[go: up one dir, main page]

EP1720799A2 - Method for producing nitric acid and plant suitable for carrying out said method - Google Patents

Method for producing nitric acid and plant suitable for carrying out said method

Info

Publication number
EP1720799A2
EP1720799A2 EP05707502A EP05707502A EP1720799A2 EP 1720799 A2 EP1720799 A2 EP 1720799A2 EP 05707502 A EP05707502 A EP 05707502A EP 05707502 A EP05707502 A EP 05707502A EP 1720799 A2 EP1720799 A2 EP 1720799A2
Authority
EP
European Patent Office
Prior art keywords
ammonia
plant
nitrogen
nitric acid
oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05707502A
Other languages
German (de)
French (fr)
Inventor
Bernd Mielke
Hartmut Hederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200410008745 external-priority patent/DE102004008745A1/en
Priority claimed from DE102004035775A external-priority patent/DE102004035775A1/en
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP1720799A2 publication Critical patent/EP1720799A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • C01B21/26Preparation by catalytic or non-catalytic oxidation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/025Preparation or purification of gas mixtures for ammonia synthesis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0488Processes integrated with preparations of other compounds, e.g. methanol, urea or with processes for power generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an improved process for the production of nitric acid and a system adapted therefor.
  • Nitric acid production is a major source of industrial nitrous oxide emissions. For reasons of environmental protection but also because of the process economy, there is therefore an urgent need for technical solutions to reduce the nitrous oxide emissions together with the NO x emission during nitric acid production.
  • DeNO x stage To remove NO x from the exhaust gas from nitric acid production, numerous process variants have been proposed (referred to here as DeNO x stage), such as chemical washing, adsorption processes or catalytic processes Reduction process. An overview is given in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim (1991).
  • SCR selective catalytic reduction
  • 150 ° C to 450 ° C can run and enables a NO x reduction of more than 90%. It is the most widely used variant of NO x reduction in nitric acid production, but, like the other variants, does not lead to a reduction in the N 2 O content.
  • Another task is to provide a suitable system for carrying out this process. It has now been found that this object can be achieved by interconnecting an ammonia system and a nitric acid system and returning the residual gas containing oxides of nitrogen from the nitric acid system to the ammonia system. This makes it easy to reduce or avoid
  • NO x 150-3000 ppm
  • N 2 0 500-2000 ppm
  • 0 2 1-3%
  • H 2 0 0.5-1%
  • N 2 rest.
  • the recycling of this residual gas with an N 2 content of over 95% thus forms a nitrogen source for the ammonia synthesis. So you get one with this simple measure
  • the present invention relates to a method for reducing the emission of oxides of nitrogen in nitric acid production, comprising the measures: i) generating ammonia by catalytically reacting nitrogen with hydrogen in an ammonia plant (100), ii) introducing the ammonia produced into a nitric acid plant ( 200), iii) combustion of the ammonia to form oxides of nitrogen in the nitric acid plant (200), iv) washing the oxides of the nitrogen-containing gas with water in at least one absorption tower arranged downstream for ammonia combustion to produce nitric acid, and v) recycling at least a part of the residual gas leaving the nitric acid plant (200) and containing oxides of nitrogen into the ammonia plant (100).
  • Nitric acid plants (200) can be plants known per se. Examples of ammonia plants are described in D. Lippmann, The Uhde Ammonia Technology - Main Features and Advantages, Fertilizer Focus, July / August 2003.
  • nitric acid plants can be found in DE-A-100 11 335, DE-A-102 07 627, DE-A-28 50 054 and DE-A-21 48 329.
  • Examples of the denitrification of residual gases from nitric acid production can be found in DE-A-101 12 396, DE-A-101 12 444 and DE-A-102 15 605.
  • Air and water can be used to generate nitrogen and hydrogen for ammonia synthesis.
  • generator gas and water gas are generated therefrom in a manner known per se. This is freed of admixtures of hydrogen sulfide, carbon monoxide and carbon dioxide in a manner known per se and the hydrogen-nitrogen mixture obtained is then catalytically converted to ammonia in a contact furnace.
  • the hydrogen required for ammonia synthesis can also come from other sources, such as natural gas or naphtha.
  • the hydrogen required for the ammonia synthesis is preferably obtained by catalytic dehydrogenation of hydrocarbons, in particular natural gas or methane, in the presence of water vapor.
  • This implementation takes place in a manner known per se in two or more reformers connected in series.
  • the ammonia generated in the ammonia plant (100) is used at least partially for the production of nitric acid.
  • a portion of the A ⁇ mmoniaks can be also branched off and supplied to other uses will n, such as a pure ammonia product (108) or for the production of urea (109).
  • part of the synthesis gas generated in the reformers (101, 102) can be branched off before the ammonia synthesis (103) and can be fed, for example, to a Fiscfier-Tropsch synthesis or a methanol synthesis.
  • the ammonia produced in the ammonia plant (100) or a part thereof is passed into a nitric acid plant (200) and burned there together with air in a manner known per se to form oxides of nitrogen.
  • the combustion air supplies the nitric acid plant (200) with a considerable proportion of nitrogen, which in the arrangement according to the invention, together with the oxides of nitrogen not converted into nitric acid, is returned to the ammonia plant (100) and can be used as a nitrogen source in the ammonia synthesis.
  • the ammonia plant (100) is supplied with air (1 OS) as a nitrogen source for the ammonia synthesis.
  • the residual gas containing oxides of nitrogen leaving the nitric acid plant (200) is partly or preferably completely returned to the ammonia plant (100). If the return is only partial, the rest is subjected to denitrification in a manner known per se and then discharged from the system into the atmosphere.
  • the residual gas from the nitric acid plant (200) mainly comes from the absorption tower or parts of the plant downstream thereof, but can also come from other parts of the nitric acid plant (200).
  • the residual gas containing oxides of nitrogen returned from the nitric acid plant (200) is usually compressed after the compression between the first and the second reformer (101, 102). or preferably initiated in the second reformer (102), for example in the
  • the residual gas returned from the nitric acid plant (200) and containing oxides of nitrogen is introduced after the compression after the secondary reformer (102) but before the reactor for the ammonia synthesis (103), preferably directly after the secondary reformer (102).
  • At least one with oxygen, with air or with is used in the production of hydrogen for the ammonia synthesis enriched air-operated autothermal reformer ("ATR") is used, and at least part of the residual gas, which is returned from the nitric acid plant (102) and contains oxides of nitrogen, is introduced into the ATR after compression, in particular into the oxygen-containing stream intended for the ATR.
  • ATR ammonia synthesis enriched air-operated autothermal reformer
  • the entire residual gas of the nitric acid plant (200) is preferably returned completely to the ammonia plant (100) and used together with additionally fed air or with oxygen-depleted air or with pure nitrogen as a nitrogen source in the ammonia synthesis.
  • the conversion of the residual gas, which also contains oxides of nitrogen, in the ammonia plant (100) does not require any further, special procedural measures.
  • the oxides of nitrogen are ultimately and safely converted into ammonia and water and thus serve, in addition to the predominantly molecular one Nitrogen as a nitrogen source for ammonia production.
  • the hydrogen in the ammonia plant (100) is generated by dehydrogenation of hydrocarbons in a combination of primary and secondary reformer (101, 102), and the residual gas containing oxides of nitrogen from the nitric acid plant (200) into the secondary reformer (102), preferably into the air inlet of the secondary reformer (102) and / or immediately after the exit of the secondary reformer (102).
  • the invention further relates to a plant for nitric acid production comprising the elements: A) ammonia plant (100) for producing ammonia by catalytic conversion of nitrogen with hydrogen, which is connected to B) a nitric acid plant (200), in which the ammonia produced by combustion by combustion Oxides of nitrogen are generated that C) downstream of the ammonia combustion has at least one absorption tower in which the gas containing oxides of the nitrogen is washed with water, whereby nitric acid is generated, and D) has at least one line (201) through which at least a part of the nitric acid plant (200 ) leaving residual oxides of nitrogen containing gas is returned to the ammonia system (100).
  • the plant according to the invention comprises an ammonia plant (100) which, in addition to the reactor for ammonia synthesis (103), has a combination of primary and secondary reformer (101, 102) in which the hydrogen required for the generation of ammonia is generated, and the plant has at least one line (201) through which the residual gas containing the oxides of nitrogen from the nitric acid plant (200) into the secondary reformer (102) and / or between the primary reformer (101) and the secondary reformer (102) and / or after the secondary reformer (102) but is introduced before the reactor for ammonia synthesis (103).
  • the line for the residual gas containing oxides of nitrogen very particularly preferably opens into the air inlet of the secondary reformer (102).
  • the plant according to the invention comprises an ammonia plant (100) which has a combination of primary and secondary reformer (101, 102) in which the hydrogen required for the generation of ammonia is generated, and the plant has at least one line (201 ) through which the residual gas containing the oxides of nitrogen is returned from the nitric acid plant (200) directly to the ammonia plant (100) after the secondary reformer (102).
  • the plant according to the invention comprises at least one autothermal reformer (“ATR”) operated with oxygen, with air or with enriched air, in which generates hydrogen for the ammonia synthesis and at least one line (201) through which at least a portion of the residual gas containing oxides of nitrogen and which is returned from the nitric acid plant (200) is returned to the ATR, in particular to the oxygen-containing stream intended for the ATR.
  • ATR autothermal reformer
  • FIGS 1a, 1b, 2 and 3 illustrate the invention. A limitation to the embodiments shown in these figures is not intended.
  • FIGS 1a and 1b show schematic diagrams of the system and the method according to the invention.
  • FIGS. 2 and 3 explain selected embodiments of the system and the method according to the invention.
  • FIG. 1a shows the combination of an ammonia plant (100) with a nitric acid plant (200).
  • the ammonia system (100) consists of an ammonia synthesis (103) for converting hydrogen and nitrogen into ammonia, and the two upstream reformers (101, 102).
  • These two reformers can consist of a primary reformer (101) and a secondary reformer (102) or also a combination of an autothermal reformer (101) and a catalytic CO conversion (102), which is not essential for the subject matter of the invention.
  • the reformers convert a feed gas, such as natural gas, in the presence of a gas (106) containing oxygen and nitrogen and water vapor (107) into hydrogen and carbon oxides (111), the latter being separated and discharged.
  • the feed gas reformed in this way consists of approximately 3 parts of hydrogen and one part of nitrogen and can be converted to ammonia, which leaves the ammonia system (100) as liquid ammonia (105) and as a pure ammonia product (108) or for the production of urea (109) or for the production of nitric acid (100).
  • At least part of the gas mixture originating from the ammonia system is fed via line (110) to the nitric acid system (200) and there together with air (203) burned to oxides of nitrogen and converted adsorptively with water into nitric acid, which leaves the nitric acid plant (200) via the product line (202).
  • the residual gas which essentially contains the nitrogen introduced with the combustion air (203) as well as small amounts of water vapor, oxygen and oxides of nitrogen, is returned via line (201) to the ammonia system (100), where it is introduced into the ammonia production process.
  • FIG. 1b shows a system similar to that in FIG. 1a.
  • line (201) opens into the line between the first reformer (101) and the second reformer (102).
  • line (201) can have a branch (201b) which opens directly into the second reformer (102).
  • line (201) can open directly into the second reformer (102).
  • the sketch shows a combined plant for the production of ammonia with a downstream nitric acid plant.
  • ammonia is obtained by the catalytic conversion of nitrogen and hydrogen.
  • the required hydrogen comes from natural gas or methane, which is catalytically converted into hydrogen with water vapor in a reforming process in a manner known per se,
  • Carbon monoxide and carbon dioxide is transferred.
  • the gaseous hydrocarbon (mixture) (1) is passed through a desulfurization stage (2) and then passed together with water vapor (3) into a first reformer (4). This is where the majority of the hydrocarbon is thermally split into hydrogen, carbon dioxide and carbon monoxide.
  • the reformer is heated by burners, not shown, in a manner known per se.
  • the synthesis gas mixture leaving the first reformer (4) also contains unreacted natural gas or methane. For the synthesis of ammonia, the synthesis gas must be as free as possible from interfering substances.
  • the synthesis gas from the first reformer (4) together with a selected amount of air is introduced into a second reformer (5) in order to burn remaining natural gas or methane and to introduce the nitrogen required for the ammonia synthesis into the system.
  • the synthesis gas mixture heats up due to the combustion of the natural gas or methane, and part of the methane is further split.
  • the synthesis gas mixture leaving the second reformer (5) is passed through a heat exchanger (6), then through a stage (7) for converting the carbon monoxide into carbon dioxide.
  • Boiler feed water is fed via line (40) to stage (7), which leaves it via line (44) after passage of the heat exchanger (6) as high-pressure steam.
  • the synthesis gas mixture is passed through an absorption stage (8), in which the carbon dioxide is separated off and discharged via line (39). The heat energy recovered in this stage (7) can be used to generate water vapor for the first reformer (4).
  • the synthesis gas mixture is passed through a methanation stage (9) in order to convert last traces of carbon monoxide and carbon dioxide into methane by catalytic reduction.
  • the synthesis gas is then compressed in a compressor (10) and passed into a reactor (11) for ammonia synthesis, which is operated in a manner known per se by circulating the reaction gas mixture.
  • the gas leaving the reactor (11) is introduced into a cryogenic stage (35), in which ammonia is separated from the gas by condensation.
  • the remaining gas is compressed again and fed to the reactor (11).
  • the ammonia is introduced into a nitric acid system via a line (12).
  • Purge gas flow deducted is passed into an H 2 recovery (36), in which hydrogen is recovered.
  • the hydrogen is returned to the process in front of the compressor (10) via line (37).
  • the remaining exhaust gas is discharged via line (38) and can still be used as fuel for heating the reformer (4).
  • the nitric acid system shown consists of an ammonia evaporator (14), gas heater (15), ammonia gas filter (16), ammonia-air mixer (17), air supply (18), air filter (19) and air compressor (20).
  • the ammonia fed through line (12) or the air required for ammonia combustion and fed through line (18) is conditioned and mixed.
  • the ammonia-air mixture is then burned to oxides of nitrogen in an ammonia burner with a waste heat boiler (22) and via residual gas heater II (23), gas cooler I (24), nitrogen oxide compressor (25), residual gas heater I (26) and gas cooler II (27) fed to an absorption tower (28).
  • the waste heat boiler (22) is connected in a manner known per se to a steam drum (42) in which steam is circulated through a condensation steam turbine (43) followed by a condenser (45).
  • the absorption tower (28) the oxides of nitrogen generated are converted into nitric acid by contact with water. This leaves the absorption tower (28) via a nitric acid degasser (29) and the nitric acid is then discharged from the system via line (30).
  • the oxides of nitrogen recovered from the nitric acid degasser (29) are drawn off and returned to the nitrogen oxide compressor (25).
  • the residual gas containing nitrogen and oxides of the nitrogen from the absorption tower (28) is passed through the residual gas heaters I and II (26, 23) for heat recovery and then into the residual gas expansion turbine (31). From there, the expanded residual gas, together with some of the air coming from the air compressor (20), is returned through line (32) to the second reformer (5) of the ammonia system. Additional process air can be fed to the residual gas via line (33). Before being introduced into the second reformer (5), the gas mixture is compressed in a compressor (34).
  • the sketch shows another combined plant for the production of ammonia with a downstream nitric acid plant.
  • the gaseous hydrocarbon (mixture) (1) is passed through a desulfurization stage (2) and then passed together with water vapor (3) into a first reformer (4). This is where the majority of the hydrocarbon is thermally split into hydrogen, carbon dioxide and carbon monoxide.
  • the reformer is heated by burners, not shown, in a manner known per se.
  • the synthesis gas mixture leaving the first reformer (4) is introduced into a second reformer (5).
  • a selected amount of air is fed via line (47) to the second reformer (5) in order to burn remaining natural gas or methane and to introduce the nitrogen required for the ammonia synthesis into the system.
  • the synthesis gas mixture heats up due to the combustion of the natural gas or methane, and part of the methane is further split.
  • the synthesis gas mixture leaving the second reformer (5) is passed through a heat exchanger (6), then through a stage (7) for converting the carbon monoxide into carbon dioxide.
  • Boiler feed water is fed via line (40) to stage (7), which leaves it via line (44) after passage of the heat exchanger (6) as high-pressure steam.
  • the synthesis gas mixture is passed through an absorption stage (8), in which the carbon dioxide is separated off and discharged via line (39). The heat energy recovered in this stage (7) can be used to generate water vapor for the first reformer (4).
  • the synthesis gas mixture is passed through a methanation stage (9) in order to convert last traces of carbon monoxide and carbon dioxide into methane by catalytic reduction.
  • the synthesis gas is then compressed in a compressor (10) and passed into a reactor (11) for ammonia synthesis, which is operated in a manner known per se by circulating the reaction gas mixture.
  • the gas leaving the reactor (11) is introduced into a cryogenic stage (35), in which ammonia is separated from the gas by condensation.
  • the remaining gas is compressed again and fed to the reactor (11).
  • the ammonia is introduced into a nitric acid system via a line (12).
  • a purge gas stream is continuously withdrawn via line (41). This is passed into an H 2 recovery (36), in which hydrogen is recovered.
  • the hydrogen is returned to the process in front of the compressor (10) via line (37).
  • the remaining exhaust gas is discharged via line (38) and can still be used as fuel for heating the reformer (4).
  • the nitric acid system shown consists of an ammonia evaporator (14), gas heater (15), ammonia gas filter (16), ammonia-air mixer (17), air supply (18), air filter (19) and air compressor (20).
  • ammonia evaporator 14
  • gas heater 15
  • ammonia gas filter 16
  • ammonia-air mixer 17
  • air supply 18
  • air filter (19) 19
  • air compressor (20) the ammonia fed through line (12) or the air required for ammonia combustion and fed through line (18) is conditioned and mixed.
  • the ammonia-air mixture is then mixed in an ammonia burner
  • Waste heat boiler (22) burned to oxides of nitrogen and fed to an absorption tower (28) via residual gas heater II (23), gas cooler I (24), nitrogen oxide compressor (25), residual gas heater I (26) and gas cooler II (27).
  • the waste heat boiler (22) is connected in a manner known per se to a steam drum (42) in which steam is circulated through a condensation steam turbine (43) followed by a condenser (45).
  • the absorption tower (28) the oxides of nitrogen generated are converted into nitric acid by contact with water. This leaves the absorption tower (28) via a nitric acid degasser (29) and the nitric acid is then discharged from the system via line (30).
  • the oxides of nitrogen recovered from the nitric acid degasser (29) are drawn off and returned to the nitrogen oxide compressor (25).
  • the residual gas containing nitrogen and oxides of nitrogen from the absorption tower (28) is used Heat recovery passed through the residual gas heaters I and II (26, 23) and then returned together with part of the air from the air compressor (20) through the line (46) into the second reformer (5) of the ammonia system.
  • the gas mixture is compressed in a compressor (34).
  • the method variant shown in FIG. 3 differs from the method variant shown in FIG. 2 in that the required air supply (33) in FIG. 2 is replaced by an increased use of air (18) in FIG. 3. This eliminates the residual gas expansion turbine (31) and the pressure-free line (32) is replaced by the smaller pressure line (46), both of which are advantages of the invention.
  • the additional compression performance to be applied in the compressor (20) is fully compensated for by the saved performance of the compressor (34), which works at a higher outlet pressure, which is why there are no additional expenses to counter the savings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for reducing the emission of oxides of nitrogen during the production of nitric acid and to a plant suitable for carrying out said method. The method comprises the following steps: i) producing ammonia by catalytic reaction of nitrogen with hydrogen in an ammonia plant (100), ii) introducing the ammonia so produced into an nitric acid plant (200), iii) combusting the ammonia to oxides of the nitrogen in the nitric acid plant (200), iv) washing the gas containing the oxides of the nitrogen with water in at least one absorption column disposed downstream of the ammonia combustion, thereby producing nitric acid, and v) returning to the ammonia plant (100) at least a part of the residual gas leaving the nitric acid plant (200) and containing oxides of the nitrogen.

Description

Beschreibungdescription
Verfahren zur Salpetersäureproduktion sowie dafür geeignete AnlageProcess for the production of nitric acid as well as a suitable plant
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur Salpetersäureproduktion sowie eine daran angepasste Anlage.The present invention relates to an improved process for the production of nitric acid and a system adapted therefor.
Bei der industriellen Herstellung von Salpetersäure HN03 durch die katalytische Verbrennung von Ammoniak resultiert ein mit Stickstoffmonoxid NO, Stickstoffdioxid N02 (zusammen bezeichnet als NOx) sowie Lachgas N20 beladenes Abgas.In the industrial production of nitric acid HN0 3 by the catalytic combustion of ammonia, an exhaust gas laden with nitrogen monoxide NO, nitrogen dioxide N0 2 (collectively referred to as NO x ) and nitrous oxide N 2 0 results.
Es ist bekannt, dass diese Oxide des Stickstoffs ökotoxisch sind (z.B. saurer Regen, Smog-Bildung, Treibhauseffekt) und es sind weltweit Grenzwerte für deren maximal zulässige Emissionen festgelegt.It is known that these oxides of nitrogen are ecotoxic (e.g. acid rain, smog formation, greenhouse effect) and limits are set worldwide for their maximum permissible emissions.
Es wird daher ständig nach Verfahren und Maßnahmen gesucht, mit denen die Emission dieser Gase reduziert oder sogar ganz vermieden werden kann. Außerdem müssen diese Verfahren möglichst ökonomisch einsetzbar sein, um industriell realisiert werden zu können.Processes and measures are therefore constantly being sought with which the emission of these gases can be reduced or even avoided altogether. In addition, these processes must be as economical as possible to be able to be implemented industrially.
Die Salpetersäureproduktion stellt eine große Quelle industrieller Lachgasemissionen dar. Aus Gründen des Umweltschutzes aber auch der Verfahrensökonomie besteht daher ein dringender Bedarf an technischen Lösungen, die Lachgasemissionen zusammen mit der NOx-Emission bei der Salpetersäureproduktion zu reduzieren.Nitric acid production is a major source of industrial nitrous oxide emissions. For reasons of environmental protection but also because of the process economy, there is therefore an urgent need for technical solutions to reduce the nitrous oxide emissions together with the NO x emission during nitric acid production.
Zur Beseitigung von NOx aus dem Abgas der Salpetersäureproduktion sind bereits zahlreiche Verfahrensvarianten vorgeschlagen worden (hier bezeichnet als DeNOx- Stufe), wie chemische Wäsche, Adsorptionsverfahren oder katalytische Reduktionsverfahren. Eine Übersicht ist in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim (1991) gegeben.To remove NO x from the exhaust gas from nitric acid production, numerous process variants have been proposed (referred to here as DeNO x stage), such as chemical washing, adsorption processes or catalytic processes Reduction process. An overview is given in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 17, VCH Weinheim (1991).
Hervorzuheben ist dabei die selektive katalytische Reduktion (SCR) von NOx mittels Ammoniak zu N2 und H20, welche je nach Katalysator bei Temperaturen von etwaOf particular note here is the selective catalytic reduction (SCR) of NO x using ammonia to N 2 and H 2 0, which, depending on the catalyst, takes place at temperatures of about
150°C bis 450°C ablaufen kann und einen NOx-Abbau von mehr als 90% ermöglicht. Sie ist die meist genutzte Variante der NOx-Minderung bei der Salpetersäureproduktion, führt aber, wie auch die übrigen Varianten, nicht zu einer Minderung des N2O-Gehaltes.150 ° C to 450 ° C can run and enables a NO x reduction of more than 90%. It is the most widely used variant of NO x reduction in nitric acid production, but, like the other variants, does not lead to a reduction in the N 2 O content.
Hierzu ist nach heutigem Stand der Technik eine gesonderte, zweite Katalysatorstufe notwendig, die in geeigneter Weise mit der DeNOx-Stufe kombiniert wird. Derartige Ansätze sind z.B. in US-A-5,200,162, in Clark, D.M. et al.; The Shell DeNOx System: A novel and cost effective NOx removal technology as applied in nitric acid manufacture and associated processes, presented at Nitrogen '97, in Geneva, 9-11th February 1997. Neuere Entwicklungen auf dem Gebiet der Entstickung von Abgasen, die aus Salpetersäureanlagen stammen können, sind in den WO-A-01/51 ,182, WO-A- 01/51 ,181 , WO-A-02/87,733, WO-A-03/105,998 und der DE-A-102 15 605 beschrieben.According to the current state of the art, a separate, second catalyst stage is required for this, which is combined in a suitable manner with the DeNO x stage. Such approaches are described, for example, in US Pat. No. 5,200,162, in Clark, DM et al .; The Shell DeNO x System: A novel and cost effective NO x removal technology as applied in nitric acid manufacture and associated processes, presented at Nitrogen '97, in Geneva, 9-11 th February 1997. Recent developments in the field of denitrification of exhaust gases Which can originate from nitric acid plants are described in WO-A-01/51, 182, WO-A-01/51, 181, WO-A-02 / 87,733, WO-A-03 / 105,998 and DE-A -102 15 605.
In den bekannten Verfahren wird versucht, die Konzentration von NOx im Restgas durch geeignete Maßnahmen bei der Gaswäsche möglichst gering zu halten und die Bildung von N20 bei der Ammoniakverbrennung zu minimieren bzw. die im Restgas enthaltenen Oxide des Stickstoffs möglichst vollständig aus diesem zu entfernen. Diese Maßnahmen sind in jedem Fall mit verfahrenstechnischem Aufwand verbunden und beeinträchtigen daher die Prozessökonomie.In the known processes, attempts are made to keep the concentration of NO x in the residual gas as low as possible by means of suitable measures during gas scrubbing and to minimize the formation of N 2 O during ammonia combustion or to remove the oxides of nitrogen contained in the residual gas as completely as possible from the latter remove. In any case, these measures are associated with procedural complexity and therefore impair the process economy.
Im Hinblick auf den bekannten Stand der Technik ergibt sich somit die Aufgabe, ein wirtschaftliches Verfahren zur Herstellung von Salpetersäure zur Verfügung zu stellen, bei dem der Ausstoß von Oxiden des Stickstoffs auf einfache Weise minimiert oder sogar vollständig vermieden werden kann.In view of the known state of the art, there is therefore the task of providing an economical process for the production of nitric acid in which the emission of oxides of nitrogen can be minimized in a simple manner or even completely avoided.
Eine weitere Aufgabe ist die Bereitstellung einer geeigneten Anlage zur Durchführung dieses Verfahrens. Es wurde jetzt gefunden, dass diese Aufgabe gelöst werden kann, indem man eine Ammoniakanlage und eine Salpetersaureanlage zusammenschaltet und das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage in die Ammoniakanlage zurückführt. Dadurch verringert oder vermeidet man auf einfache Art und WeiseAnother task is to provide a suitable system for carrying out this process. It has now been found that this object can be achieved by interconnecting an ammonia system and a nitric acid system and returning the residual gas containing oxides of nitrogen from the nitric acid system to the ammonia system. This makes it easy to reduce or avoid
Emissionen von Oxiden des Stickstoffs. Ein derartiges Restgas weist üblicherweise die folgende Zusammensetzung auf (volumenbezogene Angaben): NOx = 150-3000 ppm , N20 = 500-2000 ppm, 02 = 1-3%, H20 = 0,5-1 %, N2 = Rest. Die Rückführung dieses Restgases mit einem N2-Gehalt von über 95 % bildet somit eine Stickstoffquelle für die Ammoniaksynthese. Man erhält also mit dieser einfachen Maßnahme einEmissions of oxides of nitrogen. Such a residual gas usually has the following composition (volume-related information): NO x = 150-3000 ppm, N 2 0 = 500-2000 ppm, 0 2 = 1-3%, H 2 0 = 0.5-1%, N 2 = rest. The recycling of this residual gas with an N 2 content of over 95% thus forms a nitrogen source for the ammonia synthesis. So you get one with this simple measure
Ausgangsprodukt für die Amoniaksynthese, aus dem sich in energetisch günstiger Weise Ammoniak herstellen lässt.Starting product for ammonia synthesis, from which ammonia can be produced in an energetically favorable manner.
Die vorliegende Erfindung betrifft ein Verfahren zur Verringerung der Emission von Oxiden des Stickstoffs bei der Salpetersäureproduktion umfassend die Maßnahmen: i) Erzeugen von Ammoniak durch katalytische Umsetzung von Stickstoff mit Wasserstoff in einer Ammoniakanlage (100), ii) Einleiten des erzeugten Ammoniaks in eine Salpetersaureanlage (200), iii) Verbrennung des Ammoniaks zu Oxiden des Stickstoffs in der Salpetersaureanlage (200), iv) Waschen des Oxide des Stickstoffs enthaltenden Gases mit Wasser in mindestens einem stromabwärts zur Ammoniakverbrennung angeordneten Absorptionsturm zur Erzeugung von Salpetersäure, und v) Rückführung zumindest eines Teils des die Salpetersaureanlage (200) verlassenden, Oxide des Stickstoffs enthaltenden Restgases in die Ammoniakanlage (100).The present invention relates to a method for reducing the emission of oxides of nitrogen in nitric acid production, comprising the measures: i) generating ammonia by catalytically reacting nitrogen with hydrogen in an ammonia plant (100), ii) introducing the ammonia produced into a nitric acid plant ( 200), iii) combustion of the ammonia to form oxides of nitrogen in the nitric acid plant (200), iv) washing the oxides of the nitrogen-containing gas with water in at least one absorption tower arranged downstream for ammonia combustion to produce nitric acid, and v) recycling at least a part of the residual gas leaving the nitric acid plant (200) and containing oxides of nitrogen into the ammonia plant (100).
Bei den erfindungsgemäß eingesetzten Ammoniakanlagen (100) undIn the ammonia plants (100) and
Salpetersäureanlagen (200) kann es sich um an sich bekannte Anlagen handeln. Beispiele für Ammoniakanlagen sind in D. Lippmann, The Uhde Ammonia Technology - Main Features and Advantages, Fertilizer Focus, July/August 2003 beschrieben.Nitric acid plants (200) can be plants known per se. Examples of ammonia plants are described in D. Lippmann, The Uhde Ammonia Technology - Main Features and Advantages, Fertilizer Focus, July / August 2003.
Beispiele für Salpetersäureanlagen findet man in den DE-A-100 11 335, DE-A-102 07 627, DE-A-28 50 054 und DE-A-21 48 329.Examples of nitric acid plants can be found in DE-A-100 11 335, DE-A-102 07 627, DE-A-28 50 054 and DE-A-21 48 329.
Beispiele für die Entstickung von Restgasen aus der Salpetersäureproduktion finden sich in den DE-A-101 12 396, DE-A-101 12 444 und DE-A-102 15 605.Examples of the denitrification of residual gases from nitric acid production can be found in DE-A-101 12 396, DE-A-101 12 444 and DE-A-102 15 605.
Bei der Ammoniaksynthese wird Stickstoff mit Wasserstoff katalytisch zu Ammoniak umgesetzt. Die Umsetzung gemäßIn ammonia synthesis, nitrogen is catalytically converted to hydrogen with hydrogen. The implementation according to
N2 + 3 H2 → 2 NH3 (1)N 2 + 3 H 2 → 2 NH 3 (1)
ist bereits seit langem bekannt und wird großtechnisch betrieben.has been known for a long time and is operated on an industrial scale.
Auch die Verbrennung des Ammoniaks gemäßAlso the ammonia combustion according to
4 NH3 + 5 02 → 4 NO + 6 H20 (2)4 NH 3 + 5 0 2 → 4 NO + 6 H 2 0 (2)
undand
NO + 0,5 02 → N02 (3)NO + 0.5 0 2 → N0 2 (3)
ist bereits seit langem bekannt und wird großtechnisch betrieben.has been known for a long time and is operated on an industrial scale.
Zur Erzeugung von Stickstoff und Wasserstoff für die Ammoniaksynthese lassen sich Luft und Wasser einsetzen. Durch Reduktion mit Koks wird daraus in an sich bekannter Weise Generatorgas und Wassergas erzeugt. Dieses wird in an sich bekannter Weise von Beimengungen von Schwefelwasserstoff, Kohlenmonoxid und Kohlendioxid befreit und das erhaltene Wasserstoff-Stickstoff-Gemisch sodann in einem Kontaktofen katalytisch zu Ammoniak umgesetzt. Der für die Ammoniaksynthese benötigte Wasserstoff kann auch aus anderen Quellen stammen, etwa aus Erdgas oder Naphta.Air and water can be used to generate nitrogen and hydrogen for ammonia synthesis. By reduction with coke, generator gas and water gas are generated therefrom in a manner known per se. This is freed of admixtures of hydrogen sulfide, carbon monoxide and carbon dioxide in a manner known per se and the hydrogen-nitrogen mixture obtained is then catalytically converted to ammonia in a contact furnace. The hydrogen required for ammonia synthesis can also come from other sources, such as natural gas or naphtha.
Vorzugsweise wird der für die Ammoniaksynthese benötigte Wasserstoff durch katalytische Dehydrogenierung von Kohlenwasserstoffen, insbesondere von Erdgas oder Methan, in Gegenwart von Wasserdampf gewonnen. Diese Umsetzung erfolgt in an sich bekannter Weise in zwei oder mehreren hintereinandergeschalteten Reformern.The hydrogen required for the ammonia synthesis is preferably obtained by catalytic dehydrogenation of hydrocarbons, in particular natural gas or methane, in the presence of water vapor. This implementation takes place in a manner known per se in two or more reformers connected in series.
Aus dem erhaltenen Stickstoff-Wasserstoff-Gemisch, dem üblicherweise noch einFrom the nitrogen-hydrogen mixture obtained, which is usually still a
Stickstoff und Sauerstoff enthaltendes Gas, vorzugsweise Luft, zugesetzt wird, erzeugt man in der Ammoniakanlage (100) in an sich bekannter Weise durch katalytische Umsetzung Ammoniak.Nitrogen and oxygen-containing gas, preferably air, is added, ammonia system (100) is produced in a manner known per se by catalytic conversion of ammonia.
Das in der Ammoniakanlage (100) erzeugte Ammoniak wird erfindungsgemäß mindestens teilweise zur Salpetersäureherstellung eingesetzt. Ein Teil des A^mmoniaks kann auch abgezweigt werden und anderen Verwendungen zugeführt werde n, etwa als reines Ammoniak-Produkt (108) oder zur Erzeugung von Harnstoff (109). Au h kann ein Teil des in den Reformern (101 , 102) erzeugten Synthesegases vor der Ammoniaksynthese (103) abgezweigt werden und beispielsweise einer Fiscfier- Tropsch-Synthese oder einer Methanol-Synthese zugeführt werden.According to the invention, the ammonia generated in the ammonia plant (100) is used at least partially for the production of nitric acid. A portion of the A ^ mmoniaks can be also branched off and supplied to other uses will n, such as a pure ammonia product (108) or for the production of urea (109). In addition, part of the synthesis gas generated in the reformers (101, 102) can be branched off before the ammonia synthesis (103) and can be fed, for example, to a Fiscfier-Tropsch synthesis or a methanol synthesis.
Der in der Ammoniakanlage (100) erzeugte Ammoniak oder ein Teil davon wird in eine Salpetersaureanlage (200) geleitet und dort zusammen mit Luft in an sich be kannter Weise zu Oxiden des Stickstoffs verbrannt. Durch die Verbrennungsluft wird ler Salpetersaureanlage (200) ein erheblicher Anteil an Stickstoff zugeführt, der in der erfindungsgemäßen Anordnung zusammen mit den nicht zu Salpetersäure urngesetzten Oxiden des Stickstoffs in die Ammoniakanlage (100) rückgeführt wird und als Stickstoffquelle in der Ammoniaksynthese eingesetzt werden kann. Neben dem Restgas aus der Salpetersaureanlage (200) wird der Ammoniakanlage (100) Luft (1 OS ) als Stickstoffquelle für die Ammoniaksynthese zugeführt. Das die Salpetersaureanlage (200) verlassende, Oxide des Stickstoffs enthaltende Restgas wird teilweise oder vorzugsweise vollständig in die Ammoniakanlage (100) zurückgeführt. Bei nur teilweiser Rückführung wird der Rest in an sich bekannter Weise einer Entstickung unterworfen und sodann aus der Anlage in die Atmosphäre ausgeschleust.The ammonia produced in the ammonia plant (100) or a part thereof is passed into a nitric acid plant (200) and burned there together with air in a manner known per se to form oxides of nitrogen. The combustion air supplies the nitric acid plant (200) with a considerable proportion of nitrogen, which in the arrangement according to the invention, together with the oxides of nitrogen not converted into nitric acid, is returned to the ammonia plant (100) and can be used as a nitrogen source in the ammonia synthesis. In addition to the residual gas from the nitric acid plant (200), the ammonia plant (100) is supplied with air (1 OS) as a nitrogen source for the ammonia synthesis. The residual gas containing oxides of nitrogen leaving the nitric acid plant (200) is partly or preferably completely returned to the ammonia plant (100). If the return is only partial, the rest is subjected to denitrification in a manner known per se and then discharged from the system into the atmosphere.
Das Restgas aus der Salpetersaureanlage (200) stammt hauptsächlich aus dem Absorptionsturm oder diesem nachgeschalteten Anlagenteilen, kann jedoch auch aus anderen Teilen der Salpetersaureanlage (200) stammen.The residual gas from the nitric acid plant (200) mainly comes from the absorption tower or parts of the plant downstream thereof, but can also come from other parts of the nitric acid plant (200).
Wird zur Erzeugung von Wasserstoff für die Ammoniaksynthese eine Kombination zweier Reformer (101, 102) eingesetzt, so wird das aus der Salpetersaureanlage (200) rückgeführte Oxide des Stickstoffs enthaltende Restgas üblicherweise nach erfolgter Kompression zwischen dem ersten und dem zweiten Reformer (101 , 102) oder vorzugsweise in den zweiten Reformer (102) eingeleitet, beispielsweise in denIf a combination of two reformers (101, 102) is used to generate hydrogen for the ammonia synthesis, the residual gas containing oxides of nitrogen returned from the nitric acid plant (200) is usually compressed after the compression between the first and the second reformer (101, 102). or preferably initiated in the second reformer (102), for example in the
Synthesegaseingang des zweiten Reformers (102), besonders bevorzugt aber in den Lufteingang des zweiten Reformers (102).Synthesis gas inlet of the second reformer (102), but particularly preferably into the air inlet of the second reformer (102).
Bei der Einleitung des Oxide des Stickstoffs enthaltenden Restgases zwischen dem ersten und zweiten Reformer (101 , 102) empfiehlt es sich, den möglichenWhen the residual gas containing oxides of nitrogen is introduced between the first and second reformer (101, 102), it is advisable to use the
Sauerstoffgehalt des Restgases und/oder den Temperaturverlauf in der Leitung zwischen erstem und zweiten Reformer (101 , 102) zu überwachen, um eine Verbrennung von Wasserstoff mit Restsauerstoff in der Leitung zu kontrollieren.Monitor the oxygen content of the residual gas and / or the temperature profile in the line between the first and second reformer (101, 102) in order to control the combustion of hydrogen with residual oxygen in the line.
In einer weiteren bevorzugten Ausführungsform wird das aus der Salpetersaureanlage (200) rückgeführte, Oxide des Stickstoffs enthaltende Restgas nach erfolgter Kompression nach dem Sekundärreformer (102) aber vor dem Reaktor für die Ammoniaksynthese (103) eingeleitet, vorzugsweise direkt nach dem Sekundärreformer (102).In a further preferred embodiment, the residual gas returned from the nitric acid plant (200) and containing oxides of nitrogen is introduced after the compression after the secondary reformer (102) but before the reactor for the ammonia synthesis (103), preferably directly after the secondary reformer (102).
In einer weiteren bevorzugten Ausführungsform wird bei der Erzeugung von Wasserstoff für die Ammoniaksynthese mindestens ein mit Sauerstoff, mit Luft oder mit angereicherter Luft betriebener autothermer Reformer („ATR") eingesetzt, und zumindest ein Teil des aus der Salpetersaureanlage (102) rückgeführten, Oxide des Stickstoffs enthaltenden Restgases wird nach erfolgter Kompression in den ATR, insbesondere in den für den ATR bestimmten sauerstoffhaltigen Strom eingeleitet.In a further preferred embodiment, at least one with oxygen, with air or with is used in the production of hydrogen for the ammonia synthesis enriched air-operated autothermal reformer ("ATR") is used, and at least part of the residual gas, which is returned from the nitric acid plant (102) and contains oxides of nitrogen, is introduced into the ATR after compression, in particular into the oxygen-containing stream intended for the ATR.
Bevorzugt wird das gesamte Restgas der Salpetersaureanlage (200) vollständig in die Ammoniakanlage (100) zurückgeführt und zusammen mit zusätzlich eingespeister Luft oder mit sauerstoffabgereicherter Luft oder mit reinem Stickstoff als Stickstoffquelle bei der Ammoniaksynthese verwendet. Die Umsetzung des Restgases, welches auch Oxide des Stickstoffs enthält, in der Ammoniakanlage (100) bedarf keiner weiteren, besonderen verfahrenstechnischen Maßnahmen. Die Oxide des Stickstoffs werden in der reduzierenden Atmosphäre der Ammoniakanlage (100), die aus Synthesegas- reformierungen (101 , 102) und katalytischer Ammoniaksynthese (103) besteht, sicher und vollständig letztendlich zu Ammoniak und Wasser umgesetzt und dienen somit neben dem überwiegend vorhandenen molekularen Stickstoff als Stickstoffquelle für die Ammoniakherstellung.The entire residual gas of the nitric acid plant (200) is preferably returned completely to the ammonia plant (100) and used together with additionally fed air or with oxygen-depleted air or with pure nitrogen as a nitrogen source in the ammonia synthesis. The conversion of the residual gas, which also contains oxides of nitrogen, in the ammonia plant (100) does not require any further, special procedural measures. In the reducing atmosphere of the ammonia plant (100), which consists of synthesis gas reforming (101, 102) and catalytic ammonia synthesis (103), the oxides of nitrogen are ultimately and safely converted into ammonia and water and thus serve, in addition to the predominantly molecular one Nitrogen as a nitrogen source for ammonia production.
In einer weiteren bevorzugten Variante des erfindungsgemäßen Verfahrens wird der Wasserstoff in der Ammoniakanlage (100) durch Dehydrierung von Kohlenwasserstoffen in einer Kombination von Primär- und Sekundärreformer (101 , 102) erzeugt, und das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) wird in den Sekundärreformer (102), vorzugsweise in den Lufteingang des Sekundärreformers (102) und/oder unmittelbar nach dem Ausgang des Sekundärreformers (102) eingeleitet.In a further preferred variant of the method according to the invention, the hydrogen in the ammonia plant (100) is generated by dehydrogenation of hydrocarbons in a combination of primary and secondary reformer (101, 102), and the residual gas containing oxides of nitrogen from the nitric acid plant (200) into the secondary reformer (102), preferably into the air inlet of the secondary reformer (102) and / or immediately after the exit of the secondary reformer (102).
Die Erfindung betrifft ferner eine Anlage zur Salpetersäureproduktion umfassend die Elemente: A) Ammoniakanlage (100) zum Erzeugen von Ammoniak durch katalytische Umsetzung von Stickstoff mit Wasserstoff, die mit B) einer Salpetersaureanlage (200) verbunden ist, in der aus dem erzeugten Ammoniak durch Verbrennung Oxide des Stickstoffs erzeugt werden, die C) stromabwärts zur Ammoniakverbrennung mindestens einen Absorptionsturm aufweist, in dem das Oxide des Stickstoffs enthaltende Gas mit Wasser gewaschen wird, wodurch Salpetersäure erzeugt wird, und die D) mindestens eine Leitung (201) aufweist, durch die zumindest ein Teil des die Salpetersaureanlage (200) verlassenden, Oxide des Stickstoffs enthaltenden Restgases in die Ammoniakanlage (100) zurückgeführt wird.The invention further relates to a plant for nitric acid production comprising the elements: A) ammonia plant (100) for producing ammonia by catalytic conversion of nitrogen with hydrogen, which is connected to B) a nitric acid plant (200), in which the ammonia produced by combustion by combustion Oxides of nitrogen are generated that C) downstream of the ammonia combustion has at least one absorption tower in which the gas containing oxides of the nitrogen is washed with water, whereby nitric acid is generated, and D) has at least one line (201) through which at least a part of the nitric acid plant (200 ) leaving residual oxides of nitrogen containing gas is returned to the ammonia system (100).
In einer bevorzugten Ausführungsform umfasst die erfindungsgemäße Anlage eine Ammoniakanlage (100), die neben dem Reaktor für die Ammoniaksynthese (103) eine Kombination von Primär- und Sekundärreformer (101 , 102) aufweist, in welcher der für die Ammoniakerzeugung benötigte Wasserstoff erzeugt wird, und die Anlage weist mindestens eine Leitung (201) auf, durch die das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) in den Sekundärreformer (102) und/oder zwischen Primärreformer (101) und Sekundärreformer (102) und/oder nach dem Sekundärreformer (102) aber vor dem Reaktor für die Ammoniaksynthese (103) eingeleitet wird.In a preferred embodiment, the plant according to the invention comprises an ammonia plant (100) which, in addition to the reactor for ammonia synthesis (103), has a combination of primary and secondary reformer (101, 102) in which the hydrogen required for the generation of ammonia is generated, and the plant has at least one line (201) through which the residual gas containing the oxides of nitrogen from the nitric acid plant (200) into the secondary reformer (102) and / or between the primary reformer (101) and the secondary reformer (102) and / or after the secondary reformer (102) but is introduced before the reactor for ammonia synthesis (103).
Ganz besonders bevorzugt mündet die Leitung für das Oxide des Stickstoffs enthaltende Restgas in den Lufteingang des Sekundärreformers (102).The line for the residual gas containing oxides of nitrogen very particularly preferably opens into the air inlet of the secondary reformer (102).
In einer weiteren bevorzugten Ausführungsform umfaßt die erfindungsgemäße Anlage eine Ammoniakanlage (100), die eine Kombination von Primär- und Sekundärreformer (101 , 102) aufweist, in welcher der für die Ammoniakerzeugung benötigte Wasserstoff erzeugt wird, und die Anlage weist mindestens eine Leitung (201) auf, durch die das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) direkt nach dem Sekundärreformer (102) in die Ammoniakanlage (100) zurückgeführt wird.In a further preferred embodiment, the plant according to the invention comprises an ammonia plant (100) which has a combination of primary and secondary reformer (101, 102) in which the hydrogen required for the generation of ammonia is generated, and the plant has at least one line (201 ) through which the residual gas containing the oxides of nitrogen is returned from the nitric acid plant (200) directly to the ammonia plant (100) after the secondary reformer (102).
In einer weiteren bevorzugten Ausführungsform umfaßt die erfindungsgemäße Anlage mindestens einen mit Sauerstoff, mit Luft oder mit angereicherter Luft betriebenen autothermen Reformer („ATR"), in dem Wasserstoff für die Ammoniaksynthese erzeugt wird, und mindestens eine Leitung (201 ), durch die zumindest ein Teil des aus der Salpetersaureanlage (200) rückgeführten, Oxide des Stickstoffs enthaltenden Restgases in den ATR, insbesondere in den für den ATR bestimmten sauerstoffhaltigen Strom, zurückgeführt wird.In a further preferred embodiment, the plant according to the invention comprises at least one autothermal reformer (“ATR”) operated with oxygen, with air or with enriched air, in which generates hydrogen for the ammonia synthesis and at least one line (201) through which at least a portion of the residual gas containing oxides of nitrogen and which is returned from the nitric acid plant (200) is returned to the ATR, in particular to the oxygen-containing stream intended for the ATR.
Figuren 1a, 1b, 2 und 3 erläutern die Erfindung. Eine Begrenzung auf die in diesen Figuren dargestellten Ausführungsformen ist nicht beabsichtigt.Figures 1a, 1b, 2 and 3 illustrate the invention. A limitation to the embodiments shown in these figures is not intended.
Figuren 1a und 1b zeigen Prinzipskizzen der erfindungsgemäßen Anlage und des erfindungsgemäßen Verfahrens.Figures 1a and 1b show schematic diagrams of the system and the method according to the invention.
In Figuren 2 und 3 werden ausgewählte Ausführungsformen der erfindungsgemäßen Anlage und des erfindungsgemäßen Verfahrens erläutert.FIGS. 2 and 3 explain selected embodiments of the system and the method according to the invention.
In Figur 1a ist die Kombination einer Ammoniakanlage (100) mit einer Salpetersaureanlage (200) dargestellt. Die Ammoniakanlage (100) besteht aus einer Ammoniaksynthese (103) zur Umsetzung von Wasserstoff und Stickstoff in Ammoniak, sowie den beiden vorgeschalteten Reformern (101 , 102). Diese beiden Reformer können aus einem Primärreformer (101) und einem Sekundärreformer (102) oder auch aus einer Kombination von Autothermem Reformer (101) und katalytischer CO-Konvertierung (102) bestehen, was für den Erfindungsgegenstand aber nicht wesentlich ist. Die Reformer konvertieren ein Einsatzgas, etwa Erdgas, in Gegenwart eines Sauerstoff und Stickstoff enthaltenden Gases (106) sowie Wasserdampf (107) in Wasserstoff und Kohlenstoffoxide (111), welche letztere abgeschieden und ausgeschleust werden. Das so reformierte Einsatzgas besteht zu etwa 3 Teilen aus Wasserstoff und einem Teil Stickstoff und kann zu Ammoniak umgesetzt werden, welches als flüssiges Ammoniak (105) die Ammoniakanlage (100) verlässt und etwa als reines Ammoniak-Produkt (108) oder zur Erzeugung von Harnstoff (109) oder zur Erzeugung von Salpetersäure (100) genutzt wird.FIG. 1a shows the combination of an ammonia plant (100) with a nitric acid plant (200). The ammonia system (100) consists of an ammonia synthesis (103) for converting hydrogen and nitrogen into ammonia, and the two upstream reformers (101, 102). These two reformers can consist of a primary reformer (101) and a secondary reformer (102) or also a combination of an autothermal reformer (101) and a catalytic CO conversion (102), which is not essential for the subject matter of the invention. The reformers convert a feed gas, such as natural gas, in the presence of a gas (106) containing oxygen and nitrogen and water vapor (107) into hydrogen and carbon oxides (111), the latter being separated and discharged. The feed gas reformed in this way consists of approximately 3 parts of hydrogen and one part of nitrogen and can be converted to ammonia, which leaves the ammonia system (100) as liquid ammonia (105) and as a pure ammonia product (108) or for the production of urea (109) or for the production of nitric acid (100).
Zumindest ein Teil des aus der Ammoniakanlage stammenden Gasgemisches wird über Leitung (110) der Salpetersaureanlage (200) zugeführt und dort zusammen mit Luft (203) zu Oxiden des Stickstoffs verbrannt und mit Wasser adsorptiv in Salpetersäure überführt, welche über die Produktleitung (202) die Salpetersaureanlage (200) verlässt. Das Restgas, welches im wesentlichen den mit der Verbrennungsluft (203) eingetragenen Stickstoff sowie kleine Mengen an Wasserdampf, Sauerstoff und Oxiden des Stickstoffs enthält, wird über Leitung (201) in die Ammoniakanlage (100) zurückgeführt und dort in den Prozess zur Ammoniakerzeugung eingeschleust.At least part of the gas mixture originating from the ammonia system is fed via line (110) to the nitric acid system (200) and there together with air (203) burned to oxides of nitrogen and converted adsorptively with water into nitric acid, which leaves the nitric acid plant (200) via the product line (202). The residual gas, which essentially contains the nitrogen introduced with the combustion air (203) as well as small amounts of water vapor, oxygen and oxides of nitrogen, is returned via line (201) to the ammonia system (100), where it is introduced into the ammonia production process.
In Figur 1b wird eine ähnliche Anlage wie in Figur 1a dargestellt. Die Rückführung des aus der Salpetersaureanlage (200) ausgeschleusten, Oxide des Stickstoffs enthaltenden Gases in die Ammoniakanlage (100) wird hier genauer beschrieben. Leitung (201) mündet in dieser Anlage in die Leitung zwischen erstem Reformer (101 ) und zweitem Reformer (102). Gegebenenfalls kann Leitung (201) eine Abzweigung (201b) aufweisen, die direkt in den zweiten Reformer (102) mündet. In einer weiteren nicht dargestellten Ausführungsform kann Leitung (201) direkt in den zweiten Reformer (102) münden.FIG. 1b shows a system similar to that in FIG. 1a. The return of the gas, which has been removed from the nitric acid plant (200) and contains oxides of nitrogen, to the ammonia plant (100) is described in more detail here. In this system, line (201) opens into the line between the first reformer (101) and the second reformer (102). If appropriate, line (201) can have a branch (201b) which opens directly into the second reformer (102). In a further embodiment, not shown, line (201) can open directly into the second reformer (102).
In Figur 2 wird eine Ausführungsform der erfindungsgemäßen Anlage bzw. des erfindungsgemäßen Verfahren im Einzelnen erläutert.An embodiment of the system according to the invention or of the method according to the invention is explained in detail in FIG.
Dargestellt ist die Skizze einer kombinierten Anlage zur Erzeugung von Ammoniak mit einer nachgeschalteten Salpetersaureanlage.The sketch shows a combined plant for the production of ammonia with a downstream nitric acid plant.
In der Ammoniakanlage wird Ammoniak durch katalytische Umsetzung von Stickstoff und Wasserstoff gewonnen. Der benötigte Wasserstoff stammt in der dargestellten Ausführungsform aus Erdgas oder Methan, welches mit Wasserdampf in einem Reforming Verfahren in an sich bekannter Weise katalytisch in Wasserstoff,In the ammonia plant, ammonia is obtained by the catalytic conversion of nitrogen and hydrogen. In the embodiment shown, the required hydrogen comes from natural gas or methane, which is catalytically converted into hydrogen with water vapor in a reforming process in a manner known per se,
Kohlenmonoxid und Kohlendioxid übergeführt wird. Das gasförmige Kohlenwasser- stoff(gemisch) (1) wird durch eine Entschwefelungsstufe (2) geleitet und sodann zusammen mit Wasserdampf (3) in einen ersten Reformer (4) geleitet. Darin erfolgt die thermische Spaltung des überwiegenden Teils des Kohlenwasserstoffs in Wasserstoff, Kohlendioxid und Kohlenmonoxid. Der Reformer wird durch nicht dargestellte Brenner in an sich bekannter Weise geheizt. Das den ersten Reformer (4) verlassende Synthesegasgemisch enthält neben Wasserstoff, Kohlenmonoxid, Kohlendioxid auch nicht umgesetztes Erdgas oder Methan. Für die Ammoniaksynthese muss das Synthesegas möglichst frei von störenden Begleitstoffen sein.Carbon monoxide and carbon dioxide is transferred. The gaseous hydrocarbon (mixture) (1) is passed through a desulfurization stage (2) and then passed together with water vapor (3) into a first reformer (4). This is where the majority of the hydrocarbon is thermally split into hydrogen, carbon dioxide and carbon monoxide. The reformer is heated by burners, not shown, in a manner known per se. In addition to hydrogen, carbon monoxide and carbon dioxide, the synthesis gas mixture leaving the first reformer (4) also contains unreacted natural gas or methane. For the synthesis of ammonia, the synthesis gas must be as free as possible from interfering substances.
Aus diesem Grunde wird das Synthesegas aus dem ersten Reformer (4) zusammen mit einer ausgewählten Menge an Luft in einen zweiten Reformer (5) eingeleitet, um verbliebenes Erdgas oder Methan zu verbrennen und um den für die Ammoniaksynthese benötigten Stickstoff in das System einzutragen. Durch die Verbrennung des Erdgases oder Methans heizt sich das Synthesegasgemisch auf und es kommt zu einer weiteren Spaltung eines Teils des Methans. Das den zweiten Reformer (5) verlassende Synthesegasgemisch wird durch einen Wärmetauscher (6) geleitet, anschließend durch eine Stufe (7) zur Umwandlung des Kohlenmonoxids in Kohlendioxid. Über Leitung (40) wird der Stufe (7) Kesselspeisewasser zugeführt, welches diesen über Leitung (44) nach Passage des Wärmetauschers (6) als Hochdruckdampf verlässt. Nach Verlassen der Stufe (7) wird das Synthesegasgemisch durch eine Absorptionsstufe (8) geleitet, in der das Kohlendioxid abgetrennt und über Leitung (39) ausgeschleust wird. Die in dieser Stufe (7) zurückgewonnene Wärmeenergie kann zur Erzeugung von Wasserdampf für den ersten Reformer (4) verwendet werden.For this reason, the synthesis gas from the first reformer (4) together with a selected amount of air is introduced into a second reformer (5) in order to burn remaining natural gas or methane and to introduce the nitrogen required for the ammonia synthesis into the system. The synthesis gas mixture heats up due to the combustion of the natural gas or methane, and part of the methane is further split. The synthesis gas mixture leaving the second reformer (5) is passed through a heat exchanger (6), then through a stage (7) for converting the carbon monoxide into carbon dioxide. Boiler feed water is fed via line (40) to stage (7), which leaves it via line (44) after passage of the heat exchanger (6) as high-pressure steam. After leaving stage (7), the synthesis gas mixture is passed through an absorption stage (8), in which the carbon dioxide is separated off and discharged via line (39). The heat energy recovered in this stage (7) can be used to generate water vapor for the first reformer (4).
Nach der Entfernung von Kohlendioxid wird das Synthesegasgemisch durch eine Methanisierungsstufe (9) geleitet, um letzte Spuren von Kohlenmonoxid und Kohlendioxid durch katalytische Reduktion in Methan zu überführen.After removal of carbon dioxide, the synthesis gas mixture is passed through a methanation stage (9) in order to convert last traces of carbon monoxide and carbon dioxide into methane by catalytic reduction.
Danach wird das Synthesegas in einem Kompressor (10) komprimiert und in einen Reaktor (11) für die Ammoniaksynthese geleitet, der in an sich bekannter Weise durch Zirkulieren des Reaktionsgasgemisches betrieben wird. Das den Reaktor (11) verlassende Gas wird in eine kryotechnische Stufe (35) eingeleitet, in welcher Ammoniak durch Kondensation aus dem Gas abgetrennt wird. Das verbleibende Gas wird erneut komprimiert und dem Reaktor (11 ) zugeführt. Der Ammoniak wird über eine Leitung (12) in eine Salpatersäureanlage eingeleitet. Um ein Anreichen von Inerten im Ammoniak-Synthesekreislauf zu verhindern wird kontinuierlich über Leitung (41) ein Purgegasstrom abgezogen. Dieser wird in eine H2-Rückgewinnung (36) geleitet, in welcher Wasserstoff zurückgewonnen wird. Der Wasserstoff wird vor dem Kompressor (10) über Leitung (37) in den Prozess zurückgeführt. Das verbleibende Abgas wird über Leitung (38) ausgeschleust und kann noch als Brennstoff zur Beheizung des Reformers (4) verwendet werden.The synthesis gas is then compressed in a compressor (10) and passed into a reactor (11) for ammonia synthesis, which is operated in a manner known per se by circulating the reaction gas mixture. The gas leaving the reactor (11) is introduced into a cryogenic stage (35), in which ammonia is separated from the gas by condensation. The remaining gas is compressed again and fed to the reactor (11). The ammonia is introduced into a nitric acid system via a line (12). In order to prevent the accumulation of inert substances in the ammonia synthesis cycle, a continuous flow is made via line (41) Purge gas flow deducted. This is passed into an H 2 recovery (36), in which hydrogen is recovered. The hydrogen is returned to the process in front of the compressor (10) via line (37). The remaining exhaust gas is discharged via line (38) and can still be used as fuel for heating the reformer (4).
Die dargestellte Salpetersaureanlage besteht aus Ammoniakverdampfer (14), Gaserwärmer (15), Ammoniak-Gasfilter (16), Ammoniak-Luft-Mischer (17), Luftzuführung (18), Luftfilter (19) und Luftverdichter (20). In diesen Vorrichtungen wird der durch Leitung (12) zugeführte Ammoniak bzw. die für die Ammoniakverbrennung benötigte und durch Leitung (18) zugeführte Luft konditioniert und gemischt. Anschließend wird das Ammoniak-Luft-Gemisch in einem Ammoniakbrenner mit Abhitzekessel (22) zu Oxiden des Stickstoffs verbrannt und über Restgaserhitzer II (23), Gaskühler I (24), Stickoxid-Verdichter (25), Restgaserhitzer I (26) und Gaskühler II (27) einem Absorptionsturm (28) zugeleitet. Der Abhitzekessel (22) ist in an sich bekannter Weise mit einer Dampftrommel (42) verschaltet, in der Dampf durch eine Kondensationsdampfturbine (43) gefolgt von einem Kondensator (45) im Kreislauf geführt wird. In dem Absorptionsturm (28) werden die erzeugten Oxide des Stickstoffs durch Kontakt mit Wasser in Salpetersäure übergeführt. Diese verlässt den Absorptionsturm (28) über einen Salpetersäure-Entgaser (29) und die Salpetersäure wird anschließend über Leitung (30) aus der Anlage ausgeschleust. Die aus dem Salpetersäure-Entgaser (29) zurückgewonnenen Oxide des Stickstoffs werden abgezogen und in den Stickoxid-Verdichter (25) rückgeführt. Das Stickstoff und Oxide des Stickstoffs enthaltende Restgas aus dem Absorptionsturm (28) wird zwecks Wärmerückgewinnung durch die Restgaserhitzer I und II (26, 23) geleitet und sodann in die Restgasentspannungsturbine (31). Von dort wird das entspannte Restgas zusammen mit einem Teil der aus dem Luftverdichter (20) stammenden Luft durch die Leitung (32) in den zweiten Reformer (5) der Ammoniakanlage zurückgeführt. Dem Restgas kann über Leitung (33) noch weitere Prozessluft zugeführt werden. Vor dem Einleiten in den zweiten Reformer (5) wird das Gasgemisch in einem Kompressor (34) komprimiert. In Figur 3 wird eine weitere Ausführungsform der erfindungsgemäßen Anlage bzw. des erfindungsgemäßen Verfahren im Einzelnen erläutert.The nitric acid system shown consists of an ammonia evaporator (14), gas heater (15), ammonia gas filter (16), ammonia-air mixer (17), air supply (18), air filter (19) and air compressor (20). In these devices, the ammonia fed through line (12) or the air required for ammonia combustion and fed through line (18) is conditioned and mixed. The ammonia-air mixture is then burned to oxides of nitrogen in an ammonia burner with a waste heat boiler (22) and via residual gas heater II (23), gas cooler I (24), nitrogen oxide compressor (25), residual gas heater I (26) and gas cooler II (27) fed to an absorption tower (28). The waste heat boiler (22) is connected in a manner known per se to a steam drum (42) in which steam is circulated through a condensation steam turbine (43) followed by a condenser (45). In the absorption tower (28), the oxides of nitrogen generated are converted into nitric acid by contact with water. This leaves the absorption tower (28) via a nitric acid degasser (29) and the nitric acid is then discharged from the system via line (30). The oxides of nitrogen recovered from the nitric acid degasser (29) are drawn off and returned to the nitrogen oxide compressor (25). The residual gas containing nitrogen and oxides of the nitrogen from the absorption tower (28) is passed through the residual gas heaters I and II (26, 23) for heat recovery and then into the residual gas expansion turbine (31). From there, the expanded residual gas, together with some of the air coming from the air compressor (20), is returned through line (32) to the second reformer (5) of the ammonia system. Additional process air can be fed to the residual gas via line (33). Before being introduced into the second reformer (5), the gas mixture is compressed in a compressor (34). A further embodiment of the system according to the invention or of the method according to the invention is explained in detail in FIG.
Dargestellt ist die Skizze einer weiteren kombinierten Anlage zur Erzeugung von Ammoniak mit einer nachgeschalteten Salpetersaureanlage.The sketch shows another combined plant for the production of ammonia with a downstream nitric acid plant.
Das gasförmige Kohlenwasserstoff(gemisch) (1) wird durch eine Entschwefelungsstufe (2) geleitet und sodann zusammen mit Wasserdampf (3) in einen ersten Reformer (4) geleitet. Darin erfolgt die thermische Spaltung des überwiegenden Teils des Kohlenwasserstoffs in Wasserstoff, Kohlendioxid und Kohlenmonoxid. Der Reformer wird durch nicht dargestellte Brenner in an sich bekannter Weise geheizt.The gaseous hydrocarbon (mixture) (1) is passed through a desulfurization stage (2) and then passed together with water vapor (3) into a first reformer (4). This is where the majority of the hydrocarbon is thermally split into hydrogen, carbon dioxide and carbon monoxide. The reformer is heated by burners, not shown, in a manner known per se.
Das den ersten Reformer (4) verlassende Synthesegasgemisch wird in einen zweiten Reformer (5) eingeleitet. Über Leitung (47) wird dem zweiten Reformer (5) eine ausgewählte Menge an Luft zugeleitet, um verbliebenes Erdgas oder Methan zu verbrennen und um den für die Ammoniaksynthese benötigten Stickstoff in das System einzutragen. Durch die Verbrennung des Erdgases oder Methans heizt sich das Synthesegasgemisch auf und es kommt zu einer weiteren Spaltung eines Teils des Methans. Das den zweiten Reformer (5) verlassende Synthesegasgemisch wird durch einen Wärmetauscher (6) geleitet, anschließend durch eine Stufe (7) zur Umwandlung des Kohlenmonoxids in Kohlendioxid. Über Leitung (40) wird der Stufe (7) Kesselspeisewasser zugeführt, welches diesen über Leitung (44) nach Passage des Wärmetauschers (6) als Hochdruckdampf verlässt. Nach Veriassen der Stufe (7) wird das Synthesegasgemisch durch eine Absorptionsstufe (8) geleitet, in der das Kohlendioxid abgetrennt und über Leitung (39) ausgeschleust wird. Die in dieser Stufe (7) zurückgewonnene Wärmeenergie kann zur Erzeugung von Wasserdampf für den ersten Reformer (4) verwendet werden.The synthesis gas mixture leaving the first reformer (4) is introduced into a second reformer (5). A selected amount of air is fed via line (47) to the second reformer (5) in order to burn remaining natural gas or methane and to introduce the nitrogen required for the ammonia synthesis into the system. The synthesis gas mixture heats up due to the combustion of the natural gas or methane, and part of the methane is further split. The synthesis gas mixture leaving the second reformer (5) is passed through a heat exchanger (6), then through a stage (7) for converting the carbon monoxide into carbon dioxide. Boiler feed water is fed via line (40) to stage (7), which leaves it via line (44) after passage of the heat exchanger (6) as high-pressure steam. After leaving stage (7), the synthesis gas mixture is passed through an absorption stage (8), in which the carbon dioxide is separated off and discharged via line (39). The heat energy recovered in this stage (7) can be used to generate water vapor for the first reformer (4).
Nach der Entfernung von Kohlendioxid wird das Synthesegasgemisch durch eine Methanisierungsstufe (9) geleitet, um letzte Spuren von Kohlenmonoxid und Kohlendioxid durch katalytische Reduktion in Methan zu überführen. Danach wird das Synthesegas in einem Kompressor (10) komprimiert und in einen Reaktor (11) für die Ammoniaksynthese geleitet, der in an sich bekannter Weise durch Zirkulieren des Reaktionsgasgemisches betrieben wird. Das den Reaktor (11) verlassende Gas wird in eine kryotechnische Stufe (35) eingeleitet, in welcher Ammoniak durch Kondensation aus dem Gas abgetrennt wird. Das verbleibende Gas wird erneut komprimiert und dem Reaktor (11 ) zugeführt. Der Ammoniak wird über eine Leitung (12) in eine Salpatersäureanlage eingeleitet. Um ein Anreichen von Inerten im Ammoniak-Synthesekreislauf zu verhindern wird kontinuierlich über Leitung (41 ) ein Purgegasstrom abgezogen. Dieser wird in eine H2-Rückgewinnung (36) geleitet, in welcher Wasserstoff zurückgewonnen wird. Der Wasserstoff wird vor dem Kompressor (10) über Leitung (37) in den Prozess zurückgeführt. Das verbleibende Abgas wird über Leitung (38) ausgeschleust und kann noch als Brennstoff zur Beheizung des Reformers (4) verwendet werden.After removal of carbon dioxide, the synthesis gas mixture is passed through a methanation stage (9) in order to convert last traces of carbon monoxide and carbon dioxide into methane by catalytic reduction. The synthesis gas is then compressed in a compressor (10) and passed into a reactor (11) for ammonia synthesis, which is operated in a manner known per se by circulating the reaction gas mixture. The gas leaving the reactor (11) is introduced into a cryogenic stage (35), in which ammonia is separated from the gas by condensation. The remaining gas is compressed again and fed to the reactor (11). The ammonia is introduced into a nitric acid system via a line (12). In order to prevent the accumulation of inerts in the ammonia synthesis circuit, a purge gas stream is continuously withdrawn via line (41). This is passed into an H 2 recovery (36), in which hydrogen is recovered. The hydrogen is returned to the process in front of the compressor (10) via line (37). The remaining exhaust gas is discharged via line (38) and can still be used as fuel for heating the reformer (4).
Die dargestellte Salpetersaureanlage besteht aus Ammoniakverdampfer (14), Gaserwärmer (15), Ammoniak-Gasfilter (16), Ammoniak-Luft-Mischer (17), Luftzuführung (18), Luftfilter (19) und Luftverdichter (20). In diesen Vorrichtungen wird der durch Leitung (12) zugeführte Ammoniak bzw. die für die Ammoniakverbrennung benötigte und durch Leitung (18) zugeführte Luft konditioniert und gemischt. Anschließend wird das Ammoniak-Luft-Gemisch in einem Ammoniakbrenner mitThe nitric acid system shown consists of an ammonia evaporator (14), gas heater (15), ammonia gas filter (16), ammonia-air mixer (17), air supply (18), air filter (19) and air compressor (20). In these devices, the ammonia fed through line (12) or the air required for ammonia combustion and fed through line (18) is conditioned and mixed. The ammonia-air mixture is then mixed in an ammonia burner
Abhitzekessel (22) zu Oxiden des Stickstoffs verbrannt und über Restgaserhitzer II (23), Gaskühler I (24), Stickoxid-Verdichter (25), Restgaserhitzer I (26) und Gaskühler II (27) einem Absorptionsturm (28) zugeleitet. Der Abhitzekessel (22) ist in an sich bekannter Weise mit einer Dampftrommel (42) verschaltet, in der Dampf durch eine Kondensationsdampfturbine (43) gefolgt von einem Kondensator (45) im Kreislauf geführt wird. In dem Absorptionsturm (28) werden die erzeugten Oxide des Stickstoffs durch Kontakt mit Wasser in Salpetersäure übergeführt. Diese verlässt den Absorptionsturm (28) über einen Salpetersäure-Entgaser (29) und die Salpetersäure wird anschließend über Leitung (30) aus der Anlage ausgeschleust. Die aus dem Salpetersäure-Entgaser (29) zurückgewonnenen Oxide des Stickstoffs werden abgezogen und in den Stickoxid-Verdichter (25) rückgeführt. Das Stickstoff und Oxide des Stickstoffs enthaltende Restgas aus dem Absorptionsturm (28) wird zwecks Wärmerückgewinnung durch die Restgaserhitzer I und II (26, 23) geleitet und sodann zusammen mit einem Teil der aus dem Luftverdichter (20) stammenden Luft durch die Leitung (46) in den zweiten Reformer (5) der Ammoniakanlage zurückgeführt. Vor dem Einleiten in den zweiten Reformer (5) wird das Gasgemisch in einem Kompressor (34) komprimiert.Waste heat boiler (22) burned to oxides of nitrogen and fed to an absorption tower (28) via residual gas heater II (23), gas cooler I (24), nitrogen oxide compressor (25), residual gas heater I (26) and gas cooler II (27). The waste heat boiler (22) is connected in a manner known per se to a steam drum (42) in which steam is circulated through a condensation steam turbine (43) followed by a condenser (45). In the absorption tower (28), the oxides of nitrogen generated are converted into nitric acid by contact with water. This leaves the absorption tower (28) via a nitric acid degasser (29) and the nitric acid is then discharged from the system via line (30). The oxides of nitrogen recovered from the nitric acid degasser (29) are drawn off and returned to the nitrogen oxide compressor (25). The residual gas containing nitrogen and oxides of nitrogen from the absorption tower (28) is used Heat recovery passed through the residual gas heaters I and II (26, 23) and then returned together with part of the air from the air compressor (20) through the line (46) into the second reformer (5) of the ammonia system. Before being introduced into the second reformer (5), the gas mixture is compressed in a compressor (34).
Die in Fig. 3 dargestellte Verfahrensvariante unterscheidet sich von der in Fig.2 dargestellten Verfahrensvariante dadurch, dass die erforderliche Luftzufuhr (33) in Fig. 2 durch einen vermehrten Lufteinsatz (18) in Fig. 3 ersetzt wird. Hierdurch entfällt die Restgasentspannungsturbine (31) und die drucklose Leitung (32) wird durch die kleinere Druckleitung (46) ersetzt, was beides Vorteile der Erfindung sind. Die zusätzlich aufzubringende Verdichtungsleistung im Verdichter (20) wird voll ausgeglichen durch die eingesparte Leistung des Verdichters (34), der bei höherem Ausgangsdruck arbeitet, weswegen den Einsparungen keine Mehraufwendungen entgegenstehen. The method variant shown in FIG. 3 differs from the method variant shown in FIG. 2 in that the required air supply (33) in FIG. 2 is replaced by an increased use of air (18) in FIG. 3. This eliminates the residual gas expansion turbine (31) and the pressure-free line (32) is replaced by the smaller pressure line (46), both of which are advantages of the invention. The additional compression performance to be applied in the compressor (20) is fully compensated for by the saved performance of the compressor (34), which works at a higher outlet pressure, which is why there are no additional expenses to counter the savings.

Claims

Patentansprüche claims
1. Verfahren zur Verringerung der Emission von Oxiden des Stickstoffs bei der Salpetersäureproduktion umfassend die Maßnahmen: i) Erzeugen von Ammoniak durch katalytische Umsetzung von Stickstoff mit Wasserstoff in einer Ammoniakanlage (100), ii) Einleiten des erzeugten Ammoniaks in eine Salpetersaureanlage (200), iii) Verbrennung des Ammoniaks zu Oxiden des Stickstoffs in der Salpetersaureanlage (200), iv) Waschen des Oxide des Stickstoffs enthaltenden Gases mit Wasser in mindestens einem stromabwärts zur Ammoniakverbrennung angeordneten Absorptionsturm zur Erzeugung von Salpetersäure, und v) Rückführung zumindest eines Teils des die Salpetersaureanlage (200) verlassenden, Oxide des Stickstoffs enthaltenden Restgases in die Ammoniakanlage (100).1. A method for reducing the emission of oxides of nitrogen in nitric acid production, comprising the measures: i) generation of ammonia by catalytic conversion of nitrogen with hydrogen in an ammonia plant (100), ii) introduction of the ammonia produced into a nitric acid plant (200), iii) combustion of the ammonia to oxides of nitrogen in the nitric acid plant (200), iv) washing the oxides of the nitrogen-containing gas with water in at least one absorption tower arranged downstream for the ammonia combustion to produce nitric acid, and v) recycling of at least a part of the nitric acid plant (200) leaving residual gas containing oxides of nitrogen into the ammonia plant (100).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das gesamte die Salpetersaureanlage (200) verlassende Oxide des Stickstoffs enthaltende Restgas in die Ammoniakanlage (100) zurückgeführt wird und zusammen mit Stickstoff aus zugesetzter Luft als Stickstoffquelle für die Ammoniaksynthese eingesetzt wird.2. The method according to claim 1, characterized in that the entire residual gas containing oxides of nitrogen leaving the nitric acid plant (200) is returned to the ammonia plant (100) and is used together with nitrogen from added air as a nitrogen source for the ammonia synthesis.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Wasserstoff in der Ammoniakanlage (100) durch katalytische Dehydrogenierung von Kohlenwasserstoffen, vorzugsweise von Erdgas oder Methan, in Gegenwart von Wasserdampf in einer Kombination von Primär- und Sekundärreformer (101 , 102) erzeugt wird, und dass das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) in den Sekundärreformer (102) und/oder zwischen den Primärreformer (101 ) und den Sekundärreformer (102) eingeleitet wird. 3. The method according to claim 1, characterized in that the hydrogen in the ammonia plant (100) is generated by catalytic dehydrogenation of hydrocarbons, preferably natural gas or methane, in the presence of water vapor in a combination of primary and secondary reformer (101, 102) , and that the residual gas containing oxides of nitrogen is introduced from the nitric acid plant (200) into the secondary reformer (102) and / or between the primary reformer (101) and the secondary reformer (102).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das aus der Salpetersaureanlage (200) rückgeführte, Oxide des Stickstoffs enthaltende Restgas in den Sekundärreformer (102) eingeleitet wird, bevorzugt in den Lufteingang des Sekundärreformers (102).4. The method according to claim 3, characterized in that the recycled from the nitric acid plant (200) containing oxides of nitrogen residual gas is introduced into the secondary reformer (102), preferably into the air inlet of the secondary reformer (102).
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Wasserstoff in der Ammoniakanlage (100) durch katalytische Dehydrogenierung von Kohlenwasserstoffen, vorzugsweise von Erdgas oder Methan, in Gegenwart von Wasserdampf in einer Kombination von Primär- und Sekundärreformer (101 , 102) erzeugt wird, und dass das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) nach dem Sekundärreformer (102) aber vor dem Reaktor für die Ammoniaksynthese (103) eingeleitet wird, vorzugsweise direkt nach dem Sekundärreformer (102).5. The method according to claim 1, characterized in that the hydrogen in the ammonia plant (100) is generated by catalytic dehydrogenation of hydrocarbons, preferably natural gas or methane, in the presence of water vapor in a combination of primary and secondary reformer (101, 102) , and that the residual gas containing oxides of nitrogen is introduced from the nitric acid plant (200) after the secondary reformer (102) but before the reactor for ammonia synthesis (103), preferably directly after the secondary reformer (102).
6. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Wasserstoff in der Ammoniakanlage (100) in mindestens einem mit Sauerstoff, mit Luft oder mit angereicherter Luft betriebenem autothermem Reformer („ATR") erzeugt wird, und dass zumindest ein Teil des aus der Salpetersaureanlage (200) rückgeführten, Oxide des Stickstoffs enthaltenden Restgases in den ATR, insbesondere in den für den ATR bestimmten sauerstoffhaltigen Strom eingeleitet wird.6. The method according to claim 1, characterized in that the hydrogen in the ammonia plant (100) is generated in at least one autothermal reformer (“ATR”) operated with oxygen, air or enriched air, and that at least part of the Nitric acid system (200) recycled, oxides of nitrogen containing residual gas is introduced into the ATR, in particular into the oxygen-containing stream intended for the ATR.
7. Anlage zur Salpetersäureproduktion umfassend die Elemente: A) Ammoniakanlage (100) zum Erzeugen von Ammoniak durch katalytische Umsetzung von Stickstoff mit Wasserstoff, die mit B) einer Salpetersaureanlage (200) verbunden ist, in der aus dem erzeugten Ammoniak durch Verbrennung Oxide des Stickstoffs erzeugt werden, die C) stromabwärts zur Ammoniakverbrennung mindestens einen Absorptionsturm aufweist, in dem das Oxide des Stickstoffs enthaltende Gas mit Wasser gewaschen wird, wodurch Salpetersäure erzeugt wird, und die D) m indestens eine Leitung (201 ) aufweist, durch die zumindest ein Teil des die Salpetersaureanlage (200) verlassenden, Oxide des Stickstoffs enthaltenden Restgases in die Ammoniakanlage (100) zurückgeführt wird.7. Plant for nitric acid production comprising the elements: A) ammonia plant (100) for generating ammonia by catalytic conversion of nitrogen with hydrogen, which is connected to B) a nitric acid plant (200) in which from the ammonia generated by combustion oxides of nitrogen C) has at least one absorption tower downstream of the ammonia combustion, in which the gas containing oxides of the nitrogen is washed with water, thereby producing nitric acid, and the D) has at least one line (201) through which at least a portion of the residual gas containing oxides of nitrogen leaving the nitric acid system (200) is returned to the ammonia system (100).
8. Anlage nach Anspruch 7, dadurch gekennzeichnet, dass die Ammoniakanlage (100) eine Kombination von Primär- und Sekundärreformer (101 , 102) aufweist, in welcher der für die Ammoniakerzeugung benötigte Wasserstoff erzeugt wird, und die mindestens eine Leitung (201 ) aufweist, durch die das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) in den Sekundärreformer (102) eingeleitet wird.8. Plant according to claim 7, characterized in that the ammonia plant (100) has a combination of primary and secondary reformer (101, 102), in which the hydrogen required for the production of ammonia is generated, and which has at least one line (201) , through which the residual gas containing oxides of nitrogen is introduced from the nitric acid plant (200) into the secondary reformer (102).
9. Anlage nach Anspruch 8, dadurch gekennzeichnet, dass die Leitung (201 ) für das Oxide des Stickstoffs enthaltende Restgas in den Lufteingang des Sekundärreformers (102) mündet.9. Plant according to claim 8, characterized in that the line (201) for the oxides of nitrogen-containing residual gas opens into the air inlet of the secondary reformer (102).
10. Anlage nach Anspruch 7, dadurch gekennzeichnet, dass die Ammoniakanlage (100) eine Kombination von Primär- und Sekundärreformer (101 , 102) aufweist, in welcher der für die Ammoniakerzeugung benötigte Wasserstoff erzeugt wird, und die mindestens eine Leitung (201) aufweist, durch die das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) nach dem Sekundärreformer (102) aber vor dem Reaktor für die Ammoniaksynthese (103) eingeleitet wird.10. Plant according to claim 7, characterized in that the ammonia plant (100) has a combination of primary and secondary reformer (101, 102), in which the hydrogen required for the production of ammonia is generated, and which has at least one line (201) , through which the residual gas containing the oxides of nitrogen is introduced from the nitric acid plant (200) after the secondary reformer (102) but before the reactor for ammonia synthesis (103).
11. Anlage nach Anspruch 7, dadurch gekennzeichnet, dass die Ammoniakanlage (100) eine Kombination von Primär- und Sekundärreformer (101 , 102) aufweist, in welcher der für die Ammoniakerzeugung benötigte Wasserstoff erzeugt wird, und dass die Anlage mindestens eine Leitung (201) aufweist, durch die das Oxide des Stickstoffs enthaltende Restgas aus der Salpetersaureanlage (200) direkt nach dem Sekundärreformer (102) in die Anlage zurückgeführt wird. 11. Plant according to claim 7, characterized in that the ammonia plant (100) has a combination of primary and secondary reformer (101, 102), in which the hydrogen required for the generation of ammonia is generated, and that the plant has at least one line (201 ), through which the residual gas containing oxides of nitrogen is returned from the nitric acid plant (200) directly after the secondary reformer (102) into the plant.
12. Anlage nach Anspruch 7, dadurch gekennzeichnet, dass diese mindestens einen mit Sauerstoff, mit Luft oder mit angereicherter Luft betriebenen autothermen Reformer („ATR") umfaßt, in dem Wasserstoff für die Ammoniaksynthese erzeugt wird, und mindestens eine Leitung (201), durch die zumindest ein Teil des aus der Salpetersaureanlage (200) rückgeführten, Oxide des Stickstoffs enthaltenden Restgases in den ATR, insbesondere in den für den ATR bestimmten sauerstoffhaltigen Strom, zurückgeführt wird.12. Plant according to claim 7, characterized in that it comprises at least one autothermal reformer (“ATR”) operated with oxygen, air or with enriched air, in which hydrogen is generated for the ammonia synthesis, and at least one line (201), through which at least part of the residual gas containing oxides of nitrogen returned from the nitric acid plant (200) is returned to the ATR, in particular to the oxygen-containing stream intended for the ATR.
13. Verwendung des Oxide des Stickstoffs enthaltenden Restgases aus der Salpetersäureproduktion als Stickstoffquelle für die Ammoniaksynthese. 13. Use of the oxides of nitrogen-containing residual gas from nitric acid production as a nitrogen source for ammonia synthesis.
EP05707502A 2004-02-23 2005-02-18 Method for producing nitric acid and plant suitable for carrying out said method Withdrawn EP1720799A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200410008745 DE102004008745A1 (en) 2004-02-23 2004-02-23 Reducing nitrogen oxide emission during nitric acid preparation comprises catalytically producing ammonia; providing and combusting the ammonia in a nitric acid plant; washing nitrogen oxide containing gas; and recycling residual gas
DE102004035775A DE102004035775A1 (en) 2004-07-23 2004-07-23 Reduction of nitrogen oxide emissions in nitric acid production via ammonia combustion involves recycling gases leaving the nitric acid plant to the ammonia production plant
PCT/EP2005/001692 WO2005082779A2 (en) 2004-02-23 2005-02-18 Method for producing nitric acid and plant suitable for carrying out said method

Publications (1)

Publication Number Publication Date
EP1720799A2 true EP1720799A2 (en) 2006-11-15

Family

ID=34913330

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05707502A Withdrawn EP1720799A2 (en) 2004-02-23 2005-02-18 Method for producing nitric acid and plant suitable for carrying out said method

Country Status (2)

Country Link
EP (1) EP1720799A2 (en)
WO (1) WO2005082779A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008027232B3 (en) * 2008-06-06 2009-09-03 Uhde Gmbh Blocking of the NO compressor and the residual gas expander in a nitric acid plant
DE102011016759A1 (en) * 2011-04-12 2012-10-18 Thyssenkrupp Uhde Gmbh Preparing ammonia comprises conducting alkane dehydrogenation to produce hydrogen-rich stream, purifying the stream, optionally mixing purified nitrogen with hydrogen-rich stream, compressing the stream, preparing ammonia and liquefying
EP3299336A1 (en) * 2016-09-23 2018-03-28 Casale SA A process for nitric acid production
DE102016220184A1 (en) 2016-10-17 2018-04-19 Thyssenkrupp Ag Process and plant for the production of nitric acid
CA3067442A1 (en) 2017-06-27 2019-01-03 Casale Sa Process for argon and nitrogen production
EP3567006A1 (en) * 2018-05-08 2019-11-13 Casale Sa A process for nitric acid production
EP4421040A1 (en) 2023-02-27 2024-08-28 Yara International ASA System for integrated nitric acid and ammonia production and method of production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2940840A (en) * 1956-12-31 1960-06-14 Hercules Powder Co Ltd Hydrocarbon conversion process
US3927182A (en) * 1971-02-25 1975-12-16 James Basil Powell Process for making nitric acid by the ammonia oxidation-nitric oxide oxidation-water absorption method
US4668494A (en) * 1984-12-24 1987-05-26 Foster Wheeler Energy Corporation Method of using solar energy in a chemical synthesis process
DE10001541B4 (en) * 2000-01-14 2005-04-28 Uhde Gmbh Process for the removal of NOx and N¶2¶O from the residual gas of nitric acid production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005082779A2 *

Also Published As

Publication number Publication date
WO2005082779A3 (en) 2006-04-06
WO2005082779A2 (en) 2005-09-09

Similar Documents

Publication Publication Date Title
DE10334590B4 (en) Process for the production of hydrogen from a methane-containing gas, in particular natural gas and plant for carrying out the process
EP1751080B1 (en) Coproduction of methanol and ammonia from natural gas
EP0816290B1 (en) Process for the production of carbon monoxide and hydrogen
DD300875A5 (en) PROCESS FOR GENERATING METHANOL SYNTHESEGAS
EP4098610A1 (en) Method and installation for producing pure hydrogen by steam reforming with low carbon dioxide emissions
EP3176152B1 (en) Method for preparing urea
EP2485980B1 (en) Method for operating an igcc power plant process having integrated co2 separation
WO2018091593A1 (en) Method for the combined production of methanol and ammonia
DE102011016759A1 (en) Preparing ammonia comprises conducting alkane dehydrogenation to produce hydrogen-rich stream, purifying the stream, optionally mixing purified nitrogen with hydrogen-rich stream, compressing the stream, preparing ammonia and liquefying
WO2005082779A2 (en) Method for producing nitric acid and plant suitable for carrying out said method
WO2018166865A1 (en) Method and installation for creating and preparing a synthesis gas mixture
EP2134648A2 (en) Method for producing sulphuric acid and installation for carrying out said method
DE102018210921A1 (en) Prevention of VOC and HAP emissions from the degasser of synthesis gas processing plants
WO2020007627A1 (en) Method for avoiding voc and hap emissions from synthesis gas-processing systems
DE2828001A1 (en) METHOD FOR PRODUCTION OF HYDROGEN
DE2911669A1 (en) Hydrogen mfr. from hydrocarbon(s) by steam reforming and adsorption - with combustion and/or recirculation of purging gas after carbon di:oxide sepn.
DE10116152A1 (en) Process for the production of ammonia from methanol
EP3075706A1 (en) Method and a plant for the production of synthesis gas
DE102021210549A1 (en) Process for the synthesis of ammonia and plant for the production of ammonia
DE102004008745A1 (en) Reducing nitrogen oxide emission during nitric acid preparation comprises catalytically producing ammonia; providing and combusting the ammonia in a nitric acid plant; washing nitrogen oxide containing gas; and recycling residual gas
DE102004035775A1 (en) Reduction of nitrogen oxide emissions in nitric acid production via ammonia combustion involves recycling gases leaving the nitric acid plant to the ammonia production plant
LU103144B1 (en) Catalytic decomposition of ammonia using water vapor as a heat transfer medium
DE2943356A1 (en) Combined ammonia and methanol synthesis - from air and hydrocarbon(s), using high purity hydrogen and nitrogen
DE69801883T2 (en) OXYGEN AND NITROGEN ADDITIVES TO INCREASE THE YIELD OF PRODUCING AMMONIA
EP4098609A1 (en) Method and installation for the production of pure hydrogen by means of steam reforming with reduced carbon dioxide emissions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061006

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP UHDE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110901