media management can be carried out in three different ways in particular: parallel, i.e. the air on the inside and the natural gas / fuel outside the cell (cathode-supported) or vice versa (anode-supported), inside the cell alternately "up / down” between individual cell channels, which requires a gas flow termination at one cell end, "up / down” in two neighboring cells, which requires a cell connector between the two cells.
- the fuel flow is either parallel (direct current), antiparallel (countercurrent) or perpendicular (cross current) to the air; to form a stack, the supporting structure is arranged in the same direction or offset from the neighboring cell.
- WO 03/012907 AI already includes HPD Fuel cells are known, in which a reversal of the direction of the air flow and then a side air outlet is realized in pairs in adjacent channels, however, the solutions proposed there cannot be transferred to the one-sidedly structured cell geometry described here, since plane-parallel flat cell structures are spoken of. will.
- the present invention now offers the most extensive design options with regard to the selection of the air duct channels on the one hand and the structure of the fuel cell system with fuel cells stacked into bundles on the other hand.
- the simple stackability of the individual fuel cells due to the attachment parts at the end and their gas-tight soldering to form a compact module is advantageous over the prior art.
- FIG. 1 shows a section of the new fuel cell in section
- FIG. 2b to 2g show various alternatives for the cross section of the fuel cell according to FIG. 1, FIG. 2a realizing the prior art, FIG. 3 a structure of a stack with at least two fuel cells connected via an interconnector, which results in a periodic structure, FIG. 4 the structure of a stack according to Figure 3, but in which there is a shifted fuel cell structure.
- 5 shows a perspective view of a fuel cell with internal means for air deflection arranged at the closed end
- FIG. 6 shows a first alternative to FIG. 5 with external means for air deflection
- FIG. 7 shows a second alternative to FIG. 5 with external means connecting all channels
- FIG. 8 shows a perspective view 5 to 7
- FIG. 9 shows an overall view of a fuel cell bundle for constructing a fuel cell system
- FIG. 10 shows a section through the molded part at the open end of the fuel cell bundle according to FIG. 9 with means for air inlet and outlet
- FIG. 11 shows a top view of the fuel cell bundle according to FIG. 9 from the in
- FIG. It consists of a ceramic structure 10 with a flat base 11 and a structure 12 of specific shape located thereon.
- the structure can be, for example, a wave or a triangular structure (delta), in particular the apex angle ⁇ of this structure being specified is. For example, angles of 60, 45 or 30 ° can be given.
- the base part 11 and the structure 12 can form a common unit and can be extruded together from the ceramic material.
- the two parts can also be made separately and then placed on top of each other.
- the structures formed in this way each include an inner volume 13 through which a medium can flow.
- the ceramic structure realizes the cathode specifically for the realization of a cathode-supported fuel cell and consists either of LaCaMn0 or of LaCa (Sr) Mn0 3 , the further functional layers being applied to the top of the structure.
- This is in particular the solid electrolyte 15 made of Y- or Sc-stabilized zirconium oxide and the anode 30 made of Ni-YSZ Cer et, for example, these specific ceramic materials being known from the prior art.
- interconnector strip 40 with nickel plating 41 for connecting a first fuel cell to a second fuel cell, reference being made in this connection to the description of FIG. 3 below.
- An essential feature of the structure according to FIG. 1 is that the electrochemically active surface is enlarged compared to the known HPD fuel cell with a flat surface. This is achieved by the wave or triangular structure according to FIG. 1, it being possible for the flanks to be stepped for additional surface enlargement.
- FIG. 2a realizes an elementary element of an HPD fuel cell according to the prior art for comparison.
- a triangular shape according to FIG. 2c can also be specified.
- Further shapes are possible with a continuously curved surface, in particular as oval 4 according to FIG. 2e, or as a stepped triangle according to FIG. 2f.
- a square shape can also be designed as a meander according to FIG. 2g .
- Shapes are possible with angles and undercuts, for example.
- the active surface in the prior art according to FIG. 2a has a significantly enlarged active surface.
- FIG. 3 two ceramic structures corresponding to FIG. 1, which each form a single fuel cell, are stacked, the stacking taking place in phase. Between the two ceramic structures 10, 10 ⁇ there is a flexible braid 50, in particular made of nickel, which produces the electrical contact between the nickel plating 41 of the interconnector strip 40 and the anode 30, which are not shown in detail in FIG. 3.
- a flexible braid 50 in particular made of nickel, which produces the electrical contact between the nickel plating 41 of the interconnector strip 40 and the anode 30, which are not shown in detail in FIG. 3.
- the interconnector 40 is formed from electron-conducting lanthanum chromate, which has proven to be suitable for long-term applications and, in particular, has also proven to be resistant to oxidation. To compensate for mechanical stresses, the interconnector 40 is electrically conductively contacted to the neighboring cell via the contact body 50 made of braided or knitted material or else by means of a felt made of nickel.
- a stack is formed by a large number of individual fuel cells 10, 10 ⁇ ,... Such a stack forms the core of a complete fuel cell system.
- a fuel gas flows around the stack in a container without gas routing structures. It can make sense to offset two individual fuel cells to form a stack by half a period structure in order to distribute the support points of the fuel cells stacked on top of one another. This is illustrated in FIG. 4 using the fuel cells 20, 20 ,, ... None changes in the way the entire stack works.
- the metallic contact elements can also be mats, cords, expanded metal, stamped / embossed parts or combinations / mixed forms.
- the table below shows a performance comparison of previous cell types (Tube, HPD4, HPD5, HPD10, HPDII) with cell types Delta 9-63 ° and Delta 9-78 ° according to the invention.
- the previously used tubular cell "tube” has an active length of 150 cm, while all HPD and delta cells have an active length of 50 cm.
- the rows in the table list the number of cells per 5 kW, the cell power and, as essential comparison criteria, the power per mass and the power per volume.
- the design of the cells as a single tube (“tube”) or as an HPD cell with four, five, ten and eleven hollow channels is specified by the prior art.
- the embodiments according to the invention are listed in the last two columns and are described in the Technology compared.
- a delta fuel cell 100 is shown in FIGS. 5 to 8. It consists of a ceramic structure with a flat base 101 and a structure 102 of a specific shape located thereon.
- the structure 102 can be, for example, a wave or a triangular structure, in particular the apex angle ⁇ of this structure being predetermined. For example, angles ⁇ of 60, 45 or 30 ° can be specified.
- the base part 101 and the structure 102 form a common unit and are extruded together from a ceramic material suitable for SOFC fuel lines.
- An essential feature of the structure according to FIG. 1 or FIG. 5 is that the electrochemically active surface is enlarged compared to the known HPD fuel cell with a flat surface. This is the case, for example, with a wave or Triangular structure achieved, the flanks can be designed stepped for additional surface enlargement.
- Delta fuel cells described above can be stacked to build a fuel cell system.
- a stackable fuel cell bundle is made possible which can be sealed to the outside and has improved gas connection means, in particular defined gas inlets / outlets. Individual modules for the fuel cell system are thus created.
- the air is conducted inside the channels and the fuel gas in the open channels on the outside of the cells.
- the air is generally introduced from one end of the fuel cell into every second channel and, after passing through the entire length of the fuel cell, the air is redirected and the air is returned in parallel. This means that at the end of the fuel cell, air must be deflected by 180 °.
- the air is advantageously led out to the side. This means that the air is redirected here so that the channels with the recirculated air are opened and meet a connecting channel of the neighboring cell.
- the main point is the air deflection at the closed end of the fuel cell.
- Various alternatives are possible for this, which are illustrated in detail with reference to FIGS. 5 to 7.
- FIG. 5 shows such a delta fuel cell with an even number of flow channels 111, 111 ',..., For example with eight channels. Two adjacent channels are assigned to each other, ie the air is moved from the open end to the closed in the first channel End directed, redirected there to the adjacent channel and returned to this channel.
- the connection of two adjacent channels 111, 111 ′′ can be achieved in a simple manner by means of a transverse channel 112. This means that of the eight fuel cell channels in FIG. 2, two adjacent channels each have the transverse channel 112 at the closed end. The entire arrangement is finally completed by a plate 110.
- a cell with uniform sinks of any number of channels can be selected.
- FIG. 6 there are again eight channels 111, 111 ',... In the fuel cell 100 with cover 110.
- a molded part 120, 120 ' is introduced into every or into every second depression of the wave structure.
- the molded parts 120, 120 ', ... each have a transverse duct 121, 121', .... Via associated transverse ducts 121, 121 'in the individual fuel cell ducts 111, 111', ..., the first air duct 101
- the connection to the second air duct 101 is established via the first duct 121 ', the transverse duct 113 and a second duct 121'.
- a continuous transverse channel 115 is stamped over the end of the entire delta fuel cell 100. This means that all eight air duct channels 111 to 111 ', ... are in fluid communication with each other. It can thus be effected by loading individual channels from the input side that the air flows out through one or more channels and back in any other channels. There is again a cover 110 and a complementary shaped piece 130.
- a continuous transverse channel is also possible in this embodiment.
- the parts made of the same starting material are inserted as separate green parts and sintered together with the fuel cell structure.
- FIG. 8 shows that a complementary part 40 also rests on the wave structure in the input area of the fuel cell 100. It is advantageous in FIG. 8 that supply air is supplied from below and that the air is carried away laterally via openings 141, 141 ',... As discrete outlets.
- the fuel cell 100 is closed at the bottom by a cover 150, which also covers the closed complementary part 140 as a base plate.
- FIG. 9 shows a fuel cell bundle consisting of three delta fuel cells 100, 100 ', 100' 'with an air inlet / outlet according to FIG. 8 and an air deflection according to FIG. 7.
- the fuel cells are stacked in phase to form a stack through which a fuel gas can flow in a container without gas routing structures. Such a stack forms the core of a fuel cell system.
- the individual delta fuel cells 100, 100 ′, 100 ′′ each have nine channels, so that the flow conditions are the same at both edges with a suitable flow deflection according to FIG. 7.
- the arrangement of the fuel cell bundle can also be oriented in reverse.
- a horizontally oriented arrangement is also possible.
- the top view of the lower cover accordingly results in individual inlets 241, which correspond to the open air duct channels llli ⁇ ⁇ , k.
- FIG. 9 The end or stack parts of FIG. 9 are connected to one another in a gas-tight manner by a glass solder and form compact connection blocks. These areas which are inactive for the fuel line function are covered with the electrolyte of the active fuel cells, which is indicated in FIG. 10 by the layer 215.
- connection blocks 230 and 240 create a stackable arrangement of a fuel cell bundle for a fuel cell system. There is enough space between the connection blocks to electrically connect the individual delta fuel cells using a felt or braid made of nickel (Ni) or Ni-Cr alloy.
- Fuel cells are each formed compact support parts. These parts consist of the inactive areas of the individual delta fuel cells and the complementary parts for the shaft structure, whereby - as already mentioned - in this area the individual fuel cells are connected to each other by the glass solder and the compact assembly as a connection block each enclosed with the electrolyte film is.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
Beschreibungdescription
Hochtemperatur-Festelektrolyt-Brennsto fzelle und damit aufgebaute BrennstoffzellenanlageHigh-temperature solid electrolyte fuel cell and fuel cell system built with it
Die Erfindung bezieht sich auf eine Hochtemperatur-Festelektrolyt-Brennstoffzelle, insbesondere nach dem Röhren- oder HPD-Konzept . Daneben bezieht sich die Erfindung auch auf eine zugehörige Brennstoffzellenanlage, die aus derartigen Brenn- stoffzellen aufgebaut ist.The invention relates to a high-temperature solid electrolyte fuel cell, in particular according to the tube or HPD concept. In addition, the invention also relates to an associated fuel cell system which is constructed from such fuel cells.
Zur Energieerzeugung sind spezifische Brennstoffzellen bekannt. Dies sind insbesondere Hochtemperatur-Brennstoffzellen mit fest eramischem Elektrolyten, die als SOFC (Solid Oxide Fuel Cell) bezeichnet werden.Specific fuel cells are known for energy generation. These are, in particular, high-temperature fuel cells with solid ceramic electrolytes, which are referred to as SOFC (Solid Oxide Fuel Cell).
SOFC-Brennstoffzellen sind in planarer und tubularer Gestaltung bekannt, letzteres wird im Einzelnen in VIK-Berichte „Brennstoffzellen", Nr. 214, Nov. 1999, Seiten 49 ff., be- schrieben. Planare Brennstoffzellen können gefaltet hergestellt werden, wobei sich eine Brennstoffzellenanlage mit Stackaufbau aus einer Vielzahl von gefalteten Einzelbrennstoffzellen in einem monolithischen Block ergibt (Fuel Cells and Their Applications (VCH Verlagsgesellschaft mbH 1996, E4, Fig. E20.5). Derartige Brennstoffzellen haben sich bis heute nicht durchsetzen können.SOFC fuel cells are known in planar and tubular design, the latter is described in detail in VIK reports "Fuel cells", No. 214, Nov. 1999, pages 49 ff. Planar fuel cells can be produced folded, whereby one Fuel cell system with a stack structure consisting of a large number of folded individual fuel cells in a monolithic block (Fuel Cells and Their Applications (VCH Verlagsgesellschaft mbH 1996, E4, Fig. E20.5). Such fuel cells have so far not been able to establish themselves.
Bei der tubularen Brennstoffzelle sind einzelne Brennstoffzellenröhren elektrisch hintereinander und/oder gruppenweise parallel geschaltet. Aus den tubularen Brennstoffzellen sind die so genannten HPD (High Power Density) -Brennstoffzellen entwickelt worden (Literaturzitat: „The Fuel Cell World (2004)" - Proceedings, p. 258-267), bei denen auf einem flachen, die Kathode bildenden Sinterkörper mit parallelen Aus- nehmungen außen die Funktionsschichten, wie insbesondere der festkeramische Elektrolyt und die Anode aufgebracht sind. Die Kathode dient mit ihren inneren Ausnehmungen als Luftelektrode und die Anode als Brennstoffelektrode . Zur Verbindung eh- rerer derartiger HPD-Zellen sind auf der Flachseite Interkon- nektoren mit Nickelkontakten vorhanden. Gegenüber einzelnen tubularen Brennstoffzellen ist das HPD-Konzept leistungsfähiger, kompakter und insbesondere einfacher handhabbar.In the tubular fuel cell, individual fuel cell tubes are electrically connected in series and / or in parallel in groups. The so-called HPD (High Power Density) fuel cells have been developed from the tubular fuel cells (reference: "The Fuel Cell World (2004)" - Proceedings, p. 258-267), in which on a flat sintered body forming the cathode The functional layers, in particular the solid ceramic electrolyte and the anode, are applied to the outside with parallel recesses The inner recesses of the cathode serve as an air electrode and the anode as a fuel electrode. There are also interconnectors with nickel contacts on the flat side of such HPD cells. Compared to individual tubular fuel cells, the HPD concept is more powerful, more compact and, in particular, easier to use.
Weiterhin ist aus der EP 0 320 087 Bl eine Brennstoffzellen- anordnung bekannt, bei der in Figur 4 eine Zick-Zack-Geome- trie der Tragstruktur gezeigt ist. In der Beschreibung wird insbesondere auf die Zwischenstrukturen zur Gasführung abge- stellt. Auf den Wirkungsgrad und Leistungsdichte einer solchen Brennstoffzellenanordnung wird nicht eingegangen.A fuel cell arrangement is also known from EP 0 320 087 B1, in which a zigzag geometry of the supporting structure is shown in FIG. The description focuses in particular on the intermediate structures for gas routing. The efficiency and power density of such a fuel cell arrangement is not discussed.
Davon ausgehend ist es Aufgabe der Erfindung, eine weitere Leistungssteigerung und Erhöhen der Packungsdichte bei elek- trodengestutzter Festelektrolyt-Brennstoffzellen mit Röhrenoder HPD-Konzept herbeizuführen und eine zugehörige Brennstoffzellenanlage zu schaffen.Proceeding from this, it is the object of the invention to bring about a further increase in performance and an increase in the packing density in the case of electrode-supported solid electrolyte fuel cells with a tube or HPD concept and to create an associated fuel cell system.
Die Aufgabe ist bezüglich einer einzelnen Brennstoffzelle durch die Merkmale des Patentanspruches 1 gelöst. Eine zugehörige Brennstoffzellenanlage ergibt sich mit den Merkmalen des Patentanspruches 15. Jeweilige Weiterbildungen sind in den Unteransprüchen angegeben.The object is achieved with respect to a single fuel cell by the features of claim 1. An associated fuel cell system results from the features of claim 15. Relevant further developments are specified in the subclaims.
Bei der Erfindung bildet das poröse, elektrisch leitfähige Material die Tragstruktur für die elektrochemisch aktiven Funktionsschichten. In diese Tragstruktur sind Gasleitungskanäle integriert. Der Teil der Tragstrukturoberflache, der die Funktionsschichten trägt, ist durch Formgebung geometrisch vergrößert, so dass sich eine vergrößerte elektrochemisch aktive Fläche ergibt.In the invention, the porous, electrically conductive material forms the support structure for the electrochemically active functional layers. Gas line ducts are integrated into this support structure. The part of the support structure surface that carries the functional layers is geometrically enlarged by shaping, so that there is an enlarged electrochemically active area.
Aus dem „Handbuch der Keramik" (DVS Verlag GmbH Düsseldorf - 2004), Gruppe IIK 2.1.4, Folge 418, sind zwar bereits Flach- membranen aus Keramik bekannt, bei dem die Membranen so genannte Multikanalelemente bilden. Dazu ist auf einem ebenen Flachkörper eine wellenförmige Struktur mit Hohlkanälen aufgebracht . Derartige Membranen werden insbesondere als Trenn- Werkzeuge für die Filtration von Flüssigkeiten eingesetzt. Eine Übertragung in die Brennstoffzellentechnologie liegt nicht nahe, da es sich hier um eine rein mechanische Filterungsanwendung handelt, die keinerlei elektrochemische Wand- lerfunktionen hat, wobei neben der Grenzflächengröße auch elektrische und ionische Leitfähigkeiten und Transportphänomene nötig sowie elektrische Verbindungstechnologie bei hohen Temperaturen zwischen 900 und 1000 °C erforderlich sind.Flat membranes made of ceramic are already known from the "Handbuch der Keramik" (DVS Verlag GmbH Düsseldorf - 2004), Group IIK 2.1.4, Episode 418, in which the membranes form so-called multi-channel elements. This is done on a flat flat body applied a wavy structure with hollow channels. Such membranes are used in particular as separating Tools used for the filtration of liquids. A transfer to fuel cell technology is not obvious, since this is a purely mechanical filter application that has no electrochemical converter functions, whereby in addition to the interface size, electrical and ionic conductivities and transport phenomena are also required, as well as electrical connection technology at high temperatures between 900 and 1000 ° C are required.
Im Rahmen der Erfindung sind verschiedene Ausführungen möglich. Dies sind im Einzelnen: Die Oberflächenstruktur hat in einer Richtung, d.h. in der Pressrichtung bei der Formgebung, eine gleichmäßige Form. Sie ist in dieser Form extrudierbar. Alternativ ist sie aus zwei Extrudaten/Folien zusammensetzbar. Die Oberflächenstruktur kann weiter vergrößert werden, z.B. nach der Formgebung. Die Oberflächenstruktur wird so geformt, dass mit Be- schichtungsverfahren oder Tauchprozessen, eventuell in Kombination mit Sinterschritten zur nachfolgenden Verdichtung, die elektrochemisch aktiven Schichten, d.h. Anode, Elektrolyt, Kathode, vollflächig auftragbar sind. Unterbrochen werden die Funktionsschichten auf der ebenen Rückseite nur durch eine ebenfalls mit Beschichtungs- oder Tauchverfahren auftragbaren gasdichten Interkonnektor- schicht für die Kontaktierung zur Nachbarzelle über geeignete Kontaktelemente. Es entstehen somit voll elektrochemisch funktionsfähige Einzelzellen. Bei der Erfindung sind unterschiedlichste Oberflächen- Strukturen möglich. Beispiele dafür sind: Wellblechform (Delta) , keilförmig, quaderförmig (sog. „Zinnen") , halbbogenförmig, mäanderförmig, treppauf-/abförmig und Kombinationen dazwischen.Various designs are possible within the scope of the invention. These are in detail: The surface structure has in one direction, i.e. in the pressing direction when shaping, a uniform shape. It can be extruded in this form. Alternatively, it can be assembled from two extrudates / foils. The surface structure can be enlarged further, e.g. after shaping. The surface structure is shaped in such a way that with coating processes or dipping processes, possibly in combination with sintering steps for subsequent densification, the electrochemically active layers, i.e. Anode, electrolyte, cathode, can be applied over the entire surface. The functional layers on the flat back are only interrupted by a gas-tight interconnect layer, which can also be applied with a coating or immersion process, for contacting the neighboring cell via suitable contact elements. Fully electrochemically functional individual cells are thus created. A wide variety of surface structures are possible with the invention. Examples of this are: corrugated iron (delta), wedge-shaped, cuboid (so-called “battlements”), semi-arched, meandering, stair-shaped / down-shaped and combinations in between.
- Alternativ zur Tragstruktur aus Kathodenmaterial ist eine Tragstruktur aus Anodenmaterial möglich.- As an alternative to the support structure made of cathode material, a support structure made of anode material is possible.
- Die gasdurchlässige Tragstruktur kann auch elektrochemisch neutral sein, z.B. aus porösem Metall oder poröser Keramik bestehen. Wesentlich ist, dass bei einer erfindungsgemäßen Brennstoffzellenanlage zur Stackbildung eine Kontaktierung von Einzelzelle zu Einzelzelle mit flexiblen metallischen Formkörpern über die Interkonnektorschichten erfolgt. Die Kontaktierung erfolgt beispielsweise von der Anode der einen Zelle zur Kathode der anderen Zelle über die Interkonnektorschicht, wozu als Kontaktelement zwischen den Zellen z.B. Streckmetall, Geflechte, Gestricke, Filze z.B. aus Ni oder Ni- oder Chrom- Legierungen eingesetzt werden können.- The gas-permeable support structure can also be electrochemically neutral, for example made of porous metal or porous ceramic. It is essential that in a fuel cell system according to the invention for stack formation, contact is made from individual cell to individual cell with flexible metallic moldings via the interconnector layers. Contact is made, for example, from the anode of one cell to the cathode of the other cell via the interconnector layer, for which purpose, for example, expanded metal, braids, knitted fabrics, felts, for example made of Ni or Ni or chromium alloys, can be used as the contact element between the cells.
Speziell für die Realisierung der Festelektrolyt-Brennstoffzelle als SOFC besteht die Tragstruktur z.B. aus dotiertem LaCaMn03 (kathodengestützt) oder Ni-YSZ-Cermet (anodenge- stützt). Der Elektrolyt besteht z.B. Y- oder Sc-stabilisier- tem ZirkonoxidEspecially for the implementation of the solid electrolyte fuel cell as SOFC, the supporting structure consists, for example, of doped LaCaMn0 3 (cathode-supported) or Ni-YSZ cermet (anode-supported). The electrolyte consists, for example, of Y- or Sc-stabilized zirconium oxide
Bei der Erfindung lässt sich ein Brennstoffzellenstack durch Hintereinander- und /oder Parallelschalten der Einzelzellen mit einem flexiblen Kontaktformkorper aufbauen und mit Boards zusammenhalten. Dabei kann die Medienführung insbesondere auf drei verschiedene Weisen erfolgen: parallel, d.h. die Luft auf der Innenseite und das Erdgas/ Fuel außerhalb der Zelle (kathodengestützt) oder umgekehrt (anodengestützt) , innerhalb der Zelle wechselweise „up/down" zwischen einzelnen Zellkanälen, was einen Gasführungsabschluss an einem Zellende erfordert, „up/down" in zwei benachbarten Zellen, was einen Zell- verbinder zwischen den beiden Zellen erfordert.In the invention, a fuel cell stack can be constructed by connecting the individual cells in series and / or in parallel with a flexible contact molded body and holding them together with boards. The media management can be carried out in three different ways in particular: parallel, i.e. the air on the inside and the natural gas / fuel outside the cell (cathode-supported) or vice versa (anode-supported), inside the cell alternately "up / down" between individual cell channels, which requires a gas flow termination at one cell end, "up / down" in two neighboring cells, which requires a cell connector between the two cells.
Vorteilhaft ist bei der erfindungsgemäßen Brennstoffzellenanlage, dass bei einseitiger Abdichtung der Zellen in einem Luft/Gaszuführungsboard ohne Luftumlenkung in der Zelle („once through") und dichtungsfreiem Einbau am anderen Ende ein Verbrennen des Restgases über Spalte möglich ist, so dass die Zellen nur an einem Ende fixiert sind und da- durch bei thermischer Beanspruchung keine mechanischen LängsSpannungen aufgebracht werden, bei zweiseitigem Abdichten der Zellen in den Boards eine Trennung von Brennstoff- und Luftkreisläufen erfolgt, die z.B. zur Wasserstoff- oder Kohlendioxidabtrennung genutzt werden kann. Für die erfindungsgemäße Brennstoffzellenanlage gilt: Die BrennstoffStrömungsführung erfolgt entweder parallel (Gleichstrom) , antiparallel (Gegenstrom) oder senkrecht (Kreuzstrom) zur Luft, zur Bildung eines Stacks wird die Tragstruktur von Zelle zur Nachbarzelle gleichsinnig oder versetzt angeordnet.It is advantageous in the fuel cell system according to the invention that when the cells are sealed on one side in an air / gas supply board without air deflection in the cell (“once through”) and seal-free installation at the other end, combustion of the residual gas is possible via gaps, so that the cells only come on are fixed at one end and due to the fact that no mechanical longitudinal stresses are applied in the case of thermal stress, when the cells in the boards are sealed on both sides, fuel and air circuits are separated, which can be used, for example, to separate hydrogen or carbon dioxide. The following applies to the fuel cell system according to the invention: the fuel flow is either parallel (direct current), antiparallel (countercurrent) or perpendicular (cross current) to the air; to form a stack, the supporting structure is arranged in the same direction or offset from the neighboring cell.
Im Rahmen der Erfindung kann vorteilhafterweise innerhalb der Zelle wechselweise eine „up/down"-Strömung zwischen einzelnen Zellkanälen erreicht werden, was durch den Gasführungsab- schluss an einem Zellende gewährleistet ist. In diesem Zusammenhang sind aus der WO 03/012907 AI zwar bereits HPD-Brenn- stoffzellen bekannt, bei denen jeweils paarweise in benach- harten Kanälen eine Richtungsumkehr der Luftströmung und anschließend ein seitlicher Luftauslass realisiert ist. Allerdings sind die dort vorgeschlagenen Lösungen nicht auf die hier beschriebene einseitig strukturierte Zellgeometrie übertragbar, da von planparallelen flachen Zellstrukturen gespro- chen wird.In the context of the invention, an “up / down” flow between individual cell channels can advantageously be achieved alternately within the cell, which is ensured by the gas guidance closure at one cell end. In this connection, WO 03/012907 AI already includes HPD Fuel cells are known, in which a reversal of the direction of the air flow and then a side air outlet is realized in pairs in adjacent channels, however, the solutions proposed there cannot be transferred to the one-sidedly structured cell geometry described here, since plane-parallel flat cell structures are spoken of. will.
Mit vorliegender Erfindung ergeben sich nunmehr weitestgehen- de Gestaltungsmöglichkeiten bezüglich der Auswahl der Luftführungskanäle einerseits und Aufbau der Brennstoffzellenan- läge mit zu Bündeln gestapelten Brennstoffzellen andererseits. Speziell die einfache Stapelbarkeit der einzelnen Brennstoffzellen durch die endseitigen Aufsetzteile und deren gasdichte Verlötung zu einem kompakten Modul ist gegenüber dem Stand der Technik vorteilhaft .The present invention now offers the most extensive design options with regard to the selection of the air duct channels on the one hand and the structure of the fuel cell system with fuel cells stacked into bundles on the other hand. In particular, the simple stackability of the individual fuel cells due to the attachment parts at the end and their gas-tight soldering to form a compact module is advantageous over the prior art.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich der nachfolgenden Figurenbeschreibung von Ausführungsbeispie- len anhand der Zeichnung in Verbindung mit den Patentansprüchen. Es zeigen jeweils in schematischer DarstellungFurther details and advantages of the invention can be found in the following description of figures of exemplary embodiments. len based on the drawing in conjunction with the claims. They each show a schematic representation
Figur 1 einen Ausschnitt aus der neuen Brennstoffzelle im Schnitt,FIG. 1 shows a section of the new fuel cell in section,
Figur 2b bis Figur 2g verschiedene Alternativen für den Querschnitt der Brennstoffzelle gemäß Figur 1, wobei Figur 2a den Stand der Technik realisiert, Figur 3 einen Aufbau eines Stacks mit wenigstens zwei über einen Interkonnektor verbundenen Brennstoffzellen, bei der sich eine periodische Struktur ergibt, Figur 4 den Aufbau eines Stacks entsprechend Figur 3, bei dem sich aber eine verschobene BrennstoffZellenstruktur ergibt . Figur 5 eine perspektivische Darstellung einer Brennstoffzelle mit am geschlossenen Ende angeordneten internen Mitteln zur Luftumlenkung, Figur 6 eine erste Alternative zu Figur 5 mit externen Mitteln zur Luftumlenkung Figur 7 eine zweite Alternative zu Figur 5 mit externen Mitteln Verbindung aller Kanäle, Figur 8 eine perspektivische Darstellung des offenen Endes eines Brennstoffzellenbundels aus einzelnen Brennstoffzellen gemäß der Figuren 5 bis 7, Figur 9 eine Gesamtansicht eines Brennstoffzellenbundels zum Aufbau einer Brennstoffzellenanlage, Figur 10 einen Schnitt durch das Formteil am offenen Ende des Brennstoffzellenbundels gemäß Figur 9 mit Mitteln zum Lufteinlass- und —auslass und Figur 11 eine Draufsicht auf das Brennstoffzellenbundel gemäß Figur 9 von der Einlassseite her.2b to 2g show various alternatives for the cross section of the fuel cell according to FIG. 1, FIG. 2a realizing the prior art, FIG. 3 a structure of a stack with at least two fuel cells connected via an interconnector, which results in a periodic structure, FIG. 4 the structure of a stack according to Figure 3, but in which there is a shifted fuel cell structure. 5 shows a perspective view of a fuel cell with internal means for air deflection arranged at the closed end, FIG. 6 shows a first alternative to FIG. 5 with external means for air deflection, FIG. 7 shows a second alternative to FIG. 5 with external means connecting all channels, FIG. 8 shows a perspective view 5 to 7, FIG. 9 shows an overall view of a fuel cell bundle for constructing a fuel cell system, FIG. 10 shows a section through the molded part at the open end of the fuel cell bundle according to FIG. 9 with means for air inlet and outlet and FIG. 11 shows a top view of the fuel cell bundle according to FIG. 9 from the inlet side.
In Figur 1 ist ein Ausschnitt aus einer einzelnen Brennstoffzelle gezeigt. Sie besteht aus einer Keramikstruktur 10 mit einer ebenen Basis 11 und einer darauf befindlichen Struktur 12 spezifischer Formgebung. Die Struktur kann beispielsweise eine Welle oder eine Dreieckstruktur (Delta) sein, wobei insbesondere der Scheitelwinkel α dieser Struktur vorgegeben ist. Beispielsweise können Winkel von 60, 45 oder 30° gegeben sein.A section of an individual fuel cell is shown in FIG. It consists of a ceramic structure 10 with a flat base 11 and a structure 12 of specific shape located thereon. The structure can be, for example, a wave or a triangular structure (delta), in particular the apex angle α of this structure being specified is. For example, angles of 60, 45 or 30 ° can be given.
Das Basisteil 11 und die Struktur 12 können eine gemeinsame Einheit bilden und gemeinsam aus dem Keramikmaterial extru- diert werden. Die beiden Teile können aber auch separat hergestellt werden und anschließend aufeinander aufgesetzt werden.The base part 11 and the structure 12 can form a common unit and can be extruded together from the ceramic material. The two parts can also be made separately and then placed on top of each other.
Die so gebildeten Strukturen schließen jeweils ein Innenvolumen 13 ein, das mit einem Medium durchströmbar ist. Speziell zur Realisierung einer kathodengestützten Brennstoffzelle realisiert die Keramikstruktur die Kathode und besteht entweder aus LaCaMn0 oder aus LaCa (Sr)Mn03, wobei auf der Oberseite der Struktur die weiteren Funktionsschichten aufgebracht sind. Dies ist insbesondere der Festelektrolyt 15 aus Y- oder Sc-stabilisiertem Zirkonoxid und die Anode 30 aus z.B. Ni-YSZ Cer et, wobei diese spezifischen Keramikmaterialien vom Stand der Technik bekannt sind.The structures formed in this way each include an inner volume 13 through which a medium can flow. The ceramic structure realizes the cathode specifically for the realization of a cathode-supported fuel cell and consists either of LaCaMn0 or of LaCa (Sr) Mn0 3 , the further functional layers being applied to the top of the structure. This is in particular the solid electrolyte 15 made of Y- or Sc-stabilized zirconium oxide and the anode 30 made of Ni-YSZ Cer et, for example, these specific ceramic materials being known from the prior art.
Auf der Unterseite befindet sich ein Interkonnektorstreifen 40 mit Vernickelung 41 zur Verbindung einer ersten Brennstoffzelle mit einer zweiten Brennstoffzelle, wobei in diesem Zusammenhang weiter unten auf die Beschreibung von Figur 3 verwiesen wird.On the underside there is an interconnector strip 40 with nickel plating 41 for connecting a first fuel cell to a second fuel cell, reference being made in this connection to the description of FIG. 3 below.
Wesentliches Merkmal der Struktur gemäß Figur 1 (Delta) ist, dass die elektrochemisch aktive Oberfläche gegenüber der bekannten HPD-Brennstoffzelle mit ebener Oberfläche vergrößert ist. Dies wird durch die Wellen- bzw. Dreieckstruktur gemäß Figur 1 erreicht, wobei die Flanken zur zusätzlichen Oberflächenvergrößerung aufgestuft sein können.An essential feature of the structure according to FIG. 1 (delta) is that the electrochemically active surface is enlarged compared to the known HPD fuel cell with a flat surface. This is achieved by the wave or triangular structure according to FIG. 1, it being possible for the flanks to be stepped for additional surface enlargement.
Aus den Figuren 2b bis 2g ergeben sich verschiedene geeignete Formgebungen: Figur 2a realisiert zum Vergleich ein Elementarelement einer HPD-Brennstoffzelle gemäß dem Stand der Technik. Neben der Wellenform gemäß Figur 2b kann auch eine Dreieckform gemäß Figur 2c vorgegeben sein. Daneben sind Viereckformen gemäß Figur 2d möglich, die sog. „Zinnen" bilden. Weitere Formgebungen sind mit stetig gewölbter Oberfläche, insbesondere als Oval 4 gemäß Figur 2e, oder als gestuftes Dreieck gemäß Figur 2f möglich. Eine Viereckform kann auch als Mäander gemäß Figur 2g ausgebildet sein. WeitereVarious suitable shapes result from FIGS. 2b to 2g: FIG. 2a realizes an elementary element of an HPD fuel cell according to the prior art for comparison. In addition to the waveform according to FIG. 2b, a triangular shape according to FIG. 2c can also be specified. Are next to it 2d possible, which form so-called “battlements”. Further shapes are possible with a continuously curved surface, in particular as oval 4 according to FIG. 2e, or as a stepped triangle according to FIG. 2f. A square shape can also be designed as a meander according to FIG. 2g . Further
Formen sind beispielsweise mit Winkel und Hinterschnitt möglich.Shapes are possible with angles and undercuts, for example.
In allen Fällen der Figur 2b bis Figur 2g ergibt sich gegen- über der aktiven Oberfläche beim Stand der Technik gemäß Figur 2a eine erheblich vergrößerte aktive Oberfläche.In all cases in FIGS. 2b to 2g, the active surface in the prior art according to FIG. 2a has a significantly enlarged active surface.
In der Figur 3 sind zwei Keramikstrukturen entsprechend Figur 1, die jeweils eine einzelne Brennstoffzelle bilden, gesta- pelt, wobei die Stapelung phasengleich erfolgt. Zwischen beiden Keramikstrukturen 10, 10 Λ befindet sich ein flexibles Geflecht 50 insbesondere aus Nickel, das den elektrischen Kontakt zwischen der Vernickelung 41 des Interkonnektorstreifens 40 und der Anode 30, die in Figur 3 nicht im Einzelnen darge- stellt sind, herstellt.In FIG. 3, two ceramic structures corresponding to FIG. 1, which each form a single fuel cell, are stacked, the stacking taking place in phase. Between the two ceramic structures 10, 10 Λ there is a flexible braid 50, in particular made of nickel, which produces the electrical contact between the nickel plating 41 of the interconnector strip 40 and the anode 30, which are not shown in detail in FIG. 3.
Der Interkonnektor 40 ist bekannterweise aus elektronenleitendem Lanthanchromat gebildet, was sich für Langzeitanwen- dungen als geeignet und insbesondere auch als oxidationsbe- ständig erwiesen hat. Zum Ausgleich von mechanischen Spannungen ist der Interkonnektor 40 über den Kontaktkörper 50 aus Materialgeflecht, -gestrick oder aber auch durch einen Filz aus Nickel mit der Nachbarzelle elektrisch leitend kontaktiert .As is known, the interconnector 40 is formed from electron-conducting lanthanum chromate, which has proven to be suitable for long-term applications and, in particular, has also proven to be resistant to oxidation. To compensate for mechanical stresses, the interconnector 40 is electrically conductively contacted to the neighboring cell via the contact body 50 made of braided or knitted material or else by means of a felt made of nickel.
Durch eine Vielzahl von einzelnen Brennstoffzellen 10, 10Λ,... wird ein Stack gebildet, wobei seitliche Bords zur Halterung vorhanden sind. Ein solches Stack bildet den Kern einer kompletten Brennstoffzellenanlage. Dabei wird das Stack in einem Behälter ohne Gasführungsstrukturen von einem Brenngas umströmt. Es kann sinnvoll sein, jeweils zwei einzelne Brennstoffzellen zur Stackbildung gegeneinander um eine halbe Periodenstruktur gegeneinander zu versetzen, um die Auflagestellen der aufeinander gestapelten Brennstoffzellen zu verteilen. Dies wird anhand Figur 4 anhand der Brennstoffzellen 20, 20 Λ , ... verdeutlicht. An der Funktionsweise des kompletten Stacks ändert sich dabei nichts.A stack is formed by a large number of individual fuel cells 10, 10 Λ ,... Such a stack forms the core of a complete fuel cell system. A fuel gas flows around the stack in a container without gas routing structures. It can make sense to offset two individual fuel cells to form a stack by half a period structure in order to distribute the support points of the fuel cells stacked on top of one another. This is illustrated in FIG. 4 using the fuel cells 20, 20 ,, ... Nothing changes in the way the entire stack works.
Insbesondere bei der Anordnung gemäß Figur 4 werden mechani- sehe Spannungen im Vergleich zu monolithischer oder planarer Brennstoffzelle vermieden. Die metallischen Kontaktelemente können auch Matten, Schnüre, Streckmetall, Stanz-/Prägefor - teile oder Kombinationen/Mischformen sein. In der nachfolgenden Tabelle ist ein Leistungsvergleich bisheriger Zelltypen (Tube, HPD4, HPD5, HPD10, HPDll) mit Zelltypen Delta 9 - 63° und Delta 9 - 78° gemäß der Erfindung dargestellt. Dabei hat die bislang eingesetzte rohrförmige Zelle „Tube" eine aktive Länge von 150 cm, während alle HPD- und Delta-Zellen 50 cm aktive Länge aufweisen.In the arrangement according to FIG. 4 in particular, mechanical stresses are avoided in comparison to monolithic or planar fuel cells. The metallic contact elements can also be mats, cords, expanded metal, stamped / embossed parts or combinations / mixed forms. The table below shows a performance comparison of previous cell types (Tube, HPD4, HPD5, HPD10, HPDII) with cell types Delta 9-63 ° and Delta 9-78 ° according to the invention. The previously used tubular cell "tube" has an active length of 150 cm, while all HPD and delta cells have an active length of 50 cm.
Tabelle :Table :
In der Tabelle sind in den Zeilen die Anzahl Zellen pro 5 kW, die Zellleistung und als wesentliche Vergleichskriterien die Leistung pro Masse und die Leistung pro Volumen aufgelistet. Vom Stand der Technik ist die Ausbildung der Zellen als Einzelröhre („Tube") oder als HPD-Zelle mit vier, fünf, zehn und elf Hohlkanälen angeführt. Die erfindungsgemäßen Ausführungs- formen sind in den beiden letzten Spalten angeführt und werden mit dem Stand der Technik verglichen. The rows in the table list the number of cells per 5 kW, the cell power and, as essential comparison criteria, the power per mass and the power per volume. The design of the cells as a single tube (“tube”) or as an HPD cell with four, five, ten and eleven hollow channels is specified by the prior art. The embodiments according to the invention are listed in the last two columns and are described in the Technology compared.
Die bisherige Entwicklung zeigt bereits, dass der Ersatz der „Tubes" durch HPD-Zellen zu kleineren Bauteilen führt und dass die Leistung pro Masse und/oder pro Volumen größer wird. Darüber hinausgehend wird mit der neuen Technologie Delta 9 die Leistungsausbeute weiter gesteigert..The previous development already shows that the replacement of the "tubes" with HPD cells leads to smaller components and that the performance per mass and / or per volume increases. In addition, the new technology Delta 9 further increases the power yield.
Insgesamt belegt die Tabelle eine beachtliche Leistungsstei- gerung für die erfindungsgemäßen Brennstoffzellen. Da derOverall, the table shows a considerable increase in performance for the fuel cells according to the invention. Since the
Aufwand zur Herstellung derartiger Zellen durch weiterentwickelte Extrusions- und Beschichtungstechnologien im Wesentlichen der gleiche ist wie bei den bisherigen Zellen, ergibt ein besonders günstiges Preis/Leistungsverhältnis für Brenn- Stoffzellen.The cost of producing such cells by means of further developed extrusion and coating technologies is essentially the same as that of the previous cells, which results in a particularly favorable price / performance ratio for fuel cells.
In den Figuren 5 bis 8 ist eine Delta-Brennstoffzelle 100 gezeigt. Sie besteht aus einer Keramikstruktur mit einer ebenen Basis 101 und einer darauf befindlichen Struktur 102 spezifi- scher Formgebung. Die Struktur 102 kann beispielsweise eine Wellen- oder eine Dreieckstruktur sein, wobei insbesondere der Scheitelwinkel α dieser Struktur vorgegeben ist . Beispielsweise können Winkel α von 60, 45 oder 30° vorgegeben sein.A delta fuel cell 100 is shown in FIGS. 5 to 8. It consists of a ceramic structure with a flat base 101 and a structure 102 of a specific shape located thereon. The structure 102 can be, for example, a wave or a triangular structure, in particular the apex angle α of this structure being predetermined. For example, angles α of 60, 45 or 30 ° can be specified.
Das Basisteil 101 und die Struktur 102 bilden eine gemeinsame Einheit und sind gemeinsam aus einem für SOFC-BrennstoffZeilen geeigneten Keramikmaterial extrudiert .The base part 101 and the structure 102 form a common unit and are extruded together from a ceramic material suitable for SOFC fuel lines.
Wesentliches Merkmal der Struktur gemäß Figur 1 bzw. Figur 5 ist, dass die elektrochemisch aktive Oberfläche gegenüber der bekannten HPD-Brennstoffzelle mit ebener Oberfläche vergrößert ist. Dies wird beispielsweise bei einer Wellen- bzw. Dreieckstruktur erreicht, wobei die Flanken zur zusätzlichen Oberflächenvergrößerung gestuft ausgebildet sein können.An essential feature of the structure according to FIG. 1 or FIG. 5 is that the electrochemically active surface is enlarged compared to the known HPD fuel cell with a flat surface. This is the case, for example, with a wave or Triangular structure achieved, the flanks can be designed stepped for additional surface enlargement.
Vorstehend beschriebene Delta -Brennstoffzellen können zum Aufbau einer Brennstoffzellenanlage gestapelt werden. Durch Einfügen einer komplementären Struktur in den jeweiligen Endbereichen der Brennstoffzelle wird ein stapelbares Brennstoffzellenbundel ermöglicht, das nach außen abgedichtet werden kann und verbesserte Gasanschlussmittel, insbesondere de- finierte Gasein-/-auslässe, aufweist. Es werden somit einzelne Module für die Brennstoffzellenanlage geschaffen.Delta fuel cells described above can be stacked to build a fuel cell system. By inserting a complementary structure in the respective end regions of the fuel cell, a stackable fuel cell bundle is made possible which can be sealed to the outside and has improved gas connection means, in particular defined gas inlets / outlets. Individual modules for the fuel cell system are thus created.
Bei der so beschriebenen Brennstoffzelle wird im Inneren der Kanäle die Luft und in den offenen Kanälen an der Außenseite der Zellen das Brenngas geführt. Dabei wird von einem Ende der Brennstof zelle im Allgemeinen jeweils in jedem zweiten Kanal die Luft eingebracht und erfolgt nach Durchleitung über die gesamte Brennstoffzellenlänge eine Umleitung und parallele Rückführung der Luft. Dies bedeutet, dass am Ende der Brennstoffzelle eine Luftumlenkung um 180° erfolgen muss.In the fuel cell described in this way, the air is conducted inside the channels and the fuel gas in the open channels on the outside of the cells. In this case, the air is generally introduced from one end of the fuel cell into every second channel and, after passing through the entire length of the fuel cell, the air is redirected and the air is returned in parallel. This means that at the end of the fuel cell, air must be deflected by 180 °.
Am offenen Ende wird die Luft vorteilhafterweise seitlich herausgeführt. Dies bedeutet, dass hier die Luft umgelenkt wird, so dass die Kanäle mit der rückgeführten Luft geöffnet werden und auf einen Verbindungskanal der Nachbarzelle treffen.At the open end, the air is advantageously led out to the side. This means that the air is redirected here so that the channels with the recirculated air are opened and meet a connecting channel of the neighboring cell.
Wesentlicher Punkt ist zunächst die Luftumlenkung am geschlossenen Ende der Brennstoffzelle. Hierzu sind verschiede- ne Alternativen möglich, die im Einzelnen anhand der Figuren 5 bis 7 verdeutlicht werden.The main point is the air deflection at the closed end of the fuel cell. Various alternatives are possible for this, which are illustrated in detail with reference to FIGS. 5 to 7.
In Figur 5 ist eine derartige Delta-Brennstoffzelle mit geradzahliger Anzahl von Strömungskanälen 111, 111' , ... darge- stellt, beispielsweise mit acht Kanälen. Dabei sind jeweils zwei benachbarte Kanäle einander zugeordnet, d.h. die Luft wird in dem ersten Kanal vom offenen Ende zum geschlossenen Ende geleitet, dort zum benachbarten Kanal umgeleitet und in diesen Kanal zurückgeführt.FIG. 5 shows such a delta fuel cell with an even number of flow channels 111, 111 ',..., For example with eight channels. Two adjacent channels are assigned to each other, ie the air is moved from the open end to the closed in the first channel End directed, redirected there to the adjacent channel and returned to this channel.
Sofern die Delta-Brennstoffzelle in geeigneter Weise extru- diert ist mit verdickten VerbindungsStegen in jeder zweiten Senke und eine hinreichende Stabilität hat, lässt sich die Verbindung von zwei benachbarten Kanälen 111, 111'' in einfacher Weise durch einen Querkanal 112 erreichen. Dies bedeutet, dass von den acht Brennstoffzellenkanälen in Figur 2 je- weils zwei benachbarte Kanäle am geschlossenen Ende den Querkanal 112 aufweisen. Die gesamte Anordnung ist am Ende durch eine Platte 110 abgeschlossen.If the delta fuel cell is suitably extruded with thickened connecting webs in every second depression and has sufficient stability, the connection of two adjacent channels 111, 111 ″ can be achieved in a simple manner by means of a transverse channel 112. This means that of the eight fuel cell channels in FIG. 2, two adjacent channels each have the transverse channel 112 at the closed end. The entire arrangement is finally completed by a plate 110.
Alternativ zu Figur 5 kann eine Zelle mit gleichmäßigen Sen- ken beliebiger Kanalanzahl gewählt werden. Gemäß Figur 6 sind in der Brennstoffzelle 100 mit Deckel 110 wiederum acht Kanäle 111, 111', ... vorhanden. In diesem Fall ist aber in jede oder in jede zweite Senke der Wellenstruktur ein Formteil 120, 120' eingebracht. Die Formteile 120, 120', ... haben je- weils einen Querkanal 121, 121', .... Über zugehörige Querkanäle 121, 121' in den einzelnen Brennstoffzellenkanälen 111, 111', ... wird dabei vom ersten Luftführungskanal 101 über den ersten Kanal 121', den Querkanal 113 und einen zweiten Kanal 121' die Verbindung zum zweiten Luftführungskanal 101 herge- stellt.As an alternative to FIG. 5, a cell with uniform sinks of any number of channels can be selected. According to FIG. 6, there are again eight channels 111, 111 ',... In the fuel cell 100 with cover 110. In this case, however, a molded part 120, 120 'is introduced into every or into every second depression of the wave structure. The molded parts 120, 120 ', ... each have a transverse duct 121, 121', .... Via associated transverse ducts 121, 121 'in the individual fuel cell ducts 111, 111', ..., the first air duct 101 The connection to the second air duct 101 is established via the first duct 121 ', the transverse duct 113 and a second duct 121'.
Bei den beiden Beispielen gemäß Figur 5 und Figur 6 ist eine gerade Anzahl von Luftführungskanälen vorhanden. Damit ist systememinent verbunden, dass in den beiden Randkanälen der Delta-Brennstoffzelle die Luftführung in umgekehrter Richtung erfolgt .In the two examples according to FIG. 5 and FIG. 6, there is an even number of air guide channels. It is connected systematically that the air flow in the two edge channels of the delta fuel cell takes place in the opposite direction.
Bei einer weiteren alternativen Ausführungsform gemäß Figur 7 ist über das Ende der gesamten Delta-Brennstoffzelle 100 ein durchgehender Querkanal 115 eingeprägt. Dies bedeutet, dass alle acht Luftführungskanäle 111 bis 111', ... miteinander in fluidischer Verbindung stehen. Es kann somit durch Beaufschlagung einzelner Kanäle von der EingangsSeite bewirkt wer- den, dass die Luft über einen oder mehrere Kanäle herausströmt und in beliebigen anderen Kanälen zurückströmt . Dabei • ist wiederum ein Deckel 110 und weiterhin ein Komplementärformstück 130 vorhanden.In a further alternative embodiment according to FIG. 7, a continuous transverse channel 115 is stamped over the end of the entire delta fuel cell 100. This means that all eight air duct channels 111 to 111 ', ... are in fluid communication with each other. It can thus be effected by loading individual channels from the input side that the air flows out through one or more channels and back in any other channels. There is again a cover 110 and a complementary shaped piece 130.
Sofern bei der Brennstoffzelle gemäß Figur 6 in jede Senke ein Teil eingelegt wird, ist auch bei dieser Ausführungsform ein durchgehender Querkanal möglich. Fertigungstechnisch werden die Teile aus gleichem Ausgangsmaterial als separate Grünlinge eingelegt und gemeinsam mit der Brennstoffzellenstruktur gesintert.If a part is inserted into each depression in the fuel cell according to FIG. 6, a continuous transverse channel is also possible in this embodiment. In terms of production technology, the parts made of the same starting material are inserted as separate green parts and sintered together with the fuel cell structure.
In Figur 8 ist dargestellt, dass im Eingangsbereich der Brennstoffzelle 100 ebenfalls ein Komplementärteil 40 auf der Wellenstruktur aufliegt. Vorteilhaft ist in Figur 8, dass Zuluft von unten zugeführt wird und dass die Wegführung der Luft seitlich über Öffnungen 141, 141' , ... als diskrete Auslässe erfolgt. Die Brennstoffzelle 100 ist unten von einem Deckel 150 abgeschlossen, der als Grundplatte auch das ge- schlossene Komplementärteil 140 abdeckt.FIG. 8 shows that a complementary part 40 also rests on the wave structure in the input area of the fuel cell 100. It is advantageous in FIG. 8 that supply air is supplied from below and that the air is carried away laterally via openings 141, 141 ',... As discrete outlets. The fuel cell 100 is closed at the bottom by a cover 150, which also covers the closed complementary part 140 as a base plate.
In der Figur 9 ist ein Brennstoffzellenbündel aus drei Delta- Brennstoffzellen 100, 100', 100'' mit einem Lufteinlass/ -auslass gemäß Figur 8 und einer Luftumlenkung gemäß Figur 7 dargestellt. Dabei sind die Brennstoffzellen phasengleich zu einem Stack gestapelt, das in einem Behälter ohne Gasführungsstrukturen von einem Brenngas durchströmbar ist. Ein solcher Stack bildet den Kern einer Brennstoffzellenanlage.FIG. 9 shows a fuel cell bundle consisting of three delta fuel cells 100, 100 ', 100' 'with an air inlet / outlet according to FIG. 8 and an air deflection according to FIG. 7. The fuel cells are stacked in phase to form a stack through which a fuel gas can flow in a container without gas routing structures. Such a stack forms the core of a fuel cell system.
Die einzelnen Delta-Brennstoffzellen 100, 100', 100" haben bei dem in Figur 9 dargestellten Ausführungsbeispiel jeweils neun Kanäle, so dass bei geeigneter Strömungsumlenkung entsprechend Figur 7 an beiden Rändern die gleichen Strömungsverhältnisse vorliegen.In the exemplary embodiment shown in FIG. 9, the individual delta fuel cells 100, 100 ′, 100 ″ each have nine channels, so that the flow conditions are the same at both edges with a suitable flow deflection according to FIG. 7.
Es wird deutlich, dass in der Anordnung gemäß Figur 9 die Luftströmung von unten nach oben („up") , im Endteil eine Um- lenkung und dann von oben nach unten („down") erfolgt, wobei am unteren Ende die Luft seitlich herausströmt .It is clear that in the arrangement according to FIG. 9 the air flow from bottom to top (“up”), in the end part a steering and then from top to bottom ("down"), with the air flowing out laterally at the lower end.
Prinzipiell kann die Anordnung des Brennstoffzellenbundels auch umgekehrt orientiert sein. Es ist auch eine horizontal ausgerichtete Anordnung möglich.In principle, the arrangement of the fuel cell bundle can also be oriented in reverse. A horizontally oriented arrangement is also possible.
Die Figur 10 zeigt den Querschnitt des Bündels 125 in der Ebene der seitlichen Luftauslässe. Erkennbar ist, dass in den einzelnen Delta-Brennstoffzellen 100, 100', 100" die Luftführungskanäle llli (i=l-m, k=l-n) jeder zweien Spalte der phasengleich gestapelten Brennstoffzellen 100, 100', 100" miteinander jeweils durch einen Querkanal 245 verbunden sind, der zu den äußeren Auslässen 141, 141', ... führt. Die Einlasse sind in dieser Darstellung singulär mit den einzelnen Lufteinleitungskanälen verbunden.FIG. 10 shows the cross section of bundle 125 in the plane of the side air outlets. It can be seen that in the individual delta fuel cells 100, 100 ', 100 ", the air ducts llli (i = lm, k = ln) of every two columns of the fuel cells 100, 100', 100" stacked in phase are each connected to one another by a transverse channel 245 leading to the outer outlets 141, 141 ', ... In this illustration, the inlets are singularly connected to the individual air inlet ducts.
In der Draufsicht auf die untere Abdeckung ergeben sich demzufolge gemäß Figur 10 einzelne Einlasse 241, die mit den of- fenen Luftführungskanälen llli±ι,k korrespondieren.According to FIG. 10, the top view of the lower cover accordingly results in individual inlets 241, which correspond to the open air duct channels llli ± ι, k.
Die End- bzw. Stapelteile der Figur 9 sind durch ein Glaslot miteinander gasdicht verbunden und bilden kompakte Anschlussblöcke. Diese für die BrennstoffZeilenfunktion inaktiven Be- reiche sind mit dem Elektrolyten der aktiven Brennstoffzellen bedeckt, was in Figur 10 durch die Schicht 215 angedeutet ist .The end or stack parts of FIG. 9 are connected to one another in a gas-tight manner by a glass solder and form compact connection blocks. These areas which are inactive for the fuel line function are covered with the electrolyte of the active fuel cells, which is indicated in FIG. 10 by the layer 215.
Entsprechend Figur 9 ist mit den Anschlussblöcken 230 und 240 insgesamt eine stapelbare Anordnung eines Brennstoffzellenbundels für eine Brennstoffzellenanlage geschaffen. Zwischen den Anschlussblöcken ist genügend Raum, um in bekannter Weise die einzelnen Delta—Brennstoffzellen mittels eines Filzes o- der Geflechtes aus Nickel (Ni) oder Ni-Cr-Legierung elektrisch zu verbinden.According to FIG. 9, the connection blocks 230 and 240 create a stackable arrangement of a fuel cell bundle for a fuel cell system. There is enough space between the connection blocks to electrically connect the individual delta fuel cells using a felt or braid made of nickel (Ni) or Ni-Cr alloy.
Beim Aufbau der Brennstoffzellenanlage gemäß den Figuren 9 bis 11 ist besonders vorteilhaft, dass an den Enden der Brennstoffzellen jeweils kompakte Tragteile gebildet sind. Diese Teile bestehen aus den inaktiven Bereichen der einzelnen Delta-Brennstoffzellen und den Komplementärteilen für die Wellenstruktur, wobei - wie bereits erwähnt - in diesem Be- reich die einzelnen Brennstoffzellen miteinander durch das Glaslot verbunden sind und der kompakte Verbund als Anschlussblock jeweils mit dem Elektrolytfilm umschlossen ist.When constructing the fuel cell system according to FIGS. 9 to 11, it is particularly advantageous that at the ends of the Fuel cells are each formed compact support parts. These parts consist of the inactive areas of the individual delta fuel cells and the complementary parts for the shaft structure, whereby - as already mentioned - in this area the individual fuel cells are connected to each other by the glass solder and the compact assembly as a connection block each enclosed with the electrolyte film is.
Die vorstehend beschriebenen Anordnungen gelten für alle be- kannten Varianten von Tragstrukturen, und zwar für kathodengestützte, anodengestützte oder neutrale Strukturen. Neben der beschriebenen Wellen- bzw. Dreieckgeometrie (Delta) der Brennstoffzellen gelten die beschriebenen Merkmale auch für andere Geometrien, wie sie beschrieben sind. Wesentlich ist die Vergrößerung der elektrochemisch wirksamen Oberfläche und die fallweise Umlenkung des Luftstromes in den Luftführungskanälen durch geeignete Mittel. Diese Mittel bewirken eine Richtungsumkehr am Zellende, insbesondere um 180°, Auslass, insbesondere um 90°. The arrangements described above apply to all known variants of support structures, specifically for cathode-based, anode-based or neutral structures. In addition to the described wave or triangle geometry (delta) of the fuel cells, the features described also apply to other geometries as described. What is essential is the enlargement of the electrochemically active surface and the occasional deflection of the air flow in the air duct by suitable means. These agents cause a reversal of direction at the end of the cell, in particular by 180 °, outlet, in particular by 90 °.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004026714A DE102004026714A1 (en) | 2004-05-28 | 2004-05-28 | High temperature solid electrolyte fuel cell especially in tubular or planar form has geometrically enlarged support surface to increase electrochemical activity |
DE102005011669A DE102005011669A1 (en) | 2004-05-28 | 2005-03-14 | High-temperature solid electrolyte fuel cell and thus constructed fuel cell system |
PCT/EP2005/052330 WO2005117192A1 (en) | 2004-05-28 | 2005-05-20 | High temperature solid electrolyte fuel cell and fuel cell installation built with said fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1751817A1 true EP1751817A1 (en) | 2007-02-14 |
Family
ID=35004158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05747895A Withdrawn EP1751817A1 (en) | 2004-05-28 | 2005-05-20 | High temperature solid electrolyte fuel cell and fuel cell installation built with said fuel cell |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080003478A1 (en) |
EP (1) | EP1751817A1 (en) |
JP (1) | JP2008501217A (en) |
CA (1) | CA2568453A1 (en) |
DE (1) | DE102005011669A1 (en) |
WO (1) | WO2005117192A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070160886A1 (en) * | 2006-01-06 | 2007-07-12 | Siemens Power Generation, Inc. | Seamless solid oxide fuel cell |
WO2008031518A1 (en) * | 2006-09-14 | 2008-03-20 | Siemens Aktiengesellschaft | Sealant for high-temperature fuel cells and method for the production thereof |
US20110244354A1 (en) | 2007-09-28 | 2011-10-06 | Ines Becker | Fuel Cell System and Method for Production Thereof |
JP2010541146A (en) * | 2007-09-28 | 2010-12-24 | シーメンス エナジー インコーポレイテッド | Auxiliary means for electrically contacting a high-temperature fuel cell and method for manufacturing the same |
DE102007050617A1 (en) * | 2007-10-23 | 2009-04-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Fuel cell assembly with arranged in shingled fuel cells and uses |
DE102007061650B4 (en) | 2007-12-20 | 2011-05-05 | Sebastian Hahn | Tubular fuel cell and method of operating a tubular fuel cell |
US8097384B2 (en) * | 2008-07-08 | 2012-01-17 | Siemens Energy, Inc. | Solid oxide fuel cell with transitioned cross-section for improved anode gas management at the open end |
US8163353B2 (en) * | 2008-07-08 | 2012-04-24 | Siemens Energy, Inc. | Fabrication of copper-based anodes via atmosphoric plasma spraying techniques |
DE102008049694A1 (en) * | 2008-09-30 | 2010-04-01 | Siemens Aktiengesellschaft | Tubular high-temperature fuel cell, thus constructed fuel cell system and method for their preparation |
DE102008049564A1 (en) * | 2008-09-30 | 2010-04-01 | Siemens Aktiengesellschaft | Method for producing a tubular solid electrolyte fuel cell (SOFC) and associated tubular fuel cell |
US8173322B2 (en) | 2009-06-24 | 2012-05-08 | Siemens Energy, Inc. | Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections |
US20100325878A1 (en) * | 2009-06-24 | 2010-12-30 | Gong Zhang | Bi Containing Solid Oxide Fuel Cell System With Improved Performance and Reduced Manufacturing Costs |
US20110033769A1 (en) * | 2009-08-10 | 2011-02-10 | Kevin Huang | Electrical Storage Device Including Oxide-ion Battery Cell Bank and Module Configurations |
US8460838B2 (en) * | 2009-08-19 | 2013-06-11 | Siemens Energy, Inc. | Generator module architecture for a large solid oxide fuel cell power plant |
US8163433B2 (en) * | 2009-08-19 | 2012-04-24 | Siemens Energy, Inc. | Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control |
ES2363294B1 (en) * | 2009-10-09 | 2012-06-04 | Ikerlan,S. Coop | SOLID OXIDE FUEL BATTERY |
JP2011000586A (en) * | 2010-07-28 | 2011-01-06 | Casio Computer Co Ltd | Reactor |
US20120129058A1 (en) | 2010-11-24 | 2012-05-24 | Litzinger Kevin P | Electrical Energy Storage Device |
US9054366B2 (en) | 2010-11-24 | 2015-06-09 | Siemens Aktiengesellschaft | Electrical energy storage device |
KR101169549B1 (en) * | 2010-12-14 | 2012-07-27 | 주식회사케이세라셀 | Tube-type unit cell for solid oxide fuel cell and stack using unit cells and method for manufacturing unit cell |
WO2013093607A2 (en) * | 2011-12-22 | 2013-06-27 | Lipilin Aleksandr S | Modified planar cell and stack of electrochemical devices based thereon, and method for producing the planar cell and the stack, and a mould for producing the planar cell |
KR101348967B1 (en) * | 2012-04-06 | 2014-01-16 | 한국에너지기술연구원 | Unit cell of flat-tubular solid oxide fuel cell or solid oxide electrolyzer cell and flat-tubular solid oxide fuel cell and flat-tubular solid oxide electrolyzer using the same |
DE102012211325A1 (en) * | 2012-06-29 | 2014-01-02 | Siemens Aktiengesellschaft | Electric energy storage |
DE102012211322A1 (en) * | 2012-06-29 | 2014-01-02 | Siemens Aktiengesellschaft | Electric energy storage |
KR101754374B1 (en) * | 2016-04-08 | 2017-07-06 | 동부대우전자 주식회사 | Ice maker for refrigerator |
DE102016009710B4 (en) * | 2016-08-10 | 2021-05-06 | Emz-Hanauer Gmbh & Co. Kgaa | Fridge or freezer with an ice maker |
WO2018042478A1 (en) * | 2016-08-29 | 2018-03-08 | FCO Power株式会社 | Solid oxide fuel cell and method for manufacturing same |
EP4379871A1 (en) | 2022-11-29 | 2024-06-05 | H2B2 Electrolysis Technologies, S.L. | A solid oxide cell stack made of single repeating units, each comprising a ceramic cell with a corrugated membrane and a flat metallic interconnect |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4476198A (en) * | 1983-10-12 | 1984-10-09 | The United States Of America As Represented By The United States Department Of Energy | Solid oxide fuel cell having monolithic core |
US4751152A (en) * | 1987-04-06 | 1988-06-14 | Westinghouse Electric Corp. | High bulk self-supporting electrode with integral gas feed conduit for solid oxide fuel cells |
US4874678A (en) | 1987-12-10 | 1989-10-17 | Westinghouse Electric Corp. | Elongated solid electrolyte cell configurations and flexible connections therefor |
JPH01251562A (en) * | 1988-03-31 | 1989-10-06 | Agency Of Ind Science & Technol | Flat plate type solid electrolyte fuel cell |
JPH01315959A (en) * | 1988-06-14 | 1989-12-20 | Nkk Corp | Solid electrolyte fuel cell |
JPH02273465A (en) * | 1989-04-12 | 1990-11-07 | Nkk Corp | Manufacture of solid electrolyte fuel cell |
US5185219A (en) * | 1990-02-15 | 1993-02-09 | Ngk Insulators, Ltd. | Solid oxide fuel cells |
US6379485B1 (en) * | 1998-04-09 | 2002-04-30 | Siemens Westinghouse Power Corporation | Method of making closed end ceramic fuel cell tubes |
US6361893B1 (en) * | 1999-11-26 | 2002-03-26 | The United States Of America As Represented By The Department Of Energy | Planar fuel cell utilizing nail current collectors for increased active surface area |
EP1342279A2 (en) | 2000-10-30 | 2003-09-10 | Michael A. Cobb & Company | Improved solid oxide fuel cells |
WO2003005462A2 (en) * | 2001-01-05 | 2003-01-16 | Georgia Tech Research Corporation | Hybrid monolithic fuel cell |
EP1376727A3 (en) * | 2002-05-29 | 2006-05-10 | Sanyo Electric Co., Ltd. | Solid oxide fuel cell |
DE602004028912D1 (en) * | 2003-03-13 | 2010-10-14 | Tokyo Gas Co Ltd | SOLID-OXYGEN FUEL CELL MODULE |
US7285347B2 (en) * | 2003-11-03 | 2007-10-23 | Korea Institute Of Energy Research | Anode-supported flat-tubular solid oxide fuel cell stack and fabrication method of the same |
-
2005
- 2005-03-14 DE DE102005011669A patent/DE102005011669A1/en not_active Ceased
- 2005-05-20 JP JP2007513917A patent/JP2008501217A/en active Pending
- 2005-05-20 US US11/597,582 patent/US20080003478A1/en not_active Abandoned
- 2005-05-20 WO PCT/EP2005/052330 patent/WO2005117192A1/en active Application Filing
- 2005-05-20 CA CA002568453A patent/CA2568453A1/en not_active Abandoned
- 2005-05-20 EP EP05747895A patent/EP1751817A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2005117192A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20080003478A1 (en) | 2008-01-03 |
WO2005117192A1 (en) | 2005-12-08 |
JP2008501217A (en) | 2008-01-17 |
DE102005011669A1 (en) | 2006-09-21 |
CA2568453A1 (en) | 2005-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005117192A1 (en) | High temperature solid electrolyte fuel cell and fuel cell installation built with said fuel cell | |
DE10393075B4 (en) | Bipolar plate for fuel cells with a conductive foam as a coolant layer, process for their preparation and fuel cell | |
DE60224151T2 (en) | Fuel cell interconnector with integrated flow paths and method of making this | |
DE10392388B4 (en) | Fuel cell with a proton exchange membrane | |
DE69727337T3 (en) | Electrochemical cells and their manufacture, and electrochemical devices using them | |
DE69713337T2 (en) | SOLID FUEL CELL GENERATOR WITH INTERCHANGEABLE FUEL CELL STACK OF MODULAR DESIGN | |
DE68909720T2 (en) | Solid electrolyte fuel cell. | |
DE69211394T2 (en) | Solid electrolyte fuel cell | |
EP1830426B1 (en) | Bipolar plate, in particular for the fuel cell pack of a vehicle | |
EP1080511B1 (en) | Fuel cell module | |
DE69832046T2 (en) | ELECTROLYTIC SOLID CELL | |
EP2356714B1 (en) | Fuel cell without bipolar plates | |
DE3437500A1 (en) | SOLID OXIDE FUEL CELL WITH MONOLITHIC CROSSFLOW CORE AND COLLECTION LINE | |
DE19602315A1 (en) | Liquid-cooled fuel cell with distribution channels | |
DE102008013439A1 (en) | Bifurcation of flow channels in flow fields of bipolar plates | |
DE69221248T2 (en) | Cell units for solid oxide fuel cells and energy generator using these cell units | |
DE19539959C2 (en) | Fuel cell arrangement | |
DE112004002358B4 (en) | Solid oxide fuel cell | |
DE112006000324B4 (en) | Fuel cell assembly, fuel cell module and fuel cell device | |
DE69125872T2 (en) | Solid oxide fuel cell | |
DE112005001970T5 (en) | Embossed bridges and plates for reactant delivery for a fuel cell | |
DE69013785T2 (en) | Fuel cell generator. | |
EP1435671B1 (en) | Configuration of fluid channels for a fuel cell stack | |
DE4113049A1 (en) | Gas feed for high temp. fuel cell stack - uses S=shaped flow path between diametrically opposing corners of fuel cell plates | |
DE102022121234A1 (en) | Electrochemical reaction cell stack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20061120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20070820 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS ENERGY, INC. |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20121101 |