[go: up one dir, main page]

EP1725321A1 - Procede d'elimination du dioxyde de carbone dans les gaz de fumee - Google Patents

Procede d'elimination du dioxyde de carbone dans les gaz de fumee

Info

Publication number
EP1725321A1
EP1725321A1 EP05715884A EP05715884A EP1725321A1 EP 1725321 A1 EP1725321 A1 EP 1725321A1 EP 05715884 A EP05715884 A EP 05715884A EP 05715884 A EP05715884 A EP 05715884A EP 1725321 A1 EP1725321 A1 EP 1725321A1
Authority
EP
European Patent Office
Prior art keywords
absorbent
carbon dioxide
tertiary aliphatic
aliphatic amine
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05715884A
Other languages
German (de)
English (en)
Inventor
Norbert Asprion
Iven Clausen
Ute Lichtfers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1725321A1 publication Critical patent/EP1725321A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for removing carbon dioxide from gas streams with low carbon dioxide partial pressures, in particular for removing carbon dioxide from flue gases.
  • aqueous solutions of organic bases e.g. B. alkanolamines
  • organic bases e.g. B. alkanolamines
  • the absorbent can be regenerated by heating, relaxing to a lower pressure or stripping, the ionic products reacting back to acid gases and / or the acid gases being stripped off using steam. After the regeneration process, the absorbent can be reused.
  • Flue gases have very low carbon dioxide partial pressures, since they usually occur at a pressure close to atmospheric pressure and typically contain 3 to 13% by volume of carbon dioxide.
  • the absorbent In order to achieve an effective removal of carbon dioxide, the absorbent must have a high sour gas affinity, which usually means that the carbon dioxide absorption is highly exothermic. On the other hand, the high amount of enthalpy of absorption causes an increased energy expenditure in the regeneration of the absorbent.
  • EP-A 558 019 describes a process for removing carbon dioxide from combustion gases, in which the gas is mixed with an aqueous solution of a sterically hindered amine, such as 2-amino-2-methyl-1-propanol, 2- (methylamino) at atmospheric pressure.
  • a sterically hindered amine such as 2-amino-2-methyl-1-propanol, 2- (methylamino) at atmospheric pressure.
  • EP-A 558 019 also describes a process in which the gas at atmospheric pressure is mixed with an aqueous solution of an amine such as 2-amino-2-methyl-1, 3-propanediol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1, 3-propanediol, t-butyldiethanolamine and 2-amino-2-hydroxymethyl-1, 3-propanediol, and an activator such as piperazine, piperidine, morpholine, glycine, 2-methylaminoethanol, 2- Piperidinethanol and 2-ethylaminoethanol, is treated.
  • an amine such as 2-amino-2-methyl-1, 3-propanediol, 2-amino-2-methyl-1-propanol, 2-amino-2-ethyl-1, 3-propanediol, t-butyldiethanolamine and 2-amino-2-hydroxymethyl-1, 3-propanedio
  • EP-A 879 631 discloses a process for removing carbon dioxide from combustion gases, in which the gas is treated with an aqueous solution of a secondary and a tertiary amine at atmospheric pressure.
  • EP-A 647 462 describes a process for removing carbon dioxide from combustion gases, in which the gas at atmospheric pressure is mixed with an aqueous solution of a tertiary alkanolamine and an activator, such as diethylene triamine, triethylene tetramine, tetraethylene pentamine; 2,2-dimethyl-1,3-diaminopropane, hexamethylenediamine, 1,4-diaminobutane, 3,3-iminotrispropylamine, tris (2-aminoethyl) amine, N- (2-aminoethyl) piperazine, 2- (aminoethyl) ethanol, 2- (methylamino) ethanol, 2- (n-butylamino) ethanol, is treated.
  • a tertiary alkanolamine and an activator such as diethylene triamine, triethylene tetramine, tetraethylene pentamine; 2,2-dimethyl-1,3-dia
  • the object is achieved by a method for removing carbon dioxide from a gas stream in which the partial pressure of the carbon dioxide in the gas stream is less than 200 mbar, usually 20 to 150 mbar, the gas stream being brought into contact with a liquid absorbent, which is an aqueous solution
  • R 1 is d-Ce alkyl, preferably C 1 -C 2 alkyl
  • R 2 is C -C 6 alkylene, preferably C 2 -C 3 alkylene.
  • component (A) Mixtures of various tertiary aliphatic airlines can also be used as component (A).
  • Suitable tertiary aliphatic amines are, for. B. triethanolamine (TEA), diethylethanolamine (DEEA) and methyldiethanolamine (MDEA).
  • the tertiary aliphatic amine preferably has a pK a value (measured at 25 ° C.) of 9 to 11, in particular 9.3 to 10.5. In the case of polybasic amines, at least one pK a value is in the range given.
  • the tertiary aliphatic amine is preferably characterized by an amount of the enthalpy of reaction ⁇ R H of the protonation reaction
  • reaction enthalpy of reaction ⁇ R H of the protonation reaction for methyldiethanolamine is approximately - 35 kJ / mol.
  • the reaction enthalpy ⁇ R H can be estimated from the pK values at different temperatures using the following equation:
  • tertiary aliphatic amines with a relatively high amount of the reaction enthalpy ⁇ R H are particularly suitable for the process according to the invention. This is probably due to the fact that the temperature dependence of the equilibrium constants of the protonation reaction is proportional to the reaction enthalpy ⁇ R H. In the case of amines with a high enthalpy of reaction ⁇ R H, the temperature dependence of the position of the protonation equilibrium is more pronounced. Since the regeneration of the absorbent takes place at a higher temperature than the absorption step, it is possible to provide absorbents which allow effective removal of carbon dioxide in the absorption step even at low carbon dioxide partial pressures, but which can be regenerated with relatively little energy input.
  • the tertiary aliphatic amine has the general formula NR a R b R, in which one or two of the radicals R a , R ° and R c , preferably a radical R a , R b or R c , for a C 4 - C 8 alkyl group with ⁇ -branching, a C 2 -C 6 hydroxyalkyl group, -C-C e -alkoxy-C 2 -C 6 -alkyl group, di (C ⁇ -C 6 -alkyl) amino-C 2 -C 6 - alkyl group or di (-CC 6 -alkyl) amino-C 2 -C 6 -alkyloxy-C 2 -C 6 -alkyl group and the remaining radicals R a , R b and R c are unsubstituted C Ce alkyl groups, preferably C 2 -C 6 alkyl groups.
  • the C 4 -C 8 alkyl group with ⁇ -branching is preferably a 2-ethylhexyl or cyclohexylmethyl group.
  • the C 2 -C 6 hydroxyalkyl group is preferably a 2-hydroxyethyl or 3-hydroxypropyl group.
  • the CrC ⁇ -alkoxy-Ca-Ce-alkyl group is preferably a 2-methoxyethyl or 3-methoxypropyl group.
  • the di (-C 6 -alkyl) amino-C 2 -C 6 -alkyl group is preferably a 2-N, N-dimethylaminoethyl or 2- N, N-diethylaminoethyl group.
  • the di (C 1 -C 6 alkyl) amino-C 2 -C 6 alkyloxy-C 2 -C 8 alkyl group is preferably an N, N-dimethylaminoethyloxyethyl or N, N-diethylaminoethyloxyethyl group.
  • Particularly preferred tertiary aliphatic amines are selected from cyclohexylmethyldimethylamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, 2-diisopropylaminoethanol, 3-dimethylaminopropanol, 3-diethylaminopropanol, 3- Methoxypropyldimethylamine, NNN'.N'-tetramethylethylenediamine, NN-diethyl-N'.N'-dimethylethylenediamine, NNN'.N'-tetraethylethylenediamine, N, N, N ', N'-tetramethyl-1,3-propanediamine, NNN'.N'-Tetraethyl-I .S-propanediamine and bis (2-dimethylaminoethyl) ether.
  • a preferred activator is 3-methylaminopropylamine.
  • the concentration of the tertiary aliphatic amine is usually 20 to 60% by weight, preferably 25 to 50% by weight, and the concentration of the activator 1 to 10% by weight, preferably 2 to 8% by weight, based on the Total weight of the absorbent.
  • the aliphatic amines are used in the form of their aqueous solutions.
  • the solutions may additionally contain physical solvents, e.g. B. are selected from cyclotetramethylene sulfone (sulfolane) and its derivatives, aliphatic acid amides (acetylmorpholine, N-formylmorpholine), N-alkylated pyrrolidones and corresponding piperidones, such as N-methylpyrrolidone (NMP), propylene carbonate, methanol, dialkyl ethers of polyethylene glycols and mixtures from that.
  • physical solvents e.g. B. are selected from cyclotetramethylene sulfone (sulfolane) and its derivatives, aliphatic acid amides (acetylmorpholine, N-formylmorpholine), N-alkylated pyrrolidones and corresponding piperidones, such as N-methylpyrrolidone (
  • the absorbent according to the invention can contain further functional constituents, such as stabilizers, in particular antioxidants, cf. z. B. DE 102004011427.
  • acid gases such as e.g. B. HS, SO 2 , CS 2 , HCN, COS, NO 2 , HCl, disulfides or mercaptans, removed from the gas stream.
  • the gas stream is generally a gas stream that is formed in the following way:
  • the oxidation can occur under the appearance of a flame, ie as conventional combustion, or as an oxidation without appearance of a flame, e.g. B. in the form of a catalytic oxidation or partial oxidation.
  • Organic substances that are subjected to combustion are usually fossil fuels such as coal, natural gas, petroleum, petrol, diesel, raffinates or kerosene, biodiesel or waste materials containing organic substances.
  • Oxidation are e.g. As methanol or methane, which can be converted to formic acid or formaldehyde.
  • Waste materials that are subjected to oxidation, composting or storage are typically household waste, plastic waste or packaging waste.
  • the organic substances are mostly burned with air in conventional combustion plants.
  • the composting and storage of waste materials containing organic substances is generally carried out in landfills.
  • the exhaust gas or the exhaust air of such systems can advantageously be treated by the method according to the invention.
  • bacteria decomposition As organic substances for bacterial decomposition, manure, straw, liquid manure, sewage sludge, fermentation residues and the like are usually used. Bacterial decomposition takes place e.g. in common biogas plants. The exhaust air from such systems can advantageously be treated by the method according to the invention.
  • the process is also suitable for the treatment of exhaust gases from fuel cells or chemical synthesis plants that use (partial) oxidation of organic substances.
  • the method according to the invention can of course also be applied to unburned fossil gases, such as natural gas, e.g. B. so-called coal seam gases, d. H. gases produced in the production of coal; that are collected and compressed.
  • unburned fossil gases such as natural gas, e.g. B. so-called coal seam gases, d. H. gases produced in the production of coal; that are collected and compressed.
  • these gas streams contain less than 50 mg / m 3 sulfur dioxide under normal conditions.
  • the output gases can either have the pressure that corresponds approximately to the pressure of the ambient air, that is, for. B. normal pressure or a pressure that deviates from normal pressure by up to 1 bar.
  • Devices suitable for carrying out the process according to the invention comprise at least one washing column, eg. B. packing, packing and tray columns, and / or other absorbers such as membrane contactors, radial flow washers, jet washers, Venturi washers and rotary spray washers.
  • the treatment of the gas stream with the absorbent is preferably carried out in a washing column in countercurrent.
  • the gas stream is generally fed into the lower region and the absorbent into the upper region of the column.
  • Wash columns made of plastic, such as polyolefins or polytetrafluoroethylene, or wash columns whose inner surface is completely or partially lined with plastic or rubber are also suitable for carrying out the process according to the invention.
  • Diaphragm contactors with a plastic housing are also suitable.
  • the temperature of the absorbent in the absorption step is generally about 30 to 70 ° C, when using a column, for example, 30 to 60 ° C at the top of the column and 40 to 70 ° C at the bottom of the column. It is poor in acidic gas components, i. H. a product gas depleted of these components (Beigas) and an absorbent loaded with acidic gas components.
  • acidic gas components i. H. a product gas depleted of these components (Beigas) and an absorbent loaded with acidic gas components.
  • the carbon dioxide can be released from the absorbent loaded with the acidic gas constituents in a regeneration step, a regenerated absorbent being obtained.
  • the regeneration step the loading of the absorbent is reduced and the regenerated absorbent obtained is preferably subsequently returned to the absorption step.
  • the loaded absorbent is regenerated
  • the loaded absorbent is heated for regeneration and the released carbon dioxide is z. B. separated in a desorption column. Before the regenerated absorbent is reintroduced into the absorber, it is cooled to a suitable absorption temperature. In order to utilize the energy contained in the hot regenerated absorbent, it is preferred to preheat the loaded absorbent from the absorber by heat exchange with the hot regenerated absorbent. As a result of the heat exchange, the loaded absorbent is brought to a higher temperature, so that less energy is required in the regeneration step. The heat exchange can also partially regenerate the loaded absorbent with the release of carbon dioxide.
  • the gas-liquid mixed-phase stream obtained is passed into a phase separation vessel from which the carbon dioxide is drawn off; the liquid phase is passed into the desorption column for the complete regeneration of the absorbent.
  • the carbon dioxide released in the desorption column is subsequently compressed and z. B. a pressure tank or sequestration.
  • it may be advantageous to regenerate the absorbent at a higher pressure e.g. B. 2 to 10 bar, preferably 2.5 to 5 bar.
  • the loaded absorbent is compressed to the regeneration pressure by means of a pump and introduced into the desorption column.
  • the carbon dioxide accumulates at a higher pressure level.
  • the pressure difference to the pressure level of the pressure tank is lower and under certain circumstances a compression level can be saved.
  • a higher pressure during regeneration requires a higher regeneration temperature. With a higher regeneration temperature, a lower residual loading of the absorbent can be achieved.
  • the regeneration temperature is usually only limited by the thermal stability of the absorbent.
  • the flue gas is preferably subjected to washing with an aqueous liquid, in particular with water, in order to cool and humidify (quench) the flue gas. Dusts or gaseous contaminants such as sulfur dioxide can also be removed during washing.
  • FIG. 1 is a schematic representation of a plant suitable for carrying out the method according to the invention.
  • a suitably pretreated, carbon dioxide-containing combustion gas in an absorber 3 is brought into contact with the regenerated absorbent, which is supplied via the absorbent line 5, in countercurrent via a feed line 1.
  • the absorbent removes carbon dioxide from the combustion gas by absorption; a clean gas low in carbon dioxide is obtained via an exhaust gas line 7.
  • the absorber 3 can have backwash trays or backwash sections, which are preferably equipped with packings, above the absorption medium inlet (not shown), where absorption medium carried with the aid of water or condensate is separated from the CO 2 -enriched gas.
  • the liquid on the backwash tray is suitably recycled via an external cooler.
  • the absorption medium loaded with carbon dioxide is fed to a desorption column 13 via an absorption medium line 9 and a throttle valve 11.
  • the loaded absorbent is (not shown ) Heater heated and regenerated.
  • the carbon dioxide released thereby leaves the desorption column 13 via the exhaust gas line 15.
  • the desorption column 13 absorber can have backwash trays or backwash sections, which are preferably equipped with packings, above the absorption medium inlet (not shown), where absorption medium carried with the aid of water or condensate the released CO 2 is separated.
  • a heat exchanger with head distributor or condenser can be provided in line 15.
  • the regenerated absorbent is then returned to the absorption column 3 by means of a pump 17 via a heat exchanger 19.
  • a partial stream of the absorption medium withdrawn from the desorption column 13 can be fed to an evaporator, in which difficultly volatile by-products and decomposition products as Residue accumulate and the pure absorbent is drawn off as vapors.
  • the condensed vapors are returned to the absorption medium circuit.
  • a base such as potassium hydroxide can be added to the partial stream, which, for. B. with sulfate or chloride ions forms volatile salts which are withdrawn from the system together with the evaporator residue.
  • DMEA N, N-dimethylethanolamine
  • DEEA N, N-diethylethanolamine
  • TMPDA NNN'.N'-tetramethylpropanediamine
  • MDEA N-methyldiethanolamine
  • MAPA 3-methylaminopropylamine Niax: 1 -dimethylamino-2- dimethylaminoethoxyethane
  • the mass transfer rate was determined in a laminar blasting chamber with water vapor-saturated CO 2 at 1 bar and 50 ° C or 70 ° C, blasting chamber diameter 0.94 mm, beam length 1 to 8 cm, volume flow of the absorbent 1.8 ml / s and is determined as Gas volume in normal cubic meters per surface of the absorbent, pressure and time stated (Nm 3 / m / bar / h).
  • the results are summarized in Table 1 below.
  • the specified in the table CO 2 -Stoffübergangs beau is the CO 2 - based on a comparison absorbent mass transfer rate, but which contains the same tertiary amine in the same amount of N-methylethanolamine as an activator.
  • the amount of carbon dioxide dissolved in the liquid phase was calculated after correcting the gas space for the gas space.
  • the equilibrium measurements for the CO 2 / MDEA / MAPA water system were carried out in the pressure range> 1 bar with a high-pressure equilibrium cell, in the pressure range ⁇ 1 bar the measurements were carried out using headspace chromatography.
  • the capacity of the absorbent was determined (i) from the loading (mol CO 2 per kg solution) at the intersection of the 40 ° equilibrium curve with the line of the constant feed gas-CO 2 partial pressure of 13 kPa (loaded solution at the absorber sump in equilibrium) ; and (ii) determined from the intersection of the 120 ° equilibrium curve with the line of the constant CO 2 partial pressure of 5 kPa (regenerated solution at the desorber sump in equilibrium).
  • the difference between the two loads is the circulating capacity of the respective solvent.
  • a large capacity means that less solvent has to be circulated and therefore the equipment such as pumps, heat exchangers but also the pipes can be dimensioned smaller.
  • the circulation quantity also influences the energy required for regeneration.
  • Another measure of the application properties of an absorbent is the slope of the working line in the McCabe-Thiele diagram (or pX diagram) of the desorber.
  • the working line is usually very close to the equilibrium line, so that the slope of the equilibrium curve can be roughly equated with the slope of the working line. If the liquid load is constant, a smaller amount of stripping steam is required to regenerate an absorbent with a large slope of the equilibrium curve. The energy required to generate the stripping steam contributes significantly to the overall energy requirement of the CO 2 absorption process.
  • absorbents with a tertiary amine whose reaction enthalpy ⁇ R H of the protonation reaction is greater than that of methyldiethanolamin, have a higher capacity and require a lower amount of steam for regeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention concerne un procédé d'élimination du dioxyde de carbone dans un courant gazeux, procédé selon lequel la pression partielle du dioxyde de carbone dans le courant gazeux est inférieure à 200 mbar, consistant à amener le courant gazeux en contact avec un agent d'absorption liquide comprenant une solution (A) d'une amine aliphatique tertiaire, et (B) un activateur de formule générale R1-NH-R2-NH2 dans laquelle R1 désigne un alkyle en C1-C6 et R2 désigne un alkylène en C2-C6. Le procédé convient particulièrement pour le traitement des gaz de fumée. L'invention concerne en outre un agent d'absorption.
EP05715884A 2004-03-09 2005-03-09 Procede d'elimination du dioxyde de carbone dans les gaz de fumee Withdrawn EP1725321A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004011428A DE102004011428A1 (de) 2004-03-09 2004-03-09 Verfahren zum Entfernen von Kohlendioxid aus Rauchgasen
PCT/EP2005/002499 WO2005087350A1 (fr) 2004-03-09 2005-03-09 Procede d'elimination du dioxyde de carbone dans les gaz de fumee

Publications (1)

Publication Number Publication Date
EP1725321A1 true EP1725321A1 (fr) 2006-11-29

Family

ID=34895065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05715884A Withdrawn EP1725321A1 (fr) 2004-03-09 2005-03-09 Procede d'elimination du dioxyde de carbone dans les gaz de fumee

Country Status (6)

Country Link
US (1) US20080098892A1 (fr)
EP (1) EP1725321A1 (fr)
JP (1) JP2007527791A (fr)
CA (1) CA2557911A1 (fr)
DE (1) DE102004011428A1 (fr)
WO (1) WO2005087350A1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011429A1 (de) * 2004-03-09 2005-09-29 Basf Ag Verfahren zum Entfernen von Kohlendioxid aus Gasströmen mit niedrigen Kohlendioxid-Partialdrücken
WO2006107026A1 (fr) * 2005-04-04 2006-10-12 Mitsubishi Heavy Industries, Ltd. Solution absorbante, procede et appareil pour retirer du co2 ou du h2s ou les deux
DE102005050385A1 (de) * 2005-10-20 2007-04-26 Basf Ag Absorptionsmittel und Verfahren zum Entfernen von Kohlendioxid aus Gasströmen
PE20071048A1 (es) 2005-12-12 2007-10-18 Basf Ag Proceso para la recuperacion de dioxido de carbono
US7846407B2 (en) * 2006-04-07 2010-12-07 Liang Hu Self-concentrating absorbent for acid gas separation
ES2601386T3 (es) 2006-05-18 2017-02-15 Basf Se Agentes de absorción de dióxido de carbono con demanda de energía de regeneración reducida
ES2368091T3 (es) * 2006-06-13 2011-11-14 Basf Se Eliminación de dióxido de carbono a partir de gases de combustión.
FR2909011B1 (fr) * 2006-11-27 2009-02-20 Inst Francais Du Petrole Solution absorbante utilisee dans un procede de capture de dioxyde de carbone contenu dans un effluent gazeux.
JP5512281B2 (ja) 2007-01-17 2014-06-04 ユニオン、エンジニアリング、アクティーゼルスカブ 高純度二酸化炭素の回収方法
NO332158B1 (no) 2007-03-05 2012-07-09 Aker Clean Carbon As Fremgangsmåte for fjerning av CO2 fra en eksosgass
NO20071983L (no) 2007-04-18 2008-10-20 Aker Clean Carbon As Fremgangsmate og anlegg for CO2-innfanging
JP5215595B2 (ja) 2007-06-18 2013-06-19 三菱重工業株式会社 吸収液、吸収液を用いたco2又はh2s除去装置及び方法
AU2008322922B2 (en) 2007-11-15 2013-05-30 Basf Se Method for removing carbon dioxide from fluid flows, in particular combustion exhaust gases
DE102008007087A1 (de) 2008-01-31 2009-08-06 Universität Dortmund Verfahren zum Abtrennen von CO2 aus Gasgemischen mit einer extraktiven Regenerationsstufe
JP5575122B2 (ja) 2008-06-23 2014-08-20 ビーエーエスエフ ソシエタス・ヨーロピア 吸収剤及び流体流、特に排ガスからの酸性ガスの除去のための方法
WO2009156273A1 (fr) 2008-06-23 2009-12-30 Basf Se Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
PL2328672T3 (pl) 2008-07-29 2014-10-31 Union Eng A/S Sposób odzyskiwania dwutlenku węgla o wysokiej czystości
FR2938453B1 (fr) * 2008-11-20 2010-12-10 Inst Francais Du Petrole Methode pour reduire la degradation d'une solution absorbante mise en oeuvre dans une installation de desacidification d'un gaz
CA2764255A1 (fr) * 2009-06-22 2010-12-29 Basf Se Elimination de gaz acides au moyen d'un absorbant contenant un auxiliaire de stripage
AU2010281323B2 (en) 2009-08-04 2015-09-03 Saipem S.P.A. Process for co2 capture using carbonates and biocatalysts
CA2769771C (fr) * 2009-08-04 2014-07-22 Co2 Solution Inc. Formulation et procede de capture de co2 utilisant des acides amines et des biocatalyseurs
DE102010004073A1 (de) * 2010-01-05 2011-07-07 Uhde GmbH, 44141 CO2-Entfernung aus Gasen mit niedrigen CO2-Partialdrücken mittels 1,2 Diaminopropan
DE102010004070A1 (de) * 2010-01-05 2011-07-07 Uhde GmbH, 44141 CO2-Entfernung aus Gasen mittels wässriger Amin-Lösung unter Zusatz eines sterisch gehinderten Amins
US8795618B2 (en) 2010-03-26 2014-08-05 Babcock & Wilcox Power Generation Group, Inc. Chemical compounds for the removal of carbon dioxide from gases
DE102010017143A1 (de) 2010-05-28 2011-12-01 Fachhochschule Münster CO2-Absorptionsverfahren mittels wäßriger Amidinlösungen
DE102010017139A1 (de) 2010-05-28 2011-12-01 Fachhochschule Münster CO2-Absorptionsverfahren mittels Aminlösungen
WO2012069063A1 (fr) 2010-11-26 2012-05-31 Union Engineering A/S Production en continu de dioxyde de carbone de haute pureté
EP2481466A1 (fr) * 2011-01-31 2012-08-01 Siemens Aktiengesellschaft Dispositif et procédé de nettoyage d'un produit d'une installation de processus contaminé par de la nitrosamine
EP2689111B1 (fr) 2011-03-22 2018-07-18 Climeon AB Procédé permettant de convertir une chaleur à basse température en électricité et refroidissement et son système
WO2012163847A1 (fr) 2011-05-27 2012-12-06 Evonik Industries Ag Verfahren und vorrichtung zur abtrennung von kohlendioxid aus gasströmen procédé et dispositif destinés à séparer du dioxyde de carbone contenu dans des flux de gaz
NO20110914A1 (no) * 2011-06-27 2012-12-28 Advanced Carbon Capture As Tofase amin
FR2981860B1 (fr) * 2011-10-28 2013-11-08 IFP Energies Nouvelles Solution absorbante a base de monoalcanolamines tertiaires appartenant a la famille des 3-alcoxypropylamines et procede d'elimination de composes acides contenus dans un effluent gazeux
DE102011119327B4 (de) 2011-11-25 2013-11-07 Hermann Büttner Verfahren zum reversiblen Abtrennen von CO2, Verwendung des Verfahrens und Verwendung von 3-(Aminomethyl)-3,5,5-trimethylcyclohexanamin (IDA) zur reversiblen CO2-Absorption
DE102014004304A1 (de) * 2014-03-26 2015-10-01 Hermann Büttner Verfahren zur reversiblen Entschwefelung von Gasen und Dämpfen mittels funktionaler Aminlösungen
GB201517272D0 (en) * 2015-09-30 2015-11-11 Norwegian Univ Sci & Tech Ntnu Membrane contactor
JP6658996B1 (ja) * 2018-06-14 2020-03-04 Jfeエンジニアリング株式会社 ガス吸収精製装置
JP7621221B2 (ja) 2021-08-26 2025-01-24 三菱重工業株式会社 複合アミン吸収液、除去装置及び除去方法
AU2022442104B2 (en) 2022-04-28 2024-02-22 Mitsubishi Heavy Industries, Ltd. Composite amine absorbent, removal unit, and removal method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405811A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Severely sterically hindered tertiary amino compounds
US4814104A (en) * 1987-02-05 1989-03-21 Uop Tertiary alkanolamine absorbent containing an ethyleneamine promoter and its method of use
IT1244686B (it) * 1991-01-24 1994-08-08 Snam Progetti Processo per la rimozione spinta di gas acidi da miscele gassose
US5373048A (en) * 1993-07-30 1994-12-13 Eastman Chemical Company Aqueous coating composition
DE10036173A1 (de) * 2000-07-25 2002-02-07 Basf Ag Verfahren zum Entsäuern eines Fluidstroms und Waschflüssigkeit zur Verwendung in einem derartigen Verfahren
NL1015827C2 (nl) * 2000-07-27 2002-02-01 Continental Engineering B V Winning van zuiver CO2 uit rookgassen.
DE102004011427A1 (de) * 2004-03-09 2005-09-29 Basf Ag Absorptionsmittel mit verbesserter Oxidationsbeständigkeit und Verfahren zum Entsäuern von Fluidströmen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005087350A1 *

Also Published As

Publication number Publication date
JP2007527791A (ja) 2007-10-04
WO2005087350A1 (fr) 2005-09-22
US20080098892A1 (en) 2008-05-01
CA2557911A1 (fr) 2005-09-22
DE102004011428A1 (de) 2005-09-29

Similar Documents

Publication Publication Date Title
EP1725320B1 (fr) Procede d'elimination du dioxyde de carbone dans des courants gazeux a faibles pressions partielles de dioxyde de carbone
EP1725321A1 (fr) Procede d'elimination du dioxyde de carbone dans les gaz de fumee
EP2026896B1 (fr) Agent d'absorption de dioxyde de carbone ayant des besoins en énergie de régénération limités
EP1940534B1 (fr) Agent d'absorption et procédé d'élimination de dioxyde de carbone présent dans des flux gazeux
EP2391435B1 (fr) Absorbant comprenant des amines cycliques pour l'elimination de gaz acide
EP2300127B1 (fr) Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
EP2032234B1 (fr) Élimination de dioxyde de carbone dans des fumées
EP2059327B1 (fr) Élimination du dioxyde de carbone dans les gaz sortants de combustion
EP2892633B1 (fr) Procédé pour séparer des gaz acides d'un courant de fluide contenant de l'eau
WO2010149599A1 (fr) Élimination de gaz acides au moyen d'un absorbant contenant un auxiliaire de stripage
EP3186222B1 (fr) Diamine avec un groupe tert-alkylamine et amino primaire pour l'utilisation dans le lavage de gaz
WO2009156273A1 (fr) Agent absorbant et procédé pour éliminer des gaz acides contenus dans des flux de fluide, en particulier des gaz de fumée
WO2008145658A1 (fr) Agent d'absorption destiné à éliminer des gaz acides, contenant un acide aminocarboxylique basique
EP3185989B1 (fr) Élimination du sulfure d'hydrogène et du dioxyde de carbone d'un flux de fluide
EP3185990B1 (fr) Extraction du dioxyde de carbone d'un flux de fluide comprenant une tert-butylamine et un activateur
EP3356015A2 (fr) Procédé d'élimination sélective de sulfure d'hydrogène
EP2691163A1 (fr) Rétention d'amines lors de l'élimination de gaz acides au moyen d'agents d'absorption de type amine
DE102004042418B4 (de) Absorptionsflüssigkeit, deren Verwendung und Verfahren zum Reinigen von Gasen
EP3628393B1 (fr) Procédé de séparation des monoxyde de carbone et des gaz acides d'un flux de fluide contenant de monoxyde de carbone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061009

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20100608

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101001