[go: up one dir, main page]

EP1658390B1 - Method for producing a hardened steel part - Google Patents

Method for producing a hardened steel part Download PDF

Info

Publication number
EP1658390B1
EP1658390B1 EP04739755.9A EP04739755A EP1658390B1 EP 1658390 B1 EP1658390 B1 EP 1658390B1 EP 04739755 A EP04739755 A EP 04739755A EP 1658390 B1 EP1658390 B1 EP 1658390B1
Authority
EP
European Patent Office
Prior art keywords
zinc
coating
corrosion protection
sheet
high oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04739755.9A
Other languages
German (de)
French (fr)
Other versions
EP1658390A1 (en
Inventor
Martin Fleischanderl
Siegfried Kolnberger
Josef Faderl
Gerald Landl
Anna Elisabeth Raab
Werner BRANDSTÄTTER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34275147&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1658390(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from AT0120303A external-priority patent/AT412878B/en
Priority claimed from AT12022003A external-priority patent/AT412403B/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP1658390A1 publication Critical patent/EP1658390A1/en
Application granted granted Critical
Publication of EP1658390B1 publication Critical patent/EP1658390B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/04Stamping using rigid devices or tools for dimpling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • C21D2251/02Clad material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for producing a hardened steel component with cathodic corrosion protection, as well as a corrosion protection for steel sheets, as well as components made of steel sheets with the corrosion protection.
  • Low alloy steel sheets are not resistant to corrosion after being produced by suitable forming steps, either by hot rolling or cold rolling. This means that after a relatively short time and due to the humidity at the surface, oxidation occurs.
  • a corrosion protection layer is a layer produced on a metal or in the near-surface region of a metal, which consists of one or more layers. Multi-layer coatings are also referred to as corrosion protection systems.
  • Possible corrosion protection layers are, for example, organic coatings, inorganic coatings and metallic coatings.
  • the purpose of metallic corrosion protection layers is to transfer the properties of the support material to the steel surface for as long as possible. Accordingly, the choice of an effective metallic corrosion protection requires the knowledge of the corrosion-chemical relationships in the system steel / coating metal / attacking medium.
  • the coating metals can be electrochemically nobler or electrochemically less noble than steel.
  • the respective coating metal protects the steel only through the formation of protective layers.
  • barrier protection As soon as the surface of the coating metal has pores or was injured, a "local element" forms in the presence of moisture, in which the base partner is attacked by the metal to be protected.
  • the more noble coating metals include tin, nickel and copper.
  • Metallic protective layers are applied by various methods. Depending on the metal and process, the connection of the steel surface is chemical, physical or mechanical and ranges from alloy formation and diffusion to adhesion and mere mechanical clamping.
  • the metallic coatings are said to have similar technological and mechanical properties to steel as they do to steel, and to behave similarly to steel in terms of mechanical stress or plastic deformation. Accordingly, the coatings should not be damaged during forming and should not be affected by forming operations.
  • the metal to be protected is immersed in molten metal melts.
  • corresponding alloy layers are formed at the phase boundary steel-coating metal.
  • An example of this is the hot dip galvanizing.
  • Hot-dip galvanized products have high corrosion resistance, good weldability and formability, and their main applications are the construction, automotive and household appliance industries.
  • a coating of a zinc-iron alloy is known.
  • these products are subjected to a diffusion annealing at temperatures above the zinc melting point, usually between 480 ° C and 550 ° C after hot-dip galvanizing.
  • the zinc-iron alloy layers grow and absorb the overlying zinc layer. This process is called "galvannealing".
  • the zinc-iron alloy thus produced also has a high corrosion resistance, good weldability and formability.
  • Main applications are the automotive and home appliance industry.
  • other coatings of aluminum, aluminum-silicon, zinc-aluminum and aluminum-zinc-silicon can be produced by hot dipping.
  • electrodeposited metal coatings i. the electrolytic, so under current passage deposition of metallic coatings of electrolytes.
  • electrolytic coating is also possible with such metals, which can not be applied by hot dip process.
  • Conventional layer thicknesses in electrolytic coatings are usually between 2.5 and 10 microns, they are thus generally lower than hot-dip coatings.
  • Some metals, e.g. Zinc, also allow thick film coatings with electrolytic coating.
  • Electrolytically galvanized sheets are mainly used in the automotive industry, because of the high surface quality, these sheets are used above all in the outer skin area. They have good formability, weldability and storability as well as good paintable and matt surfaces.
  • the sheet is scaled on the surface by the heating, so that after forming and hardening the sheet surface must be cleaned, for example by sandblasting. Then the sheet is trimmed and, if necessary, necessary holes are punched.
  • the sheets have a very high hardness in the mechanical processing and therefore the processing is complicated and in particular a high tool wear exists.
  • the US 6,564,604 B2 The object of the invention is to provide steel sheets which are subsequently subjected to a heat treatment, and a method for producing parts by press-hardening these coated steel sheets. In this case, it should be ensured despite the increase in temperature that the steel sheet is not decarburized and the O-surface of the steel sheet is not oxidized before, during and after the hot pressing or heat treatment.
  • an alloyed intermetallic mixture should be applied to the surface before or after punching, which should provide protection against corrosion and decarburization and also can provide a lubricating function.
  • this document proposes to use a conventional, apparently electrolytically applied zinc layer, wherein this zinc layer is to convert with the steel substrate in a subsequent Austenit atmosphere the sheet substrate in a homogeneous Zn Fe Fe alloy layer.
  • This homogeneous layer structure is confirmed by microscopic images. Contrary to previous assumptions, this coating is said to have a mechanical resistance that prevents it from melting. In practice, however, such an effect does not show.
  • the use of zinc or zinc alloys is said to provide cathodic protection of the edges when Cuts are available.
  • the US 6,564,604 B2 For example, a coating consisting of 50% to 55% aluminum and 45% to 50% zinc with possibly small amounts of silicon is specified. Such a coating is not new in itself and known under the brand name Galvalume®. It is stated that the coating metals zinc and aluminum with iron should form a homogeneous zinc-aluminum-iron alloy coating. In the case of this coating, it is disadvantageous that sufficient cathodic corrosion protection is no longer achieved here, but the predominant barrier protection which is achieved with this is not sufficient when used in the press hardening process, since partial surface damage to the surface is unavoidable.
  • the method described in this document is unable to solve the problem that, in general, zinc-based cathodic corrosion coatings are not suitable for protecting steel sheets which are to be subjected to a heat treatment after coating and may also be subjected to a further shaping or forming step.
  • a method for producing a sheet metal component wherein the sheet on the surface should have an aluminum layer or an aluminum alloy layer.
  • a sheet provided with such coatings is to be subjected to a press hardening process, wherein possible coating alloys are mentioned Alloy with 9-10% silicon, 2-3.5% iron, balance aluminum with impurities and a second alloy with 2-4% iron and the balance aluminum with impurities.
  • Such coatings are known per se and correspond to the coating of a hot-dip aluminized steel sheet. In such a coating is disadvantageous in that only a so-called barrier protection is achieved. The moment that such a barrier layer is damaged or cracked in the Fe-Al layer, the base material, in this case the steel, is attacked and corroded. A cathodic protective effect is absent.
  • DE 10039375 A1 discloses a method for producing a corrosion protected steel sheet comprising the steps of: applying to a steel sheet a zinc coating by hot dipping in a zinc 5% aluminum melt, heating, alloying and curing (eg 950 ° C) in an atmosphere, wherein Oxide layer is formed on the surface and hot pressing of the coated steel sheet.
  • the DE 102 46 614 A1 proposes, therefore, to apply a coating as a metal or a metal alloy by means of a galvanic coating method in organic, non-aqueous solution, a particularly suitable and therefore preferred coating material being aluminum or an aluminum alloy.
  • a particularly suitable and therefore preferred coating material being aluminum or an aluminum alloy.
  • zinc or zinc alloys would be suitable.
  • Such a coated sheet can then be cold preformed and hot finished molded.
  • this method has the disadvantage that an aluminum coating, even if it was applied electrolytically, no longer offers corrosion protection in case of damage to the surface of the finished component, since the protective barrier has been broken.
  • an electrodeposited zinc coating it is disadvantageous that during heating for hot forming, the zinc is largely oxidized and no longer available for cathodic protection. Under a protective gas atmosphere, the zinc evaporates.
  • the object of the invention is to provide a method for producing a component from hardened steel sheet with an improved cathodic corrosion protection.
  • Another object is to provide a cathodic corrosion protection for steel sheets, which are subjected to forming and hardening.
  • the inventive method provides, on a hardenable steel sheet, a coating of a mixture consisting essentially of zinc and one or more oxygen-affine elements, such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese with a content of 0.1 to 15
  • a coating of a mixture consisting essentially of zinc and one or more oxygen-affine elements, such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese with a content of 0.1 to 15
  • Apply wt .-% of the oxygen affinity element and to heat the coated steel sheet at least partially with the access of oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and before or subsequently reshape the sheet is cooled after sufficient heating and the cooling rate is measured in that hardening of the sheet metal alloy takes place.
  • a hardened component is obtained from a steel sheet having a good cathodic corrosion protection.
  • the corrosion protection according to the invention for steel sheets, which are first subjected to a heat treatment and then reformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc.
  • a cathodic corrosion protection which is essentially based on zinc.
  • 0.1% to 15% of one or more oxygen-containing elements such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese or any mixture or alloy thereof are added to the zinc forming the coating. It has been found that such small amounts of an oxygen affinity element as magnesium, silicon, titanium, calcium, aluminum, boron and manganese cause a surprising effect in this particular application.
  • At least Mg, Al, Ti, Si, Ca, B, Mn are suitable as oxygen-affine elements.
  • aluminum is mentioned below, this is representative of the other elements mentioned.
  • the application of the coating according to the invention on a steel sheet can be done, for example, by so-called hot-dip galvanizing, i. a hot dip coating is performed wherein a liquid mixture of zinc and the oxygen-affine element (s) is applied. Furthermore, it is possible to electrolytically apply the coating, i. to deposit the mixture of zinc and the oxygen-affine element (s) collectively on the sheet surface, or first to deposit a zinc layer and then to deposit on the zinc surface one or more oxygen-affine elements in succession or any mixture or alloy thereof, or by vapor deposition or other suitable method deposit.
  • hot-dip galvanizing i. a hot dip coating is performed wherein a liquid mixture of zinc and the oxygen-affine element (s) is applied.
  • electrolytically apply the coating i. to deposit the mixture of zinc and the oxygen-affine element (s) collectively on the sheet surface, or first to deposit a zinc layer and then to deposit on the zinc surface one or more oxygen-affine elements in succession or any mixture or alloy thereof, or
  • an oxygen-affine element in particular aluminum
  • an essentially of AL 2 O 3 or an oxide of the oxygen-affine element MgO, CaO, TiO, SiO 2 , B 2 O 3 , MnO
  • This very thin oxide layer protects the underlying Zn-containing corrosion protection layer from oxidation even at very high temperatures.
  • an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer, with a high proportion of zinc and a very thin oxidation protection layer of one or more oxides (AL 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO) to oxidation and Evaporation is protected.
  • a 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO oxides
  • the corrosion protection layer according to the invention for the press-hardening process also has such a high stability that a forming step following the austenitizing of the sheets does not destroy this layer. Even if microcracks occur on the cured component, however, the cathodic protection effect is at least significantly greater than the protective effect of the known corrosion protection layers for the press-hardening process.
  • a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel plate, in particular an alloyed steel sheet are applied, whereupon in a second step, parts of the coated sheet are machined and in particular cut out or punched out and heated on access of atmospheric oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and then cooled at an increased speed.
  • a transformation of the cut out of the sheet metal part (the board) can be carried out before or after the heating of the sheet to the Austenitmaschinestemperatur.
  • the sheet when coating the sheet to the sheet surface or in the proximal region of the layer, a thin barrier phase of, in particular Fe 2 Al 5 -x Zn x is formed, which impedes the Fe-Zn diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C.
  • the sheet in the first process step, is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having.
  • the metal layer on the sheet is liquefied for the time being.
  • the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the aluminum metal concentration, which causes a steady diffusion of aluminum towards depletion, that is to the distal region.
  • This Tonerdeanreichtation, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.
  • the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer.
  • the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.
  • Well suited is, for example, a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably greater than 0.26 but less than 2.5 wt .-%.
  • the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal barrier phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it also takes place to improve the thermoforming properties of the sheet material.
  • An advantageous embodiment of the invention is given in a method in which a hot or cold rolled steel strip having a thickness of, for example, greater than 0.15 mm and a concentration range of at least one of the alloying elements within the limits in wt .-% carbon to 0.4, preferably 0.15 to 0.3 silicon until 19, preferably 0.11 to 1.5 manganese to 3.0, preferably 0.8 to 2.5 chrome to 1.5, preferably 0.1 to 0.9 molybdenum to 0, 9, preferably 0.1 to 0.5 nickel to 0, 9, titanium to 0.2 preferably 0.02 to 0.1 vanadium to 0.2 tungsten to 0.2, aluminum to 0.2, preferably 0.02 to 0.07 boron to 0.01, preferably 0.0005 to 0.005 sulfur Max. 0.01, preferably max. 0.008 phosphorus Max. 0.025, preferably max. 0.01 Rest iron and impurities is used.
  • the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.
  • the obtained samples were analyzed for optical and electrochemical differences.
  • Assessment criteria here were the appearance of the annealed steel sheets and the protection energy.
  • the protection energy is the measure for the electrochemical protection of the layer, determined by galvanostatic dissolution.
  • the electrochemical method of galvanostatic dissolution of the metallic surface coatings of a material allows to classify the mechanism of corrosion protection of the layer.
  • the potential-time behavior of a corrosion-protective layer is determined for a given constant current flow. For the measurements, a current density of 12.7 mA / cm 2 was specified.
  • the measuring arrangement is a three-electrode system.
  • the counterelectrode used was a platinum network, the reference electrode consisting of Ag / AgCl (3M).
  • the electrolyte consists of 100 g / l ZnSO 4 .5H 2 O and 200 g / l NaCl dissolved in deionized water.
  • the barrier protection is characterized by the fact that it separates the base material from the corrosive medium.
  • a hot-dip aluminized steel sheet is made by passing a steel sheet through a liquid aluminum bath. Annealing to 900 ° C produces an aluminum-iron surface layer due to the reaction of the steel with the aluminum coating. The corresponding annealed sheet shows a dark gray appearance, the surface is homogeneous and visually shows no defects.
  • a steel sheet was hot dip galvanized with an aluminum-zinc layer, the melt consisting of 55% aluminum, 44% zinc and about 1% silicon. After surface coating and subsequent annealing at 900 ° C, a gray-bluish surface appears without defects. A cross section is in FIG. 4 shown.
  • the annealed material is then subjected to galvanostatic dissolution.
  • the material shows a potential of about -0.92 V, which is necessary for the resolution, and is thus clearly below the steel potential.
  • This value is comparable to the potential needed to dissolve a hot dip galvanized coating prior to the annealing process.
  • this very zinc-rich phase ends after just about 350 seconds of measurement time. This is followed by a rapid increase to a potential that is now just below the steel potential lies.
  • the potential After breaking through this layer, the potential first drops to a value of about -0.54 V and then increases continuously to a value of about -0.35 V. Only then does it slowly sink to steel potential.
  • This material shows some cathodic corrosion protection due to the very negative potential at the beginning of the measurement, which is well below the steel potential, in addition to the barrier protection.
  • the part of the layer that provides cathodic protection against corrosion is used up after only about 350 seconds of measurement time.
  • the remaining layer can only offer a low cathodic corrosion protection, since the difference between the required potential for the layer dissolution and the steel potential now only less than 0.12 V. In a poorly conductive electrolyte, this part of the cathodic corrosion protection is no longer usable.
  • the potential-time diagram is in FIG. 5 shown.
  • a steel sheet is hot-dip galvanized with a melt consisting essentially of 95% zinc and 5% aluminum. After annealing, the sheet shows a silvery-gray surface with no defects.
  • FIG. 6 shows that the coating consists of a light phase and a dark phase, wherein the phases are Zn-Fe-Al-containing phases. The bright phases are more zinc-rich, the dark phases more iron-rich.
  • the galvanostatic dissolution shows a potential of about -0.7 V required for the resolution. This value is significantly below the potential of the steel. After a measuring time of approx. 1,000 seconds it turns a potential of about -0.6V. This potential is also clearly below the steel potential. After a measurement time of approximately 3,500 seconds, this part of the layer is used up and the necessary potential for dissolving the layer approaches the steel potential. This coating thus offers after the annealing in addition to the barrier protection a cathodic corrosion protection. The potential is up to a measuring time of 3,500 seconds at a value of ⁇ -0.6 V, so that a considerable cathodic protection is maintained over a long time, even if the sheet was fed to the austenitizing temperature.
  • the potential-time diagram is in FIG. 7 shown.
  • the sheet is passed through a melt or through a zinc bath, with a zinc content of 99.8% and an aluminum content of 0.2%.
  • Aluminum present in the zinc coating reacts with atmospheric oxygen during the calcination and forms a protective Al 2 O 3 skin. Through constant diffusion of the oxygen-affinity aluminum to the surface, this protective skin is maintained and expanded.
  • the sheet shows a silvery-gray surface without defects. From the originally about 15 microns thick zinc coating develops during the annealing due to diffusion, a about 20 to 25 microns thick layer, said layer ( FIG. 8 ) consists of a dark appearing phase with a composition Zn / Fe of about 30/70 and a bright area with the composition Zn / Fe of about 80/20.
  • the annealed material has a potential of approx. -0.75 V. After a measuring time of approx. 1,500 seconds, the potential required for the resolution increases to ⁇ -0.6 V. The phase lasts up to a measuring time of approx. 2,800 seconds. Then the required potential increases to steel potential. In this case too, in addition to barrier protection, there is cathodic corrosion protection. The potential is up to a measurement time of 2,800 seconds at a value of ⁇ -0.6 V. Thus, such a material has thus over a very long time a cathodic protection against corrosion.
  • the potential-time diagram is FIG. 9 refer to.
  • the sheet is heated to a temperature of about 500 ° C after exiting the metal strip from the molten zinc (about 450 ° C strip temperature).
  • the zinc layer is completely converted into Zn-Fe phases.
  • the zinc layer is thus wholly, i. converted to Zn-Fe phases to the surface.
  • This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%.
  • a 1 mm thick steel sheet with said heat treated and fully converted coating is heated for 4 minutes and 30 seconds in a 900 ° C oven.
  • the result is a yellow-green surface.
  • the yellow-green surface indicates oxidation of the Zn-Fe phases during annealing.
  • An aluminum oxide protective layer is undetectable. The reason for the absence of an aluminum oxide protective layer can be explained by the fact that in the Annealing treatment due to solid Zn-Fe phases, aluminum can not migrate to the surface so rapidly and protect the Zn-Fe coating from oxidation. When heating this material at temperatures around 500 ° C is still no liquid zinc-rich phase, because this forms only at higher temperatures of 782 ° C. If 782 ° C are reached, thermodynamically there is a liquid zinc-rich phase in which the aluminum is freely available. Nevertheless, the surface layer is not protected against oxidation.
  • the corrosion protection layer is already partially oxidized before and it can no longer form opaque alumina skin.
  • the layer is wavy rugged in cross section and consists of Zn and Zn Fe oxides ( FIG. 11 ).
  • the surface of the said material is much larger due to the highly crystalline acicular surface formation of the surface, which could also be disadvantageous for the formation of a covering and thicker aluminum oxide protective layer.
  • the said non-inventive coating forms in the initial state, ie not in the thermally treated state, a brittle layer which is provided with numerous cracks, both transversely and longitudinally to the coating. ( FIG. 10 in comparison to the aforementioned inventive example (left in the picture)).
  • a sheet, as in the aforementioned example, is heat-treated immediately after hot-dip galvanizing at about 490 ° C to 550 ° C with the zinc layer only partially converted to Zn-Fe phases.
  • the process is carried out in such a way that the phase transformation is only partially carried out and therefore not yet converted zinc with aluminum on the surface is present and thus free aluminum as oxidation protection for the zinc layer is available.
  • a 1 mm thick steel sheet is rapidly inductively heated to 900 ° C with the inventive heat-treated and only partially converted into Zn-Fe phase coating.
  • the result is a surface that is gray and without defects.
  • a SEM / EDX examination of the cross section shows an approximately 20 microns thick surface layer, wherein from the originally about 15 microns thick zinc coating of the coating has formed in the inductive annealing due to diffusion, an about 20 microns Zn-Fe layer, said layer with the typical for the invention two-phase structure a "leopard pattern" shows, with a dark phase in the image with a composition Zn / Fe of about 30/70 and bright areas with the composition Zn / Fe of about 80/20. In addition, individual areas with zinc contents ⁇ 90% zinc are present. On the surface a protective layer of alumina is detectable.
  • a sheet is electrolytically galvanized by electrochemical deposition of zinc on steel. During annealing, the diffusion of the steel and the zinc layer creates a thin Zn-Fe layer. Most of the zinc oxidizes to zinc oxide, which appears green by the simultaneous formation of iron oxides. The surface shows a green appearance with local scale marks where the zinc oxide layer does not adhere to the steel.
  • a REM / EDX examination ( FIG. 15 ) of the sample sheet in transverse section confirms that a large part of the coating consists of zinc-iron-oxide deposits.
  • the potential required for the current flow is included about +1 V and thus well above the steel potential.
  • the potential fluctuates between +0.8 and -0.1 V, but is above the steel potential throughout the entire dissolution of the coating. It follows that the corrosion protection of a annealed, electrolytically galvanized sheet is a pure barrier protection, but which is less efficient than with fumed sheet, since the potential is lower at the beginning of the measurement with electrolytically coated sheet than with hot-dip aluminized sheet.
  • the potential required for the dissolution lies above the steel potential throughout the entire dissolution. Thus, even with a annealed, electrolytically coated metal sheet there is no cathodic corrosion protection at any time.
  • the potential-time diagram is FIG. 16 refer to.
  • the potential is fundamentally above steel potential, but varies in detail depending on the experiment under identical experimental conditions.
  • a sheet is made by electroplating zinc and nickel on the steel surface.
  • the weight ratio of zinc to nickel in the anticorrosion layer is about 90/10.
  • the deposited layer thickness is 5 ⁇ m.
  • the sheet is annealed with the coating for 4 minutes and 30 seconds at 900 ° C in the presence of atmospheric oxygen.
  • the diffusion of the steel and the zinc layer creates a thin diffusion layer of zinc, nickel and iron.
  • most of the zinc oxidizes again to zinc oxide.
  • the surface shows a scaled, green appearance with small local flaking to which the oxide layer does not adhere to the steel.
  • FIG. 17 A SEM / EDX examination of a cross section ( FIG. 17 ) shows that the majority of the coating has been oxidized and is therefore not available for cathodic corrosion protection.
  • the potential required for the resolution of the layer is 1.5 V, far above the steel potential. After approx. 250 seconds it sinks to approx. 0.04 V and oscillates between + 0.25 V. After approx. 1.700 seconds measuring time, it finally settles to a value of - 0.27 V and remains until the end of the Measurement at this value.
  • the potential required for the resolution of the layer is well above the steel potential throughout the entire measurement time. Consequently, this coating has a pure barrier protection after annealing, without any cathodic corrosion protection (Figure 18).
  • Example 4 steel sheet with a layer thickness of 15 microns was placed for 4 min 30 s in a 900 ° C hot air blast furnace, then rapidly cooled between two 5 cm thick steel plates and the surface with a GDOES measurement analyzed.
  • FIGS. 25 and 26 the GDOES analyzes of the coated sheet according to Example 4 are shown before and after the annealing. Before hardening ( Fig. 25 ) is reached after about 15 microns, the transition zinc layer steel, after curing, the layer is about 23 microns thick.
  • the cathodic corrosion protection is negligible with a voltage difference of 100 mV to the steel potential in poorly conducting electrolytes.
  • a smaller difference to the steel potential is in principle still a cathodic corrosion protection, if a current flow is detected when using a steel electrode, but this is negligible for practical aspects, since the corrosive medium must conduct very well, so this contribution to the cathodic corrosion protection can be used.
  • the area between the potential curve at the galvanostatic dissolution and the specified threshold value of 100 mV was set below the steel potential ( FIG. 20 ). Only the area below the threshold is taken into account. The overlying surface contributes negligibly little or not at all to the cathodic corrosion protection and is therefore not included in the evaluation.
  • the area thus obtained is multiplied by the current density, the protection energy per unit area with which the base material can be actively protected against corrosion. The greater this energy, the better the cathodic corrosion protection.
  • FIG. 21 the calculated protective energies per unit area are compared. While a sheet with the known aluminum-zinc layer of 55% aluminum and 44% zinc, as it is also known from the prior art, only a protection energy per unit area of about 1.8 J / cm 2 , which is Protection energy per unit area in accordance with the invention coated sheets 5.6 J / cm 2 and 5.9 J / cm 2 .
  • cathodic corrosion protection in the context of the invention, it is subsequently specified that coatings of 15 ⁇ m thickness are used and the illustrated process and experimental conditions at least a cathodic corrosion protection energy of 4 J / cm 2 is present.
  • a zinc layer which has been deposited electrolytically on the steel sheet surface is not in itself capable of providing a corrosion protection according to the invention, even after a heating step above the austenitizing temperature.
  • the invention can also be achieved with an electrodeposited coating.
  • the zinc can be deposited simultaneously with the oxygen-affine elements or elements in an electrolysis step on the sheet surface simultaneously, so that on the sheet surface, a coating with a homogeneous structure is formed containing both zinc and the oxygen-affine or the elements.
  • a coating behaves like a coating of the same composition applied to the sheet surface in the hot-dip galvanizing process.
  • a first electrolysis step only zinc is deposited on the sheet surface and in a second electrolysis step, the oxygen-affine element (s) is deposited on the zinc layer.
  • the second coating of the oxygen-affine elements may be significantly thinner than the zinc coating.
  • the outer layer located on the zinc layer oxidizes from the oxygen-affine element (s) and protects the underlying zinc with an oxide skin.
  • the oxygen affinity element or elements are selected so that they do not evaporate from the zinc layer or are oxidized in a manner that does not leave a protective oxide skin.
  • first a zinc layer is deposited electrolytically and then a layer of the oxygen-affine element (s) is applied by vapor deposition or other suitable non-electrolytic coating methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Forging (AREA)

Abstract

Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection by: (a) application of a Zn coating to a hardenable steel alloy sheet; (b) roll profiling of the coated sheet with shaping into a roll-shaped profile strand; (c) heating of the coated steel sheet to the hardening temperature with admission of atmospheric oxygen, formation of a superficial oxide skin from oxygen-affine elements; and (d) cooling. Independent claims are included for: (1) a corrosion protection Zn layer for a steel sheet; (2) a hardened and profiled component in hardenable steel with a cathodically protected layer obtained as above.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines gehärteten Stahlbauteils mit kathodischem Korrosionsschutz, sowie einen Korrosionsschutz für Stahlbleche, sowie Bauteile aus Stahlblechen mit dem Korrosionsschutz.The invention relates to a method for producing a hardened steel component with cathodic corrosion protection, as well as a corrosion protection for steel sheets, as well as components made of steel sheets with the corrosion protection.

Niedrig legierte Stahlbleche, insbesondere für den Karosseriebau sind, nachdem sie durch geeignete Umformschritte entweder durch Warmwalzen oder Kaltwalzen erzeugt wurden, nicht korrosionsbeständig. Dies bedeutet, dass sich schon nach relativ kurzer Zeit und aufgrund der Luftfeuchtigkeit an der Oberfläche Oxidation einstellt.Low alloy steel sheets, especially for bodywork, are not resistant to corrosion after being produced by suitable forming steps, either by hot rolling or cold rolling. This means that after a relatively short time and due to the humidity at the surface, oxidation occurs.

Es ist bekannt, Stahlbleche vor Korrosion mit entsprechenden Korrosionsschutzschichten zu schützen. Nach DIN-50900, Teil 1 ist Korrosion die Reaktion eines metallischen Werkstoffs mit seiner Umgebung, die eine messbare Veränderung des Werkstoffs bewirkt und zu einer Beeinträchtigung der Funktion eines metallischen Bauteils oder eines ganzen Systems führen kann. Um Korrosionsschäden zu vermeiden, wird Stahl üblicherweise geschützt, damit er den Korrosionsbelastungen während der geforderten Nutzungsdauer Stand hält. Die Vermeidung von Korrosionsschäden kann durch die Beeinflussung der Eigenschaften der Reaktionspartner und/oder durch Änderungen der Reaktionsbedingungen, Trennung des metallischen Werkstoffs vom korrosiven Medium durch aufgebrachte Schutzschichten sowie durch elektrochemische Maßnahmen erfolgen.It is known to protect steel sheets from corrosion with corresponding anti-corrosion layers. According to DIN-50900, Part 1, corrosion is the reaction of a metallic material with its environment, which causes a measurable change in the material and can lead to a deterioration in the function of a metallic component or an entire system. In order to avoid corrosion damage, steel is usually protected so that it can withstand the corrosion loads during the required service life. The avoidance of corrosion damage can be achieved by influencing the properties of the reactants and / or by changing the reaction conditions, separating the metallic material from the corrosive Medium done by applied protective layers and by electrochemical measures.

Nach DIN 50902 ist eine Korrosionsschutzschicht eine auf einem Metall oder im oberflächennahen Bereich eines Metalls hergestellte Schicht, die aus einer oder mehreren Lagen besteht. Mehrlagige Schichten werden auch als Korrosionsschutzsysteme bezeichnet.According to DIN 50902, a corrosion protection layer is a layer produced on a metal or in the near-surface region of a metal, which consists of one or more layers. Multi-layer coatings are also referred to as corrosion protection systems.

Mögliche Korrosionsschutzschichten sind beispielsweise organische Beschichtungen, anorganische Beschichtungen und metallische Überzüge. Der Sinn metallischer Korrosionsschutzschichten besteht darin, der Stahloberfläche für einen möglichst langen Zeitraum die Eigenschaften des Auflagewerkstoffes zu übertragen. Die Wahl eines wirksamen metallischen Korrosionsschutzes setzt dementsprechend die Kenntnis der korrosionschemischen Zusammenhänge im System Stahl/Überzugsmetall/angreifendes Medium voraus.Possible corrosion protection layers are, for example, organic coatings, inorganic coatings and metallic coatings. The purpose of metallic corrosion protection layers is to transfer the properties of the support material to the steel surface for as long as possible. Accordingly, the choice of an effective metallic corrosion protection requires the knowledge of the corrosion-chemical relationships in the system steel / coating metal / attacking medium.

Die Überzugsmetalle können gegenüber Stahl elektrochemisch edler oder elektrochemisch unedler sein. Im ersten Fall schützt das jeweilige Überzugsmetall den Stahl allein durch die Bildung von Schutzschichten. Man spricht von einem sogenannten Barriereschutz. Sobald die Oberfläche des Überzugmetalls Poren aufweist oder verletzt wurde, bildet sich in Gegenwart von Feuchtigkeit ein "Lokalelement", bei dem der unedle Partner also das zu schützende Metall, angegriffen wird. Zu den edleren Überzugsmetallen gehören Zinn, Nickel und Kupfer.The coating metals can be electrochemically nobler or electrochemically less noble than steel. In the first case, the respective coating metal protects the steel only through the formation of protective layers. One speaks of a so-called barrier protection. As soon as the surface of the coating metal has pores or was injured, a "local element" forms in the presence of moisture, in which the base partner is attacked by the metal to be protected. The more noble coating metals include tin, nickel and copper.

Unedlere Metalle bilden auf der einen Seite schützende Deckschichten; auf der anderen Seite werden sie, da sie gegenüber dem Stahl unedler sind, bei Undichtigkeiten der Schicht zusätzlich angegriffen. Im Falle einer Verletzung einer derartigen Überzugsschicht wird der Stahl dementsprechend nicht angegriffen, sondern durch die Bildung von Lokalelementen zunächst das unedlere Überzugsmetall korrodiert. Man spricht von einem sogenannten galvanischen oder kathodischen Korrosionsschutz. Zu den unedleren Metallen gehört beispielsweise Zink.Less precious metals form protective coatings on one side; on the other hand, being less noble than steel, they are additionally attacked by leaks in the layer. In the case of a breach of such a coating layer, the steel is accordingly not attacked, but by the formation of local elements first corrodes the less noble coating metal. One speaks of a so-called galvanic or cathodic corrosion protection. For example, zinc is one of the less noble metals.

Metallische Schutzschichten werden nach verschiedenen Verfahren aufgebracht. Je nach Metall und Verfahren ist die Verbindung der Stahloberfläche chemischer, physikalischer oder mechanischer Art und reicht von der Legierungsbildung und Diffusion bis zur Adhäsion und bloßen mechanischen Verklammerung.Metallic protective layers are applied by various methods. Depending on the metal and process, the connection of the steel surface is chemical, physical or mechanical and ranges from alloy formation and diffusion to adhesion and mere mechanical clamping.

Die metallischen Überzüge sollen ähnliche technologische und mechanische Eigenschaften wie Stahl besitzen und sich auch gegenüber mechanischen Beanspruchungen oder plastischen Umformungen ähnlich wie Stahl verhalten. Die Überzüge sollen also entsprechend bei der Umformung nicht beschädigt werden und auch von Umformungsvorgängen nicht beeinträchtigt werden.The metallic coatings are said to have similar technological and mechanical properties to steel as they do to steel, and to behave similarly to steel in terms of mechanical stress or plastic deformation. Accordingly, the coatings should not be damaged during forming and should not be affected by forming operations.

Beim Aufbringen von Schmelztauchüberzügen wird das zu schützende Metall in flüssige Metallschmelzen eingetaucht. Durch das Schmelztauchen bilden sich an der Phasengrenze Stahl-Überzugsmetall entsprechende Legierungsschichten aus. Ein Beispiel hierfür ist das Feuerverzinken.When applying hot-dip coatings, the metal to be protected is immersed in molten metal melts. As a result of the hot dip, corresponding alloy layers are formed at the phase boundary steel-coating metal. An example of this is the hot dip galvanizing.

Beim kontinuierlichen Feuerverzinken wird das Stahlband durch ein Zinkbad geführt, wobei das Zinkbad eine Temperatur von rund 450°C besitzt. Die Schichtdicke - typischerweise 6 - 20 µm - wird durch Abstreifen des überschüssigen, mit dem Band ausgeschöpften Zinks mit Schlitzdüsen (Luft oder Stickstoff als Abstreifmedium) eingestellt. Feuerverzinkte Erzeugnisse weisen einen hohen Korrosionswiderstand, eine gute Schweißeignung und Umformbarkeit auf, ihre Haupteinsatzgebiete sind die Bau-, Automobil- und Hausgeräteindustrie.In continuous hot dip galvanizing, the steel strip is passed through a zinc bath, the zinc bath having a temperature of about 450 ° C. The layer thickness - typically 6 - 20 microns - is set by stripping the excess, exhausted with the tape zinc with slot nozzles (air or nitrogen as Abstreifmedium). Hot-dip galvanized products have high corrosion resistance, good weldability and formability, and their main applications are the construction, automotive and household appliance industries.

Zudem ist die Herstellung eines Überzugs aus einer Zink-Eisenlegierung bekannt. Hierfür werden diese Erzeugnisse nach dem Feuerverzinken bei Temperaturen oberhalb des Zinkschmelzpunktes, meistens zwischen 480°C und 550°C einer Diffusionsglühung unterzogen. Dabei wachsen die Zink-Eisenlegierungs-Schichten und zehren die darüberliegende Zinkschicht auf. Dieses Verfahren wird mit "Galvannealing" bezeichnet. Die so erzeugte Zink-Eisenlegierung besitzt ebenfalls einen hohen Korrosionswiderstand, gute Schweißeignung und Umformbarkeit. Haupteinsatzgebiete sind die Automobil- und Hausgeräteindustrie. Darüber hinaus können durch Schmelztauchen auch andere Überzüge aus Aluminium, Aluminium-Silizium, Zink-Aluminium und Aluminium-Zink-Silizium hergestellt werden.In addition, the production of a coating of a zinc-iron alloy is known. For this purpose, these products are subjected to a diffusion annealing at temperatures above the zinc melting point, usually between 480 ° C and 550 ° C after hot-dip galvanizing. The zinc-iron alloy layers grow and absorb the overlying zinc layer. This process is called "galvannealing". The zinc-iron alloy thus produced also has a high corrosion resistance, good weldability and formability. Main applications are the automotive and home appliance industry. In addition, other coatings of aluminum, aluminum-silicon, zinc-aluminum and aluminum-zinc-silicon can be produced by hot dipping.

Ferner ist die Herstellung elektrolytisch abgeschiedener Metallüberzüge bekannt, d.h. die elektrolytische, also unter Stromdurchgang erfolgende Abscheidung metallischer Überzüge aus Elektrolyten.Furthermore, the production of electrodeposited metal coatings is known, i. the electrolytic, so under current passage deposition of metallic coatings of electrolytes.

Die elektrolytische Beschichtung ist auch bei solchen Metallen möglich, die sich durch Schmelztauch-Verfahren nicht auftragen lassen. Übliche Schichtdicken bei elektrolytischen Beschichtungen liegen meist zwischen 2,5 und 10 µm, sie sind damit im Allgemeinen geringer als bei Schmelztauchüberzügen. Einige Metalle, z.B. Zink, erlauben auch Dickschichtüberzüge bei elektrolytischer Beschichtung. Elektrolytisch verzinkte Bleche werden vorwiegend in der Automobilindustrie eingesetzt, aufgrund der hohen Oberflächengüte werden diese Bleche vor allen Dingen im Außenhautbereich eingesetzt. Sie besitzen eine gute Umformbarkeit, Schweißeignung und Lagerfähigkeit sowie gut lackierbare und matte Oberflächen.The electrolytic coating is also possible with such metals, which can not be applied by hot dip process. Conventional layer thicknesses in electrolytic coatings are usually between 2.5 and 10 microns, they are thus generally lower than hot-dip coatings. Some metals, e.g. Zinc, also allow thick film coatings with electrolytic coating. Electrolytically galvanized sheets are mainly used in the automotive industry, because of the high surface quality, these sheets are used above all in the outer skin area. They have good formability, weldability and storability as well as good paintable and matt surfaces.

Insbesondere im Automobilbau besteht eine Bestrebung, die Rohkarosse immer leichter auszubilden. Dies hängt einerseits damit zusammen, dass leichtere Fahrzeuge weniger Kraftstoff verbrauchen, zum anderen werden Fahrzeuge mit immer mehr Zusatzfunktionen und Zusatzaggregaten ausgestattet, welche eine Gewichtserhöhung mit sich bringen, welche durch eine leichtere Rohkarosse kompensiert werden soll.In particular, in the automotive industry there is an effort to make the body shell always easier. This depends on the one hand with it together that lighter vehicles consume less fuel, on the other hand vehicles are equipped with more and more additional functions and additional aggregates, which bring an increase in weight, which should be compensated by a lighter body shell.

Gleichzeitig steigen jedoch die Sicherheitsanforderungen für Kraftfahrzeuge, wobei für die Sicherheit der Personen in einem Kraftfahrzeug und deren Schutz bei Unfällen die Karosserie verantwortlich ist. Entsprechend besteht eine Forderung, bei leichteren Karosserierohgewichten eine erhöhte Sicherheit bei Verunfallung herbeizuführen. Dies gelingt nur dadurch, dass insbesondere im Bereich der Fahrgastzelle Werkstoffe mit einer erhöhten Festigkeit eingesetzt werden.At the same time, however, the safety requirements for motor vehicles are increasing, with the body being responsible for the safety of persons in a motor vehicle and their protection in the event of accidents. Accordingly, there is a requirement for lighter body heights to bring about increased safety in case of accident. This can only be achieved by using materials with increased strength, in particular in the area of the passenger compartment.

Um die geforderten Festigkeiten zu erzielen, ist es notwendig, Stahlsorten zu verwenden, die verbesserte Eigenschaften mechanischer Art haben bzw. die verwendeten Stahlsorten so zu behandeln, dass sie die geforderten mechanischen Eigenschaften haben.In order to achieve the required strengths, it is necessary to use steel grades which have improved properties of a mechanical nature or to treat the steel grades used so that they have the required mechanical properties.

Um Stahlbleche mit einer erhöhten Festigkeit auszubilden, ist es bekannt, Stahlbauteile in einem Schritt zu formen und gleichzeitig zu härten. Dieses Verfahren wird auch "Presshärten" genannt. Hierbei wird ein Stahlblech auf eine Temperatur oberhalb der Austenitisierungstemperatur, üblicherweise oberhalb 900°C, erhitzt und anschließend in einem kalten Werkzeug umgeformt. Das Werkzeug verformt hierbei das heiße Stahlblech, welches aufgrund des Oberflächenkontaktes zur kalten Form sehr schnell abkühlt, so dass die an sich bekannten Härteeffekte bei Stahl auftreten. Zudem ist es bekannt, das Stahlblech zunächst umzuformen und anschließend in einer Kalibrierpresse das umgeformte Stahlblechbauteil abzukühlen und zu härten. Im Gegensatz zum ersteren Verfahren ist hierbei von Vorteil, dass das Blech in kaltem Zustand umgeformt wird und hierdurch komplexere Formgebungen möglich sind. Bei beiden Verfahren wird das Blech jedoch durch die Erhitzung oberflächlich verzundert, so dass nach dem Umformen und dem Härten die Blechoberfläche gereinigt werden muss, beispielsweise durch Sandstrahlen. Anschließend wird das Blech beschnitten und ggf. werden notwendige Löcher eingestanzt. Hierbei ist von Nachteil, dass die Bleche bei der mechanischen Bearbeitung eine sehr hohe Härte aufweisen und die Bearbeitung somit aufwendig wird und insbesondere ein hoher Werkzeugverschleiß besteht.In order to form steel sheets with increased strength, it is known to form steel components in one step and to harden at the same time. This process is also called "press hardening". Here, a steel sheet is heated to a temperature above the Austenitisierungstemperatur, usually above 900 ° C, and then formed in a cold tool. In this case, the tool deforms the hot steel sheet, which cools very rapidly due to the surface contact with the cold mold, so that the hardening effects known per se occur with steel. In addition, it is known to first reshape the steel sheet and then to cool and harden the formed sheet steel component in a sizing press. In contrast to the former method, it is advantageous that The sheet is cold formed and thus more complex shapes are possible. In both methods, however, the sheet is scaled on the surface by the heating, so that after forming and hardening the sheet surface must be cleaned, for example by sandblasting. Then the sheet is trimmed and, if necessary, necessary holes are punched. In this case, it is disadvantageous that the sheets have a very high hardness in the mechanical processing and therefore the processing is complicated and in particular a high tool wear exists.

Die US 6,564,604 B2 hat zum Ziel Stahlbleche zur Verfügung zu stellen, welche anschließend einer Wärmebehandlung unterzogen werden, sowie ein Verfahren zur Herstellung von Teilen durch das Presshärten dieser beschichteten Stahlbleche zur Verfügung zu stellen. Hierbei soll trotz der Temperaturerhöhung sichergestellt sein, dass das Stahlblech nicht entkohlt und die O-berfläche des Stahlbleches nicht vor, während und nach dem Heißpressen oder der Wärmebehandlung oxidiert. Hierfür soll eine legierte intermetallische Mischung auf die Oberfläche vor oder nach dem Stanzen aufgebracht werden, welche einen Schutz gegen Korrosion und Entkohlung leisten soll und zudem eine Schmierfunktion bieten kann. In einer Ausführungsform schlägt diese Druckschrift vor, eine übliche, offenbar elektrolytisch aufgebrachte Zinkschicht zu verwenden, wobei sich diese Zinkschicht mit dem Stahlsubstrat bei einem nachfolgenden Austenitisieren des Blechsubstrats in eine homogene Zn-Fe-Legierungschschicht umwandeln soll. Dieser homogene Schichtaufbau wird anhand von mikroskopischen Aufnahmen belegt. Im Gegensatz zu früheren Annahmen soll diese Beschichtung eine mechanische Widerstandskraft besitzen, die sie davor schützt, zu schmelzen. In der Praxis zeigt sich eine solche Wirkung jedoch nicht. Zusätzlich soll die Verwendung von Zink oder Zinklegierungen einen kathodischen Schutz der Kanten bieten, wenn Schnitte vorhanden sind. Bei dieser Ausführungsform ist jedoch von Nachteil, dass mit einer solchen Beschichtung - entgegen den Angaben in dieser Druckschrift - jedoch an den Kanten kaum ein kathodischer Korrosionsschutz und im Bereich der Blechfläche, bei Verletzungen der Schicht, nur ein schlechter Korrosionschutz erzielt wird.The US 6,564,604 B2 The object of the invention is to provide steel sheets which are subsequently subjected to a heat treatment, and a method for producing parts by press-hardening these coated steel sheets. In this case, it should be ensured despite the increase in temperature that the steel sheet is not decarburized and the O-surface of the steel sheet is not oxidized before, during and after the hot pressing or heat treatment. For this purpose, an alloyed intermetallic mixture should be applied to the surface before or after punching, which should provide protection against corrosion and decarburization and also can provide a lubricating function. In one embodiment, this document proposes to use a conventional, apparently electrolytically applied zinc layer, wherein this zinc layer is to convert with the steel substrate in a subsequent Austenitisieren the sheet substrate in a homogeneous Zn Fe Fe alloy layer. This homogeneous layer structure is confirmed by microscopic images. Contrary to previous assumptions, this coating is said to have a mechanical resistance that prevents it from melting. In practice, however, such an effect does not show. In addition, the use of zinc or zinc alloys is said to provide cathodic protection of the edges when Cuts are available. In this embodiment, however, is a disadvantage that with such a coating - contrary to the information in this document - but at the edges hardly a cathodic corrosion protection and in the region of the sheet surface, in violations of the layer, only a poor corrosion protection is achieved.

Im zweiten Beispiel der US 6,564,604 B2 wird eine Beschichtung angegeben, die zu 50% bis 55% aus Aluminium und zu 45% bis 50% aus Zink mit ggf. kleinen Mengen von Silizium besteht. Eine solche Beschichtung ist an sich nicht neu und unter dem Markennamen Galvalume® bekannt. Es wird angegeben, dass die Beschichtungsmetalle Zink und Aluminium mit Eisen eine homogene Zink-Aluminium-Eisen-Legierungsbeschichtung bilden soll. Bei dieser Beschichtung ist von Nachteil, dass hiermit ein ausreichender kathodischer Korrosionsschutz nicht mehr erreicht wird, bei der Anwendung im Presshärteverfahren jedoch der überwiegende Barriereschutz, der hiermit erreicht wird, nicht ausreicht, da teilbereichsweise Verletzungen der Oberfläche unvermeidlich sind. Zusammenfassend kann gesagt werden, dass das in dieser Druckschrift beschriebene Verfahren nicht in der Lage ist, das Problem zu lösen, dass im Allgemeinen kathodische Korrosionsbeschichtungen auf Basis von Zink nicht geeignet sind, Stahlbleche zu schützen, die nach der Beschichtung einer Wärmebehandlung ausgesetzt werden sollen und zudem möglicherweise einen weiteren Formgebung- bzw. Umformschritt unterworfen werden.In the second example the US 6,564,604 B2 For example, a coating consisting of 50% to 55% aluminum and 45% to 50% zinc with possibly small amounts of silicon is specified. Such a coating is not new in itself and known under the brand name Galvalume®. It is stated that the coating metals zinc and aluminum with iron should form a homogeneous zinc-aluminum-iron alloy coating. In the case of this coating, it is disadvantageous that sufficient cathodic corrosion protection is no longer achieved here, but the predominant barrier protection which is achieved with this is not sufficient when used in the press hardening process, since partial surface damage to the surface is unavoidable. In summary, the method described in this document is unable to solve the problem that, in general, zinc-based cathodic corrosion coatings are not suitable for protecting steel sheets which are to be subjected to a heat treatment after coating and may also be subjected to a further shaping or forming step.

Aus der EP 1 013 785 A1 ist ein Verfahren zur Herstellung eines Blechbauteils bekannt, wobei das Blech auf der Oberfläche eine Aluminiumschicht oder eine Aluminiumlegierungsschicht besitzen soll. Ein mit derartigen Beschichtungen versehenes Blech soll einem Presshärteprozess unterzogen werden, wobei als mögliche Beschichtungslegierungen angegeben werden, eine Legierung mit 9-10% Silizium, 2-3,5% Eisen, Rest Aluminium mit Verunreinigungen und eine zweite Legierung mit 2-4% Eisen und der Rest Aluminium mit Verunreinigungen. Derartige Beschichtungen sind an sich bekannt und entsprechen der Beschichtung eines feueraluminierten Stahlblechs. Bei einer derartigen Beschichtung ist von Nachteil, dass hierdurch lediglich ein sogenannter Barriereschutz erreicht wird. In dem Moment, in dem eine solche Barriereschutzschicht verletzt ist oder bei Rissen in der Fe-Al-Schicht, wird das Grundmaterial, in diesem Fall der Stahl, angegriffen und korrodiert. Eine kathodische Schutzwirkung ist nicht vorhanden.From the EP 1 013 785 A1 a method for producing a sheet metal component is known, wherein the sheet on the surface should have an aluminum layer or an aluminum alloy layer. A sheet provided with such coatings is to be subjected to a press hardening process, wherein possible coating alloys are mentioned Alloy with 9-10% silicon, 2-3.5% iron, balance aluminum with impurities and a second alloy with 2-4% iron and the balance aluminum with impurities. Such coatings are known per se and correspond to the coating of a hot-dip aluminized steel sheet. In such a coating is disadvantageous in that only a so-called barrier protection is achieved. The moment that such a barrier layer is damaged or cracked in the Fe-Al layer, the base material, in this case the steel, is attacked and corroded. A cathodic protective effect is absent.

Ferner ist von Nachteil, dass auch eine solche feueraluminierte Beschichtung beim Aufheizen des Stahlblechs auf die Austenitisierungstemperatur und dem anschließenden Presshärteschritt so weit chemisch und mechanisch beansprucht wird, dass das fertiggestellte Bauteil eine nicht ausreichende Korrosionsschutzschicht besitzt. Im Ergebnis kann somit festgehalten werden, dass eine derartige feueraluminierte Schicht für das Presshärten komplexer Geometrien, d.h. für das Erhitzen eines Stahlblechs auf eine Temperatur, die über der Austenitisierungstemperatur liegt, nicht gut geeignet ist.Furthermore, it is disadvantageous that even such a hot-dip coated coating during the heating of the steel sheet to the austenitizing temperature and the subsequent press hardening step is so far chemically and mechanically claimed that the finished component has an insufficient corrosion protection layer. As a result, it can be stated that such a hot-dip aluminized layer is suitable for press-hardening complex geometries, i. for heating a steel sheet to a temperature higher than the austenitizing temperature is not well suited.

DE 10039375 A1 offenbart ein Verfahren zur Herstellung eines korrosionsgeschützten Stahlblechs umfassend folgende Schritte: Aufbringen auf ein Stahlblech einer aus Zink bestehenden Beschichtung durch Schmelztauchen in einer Zink-5% Aluminium- Schmelze, Aufwärmen, Legieren und Härten (z.B. 950°C) in einer Atmosphäre, wobei eine Oxid-Schicht auf der Oberfläche gebildet wird und Heisspressen des beschichteten Stahlbleches. DE 10039375 A1 discloses a method for producing a corrosion protected steel sheet comprising the steps of: applying to a steel sheet a zinc coating by hot dipping in a zinc 5% aluminum melt, heating, alloying and curing (eg 950 ° C) in an atmosphere, wherein Oxide layer is formed on the surface and hot pressing of the coated steel sheet.

Aus der DE 102 46 614 A1 ist ein Verfahren zur Herstellung eines beschichten Strukturbauteils für den Fahrzeugbau bekannt. Dieses Verfahren soll die Probleme der zuvor genannten europäischen Patentanmeldung 1 013 785 A1 lösen. Insbesondere wird angegeben, dass sich beim Tauchverfahren gemäß der europäischen Patentanmeldung 1 013 785 A eine intermetallische Phase bereits beim Beschichten des Stahls bilden würde, wobei diese Legierungsschicht zwischen dem Stahl und der eigentlichen Beschichtung hart und spröde sei und beim Kaltformen reißen würde. Hierdurch würden sich Mikrorisse bis zu einem Grad bilden, dass sich die Beschichtung selbst vom Grundwerkstoff ablöst und somit ihre Schutzfunktion verliert. Die DE 102 46 614 A1 schlägt daher vor, eine Beschichtung als Metall oder einer Metalllegierung mittels eines galvanischen Beschichtungsverfahrens in organischer, nicht wässriger Lösung aufzubringen, wobei ein besonders gut geeignetes und daher bevorzugtes Beschichtungsmaterial Aluminium oder eine Aluminiumlegierung sei. Alternativ würden sich auch Zink oder Zinklegierungen eignen. Ein derartiges beschichtetes Blech kann anschließend kalt vorgeformt und warm fertiggeformt werden. Bei diesem Verfahren ist jedoch von Nachteil, dass eine Aluminiumbeschichtung, auch wenn sie elektrolytisch aufgebracht wurde, bei einer Verletzung der Oberfläche des fertigen Bauteils keinen Korrosionsschutz mehr bietet, da die Schutzbarriere durchbrochen wurde. Bei einer elektrolytisch abgeschiedenen Zinkbeschichtung ist von Nachteil, dass beim Aufheizen für das Warmumformen das Zink zum großen Teil oxidiert und für einen kathodischen Schutz nicht mehr zur Verfügung steht. Unter Schutzgasatmosphäre dampft das Zink ab.From the DE 102 46 614 A1 For example, a method for producing a coated structural component for vehicle construction is known. This method is intended to solve the problems of the aforementioned European patent application 1 013 785 A1 to solve. In particular, it is stated that the immersion process according to the European patent application 1 013 785 A would form an intermetallic phase already during the coating of the steel, this alloy layer being hard and brittle between the steel and the actual coating and being torn during cold forming. As a result, microcracks would form to a degree that the coating itself separates from the base material and thus loses its protective function. The DE 102 46 614 A1 proposes, therefore, to apply a coating as a metal or a metal alloy by means of a galvanic coating method in organic, non-aqueous solution, a particularly suitable and therefore preferred coating material being aluminum or an aluminum alloy. Alternatively, zinc or zinc alloys would be suitable. Such a coated sheet can then be cold preformed and hot finished molded. In this method, however, has the disadvantage that an aluminum coating, even if it was applied electrolytically, no longer offers corrosion protection in case of damage to the surface of the finished component, since the protective barrier has been broken. In the case of an electrodeposited zinc coating, it is disadvantageous that during heating for hot forming, the zinc is largely oxidized and no longer available for cathodic protection. Under a protective gas atmosphere, the zinc evaporates.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen eines Bauteils aus gehärtetem Stahlblech mit einem verbesserten kathodischen Korrosionsschutz zu schaffen.The object of the invention is to provide a method for producing a component from hardened steel sheet with an improved cathodic corrosion protection.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a method having the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the subclaims.

Eine weitere Aufgabe ist es, einen kathodischen Korrosionsschutz für Stahlbleche zu schaffen, die einer Umformung und Härtung unterworfen werden.Another object is to provide a cathodic corrosion protection for steel sheets, which are subjected to forming and hardening.

Die Aufgabe wird mit einem Korrosionsschutz mit den Merkmalen des Anspruches 26 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.The object is achieved with a corrosion protection with the features of claim 26. Advantageous developments are characterized in the dependent claims.

Das erfindungsgemäße Verfahren sieht vor, auf ein härtbares Stahlblech eine Beschichtung aus einer Mischung bestehend im Wesentlichen aus Zink und einem oder mehreren sauerstoffaffinen Elementen, wie Magnesium, Silizium, Titanium, Calcium, Aluminium, Bor und Mangan mit einem Gehalt von 0,1 bis 15 Gew.-% an dem sauerstoffaffinen Element aufzubringen und das beschichtete Stahlblech zumindest teilbereichsweise unter Zutritt von Sauerstoff auf eine Temperatur oberhalb der Austenitisierungstemperatur der Blechlegierung zu erwärmen und davor oder anschließend umzuformen, wobei das Blech nach einer ausreichenden Erwärmung abgekühlt wird und die Abkühlrate so bemessen wird, dass eine Härtung der Blechlegierung erfolgt. Im Ergebnis wird ein gehärtetes Bauteil aus einem Stahlblech erzielt, welches einen guten kathodischen Korrosionsschutz besitzt.The inventive method provides, on a hardenable steel sheet, a coating of a mixture consisting essentially of zinc and one or more oxygen-affine elements, such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese with a content of 0.1 to 15 Apply wt .-% of the oxygen affinity element and to heat the coated steel sheet at least partially with the access of oxygen to a temperature above the Austenitisierungstemperatur the sheet metal alloy and before or subsequently reshape, the sheet is cooled after sufficient heating and the cooling rate is measured in that hardening of the sheet metal alloy takes place. As a result, a hardened component is obtained from a steel sheet having a good cathodic corrosion protection.

Der erfindungsgemäße Korrosionsschutz für Stahlbleche, die zunächst einer Wärmebehandlung unterzogen und anschließend umgeformt und dabei gehärtet werden, ist ein kathodischer Korrosionsschutz, der im Wesentlichen auf Zink basiert. Erfindungsgemäß sind dem die Beschichtung ausbildenden Zink 0,1% bis 15% eines oder mehrerer sauerstoffaffiner Elemente wie Magnesium, Silizium, Titanium, Calcium, Aluminium, Bor und Mangan oder jeder Mischung bzw. Legierung hieraus zugefügt. Es konnte herausgefunden werden, dass derart geringe Mengen eines sauerstoffaffinen Elements wie Magnesium, Silizium, Titanium, Calcium, Aluminium, Bor und Mangan bei dieser speziellen Anwendung einen überraschenden Effekt herbeiführen.The corrosion protection according to the invention for steel sheets, which are first subjected to a heat treatment and then reformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc. According to the invention, 0.1% to 15% of one or more oxygen-containing elements such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese or any mixture or alloy thereof are added to the zinc forming the coating. It has been found that such small amounts of an oxygen affinity element as magnesium, silicon, titanium, calcium, aluminum, boron and manganese cause a surprising effect in this particular application.

Als sauerstoffaffine Elemente kommen erfindungsgemäß zumindest Mg, Al, Ti, Si, Ca, B, Mn in Frage. Wenn nachfolgend Aluminium genannt wird, steht dies stellvertretend auch für die genannten anderen Elemente.According to the invention, at least Mg, Al, Ti, Si, Ca, B, Mn are suitable as oxygen-affine elements. When aluminum is mentioned below, this is representative of the other elements mentioned.

Die Aufbringung der erfindungsgemäßen Beschichtung auf einem Stahlblech kann dabei beispielsweise durch sogenanntes Feuerverzinken, d.h. eine Schmelztauchbeschichtung erfolgen, wobei eine flüssige Mischung aus Zink und dem oder den sauerstoffaffinen Elementen aufgebracht wird. Ferner ist es möglich die Beschichtung elektrolytisch aufzubringen, d.h. die Mischung aus Zink und dem oder den sauerstoffaffinen Elementen gemeinsam auf der Blechoberfläche abzuscheiden oder zunächst eine Zinkschicht abzuscheiden und dann auf die Zinkoberfläche in einem zweiten Schritt eines oder mehrere sauerstoffaffine Elemente nacheinander oder jede beliebige Mischung oder Legierung hieraus abzuscheiden oder durch Aufdampfen oder andere geeignete Verfahren abzuscheiden.The application of the coating according to the invention on a steel sheet can be done, for example, by so-called hot-dip galvanizing, i. a hot dip coating is performed wherein a liquid mixture of zinc and the oxygen-affine element (s) is applied. Furthermore, it is possible to electrolytically apply the coating, i. to deposit the mixture of zinc and the oxygen-affine element (s) collectively on the sheet surface, or first to deposit a zinc layer and then to deposit on the zinc surface one or more oxygen-affine elements in succession or any mixture or alloy thereof, or by vapor deposition or other suitable method deposit.

Es hat sich überraschend herausgestellt, dass sich trotz der geringen Menge eines sauerstoffaffinen Elements, wie insbesondere Aluminium, sich beim Aufheizen offensichtlich eine im Wesentlichen aus AL2O3 bzw. einem Oxid des sauerstoffaffinen Elements (MgO, CaO, TiO, SiO2, B2O3, MnO) bestehende, sehr wirksame und nachheilende, oberflächliche und deckende Schutzschicht bildet. Diese sehr dünne Oxid-Schicht schützt die darunter liegende Zn-haltige Korrosionsschutzschicht selbst bei sehr hohen Temperaturen vor Oxidation. D.h., dass sich während der speziellen Weiterverarbeitung des verzinkten Bleches im Presshärteverfahren, eine angenähert zweischichtige Korrosionsschutzschicht ausbildet, die aus einer kathodisch hochwirksamen Schicht, mit hohem Anteil Zink besteht und von einer sehr dünnen Oxidationsschutzschicht aus einem oder mehreren Oxiden (AL2O3, MgO, CaO, TiO, SiO2, B2O3, MnO) gegenüber Oxidation und Abdampfen geschützt ist. Es ergibt sich somit eine kathodische Korrosionsschutzschicht mit einer überragenden chemischen Beständigkeit. Dies bedeutet, dass die Wärmebehandlung in einer oxidierenden Atmosphäre zu erfolgen hat. Unter Schutzgas (sauerstofffreie Atmosphäre) kann eine Oxidation zwar vermieden werden, das Zink würde jedoch aufgrund des hohen Dampfdrucks abdampfen.It has surprisingly been found that, despite the small amount of an oxygen-affine element, in particular aluminum, an essentially of AL 2 O 3 or an oxide of the oxygen-affine element (MgO, CaO, TiO, SiO 2 , B 2 O 3 , MnO) existing, very effective and healing, superficial and opaque protective layer forms. This very thin oxide layer protects the underlying Zn-containing corrosion protection layer from oxidation even at very high temperatures. That is, during the special processing of the galvanized sheet in the press hardening process, an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer, with a high proportion of zinc and a very thin oxidation protection layer of one or more oxides (AL 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO) to oxidation and Evaporation is protected. This results in a cathodic corrosion protection layer with a superior chemical resistance. This means that the heat treatment has to take place in an oxidizing atmosphere. Although under protective gas (oxygen-free atmosphere) oxidation can be avoided, the zinc would evaporate due to the high vapor pressure.

Es hat sich zudem herausgestellt, dass die erfindungsgemäße Korrosionsschutzschicht für das Presshärteverfahren auch eine so große Stabilität aufweist, dass ein auf das Austenitisieren der Bleche folgender Umformschritt diese Schicht nicht zerstört. Selbst wenn am gehärteten Bauteil Mikrorisse auftreten, ist die kathodische Schutzwirkung jedoch zumindest deutlich stärker als die Schutzwirkung der bekannten Korrosionsschutzschichten für das Presshärteverfahren.It has also been found that the corrosion protection layer according to the invention for the press-hardening process also has such a high stability that a forming step following the austenitizing of the sheets does not destroy this layer. Even if microcracks occur on the cured component, however, the cathodic protection effect is at least significantly greater than the protective effect of the known corrosion protection layers for the press-hardening process.

Um ein Blech mit dem erfindungsgemäßen Korrosionsschutz zu versehen, kann in einem ersten Schritt eine Zinklegierung mit einem Gehalt an Aluminium in Gewichtsprozent von größer als 0,1 jedoch geringer als 15%, insbesondere geringer als 10%, weiter bevorzugt geringer als 5% auf ein Stahlblech, insbesondere ein legiertes Stahlblech aufgebracht werden, worauf in einem zweiten Schritt Teile aus dem beschichteten Blech herausgearbeitet und insbesondere herausgeschnitten oder herausgestanzt werden und bei Zutritt von Luftsauerstoff auf eine Temperatur oberhalb der Austenitisierungstemperatur der Blechlegierung erwärmt und danach mit erhöhter Geschwindigkeit abgekühlt werden. Eine Umformung des aus dem Blech herausgeschnittenen Teils (der Platine) kann vor oder nach dem Erwärmen des Bleches auf die Austenitisierungstemperatur erfolgen.To provide a sheet with the corrosion protection according to the invention, in a first step, a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel plate, in particular an alloyed steel sheet are applied, whereupon in a second step, parts of the coated sheet are machined and in particular cut out or punched out and heated on access of atmospheric oxygen to a temperature above the Austenitisierungstemperatur the sheet metal alloy and then cooled at an increased speed. A transformation of the cut out of the sheet metal part (the board) can be carried out before or after the heating of the sheet to the Austenitisierungstemperatur.

Es wird angenommen, dass im ersten Schritt des Verfahrens, und zwar bei der Beschichtung des Bleches an der Blechoberfläche bzw. im proximalen Bereich der Schicht, eine dünne Sperrphase aus insbesondere Fe2Al5-xZnx gebildet wird, die die Fe-Zn-Diffusion bei einem Flüssigmetallbeschichtungsverfahren, welches insbesondere bei einer Temperatur bis 690°C erfolgt, behindert. Somit wird im ersten Verfahrensschritt das Blech mit einer Zink-Metallbeschichtung mit einer Zugabe von Aluminium erstellt, welche nur zur Blechoberfläche hin, als im proximalen Bereich der Auflage eine äußerst dünne Sperrphase, welche gegen ein rasches Wachsen einer Eisen-Zink-Verbindungsphase wirksam ist, aufweist. Zudem ist denkbar, dass allein die Anwesenheit von Aluminium die Eisen-Zink-Diffusionsneigung im Bereich der Grenzschicht senkt.It is believed that in the first step of the process, when coating the sheet to the sheet surface or in the proximal region of the layer, a thin barrier phase of, in particular Fe 2 Al 5 -x Zn x is formed, which impedes the Fe-Zn diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C. Thus, in the first process step, the sheet is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having. In addition, it is conceivable that only the presence of aluminum lowers the iron-zinc diffusion tendency in the region of the boundary layer.

Erfolgt nun im zweiten Schritt ein Anwärmen des mit einer Zink-Aluminium-Metallschicht versehenen Bleches auf die Austenitisierungstemperatur des Blechwerkstoffes unter Luftsauerstoffzutritt, so wird vorerst die Metallschicht am Blech verflüssigt. An der distalen Oberfläche reagiert das sauerstoffafinere Aluminium aus dem Zink mit Luftsauerstoff unter Bildung von festem Oxid bzw. Tonerde, wodurch in dieser Richtung ein Abfall der Aluminiummetallkonzentration entsteht, welche eine stetige Diffusion von Aluminium zur Abreicherung hin, also zum distalen Bereich hin bewirkt. Diese Tonerdeanreicherung, an dem der Luft ausgesetzte Schichtbereich wirkt nun als Oxidationsschutz für das Schichtmetall und als Abdampfungssperre für das Zink.If, in the second step, heating of the sheet provided with a zinc-aluminum-metal layer to the austenitizing temperature of the sheet metal material with access of atmospheric oxygen occurs, the metal layer on the sheet is liquefied for the time being. At the distal surface, the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the aluminum metal concentration, which causes a steady diffusion of aluminum towards depletion, that is to the distal region. This Tonerdeanreicherung, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.

Zudem wird beim Anwärmen das Aluminium aus der proximalen Sperrphase durch stetige Diffusion zum distalen Bereich hin abgezogen und steht dort zur Bildung der oberflächlichen Al2O3-Schicht zur Verfügung. Somit wird die Ausbildung einer Blechbeschichtung erreicht, welche eine kathodisch hochwirksame Schicht mit hohem Zinkanteil hinterlässt.In addition, during heating, the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer. Thus, the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.

Gut geeignet ist beispielweise eine Zinklegierung mit einem Gehalt an Aluminium in Gewichtsprozent von größer als 0,2 jedoch kleiner als 4, vorzugsweise von größer 0,26 jedoch kleiner 2,5 Gew.-%.Well suited is, for example, a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably greater than 0.26 but less than 2.5 wt .-%.

Wenn in günstiger Weise im ersten Schritt die Aufbringung der Zinklegierungsschicht auf die Blechoberfläche im Durchlauf durch ein Flüssigmetallbad bei einer Temperatur von höher als 425°C, jedoch niedriger als 690°C, insbesondere bei 440°C bis 495°C erfolgt, mit anschließender Abkühlung des beschichteten Blechs, kann nicht nur die proximale Sperrphase wirkungsvoll gebildet werden, bzw. eine sehr gute Diffusionsbehinderung im Bereich der Sperrschicht beobachtet werden, sondern es erfolgt damit auch eine Verbesserung der Warmverformungseigenschaften des Blechmaterials.Conveniently, in the first step, the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal barrier phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it also takes place to improve the thermoforming properties of the sheet material.

Eine vorteilhafte Ausgestaltung der Erfindung ist bei einem Verfahren gegeben, bei welchem ein warm- oder kaltgewalztes Stahlband mit einer Dicke von beispielsweise größer als 0,15 mm und mit einem Konzentrationsbereich mindestens eines der Legierungselemente in den Grenzen in Gew.-% Kohlenstoff bis 0,4, vorzugsweise 0,15 bis 0,3 Silizium bis 1, 9, vorzugsweise 0,11 bis 1,5 Mangan bis 3,0, vorzugsweise 0,8 bis 2,5 Chrom bis 1,5, vorzugsweise 0,1 bis 0,9 Molybdän bis 0, 9, vorzugsweise 0,1 bis 0,5 Nickel bis 0, 9, Titan bis 0,2 vorzugsweise 0,02 bis 0,1 Vanadin bis 0,2 Wolfram bis 0,2, Aluminium bis 0,2, vorzugsweise 0,02 bis 0,07 Bor bis 0,01, vorzugsweise 0,0005 bis 0,005 Schwefel Max. 0,01, vorzugsweise Max. 0,008 Phosphor Max. 0,025, vorzugsweise Max. 0,01 Rest Eisen und Verunreinigungen
eingesetzt wird.
An advantageous embodiment of the invention is given in a method in which a hot or cold rolled steel strip having a thickness of, for example, greater than 0.15 mm and a concentration range of at least one of the alloying elements within the limits in wt .-% carbon to 0.4, preferably 0.15 to 0.3 silicon until 19, preferably 0.11 to 1.5 manganese to 3.0, preferably 0.8 to 2.5 chrome to 1.5, preferably 0.1 to 0.9 molybdenum to 0, 9, preferably 0.1 to 0.5 nickel to 0, 9, titanium to 0.2 preferably 0.02 to 0.1 vanadium to 0.2 tungsten to 0.2, aluminum to 0.2, preferably 0.02 to 0.07 boron to 0.01, preferably 0.0005 to 0.005 sulfur Max. 0.01, preferably max. 0.008 phosphorus Max. 0.025, preferably max. 0.01 Rest iron and impurities
is used.

Es konnte festgestellt werden, dass die Oberflächenstruktur des erfindungsgemäßen kathodischen Korrosionsschutzes besonders günstig für eine hohe Haftfähigkeit von Farben und Lacken ist.It has been found that the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.

Die Haftung der Beschichtung am Stahlblechgegenstand kann weiter verbessert werden, wenn die Oberflächenschicht eine zinkreiche, intermetallische Eisen-Zink-Aluminium-Phase und eine eisenreiche Eisen-Zink-Aluminium-Phase besitzt, wobei die eisenreiche Phase ein Verhältnis Zink zu Eisen von höchstens 0,95 (Zn/Fe ≤ 0,95), vorzugsweise von 0,20 bis 0,80 (Zn/Fe = 0,20 bis 0,80) und die zinkreiche Phase ein Verhältnis Zink zu Eisen von mindestens 2,0 (Zn/Fe ≥ 2,0) vorzugsweise von 2,3 bis 19,0 (Zn/Fe = 2,3 bis 19,0) aufweist.The adhesion of the coating to the steel sheet article can be further improved if the surface layer has a zinc-rich intermetallic iron-zinc-aluminum phase and an iron-rich iron-zinc-aluminum phase, the iron-rich phase having a zinc to iron ratio of at most 0, 95 (Zn / Fe ≦ 0.95), preferably from 0.20 to 0.80 (Zn / Fe = 0.20 to 0.80), and the zinc rich phase has a zinc to iron ratio of at least 2.0 (Zn / Fe ≥ 2.0), preferably from 2.3 to 19.0 (Zn / Fe = 2.3 to 19.0).

Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert, wobei auf Zeichnungen verwiesen wird. Es zeigen dabei:

Figur 1:
eine Aufheizkurve von Untersuchungsblechen beim Glühen in einem Strahlungsofen;
Figur 2:
mikroskopische Aufnahme des Querschliffs einer geglühten Probe eines nicht erfindungsgemäßen feueraluminierten Stahlblechs;
Figur 3:
den Potentialverlauf über die Messzeit bei einer galvanostatischen Auflösung für ein nicht erfindungsgemäßes feueraluminiertes Stahlblech;
Figur 4:
mikroskopische Aufnahme des Querschliffs einer geglühten Probe eines Stahlblechs mit einer nicht erfindungsgemäßen Beschichtung aus einer Aluminium-Zink-Silizium- Legierung;
Figur 5:
den Potentialverlauf über die Messzeit bei einem galvanostatischen Auflösungsversuch eines nicht erfindungsgemäßen Stahlblechs mit einer Beschichtung aus einer Aluminium-Zink-Silizium-Legierung;
Figur 6:
mikroskopische Aufnahme des Querschliffs einer geglühten Probe eines erfindungsgemäßen kathodischen korrosionsgeschützten Blechs;
Figur 7:
den Potentialverlauf für das Blech nach Figur 6;
Figur 8:
die mikroskopische Aufnahme des Querschliffs einer geglühten Probe eines erfindungsgemäßen mit einem kathodischen Korrosionsschutz versehenen Blechs;
Figur 9:
den Potentialverlauf des Blechs nach Figur 8;
Figur 10:
mikroskopische Aufnahmen der Oberfläche eines erfindungsgemäß beschichteten Blechs im ungehärteten - nicht thermisch behandelten - Zustand nach den Figuren 8 und 9 im Vergleich mit einem nicht erfindungsgemäß beschichteten und behandelten Blech;
Figur 11:
mikroskopische Aufnahme des Querschliffs eines nicht erfingdungsgemäß beschichteten und behandelten Blechs;
Figur 12:
den Potentialverlauf des nicht erfindungsgemäßem Blechs nach Figur 11;
Figur 13:
mikroskopische Aufnahme des Querschliffs eines erfindungsgemäß beschichteten und wärmebehandelten Blechs;
Figur 14:
den Potentialverlauf des Blechs nach Figur 13;
Figur 15:
die mikroskopische Aufnahme des Querschliffs eines nicht erfindungsgemäßen elektrolytisch verzinkten Stahlblechs;
Figur 16:
den Potentialverlauf des Blechs nach Figur 15;
Figur 17:
die mikroskopische Aufnahme des Querschliffs einer geglühten Probe eines nicht erfindungsgemäßen Blechs mit einer Zink-Nickel-Beschichtung;
Figur 18:
den Potentialverlauf des nicht erfindungsgemäßen Blechs nach Figur 17;
Figur 19:
ein Vergleich der zum Auflösen erforderlichen Potentiale als Funktion der Zeit für die geprüften Materialien;
Figur 20:
ein Diagramm zeigend die zur Beurteilung des Korrosionsschutzes herangezogenen Fläche;
Figur 21:
ein Diagramm zeigend die unterschiedlichen Schutzenergien der geprüften Materialien;
Figur 22:
ein Diagramm zeigend die unterschiedlichen Schutzenergien eines erfindungsgemäßem Blechs bei zwei verschiedenen Aufheizbedingungen;
Figur 23:
qualitativ die Phasenausbildung als "Leopardenmuster" bei erfindungsgemäßen Beschichtungen;
Figur 24:
ein Diagramm zeigend mögliche erfindungsgemäße Verfahrensabläufe;
Figur 25:
ein Diagramm zeigend die Verteilung der Elemente Aluminium Zink und Eisen abhängig von der Tiefe der Oberflächenschicht vor dem Glühen des Blechs;
Figur 26:
ein Diagramm zeigend die Verteilung der Elemente Aluminium, Zink und Eisen abhängig von der Tiefe der O-berflächenschicht nach dem Glühen des Blechs als Nachweis der Bildung einer oberflächlichen Schutzhaut aus Aluminiumoxid.
The invention will be explained in more detail by way of examples, reference being made to drawings. It shows:
FIG. 1:
a heating curve of test sheets during annealing in a radiant furnace;
FIG. 2:
Microscopic image of the cross section of a calcined sample of a non-inventive hot-dip aluminized steel sheet;
FIG. 3:
the potential curve over the measuring time at a galvanostatic resolution for a non-inventive hot-dip aluminized sheet steel;
FIG. 4:
Microscopic image of the cross section of an annealed sample of a steel sheet with a non-inventive coating of an aluminum-zinc-silicon alloy;
FIG. 5:
the potential curve over the measuring time in a galvanostatic dissolution test of a non-inventive steel sheet with a coating of an aluminum-zinc-silicon alloy;
FIG. 6:
Microscopic image of the cross section of a calcined sample of a cathodic corrosion-protected sheet according to the invention;
FIG. 7:
the potential curve for the sheet after FIG. 6 ;
FIG. 8:
the micrograph of the cross section of a annealed sample of a cathodic corrosion protection sheet according to the invention;
FIG. 9:
the potential course of the sheet after FIG. 8 ;
FIG. 10:
Microscopic images of the surface of a coated sheet according to the invention in the uncured - not thermally treated - state after FIGS. 8 and 9 in comparison with a sheet not coated and treated according to the invention;
FIG. 11:
micrograph of the cross section of a sheet not coated and treated according to the invention;
FIG. 12:
the potential curve of the non-inventive sheet after FIG. 11 ;
FIG. 13:
Microscopic image of the cross section of a coated and heat treated sheet according to the invention;
FIG. 14:
the potential course of the sheet after FIG. 13 ;
FIG. 15:
the micrograph of the cross section of a non-inventive electrolytically galvanized steel sheet;
FIG. 16:
the potential course of the sheet after FIG. 15 ;
FIG. 17:
the micrograph of the cross section of a annealed sample of a non-inventive sheet with a zinc-nickel coating;
FIG. 18:
the potential curve of the sheet not according to the invention FIG. 17 ;
FIG. 19:
a comparison of the potentials required for dissolution as a function of time for the materials tested;
FIG. 20:
a diagram showing the area used for the assessment of corrosion protection;
FIG. 21:
a diagram showing the different protective energies of the tested materials;
FIG. 22:
a diagram showing the different protective energies of a sheet according to the invention at two different heating conditions;
FIG. 23:
qualitatively the phase formation as a "leopard pattern" in coatings according to the invention;
FIG. 24:
a diagram showing possible inventive procedures;
FIG. 25:
a diagram showing the distribution of the elements aluminum zinc and iron depending on the depth of the surface layer before the annealing of the sheet;
FIG. 26:
a diagram showing the distribution of the elements aluminum, zinc and iron depending on the depth of the O-surface layer after annealing of the sheet as evidence of the formation of a superficial protective skin of alumina.

Es werden etwa 1 mm dicke Stahlbleche mit einer beidseitig gleichen Korrosionsschutzschicht von jeweils 15 µm Schichtdicke hergestellt und untersucht. Die Bleche werden für 4 Minuten und 30 Sekunden in einen 900°C heißen Strahlungsofen gegeben und nachfolgend zwischen Stahlplatten rasch abgekühlt. Die Zeit zwischen der Ofenentnahme der Bleche und der Abkühlung zwischen den Stahlplatten betrug 5 Sekunden. Die Aufheizkurve der Bleche beim Glühen im Strahlungsofen hat in etwa den Verlauf nach Figur 1.It is about 1 mm thick steel sheets produced with a double-sided same corrosion protection layer of 15 microns layer thickness and examined. The panels are placed in a 900 ° C blast furnace for 4 minutes and 30 seconds and subsequently rapidly cooled between steel panels. The time between the furnace removal of the sheets and the cooling between the steel plates was 5 seconds. The heating curve of the sheets during annealing in the radiation furnace has approximately the course FIG. 1 ,

Anschließend wurden die erhaltenen Proben auf optische und elektrochemische Unterschiede analysiert. Beurteilungskriterien waren hierbei das Aussehen der geglühten Stahlbleche sowie die Schutzenergie. Die Schutzenergie ist das Maß für den elektrochemischen Schutz der Schicht, bestimmt durch galvanostatische Auflösung.Subsequently, the obtained samples were analyzed for optical and electrochemical differences. Assessment criteria here were the appearance of the annealed steel sheets and the protection energy. The protection energy is the measure for the electrochemical protection of the layer, determined by galvanostatic dissolution.

Die elektrochemische Methode der galvanostatischen Auflösung der metallischen Oberflächenbeschichtungen eines Materials erlaubt den Mechanismus des Korrosionsschutzes der Schicht zu klassifizieren. Es wird das Potential-Zeitverhalten einer vor Korrosion schützenden Schicht bei einem vorgegebenen konstanten Stromfluss ermittelt. Für die Messungen wurde eine Stromdichte von 12,7 mA/cm2 vorgegeben. Die Messanordnung ist ein Drei-Elektrodensystem. Als Gegenelektrode wurde ein Platinnetz verwendet, wobei die Referenzelektrode aus Ag/AgCl(3M) besteht. Der Elektrolyt besteht aus 100 g/l ZnSO4*5H2O und 200 g/l NaCl gelöst in deionisiertem Wasser.The electrochemical method of galvanostatic dissolution of the metallic surface coatings of a material allows to classify the mechanism of corrosion protection of the layer. The potential-time behavior of a corrosion-protective layer is determined for a given constant current flow. For the measurements, a current density of 12.7 mA / cm 2 was specified. The measuring arrangement is a three-electrode system. The counterelectrode used was a platinum network, the reference electrode consisting of Ag / AgCl (3M). The electrolyte consists of 100 g / l ZnSO 4 .5H 2 O and 200 g / l NaCl dissolved in deionized water.

Ist das Potential, das zum Auflösen der Schicht benötigt wird, größer oder gleich dem Stahlpotential, welches leicht durch Abbeizen oder Abschleifen der Oberflächenbeschichtung ermittelt werden kann, spricht man von einem reinen Barriereschutz ohne einem aktiven kathodischen Korrosionsschutz. Der Barriereschutz zeichnet sich dadurch aus, dass er das Grundmaterial vom korrosiven Medium trennt.If the potential required for dissolving the layer is greater than or equal to the steel potential, which can be easily determined by pickling or abrading the surface coating, this is called pure barrier protection without active cathodic corrosion protection. The barrier protection is characterized by the fact that it separates the base material from the corrosive medium.

Nachfolgend werden die Ergebnisse der Beschichtungsbeispiele beschrieben.The results of the coating examples will be described below.

Beispiel 1 (nicht erfindungsgemäß)Example 1 (not according to the invention)

Ein feueraluminiertes Stahlblech wird durch das Hindurchführen eines Stahlblechs durch ein flüssiges Aluminiumbad hergestellt. Beim Glühen auf 900°C entsteht durch die Reaktion des Stahls mit der Aluminiumbeschichtung eine Aluminium-Eisen-Oberflächenschicht. Das entsprechend geglühte Blech zeigt ein dunkelgraues Aussehen, die Oberfläche ist homogen und zeigt visuell keine Fehlstellen.A hot-dip aluminized steel sheet is made by passing a steel sheet through a liquid aluminum bath. Annealing to 900 ° C produces an aluminum-iron surface layer due to the reaction of the steel with the aluminum coating. The corresponding annealed sheet shows a dark gray appearance, the surface is homogeneous and visually shows no defects.

Bei der galvanostatischen Auflösung der Oberflächenbeschichtung des feueraluminierten Bleches muss zu Beginn der Messung ein sehr hohes Potential (+2,8 V) angelegt werden, um den Stromschluss von 12,7 mA/cm2 zu gewährleisten. Nach kurzer Messzeit fällt das benötigte Potential auf das Stahlpotential ab. Aus diesem Verhalten ist ersichtlich, dass ein geglühtes Blech mit einer Schicht, die durch Feueraluminierung erzielt wurde, einen sehr effizienten Barriereschutz bietet. Sobald aber Löcher in der Beschichtung entstehen, fällt das Potential auf Stahlpotential ab und es kommt zum Abtrag des Grundmaterials. Da das für die Auflösung benötigte Potential nie niedriger als das Stahlpotential ist, liegt ein reiner Barriereschutz ohne kathodische Korrosionsschutzwirkung vor. Der Potentialverlauf über die Messzeit ist in Figur 3 dargestellt, eine mikroskopische Aufnahme eines Querschliffs in Figur 2.In the galvanostatic dissolution of the surface coating of the hot-dip aluminized sheet, a very high potential (+ 2.8 V) must be applied at the beginning of the measurement, in order to ensure the flow-circuit of 12.7 mA / cm 2. After a short measuring time, the required potential drops to the steel potential. From this behavior, it can be seen that an annealed sheet with a layer obtained by fire aluminizing provides very efficient barrier protection. However, as soon as holes are formed in the coating, the potential drops to steel potential and it comes to the removal of the base material. Since the potential required for the resolution is never lower than the steel potential, there is a pure barrier protection without cathodic corrosion protection effect. The potential curve over the measuring time is in FIG. 3 shown a micrograph of a cross section in FIG. 2 ,

Beispiel 2 (nicht erfindungsgemäß)Example 2 (not according to the invention)

Ein Stahlblech wurde durch Feuerverzinkung mit einer Aluminium-Zink-Schicht überzogen, wobei die Schmelze aus 55% Aluminium, 44% Zink und etwa 1% Silizium besteht. Nach der Oberflächenbeschichtung und einem anschließenden Glühen bei 900°C zeigt sich eine grau-bläuliche Oberfläche ohne Fehlstellen. Ein Querschliff ist in Figur 4 dargestellt.A steel sheet was hot dip galvanized with an aluminum-zinc layer, the melt consisting of 55% aluminum, 44% zinc and about 1% silicon. After surface coating and subsequent annealing at 900 ° C, a gray-bluish surface appears without defects. A cross section is in FIG. 4 shown.

Das geglühte Material wird anschließend der galvanostatischen Auflösung unterworfen. Das Material zeigt zu Beginn der Messung ein für die Auflösung notwendiges Potential von ca. -0,92 V und liegt damit deutlich unter dem Stahlpotential. Dieser Wert ist vergleichbar mit dem Potential, das für die Auflösung einer feuerverzinkten Beschichtung vor dem Glühprozess benötigt wird. Diese sehr zinkreiche Phase endet aber schon nach ca. 350 Sekunden Messzeit. Anschließend folgt ein rascher Anstieg auf ein Potential, das nunmehr knapp unter dem Stahlpotential liegt. Nach dem Durchbrechen dieser Schicht fällt das Potential zunächst auf einen Wert von ca. -0,54 V und steigt dann kontinuierlich bis zu einem Wert von ca. -0,35 V an. Erst dann sinkt es langsam auf Stahlpotential ab. Dieses Material zeigt aufgrund des sehr negativen Potentials zu Beginn der Messung, das deutlich unter dem Stahlpotential liegt, zusätzlich zum Barriereschutz, einen gewissen kathodischen Korrosionsschutz. Allerdings ist der Teil der Schicht, der einen kathodischen Korrosionsschutz liefert, schon nach ca. 350 Sekunden Messzeit aufgebraucht. Die restliche Schicht kann nur noch einen geringen kathodischen Korrosionsschutz bieten, da die Differenz zwischen dem erforderlichen Potential für die Schichtauflösung und dem Stahlpotential nunmehr nur noch weniger als 0,12 V beträgt. In einem schlecht leitenden Elektrolyten ist dieser Teil des kathodischen Korrosionsschutzes nicht mehr nutzbar. Das Potential-Zeit Diagramm ist in Figur 5 dargestellt.The annealed material is then subjected to galvanostatic dissolution. At the beginning of the measurement, the material shows a potential of about -0.92 V, which is necessary for the resolution, and is thus clearly below the steel potential. This value is comparable to the potential needed to dissolve a hot dip galvanized coating prior to the annealing process. However, this very zinc-rich phase ends after just about 350 seconds of measurement time. This is followed by a rapid increase to a potential that is now just below the steel potential lies. After breaking through this layer, the potential first drops to a value of about -0.54 V and then increases continuously to a value of about -0.35 V. Only then does it slowly sink to steel potential. This material shows some cathodic corrosion protection due to the very negative potential at the beginning of the measurement, which is well below the steel potential, in addition to the barrier protection. However, the part of the layer that provides cathodic protection against corrosion is used up after only about 350 seconds of measurement time. The remaining layer can only offer a low cathodic corrosion protection, since the difference between the required potential for the layer dissolution and the steel potential now only less than 0.12 V. In a poorly conductive electrolyte, this part of the cathodic corrosion protection is no longer usable. The potential-time diagram is in FIG. 5 shown.

Beispiel 3 (erfindungsgemäß)Example 3 (according to the invention)

Ein Stahlblech wird mit einer Schmelze feuerverzinkt, die im Wesentlichen aus 95% Zink und 5% Aluminium besteht. Nach dem Glühen zeigt das Blech eine silbrig-graue Oberfläche ohne Fehlstellen. Im Querschliff (Figur 6) zeigt sich, dass die Beschichtung aus einer hellen Phase und einer dunklen Phase besteht, wobei die Phasen Zn-Fe-Al-haltige Phasen sind. Die hellen Phasen sind zinkreicher, die dunklen Phasen eisenreicher. Ein Teil des Aluminiums hat bei der Glühung mit Luftsauerstoff reagiert und eine schützende Al2O3-Haut gebildet.A steel sheet is hot-dip galvanized with a melt consisting essentially of 95% zinc and 5% aluminum. After annealing, the sheet shows a silvery-gray surface with no defects. In cross section ( FIG. 6 ) shows that the coating consists of a light phase and a dark phase, wherein the phases are Zn-Fe-Al-containing phases. The bright phases are more zinc-rich, the dark phases more iron-rich. Some of the aluminum reacted with atmospheric oxygen during the calcination and formed a protective Al 2 O 3 skin.

Bei der galvanostatischen Auflösung zeigt das Blech zu Beginn der Messung ein für die Auflösung erforderliches Potential von ca. -0,7 V. Dieser Wert liegt deutlich unter dem Potential des Stahls. Nach einer Messzeit von ca. 1.000 Sekunden stellt sich ein Potential von ca. -0,6 V ein. Auch dieses Potential liegt noch deutlich unter dem Stahlpotential. Nach einer Messzeit von ca. 3.500 Sekunden ist dieser Teil der Schicht aufgebraucht und das notwendige Potential zur Auflösung der Schicht nähert sich dem Stahlpotential. Diese Beschichtung bietet somit nach dem Glühen zusätzlich zum Barriereschutz einen kathodischen Korrosionsschutz. Das Potential liegt bis zu einer Messzeit von 3.500 Sekunden bei einem Wert von ≤ -0,6 V, so dass ein nennenswerter kathodischer Schutz über lange Zeit hinweg aufrecht erhalten wird, auch wenn das Blech der Austenitisierungstemperatur zugeführt wurde. Das Potential-Zeit-Diagramm ist in Figur 7 dargestellt.At the beginning of the measurement, the galvanostatic dissolution shows a potential of about -0.7 V required for the resolution. This value is significantly below the potential of the steel. After a measuring time of approx. 1,000 seconds it turns a potential of about -0.6V. This potential is also clearly below the steel potential. After a measurement time of approximately 3,500 seconds, this part of the layer is used up and the necessary potential for dissolving the layer approaches the steel potential. This coating thus offers after the annealing in addition to the barrier protection a cathodic corrosion protection. The potential is up to a measuring time of 3,500 seconds at a value of ≤ -0.6 V, so that a considerable cathodic protection is maintained over a long time, even if the sheet was fed to the austenitizing temperature. The potential-time diagram is in FIG. 7 shown.

Beispiel 4 (erfindungsgemäß)Example 4 (according to the invention)

Das Blech wird durch eine Schmelze bzw. durch ein Zinkbad geführt, mit einem Zinkanteil von 99,8% und einem Aluminiumgehalt von 0,2%. Im Zinküberzug vorhandenes Aluminium reagiert bei der Glühung mit Luftsauerstoff und bildet eine schützende Al2O3-Haut. Durch ständige Diffusion des sauerstoffaffinen Aluminiums an die Oberfläche wird diese Schutzhaut aufrecht erhalten und ausgebaut. Nach dem Glühen des Blechs zeigt sich eine silbrig-graue Oberfläche ohne Fehlstellen. Aus dem ursprünglich etwa 15 µm dicken Zinküberzug entwickelt sich bei der Glühung aufgrund Diffusion eine etwa 20 bis 25 µm dicke Schicht, wobei diese Schicht (Figur 8) aus einer dunkel erscheinenden Phase mit einer Zusammensetzung Zn/Fe von etwa 30/70 besteht und aus einem hellen Bereich mit der Zusammensetzung Zn/Fe von etwa 80/20. An der Oberfläche der Beschichtung ist ein erhöhter Aluminiumanteil nachweisbar. Aufgrund des Nachweises von Oxiden an der Oberfläche kann auf ein Vorhandensein einer dünnen Al2O3-Schutzschicht geschlossen werden. Zu Beginn der galvanostatischen Auflösung liegt das geglühte Material auf einem Potential von ca. -0,75 V. Nach einer Messzeit von ca. 1.500 Sekunden steigt das für die Auflösung notwendige Potential auf ≤ -0,6 V an. Die Phase hält bis zu einer Messzeit von ca. 2.800 Sekunden. Dann steigt das erforderliche Potential auf Stahlpotential. Auch in diesem Fall liegt zusätzlich zum Barriereschutz ein kathodischer Korrosionsschutz vor. Das Potential liegt bis zu einer Messzeit von 2.800 Sekunden bei einem Wert von ≤ -0,6 V. Auch ein derartiges Material besitzt somit über eine sehr lange Zeit einen kathodischen Korrosionsschutz. Das Potential-Zeit-Diagramm ist Figur 9 zu entnehmen.The sheet is passed through a melt or through a zinc bath, with a zinc content of 99.8% and an aluminum content of 0.2%. Aluminum present in the zinc coating reacts with atmospheric oxygen during the calcination and forms a protective Al 2 O 3 skin. Through constant diffusion of the oxygen-affinity aluminum to the surface, this protective skin is maintained and expanded. After annealing the sheet shows a silvery-gray surface without defects. From the originally about 15 microns thick zinc coating develops during the annealing due to diffusion, a about 20 to 25 microns thick layer, said layer ( FIG. 8 ) consists of a dark appearing phase with a composition Zn / Fe of about 30/70 and a bright area with the composition Zn / Fe of about 80/20. On the surface of the coating, an increased aluminum content is detectable. Due to the detection of oxides at the surface, it can be concluded that a thin Al 2 O 3 protective layer is present. At the beginning of the galvanostatic dissolution, the annealed material has a potential of approx. -0.75 V. After a measuring time of approx. 1,500 seconds, the potential required for the resolution increases to ≤ -0.6 V. The phase lasts up to a measuring time of approx. 2,800 seconds. Then the required potential increases to steel potential. In this case too, in addition to barrier protection, there is cathodic corrosion protection. The potential is up to a measurement time of 2,800 seconds at a value of ≤ -0.6 V. Thus, such a material has thus over a very long time a cathodic protection against corrosion. The potential-time diagram is FIG. 9 refer to.

Beispiel 5 (nicht erfindungsgemäß)Example 5 (not according to the invention)

Das Blech wird nach Austritt des Blechbandes aus der Zinkschmelze (ca. 450°C Bandtemperatur) auf eine Temperatur von etwa 500°C erhitzt. Hierbei wird die Zinkschicht vollständig in Zn-Fe-Phasen umgewandelt. Die Zinkschicht wird also zur Gänze, d.h. bis an die Oberfläche in Zn-Fe-Phasen umgewandelt. Hieraus resultieren auf dem Stahlblech zinkreiche Phasen, die alle mit einem Zn-Fe-Verhältnis von > 70% Zink ausgebildet sind. Bei dieser Korrosionsschutzschicht ist im Zinkbad etwas Aluminium enthalten, in einer Größenordnung von etwa 0,13%.The sheet is heated to a temperature of about 500 ° C after exiting the metal strip from the molten zinc (about 450 ° C strip temperature). Here, the zinc layer is completely converted into Zn-Fe phases. The zinc layer is thus wholly, i. converted to Zn-Fe phases to the surface. This results in zinc-rich phases on the steel sheet, all of which are formed with a Zn-Fe ratio of> 70% zinc. This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%.

Ein 1 mm dickes Stahlblech mit der genannten wärmebehandelten und vollständig umgewandelten Beschichtung wird für 4 Minuten und 30 Sekunden in einem 900°C heißen Ofen aufgeheizt. Es resultiert eine gelb-grüne Oberfläche.A 1 mm thick steel sheet with said heat treated and fully converted coating is heated for 4 minutes and 30 seconds in a 900 ° C oven. The result is a yellow-green surface.

Die gelb-grüne Oberfläche deutet auf eine Oxidation der Zn-Fe-Phasen beim Glühen hin. Eine Aluminiumoxid-Schutzschicht ist nicht nachweisbar. Der Grund für das Ausbleiben einer Aluminiumoxid-Schutzschicht kann damit erklärt werden, dass bei der Glühbehandlung das Aluminium aufgrund fester Zn-Fe-Phasen nicht so rasch an die Oberfläche wandern und die Zn-Fe-Beschichtung vor Oxidation schützen kann. Beim Erhitzen dieses Materials liegt bei Temperaturen um 500°C noch keine flüssige zinkreiche Phase vor, denn diese bildet sich erst bei höheren Temperaturen von 782°C. Sind 782°C erreicht, liegt thermodynamisch eine flüssige zinkreiche Phase vor, in welcher das Aluminium frei verfügbar ist. Trotzdem wird die Oberflächenschicht nicht gegen Oxidation geschützt.The yellow-green surface indicates oxidation of the Zn-Fe phases during annealing. An aluminum oxide protective layer is undetectable. The reason for the absence of an aluminum oxide protective layer can be explained by the fact that in the Annealing treatment due to solid Zn-Fe phases, aluminum can not migrate to the surface so rapidly and protect the Zn-Fe coating from oxidation. When heating this material at temperatures around 500 ° C is still no liquid zinc-rich phase, because this forms only at higher temperatures of 782 ° C. If 782 ° C are reached, thermodynamically there is a liquid zinc-rich phase in which the aluminum is freely available. Nevertheless, the surface layer is not protected against oxidation.

Möglicherweise liegt zu diesem Zeitpunkt die Korrosionsschutzschicht bereits teilweise oxidiert vor und es kann sich keine deckende Aluminiumoxid-Haut mehr ausbilden. Die Schicht zeigt sich im Querschliff wellig zerklüftet und besteht aus Zn- und Zn-Fe-Oxiden (Figur 11). Zudem ist die Oberfläche des genannten Materials aufgrund der hochkristallinen nadelförmigen Oberflächenausbildung der Oberfläche viel größer, was ebenfalls für die Ausbildung einer deckenden und dickeren Aluminiumoxid-Schutzschicht von Nachteil sein könnte. Die genannte, nicht erfindungsgemäße Beschichtung bildet im Ausgangszustand, also nicht im thermisch behandelten Zustand, eine spröde Schicht, die mit zahlreichen Rissen, sowohl quer als auch längs zur Beschichtung versehen ist. (Figur 10 im Vergleich zu den vorhergenannten erfindungsgemäßen Beispiel (links im Bild)). Hierdurch kann im Zuge der Aufheizung sowohl eine Entkohlung als auch eine Oxidation der Stahlsubstrates speziell bei kalt vorgeformten Bauteilen erfolgen.Possibly at this time, the corrosion protection layer is already partially oxidized before and it can no longer form opaque alumina skin. The layer is wavy rugged in cross section and consists of Zn and Zn Fe oxides ( FIG. 11 ). In addition, the surface of the said material is much larger due to the highly crystalline acicular surface formation of the surface, which could also be disadvantageous for the formation of a covering and thicker aluminum oxide protective layer. The said non-inventive coating forms in the initial state, ie not in the thermally treated state, a brittle layer which is provided with numerous cracks, both transversely and longitudinally to the coating. ( FIG. 10 in comparison to the aforementioned inventive example (left in the picture)). As a result, in the course of the heating, both decarburization and oxidation of the steel substrates can take place, especially with cold preformed components.

Bei der galvanostatischen Auflösung dieses Materials wird für die Auflösung unter konstantem Stromfluss zu Beginn der Messung ein Potential von ca. +1V angelegt, das sich dann auf einen Wert von ca. +0,7V einpendelt. Auch hier liegt das Potential während der gesamten Auflösung deutlich über dem Stahlpotential (Figur 12). Folglich muss bei diesen Glühbedingungen auch von einem reinen Barriereschutz gesprochen werden. Auch in diesem Fall konnte kein kathodischer Korrosionsschutz ermittelt werden.In the galvanostatic dissolution of this material, a potential of approx. + 1V is applied for the resolution under constant current flow at the beginning of the measurement, which then settles to a value of approx. + 0.7V. Here, too, the potential lies well above the steel potential during the entire dissolution ( FIG. 12 ). Consequently, in these annealing conditions also be spoken of a pure barrier protection. Also in this case no cathodic corrosion protection could be determined.

Beispiel 6 (erfindungsgemäß)Example 6 (according to the invention)

Ein Blech, wie im zuvor genannten Beispiel wird unmittelbar nach der Schmelztauchverzinkung einer Wärmebehandlung unterzogen, bei etwa 490°C bis 550°C, wobei die Zinkschicht nur teilweise in Zn-Fe-Phasen umgewandelt wird. Der Prozess wird hierbei so gefahren, dass die Phasenumwandlung nur teilweise durchgeführt wird und somit noch nicht umgewandeltes Zink mit Aluminium an der Oberfläche vorhanden ist und somit freies Aluminium als Oxidationsschutz für die Zinkschicht verfügbar ist.A sheet, as in the aforementioned example, is heat-treated immediately after hot-dip galvanizing at about 490 ° C to 550 ° C with the zinc layer only partially converted to Zn-Fe phases. The process is carried out in such a way that the phase transformation is only partially carried out and therefore not yet converted zinc with aluminum on the surface is present and thus free aluminum as oxidation protection for the zinc layer is available.

Ein 1 mm dickes Stahlblech wird mit der erfindungsgemäßen wärmebehandelten und nur teilweise in Zn-Fe-Phasen umgewandelten Beschichtung rasch induktiv auf 900°C aufgeheizt. Es ergibt sich eine Oberfläche, die grau und ohne Fehlstellen ist. Eine REM/EDX-Untersuchung des Querschliffs (Figur 13) zeigt eine etwa 20 µm dicke Oberflächenschicht, wobei aus dem ursprünglich etwa 15 µm dicken Zinküberzug der Beschichtung sich bei der induktiven Glühung aufgrund Diffusion eine etwa 20 µm Zn-Fe-Schicht gebildet hat, wobei diese Schicht den für die Erfindung typischen zweiphasigen Aufbau mit einem "Leopardenmuster" zeigt, mit einer im Bild dunkel erscheinenden Phase mit einer Zusammensetzung Zn/Fe von etwa 30/70 und hellen Bereiche mit der Zusammensetzung Zn/Fe von etwa 80/20. Darüber hinaus sind einzelne Bereiche mit Zinkanteilen ≥ 90% Zink vorhanden. An der Oberfläche ist eine Schutzschicht aus Aluminiumoxid nachweisbar.A 1 mm thick steel sheet is rapidly inductively heated to 900 ° C with the inventive heat-treated and only partially converted into Zn-Fe phase coating. The result is a surface that is gray and without defects. A SEM / EDX examination of the cross section ( FIG. 13 ) shows an approximately 20 microns thick surface layer, wherein from the originally about 15 microns thick zinc coating of the coating has formed in the inductive annealing due to diffusion, an about 20 microns Zn-Fe layer, said layer with the typical for the invention two-phase structure a "leopard pattern" shows, with a dark phase in the image with a composition Zn / Fe of about 30/70 and bright areas with the composition Zn / Fe of about 80/20. In addition, individual areas with zinc contents ≥ 90% zinc are present. On the surface a protective layer of alumina is detectable.

Bei der galvanostatischen Ablösung der Oberflächenbeschichtung einer schnell aufgeheizten Blechplatine mit der erfindungsgemäßen und im Gegensatz zu Beispiel 5 nur unvollständig vor dem Presshärten wärmebehandelten feuerverzinkten Schicht liegt zu Beginn der Messung das für die Auflösung notwendige Potential bei ca. -0,94 V und ist damit vergleichbar mit dem Potential, das für die Auflösung einer ungeglühten Zinkbeschichtung notwendig ist. Nach einer Messzeit von ca. 500 Sekunden steigt das Potential auf einen Wert von -0,79 V an und liegt damit weit unter dem Stahlpotential. Nach ca. 2.200 Sekunden Messzeit sind ≤ -0,6 V für die Ablösung notwendig, wobei das Potential anschließend auf -0,38V ansteigt und sich dann dem Stahlpotential nähert (Figur. 14). Bei dem erfindungsgemäßen, schnell aufgeheizten unvollständig vor dem Presshärten wärmebehandelten Material kann sich also sowohl ein Barriereschutz als auch ein sehr guter kathodischer Korrosionsschutz ausbilden. Auch bei diesem Material kann der kathodische Korrosionsschutz über eine sehr lange Messzeit aufrecht erhalten werden.In the galvanostatic detachment of the surface coating of a rapidly heated metal sheet with the hot-dip galvanized layer according to the invention and in contrast to Example 5 only incompletely before the press hardening is located at the beginning of the measurement necessary for the resolution potential at about -0.94 V and is comparable with the potential necessary for the dissolution of an unannealed zinc coating. After a measuring time of approx. 500 seconds, the potential rises to a value of -0.79 V, far below the steel potential. After approx. 2,200 seconds measuring time, ≤ -0.6 V are necessary for the detachment, with the potential subsequently rising to -0.38 V and then approaching the steel potential ( Figure. 14 ). In the case of the material according to the invention which is heated up quickly and incompletely heat-treated prior to press-hardening, it is therefore possible to form both a barrier protection and a very good cathodic corrosion protection. Even with this material, the cathodic protection against corrosion can be maintained over a very long measuring time.

Beispiel 7 (nicht erfindungsgemäß)Example 7 (not according to the invention)

Ein Blech wird elektrolytisch verzinkt durch elektrochemische Abscheidung von Zink auf Stahl. Beim Glühen entsteht durch die Diffusion des Stahls mit der Zinkschicht eine dünne Zn-Fe-Schicht. Der Großteil des Zinks oxidiert zu Zinkoxid, welches durch das gleichzeitige Entstehen von Eisenoxiden grün erscheint. Die Oberfläche zeigt ein grünes Aussehen mit lokalen Zunderstellen, an welchen die Zinkoxidschicht nicht am Stahl haftet.A sheet is electrolytically galvanized by electrochemical deposition of zinc on steel. During annealing, the diffusion of the steel and the zinc layer creates a thin Zn-Fe layer. Most of the zinc oxidizes to zinc oxide, which appears green by the simultaneous formation of iron oxides. The surface shows a green appearance with local scale marks where the zinc oxide layer does not adhere to the steel.

Eine REM/EDX-Untersuchung (Figur 15) des Beispielblechs im Querschliff bestätigt, dass ein Grossteil der Beschichtung aus Zink-Eisen-Oxidbelegungen besteht. Bei der galvanostatischen Auflösung liegt das für den Stromfluss benötigte Potential bei ca. +1 V und somit deutlich über dem Stahlpotential. Im Laufe der Messung schwankt das Potential zwischen +0,8 und -0,1 V, liegt aber während der gesamten Auflösung der Beschichtung über dem Stahlpotential. Daraus folgt, dass der Korrosionsschutz eines geglühten, elektrolytisch verzinkten Bleches ein reiner Barriereschutz ist, der allerdings weniger effizient ist als bei feueralumiertem Blech, da das Potential zu Beginn der Messung bei elektrolytisch beschichtetem Blech niedriger liegt als bei feueraluminiertem Blech. Das zur Auflösung benötigte Potential liegt während der gesamten Auflösung über dem Stahlpotential. Damit liegt auch bei einem geglühten, elektrolytisch beschichteten Blech zu keinem Zeitpunkt ein kathodischer Korrosionsschutz vor. Das Potential-Zeit-Diagramm ist Figur 16 zu entnehmen. Das Potential liegt grundsätzlich über Stahlpotential, schwankt aber je nach Versuch bei identischen Versuchsbedingungen im Detail.A REM / EDX examination ( FIG. 15 ) of the sample sheet in transverse section confirms that a large part of the coating consists of zinc-iron-oxide deposits. With galvanostatic dissolution, the potential required for the current flow is included about +1 V and thus well above the steel potential. In the course of the measurement, the potential fluctuates between +0.8 and -0.1 V, but is above the steel potential throughout the entire dissolution of the coating. It follows that the corrosion protection of a annealed, electrolytically galvanized sheet is a pure barrier protection, but which is less efficient than with fumed sheet, since the potential is lower at the beginning of the measurement with electrolytically coated sheet than with hot-dip aluminized sheet. The potential required for the dissolution lies above the steel potential throughout the entire dissolution. Thus, even with a annealed, electrolytically coated metal sheet there is no cathodic corrosion protection at any time. The potential-time diagram is FIG. 16 refer to. The potential is fundamentally above steel potential, but varies in detail depending on the experiment under identical experimental conditions.

Beispiel 8 (nicht erfindungsgemäß)Example 8 (not according to the invention)

Ein Blech wird durch elektrochemische Abscheidung von Zink und Nickel auf der Stahloberfläche hergestellt. Das Gewichtsverhältnis von Zink zum Nickel in der Korrosionsschutzschicht beträgt etwa 90/10. Die abgeschiedene Schichtdicke liegt bei 5 µm.A sheet is made by electroplating zinc and nickel on the steel surface. The weight ratio of zinc to nickel in the anticorrosion layer is about 90/10. The deposited layer thickness is 5 μm.

Das Blech wird mit der Beschichtung für 4 Minuten und 30 Sekunden bei 900°C bei Anwesenheit von Luftsauerstoff geglüht. Beim Glühen entsteht durch die Diffusion des Stahls mit der Zinkschicht eine dünne Diffusionsschicht aus Zink, Nickel und Eisen. Aufgrund des Fehlens von Aluminium oxidiert der Großteil des Zinks jedoch wiederum zu Zinkoxid. Die Oberfläche zeigt ein verzundertes, grünes Aussehen mit kleinen lokalen Abplatzungen, an welchen die Oxidschicht nicht am Stahl haftet.The sheet is annealed with the coating for 4 minutes and 30 seconds at 900 ° C in the presence of atmospheric oxygen. During annealing, the diffusion of the steel and the zinc layer creates a thin diffusion layer of zinc, nickel and iron. However, due to the absence of aluminum, most of the zinc oxidizes again to zinc oxide. The surface shows a scaled, green appearance with small local flaking to which the oxide layer does not adhere to the steel.

Eine REM/EDX-Untersuchung eines Querschliffs (Figur 17) zeigt, dass der Großteil der Beschichtung oxidiert wurde und somit für einen kathodischen Korrosionsschutz nicht zur Verfügung steht.A SEM / EDX examination of a cross section ( FIG. 17 ) shows that the majority of the coating has been oxidized and is therefore not available for cathodic corrosion protection.

Zu Beginn der Messung liegt das für die Auflösung der Schicht erforderliche Potential mit 1,5 V weit über dem Stahlpotential. Nach ca. 250 Sekunden sinkt es auf ca. 0,04 V ab und oszilliert zwischen + 0,25 V. Nach ca. 1.700 Sekunden Messzeit pendelt es sich schließlich auf einen Wert von - 0,27 V ein und bleibt bis zum Ende der Messung auf diesem Wert. Das für die Auflösung der Schicht benötigte Potential liegt die gesamte Messzeit deutlich über dem Stahlpotential. Folglich liegt bei dieser Beschichtung nach dem Glühen ein reiner Barriereschutz ohne jeglichem kathodischen Korrosionsschutz vor (Figur. 18).At the beginning of the measurement, the potential required for the resolution of the layer is 1.5 V, far above the steel potential. After approx. 250 seconds it sinks to approx. 0.04 V and oscillates between + 0.25 V. After approx. 1.700 seconds measuring time, it finally settles to a value of - 0.27 V and remains until the end of the Measurement at this value. The potential required for the resolution of the layer is well above the steel potential throughout the entire measurement time. Consequently, this coating has a pure barrier protection after annealing, without any cathodic corrosion protection (Figure 18).

9. Nachweis der Aluminiumoxidschicht durch GDOES-Analyse9. Detection of the aluminum oxide layer by GDOES analysis

Mithilfe einer GDOES (Glow Discharge Optical Emission Spectroscopy) - Untersuchung kann man die Ausbildung der Aluminiumoxidschicht bei der Glühung (und die Wanderung des Aluminiums an die Oberfläche) nachweisen.Using a GDOES (Glow Discharge Optical Emission Spectroscopy) study, the formation of the aluminum oxide layer during annealing (and the migration of the aluminum to the surface) can be detected.

Zur GDOES-Messung:For GDOES measurement:

Ein 1 mm dickes, gemäß Beispiel 4 beschichtetes Stahlblech mit einer Schichtdicke von 15 µm wurde für 4 min 30 s in einen 900°C heißen Strahlungsofen in Luft gegeben, danach zwischen zwei 5 cm dicken Stahlplatten rasch abgekühlt und die Oberfläche mit einer GDOES-Messung analysiert.A 1 mm thick, coated according to Example 4 steel sheet with a layer thickness of 15 microns was placed for 4 min 30 s in a 900 ° C hot air blast furnace, then rapidly cooled between two 5 cm thick steel plates and the surface with a GDOES measurement analyzed.

In Fig. 25 und 26 sind die GDOES-Analysen des gemäß Beispiel 4 beschichteten Bleches vor und nach dem Glühen dargestellt. Vor dem Härten (Fig. 25) erreicht man nach etwa 15 µm den Übergang Zinkschicht-Stahl, nach dem Härten ist die Schicht etwa 23 µm dick.In FIGS. 25 and 26 the GDOES analyzes of the coated sheet according to Example 4 are shown before and after the annealing. Before hardening ( Fig. 25 ) is reached after about 15 microns, the transition zinc layer steel, after curing, the layer is about 23 microns thick.

Nach dem Härten (Fig. 26) sieht man den erhöhten Aluminiumanteil an der Oberfläche im Vergleich zum ungeglühten Blech.After hardening ( Fig. 26 ) shows the increased aluminum content at the surface compared to the unannealed sheet.

10. Zusammenfassung10. Summary

Die Beispiele zeigen, dass nur die erfindungsgemäß für das Presshärte-Verfahren verwendeten, korrosionsgeschützten Bleche auch nach dem Glühen noch einen kathodischen Korrosionsschutz, insbesondere mit einer kathodischen Korrosionsschutzenergie > 4 J/cm2 bieten. Die zum Auflösen erforderlichen Potentiale als Funktion der Zeit werden in Figur 19 miteinander verglichen.The examples show that only the corrosion-protected sheets used according to the invention for the press-hardening process still provide cathodic corrosion protection even after annealing, in particular with a cathodic corrosion protection energy> 4 J / cm 2 . The potentials required for dissolution as a function of time are in FIG. 19 compared to each other.

Für die Bewertung der Qualität des kathodischen Korrosionsschutzes darf nicht nur die Zeit, während der der kathodische Korrosionsschutz aufrecht erhalten werden kann, herangezogen werden, sondern muss auch die Differenz zwischen dem für die Auflösung notwendigen Potential und dem Stahlpotential berücksichtigt werden. Je größer diese Differenz ist, umso wirksamer ist der kathodische Korrosionsschutz auch bei schlecht leitenden Elektrolyten. Der kathodische Korrosionsschutz ist bei einer Spannungsdifferenz von 100 mV zum Stahlpotential in schlecht leitenden Elektrolyten vernachlässigbar gering. Zwar liegt auch bei einer kleineren Differenz zum Stahlpotential prinzipiell noch ein kathodischer Korrosionsschutz vor, sofern ein Stromfluss bei der Verwendung einer Stahlelektrode nachgewiesen wird, allerdings ist dieser vernachlässigbar gering für praktische Aspekte, da das korrosive Medium sehr gut leiten muss, damit dieser Beitrag zum kathodischem Korrosionsschutz genutzt werden kann. Dies ist unter atmosphärischen Bedingungen (Regenwasser, Luftfeuchtigkeit etc.) praktisch nicht der Fall. Es wurde daher für die Auswertung nicht die Differenz zwischen dem für die Auflösung benötigten Potential und Stahlpotential herangezogen, sondern ein Schwellenwert von 100 mV unter dem Stahlpotential verwendet. Nur die Differenz bis zu diesem Schwellenwert wurde für die Auswertung des kathodischen Schutzes berücksichtigt.For the evaluation of the quality of the cathodic corrosion protection, not only the time during which the cathodic corrosion protection can be maintained must be considered, but also the difference between the potential required for the dissolution and the steel potential must be considered. The larger this difference, the more effective is the cathodic protection against corrosion even with poorly conducting electrolytes. The cathodic corrosion protection is negligible with a voltage difference of 100 mV to the steel potential in poorly conducting electrolytes. Although a smaller difference to the steel potential is in principle still a cathodic corrosion protection, if a current flow is detected when using a steel electrode, but this is negligible for practical aspects, since the corrosive medium must conduct very well, so this contribution to the cathodic corrosion protection can be used. This is practically not the case under atmospheric conditions (rainwater, humidity, etc.). Therefore, the difference between the potential required for the dissolution and the steel potential was not used for the evaluation, but a threshold value of 100 mV below the steel potential was used. Only the difference up to this threshold was taken into account for the evaluation of the cathodic protection.

Als Bewertungskriterium für den kathodischen Schutz der jeweiligen Oberflächenbeschichtung nach dem Glühen, wurde die Fläche zwischen der Potentialkurve bei der galvanostatischen Auflösung und dem festgelegten Schwellenwert von 100 mV unter dem Stahlpotential festgelegt (Figur 20). Nur jene Fläche, die unter dem Schwellenwert liegt, wird berücksichtigt. Die darüberliegende Fläche trägt vernachlässigbar wenig bzw. gar nicht zum kathodischen Korrosionsschutz bei und geht daher nicht in die Bewertung ein.As an evaluation criterion for the cathodic protection of the respective surface coating after annealing, the area between the potential curve at the galvanostatic dissolution and the specified threshold value of 100 mV was set below the steel potential ( FIG. 20 ). Only the area below the threshold is taken into account. The overlying surface contributes negligibly little or not at all to the cathodic corrosion protection and is therefore not included in the evaluation.

Die so erhaltene Fläche entspricht, wird sie mit der Stromdichte multipliziert, der Schutzenergie pro Flächeneinheit mit der das Grundmaterial aktiv vor Korrosion geschützt werden kann. Je größer diese Energie ist, umso besser ist der kathodische Korrosionsschutz. In Figur 21 werden die ermittelten Schutzenergien pro Flächeneinheit miteinander verglichen. Während ein Blech mit der bekannten Aluminium-Zink-Schicht aus 55% Aluminium und 44% Zink, wie diese auch aus dem Stand der Technik bekannt ist, nur eine Schutzenergie pro Flächeneinheit von ca. 1,8 J/cm2 aufweist, beträgt die Schutzenergie pro Flächeneinheit bei erfindungsgemäß beschichteten Blechen 5,6 J/cm2 und 5,9 J/cm2.The area thus obtained is multiplied by the current density, the protection energy per unit area with which the base material can be actively protected against corrosion. The greater this energy, the better the cathodic corrosion protection. In FIG. 21 the calculated protective energies per unit area are compared. While a sheet with the known aluminum-zinc layer of 55% aluminum and 44% zinc, as it is also known from the prior art, only a protection energy per unit area of about 1.8 J / cm 2 , which is Protection energy per unit area in accordance with the invention coated sheets 5.6 J / cm 2 and 5.9 J / cm 2 .

Als kathodischer Korrosionsschutz im Sinne der Erfindung wird nachfolgend festgelegt, dass bei 15 µm dicken Beschichtungen und den dargestellten Prozess- und Versuchsbedingungen zumindest eine kathodische Korrosionsschutzenergie von 4 J/cm2 vorhanden ist.As cathodic corrosion protection in the context of the invention, it is subsequently specified that coatings of 15 μm thickness are used and the illustrated process and experimental conditions at least a cathodic corrosion protection energy of 4 J / cm 2 is present.

Eine Zinkschicht, die elektrolytisch auf der Stahlblechoberfläche abgeschieden wurde, ist für sich allein nicht in der Lage einen erfindungsgemäßen Korrosionsschutz, auch nach einem Erhitzungsschritt über die Austenitisierungstemperatur zu leisten. Erfindungsgemäß kann jedoch die Erfindung auch mit einer elektrolytisch abgeschiedenen Beschichtung erzielt werden. Hierzu kann das Zink zusammen mit dem oder den sauerstoffaffinen Elementen in einem Elektrolyseschritt gleichzeitig auf der Blechoberfläche abgeschieden werden, so dass auf der Blechoberfläche eine Beschichtung mit homogenem Aufbau entsteht, die sowohl Zink als auch das oder die sauerstoffaffinen Elemente enthält. Bei der Erhitzung auf die Austenitisierungstemperatur verhält sich eine derartige Beschichtung wie eine im Feuerverzinkungsverfahren auf die Blechoberfläche aufgebrachte Beschichtung der gleichen Zusammensetzung.A zinc layer which has been deposited electrolytically on the steel sheet surface is not in itself capable of providing a corrosion protection according to the invention, even after a heating step above the austenitizing temperature. According to the invention, however, the invention can also be achieved with an electrodeposited coating. For this purpose, the zinc can be deposited simultaneously with the oxygen-affine elements or elements in an electrolysis step on the sheet surface simultaneously, so that on the sheet surface, a coating with a homogeneous structure is formed containing both zinc and the oxygen-affine or the elements. When heated to the austenitizing temperature, such a coating behaves like a coating of the same composition applied to the sheet surface in the hot-dip galvanizing process.

Bei einer weiteren vorteilhaften Ausführungsform wird in einem ersten Elektrolyseschritt ausschließlich Zink auf der Blechoberfläche abgeschieden und in einem zweiten Elektrolyseschritt das oder die sauerstoffaffinen Elemente auf der Zinkschicht abgeschieden. Die zweite Beschichtung aus den sauerstoffaffinen Elementen kann hierbei deutlich dünner sein als die Zinkbeschichtung. Beim Aufheizen einer derartigen erfindungsgemäßen Beschichtung oxidiert die auf der Zinkschicht befindliche äußere Schicht aus dem oder den sauerstoffaffinen Elementen und schützt mit einer Oxidhaut das darunterliegende Zink. Selbstverständlich wird das sauerstoffaffine Element oder werden die sauerstoffaffinen Elemente so ausgewählt, dass diese nicht von der Zinkschicht abdampfen oder in einer Weise oxidiert werden, die keine schützende Oxidhaut hinterlässt. Bei einer weiteren vorteilhaften Ausführungsform wird zunächst eine Zinkschicht elektrolytisch abgeschieden und anschließend eine Schicht aus dem oder den sauerstoffaffinen Elementen durch Bedampfen oder andere geeignete Beschichtungsverfahren nicht-elektrolytischer Art aufgebracht.In a further advantageous embodiment, in a first electrolysis step only zinc is deposited on the sheet surface and in a second electrolysis step, the oxygen-affine element (s) is deposited on the zinc layer. The second coating of the oxygen-affine elements may be significantly thinner than the zinc coating. When such a coating according to the invention is heated, the outer layer located on the zinc layer oxidizes from the oxygen-affine element (s) and protects the underlying zinc with an oxide skin. Of course, the oxygen affinity element or elements are selected so that they do not evaporate from the zinc layer or are oxidized in a manner that does not leave a protective oxide skin. In a further advantageous embodiment, first a zinc layer is deposited electrolytically and then a layer of the oxygen-affine element (s) is applied by vapor deposition or other suitable non-electrolytic coating methods.

Typisch für die erfindungsgemäßen Beschichtungen ist, dass neben der oberflächlichen Schutzschicht aus einem Oxid des oder der eingesetzten sauerstoffaffinen Elemente, insbesondere Al2O3 nach der Aufheizbehandlung für das Presshärten die erfindungsgemäßen Schichten im Querschliff ein typisches "Leopardenmuster" zeigen, das aus einer zinkreichen, intermetallischen Fe-Zn-Al-Phase und einer eisenreichen Fe-Zn-Al-Phase besteht, wobei die eisenreiche Phase ein Verhältnis Zink zu Eisen von höchstens 0,95 (Zn/Fe≤0,95), vorzugsweise von 0,20 bis 0,80 (Zn/Fe=0,20 bis 0,80) und die zinkreiche Phase ein Verhältnis Zink zu Eisen von mindestens 2,0 (Zn/Fe>2,0), vorzugsweise von 2,3 bis 19,0 (Zn/Fe=2,3 bis 19,0) aufweist. Es konnte festgestellt werden, dass, nur wenn ein solcher zweiphasiger Aufbau erreicht wird, eine ausreichende kathodische Schutzwirkung noch vorhanden ist. Ein solcher zweiphasiger Aufbau stellt sich jedoch nur dann ein, wenn zuvor die Bildung eine Al2O3-Schutzschicht an der Oberfläche der Beschichtung stattgefunden hat. Im Gegensatz zu einer bekannten Beschichtung gemäß der US 6,564,604 B2 , die einen homogenen Aufbau bzgl. Struktur und Textur besitzt, wobei Zn-Fe-Nadeln in einer Zinkmatrix vorliegen sollen, wird hier ein inhomogener Aufbau aus mindestens zwei unterschiedlichen Phasen erzielt.It is typical of the coatings according to the invention that in addition to the superficial protective layer of an oxide of the oxygen-affine element (s) used, in particular Al 2 O 3 after the heat treatment for press-hardening, the layers according to the invention exhibit a typical "leopard pattern" consisting of a zinc-rich, Fe-Zn-Al intermetallic phase and an iron-rich Fe-Zn-Al phase, wherein the iron-rich phase has a zinc to iron ratio of at most 0.95 (Zn / Fe≤0.95), preferably from 0.20 to 0.50 (Zn / Fe = 0.20 to 0.80) and the zinc-rich phase has a zinc to iron ratio of at least 2.0 (Zn / Fe> 2.0), preferably from 2.3 to 19.0 ( Zn / Fe = 2.3 to 19.0). It has been found that only when such a biphasic construction is achieved is sufficient cathodic protection still present. Such a biphasic structure, however, only arises if the formation of an Al 2 O 3 protective layer on the surface of the coating has previously taken place. In contrast to a known coating according to the US 6,564,604 B2 , which has a homogeneous structure in terms of structure and texture, where Zn Fe needles are to be present in a zinc matrix, an inhomogeneous structure of at least two different phases is achieved here.

Bei der Erfindung ist von Vorteil, dass ein kontinuierlich und damit wirtschaftlich erzeugtes Stahlblech für das Herstellen pressgehärteter Bauteile geschaffen wird, welches einen kathodischen Korrosionsschutz besitzt, der zuverlässig auch beim Aufheizen des Bleches über die Austenitisierungstemperatur und dem anschließenden Umformen erhalten bleibt.In the invention it is advantageous that a continuously and thus economically produced steel sheet for producing press-hardened components is created, which has a cathodic protection against corrosion, which is also reliable in the Heating the sheet over the Austenitisierungstemperatur and the subsequent forming is maintained.

Claims (39)

  1. A method for manufacturing a hardened steel component with cathodic corrosion protection, wherein:
    a) a coating is applied in a continuous coating process onto a sheet composed of a hardenable steel alloy;
    b) the coating is essentially composed of zinc, and
    c) the coating also contains one or more high oxygen affinity elements in a total quantity of 0.1 wt.% to 15 wt.% in relation to the overall coating, and
    d) then the coated steel sheet, at least in some areas, is brought, through the entry of atmospheric oxygen, to an austenitization temperature required for the hardening and heated until a structural change required for the hardening occurs;
    e) on the coating, a surface skin composed of an oxide of the high oxygen affinity element or elements is formed, and
    f) the sheet metal is formed before or after the heating;
    g) the sheet metal is cooled after the sufficient heating; the cooling rate is dimensioned so that a hardening of the sheet metal alloy is achieved;
    h) magnesium and/or silicon and/or titanium and/or calcium and/or aluminum and/or manganese and/or boron are used as the high oxygen affinity elements in the mixture; and
    i) the coating mixture is selected so that during the heating, the surface of the layer develops an oxide skin composed of oxides of the high oxygen affinity element or elements and the coating comprises at least two phases; and a zinc-rich phase and an iron-rich phase are formed.
  2. The method according to claim 1, characterized in that the coating is applied by means of the hot dip coating process, using a mixture composed essentially of zinc with the high oxygen affinity element or elements.
  3. The method according to claim 1 or 2, characterized in that 0.2 wt.% to 5 wt.% of the high oxygen affinity elements is used.
  4. The method according to one of the preceding claims, characterized in that 0.26 wt.% to 2.5 wt.% of the high oxygen affinity elements is used.
  5. The method according to one of the preceding claims, characterized in that the iron-rich phase has a zinc to iron ratio of at most 0.95 (Zn/Fe ≤ 0.95), preferably from 0.20 to 0.80 (Zn/Fe = 0.20 to 0.80), and the zinc-rich phase has a zinc to iron ratio of at least 2.0 (Zn/Fe ≥ 2.0), preferably from 2.3 to 19.0 (Zn/Fe = 2.3 to 19.0).
  6. The method according to one of the preceding claims, characterized in that the iron-rich phase has a zinc to iron ratio of approximately 30:70 and the zinc-rich phase is embodied with a zinc to iron ratio of approximately 80:20.
  7. The method according to one of the preceding claims, characterized in that the layer also has individual regions with zinc percentages of > 90% zinc.
  8. The method according to one of the preceding claims, characterized in that the coating is embodied so that with a starting thickness of 15 µm after the hardening process, it produces a cathodic protective action of at least 4 J/cm2.
  9. The method according to one of the preceding claims, characterized in that the coating with the mixture of zinc and the high oxygen affinity element or elements is produced in a pass through a liquid metal bath at a temperature of 425°C to 690°C with a subsequent cooling of the coated sheet.
  10. The method according to one of the preceding claims, characterized in that the coating with the mixture of zinc and the high oxygen affinity element or elements is produced in a pass through a liquid metal bath at a temperature of 440°C to 495°C with a subsequent cooling of the coated sheet.
  11. The method according to one of the preceding claims, characterized in that the sheet is heated inductively.
  12. The method according to one of the preceding claims, characterized in that the sheet is heated inductively in the tool.
  13. The method according to one of the preceding claims, characterized in that the sheet is heated in the radiation furnace.
  14. The method according to one of the preceding claims, characterized in that the cooling takes place in the forming tool.
  15. The method according to one of the preceding claims, characterized in that the cooling is carried out during the forming procedure, by means of cooled forming tools.
  16. The method according to one of the preceding claims, characterized in that the cooling takes place after the forming procedure in the forming tool.
  17. The method according to one of the preceding claims, characterized in that the cooling takes place in a form-hardening tool into which the formed sheet is inserted after the heating process and in which a form-fitting engagement is produced between the formed sheet and correspondingly formed, cooled form-hardening tools.
  18. The method according to one of the preceding claims, characterized in that the heating and cooling take place in the form-hardening tool; the heating is carried out inductively and after the inductive heating, the form is cooled.
  19. The method according to one of the preceding claims, characterized in that the forming and hardening of the component takes place with a roll-forming device; the coating sheet is at least partially heated to the austenitization temperature, is roll-formed before, during, and/or after this, and after the roll-forming, is cooled at a cooling rate that causes a hardening of the sheet metal alloy.
  20. A method for manufacturing a hardened steel component with cathodic corrosion protection, wherein:
    a) a coating is applied in a continuous coating process onto a sheet composed of a hardenable steel alloy;
    b) the coating is essentially composed of zinc, and
    c) the coating also contains one or more high oxygen affinity elements in a total quantity of 0.1 wt.% to 15 wt.% in relation to the overall coating, and
    d) then the coated steel sheet, at least in some areas, is brought, through the entry of atmospheric oxygen, to an austenitization temperature required for the hardening and heated until a structural change required for the hardening occurs;
    e) on the coating, a surface skin composed of an oxide of the high oxygen affinity element or elements is formed, and
    f) the sheet metal is formed before or after the heating;
    g) the sheet metal is cooled after the sufficient heating; the cooling rate is dimensioned so that a hardening of the sheet metal alloy is achieved;
    h) magnesium and/or silicon and/or titanium and/or calcium and/or aluminum and/or manganese and/or boron are used as the high oxygen affinity elements in the mixture; and
    i) the coating mixture is selected so that during the heating, the surface of the layer develops an oxide skin composed of oxides of the high oxygen affinity element or elements and the coating comprises at least two phases; a zinc-rich phase and an iron-rich phase are formed; and
    j) the coating is electrolytically applied.
  21. The method according to claim 20, characterized in that in the electrolytic coating process, first a zinc layer is deposited and in a subsequent second step, the high oxygen affinity element or elements is/are deposited onto the deposited zinc layer.
  22. The method according to claim 20 or 21, characterized in that first, a zinc layer is electrolytically deposited onto the surface of the sheet and then a coating composed of the high oxygen affinity element or elements is deposited onto the zinc surface.
  23. The method according to one of claims 20 through 22, characterized in that the high oxygen affinity element or elements are vapor deposited or are deposited with other suitable methods.
  24. The method according to one of claims 20 through 23, characterized in that 0.26 wt.% to 2.5 wt.% of the high oxygen affinity elements is used.
  25. A corrosion protection layer on steel plates that have undergone a hardening step, wherein after being deposited onto the steel sheet, the corrosion protection layer is subjected to a heat treatment with the entry of oxygen; the coating is essentially composed of zinc and also one or more high oxygen affinity elements in a total quantity of 0.1 wt.% to 15.0 wt.% in relation to the overall coating; the surface of the corrosion protection layer has an oxide skin composed of oxides of the high oxygen affinity element or elements and the coating comprises at least two phases; a zinc-rich phase and an iron-rich phase are formed.
  26. A corrosion protection layer on steel plates that have undergone a hardening step, wherein after being deposited onto the steel sheet, the corrosion protection layer is subjected to a heat treatment with the entry of oxygen; the coating is essentially composed of zinc and also one or more high oxygen affinity elements in a total quantity of 0.1 wt.% to 15.0 wt.% in relation to the overall coating; the surface of the corrosion protection layer has an oxide skin composed of oxides of the high oxygen affinity element or elements and the coating comprises at least two phases; a zinc-rich phase and an iron-rich phase are formed; the corrosion protection layer is a corrosion protection layer deposited by means of an electrolytic depositing method; the corrosion protection layer has been produced through electrolytic depositing of essentially zinc and at the same time, one or more high oxygen affinity elements; or the corrosion protection layer has been produced through first, the electrolytic depositing of essentially zinc and the subsequent vapor deposition or application using other suitable means, of one or more high oxygen affinity elements.
  27. The corrosion protection layer according to claim 25 or 26, characterized in that the corrosion protection layer contains magnesium and/or silicon and/or titanium and/or calcium and/or aluminum and/or boron and/or manganese as high oxygen affinity elements in the mixture.
  28. The corrosion protection layer according to claim 25 or 27, characterized in that the corrosion protection layer is a corrosion protection layer that is deposited by means of a hot dip coating process.
  29. The corrosion protection layer according to one of claims 25 through 28, characterized in that the coating is composed of a mixture of essentially zinc and the mixture also includes one or more high oxygen affinity elements.
  30. The corrosion protection layer according to one of claims 25 through 29, characterized in that it contains the high oxygen affinity elements in a total quantity of 0.1 wt.% to 15.0 wt.% in relation to the overall coating.
  31. The corrosion protection layer according to one of claims 25 through 30, characterized in that it contains these high oxygen affinity elements in a total quantity of 0.02 wt.% to 0.5 wt.% in relation to the overall coating.
  32. The corrosion protection layer according to one of claims 25 through 31, characterized in that it contains the high oxygen affinity elements in a total quantity of 0.6 wt.% to 2.5 wt.% in relation to the overall coating.
  33. The corrosion protection layer according to one of claims 25 through 32, characterized in that essentially aluminum is contained as a high oxygen affinity element.
  34. The corrosion protection layer according to one of claims 25 through 33, characterized in that the iron-rich phase has a zinc to iron ratio of at most 0.95 (Zn/Fe ≤ 0.95), preferably from 0.20 to 0.80 (Zn/Fe = 0.20 to 0.80), and the zinc-rich phase has a zinc to iron ratio of at least 2.0 (Zn/Fe ≥ 2.0), preferably from 2.3 to 19.0 (Zn/Fe = 2.3 to 19.0).
  35. The corrosion protection layer according to one of claims 25 through 34, characterized in that the iron-rich phase has a zinc to iron ratio of approximately 30:70 and the zinc-rich phase is embodied with a zinc to iron ratio of approximately 80:20.
  36. The corrosion protection layer according to one of claims 25 through 35, characterized in that the corrosion protection layer also has individual regions with zinc percentages of ≥ 90 wt.% zinc.
  37. The corrosion protection layer according to one of claims 25 through 36, characterized in that the corrosion protection layer, with a starting thickness of 15 µm, has a cathodic protective energy of at least 4 J/cm2.
  38. A hardened steel component with cathodic corrosion protection, composed of a hotrolled or cold-rolled steel band with a thickness of ≥ 0.15 mm, wherein the hardness is achieved by heating it to an austenitization temperature required for the hardening and until a structural change required for the hardening occurs and a cooling that is carried out after the sufficient heating; the cooling rate is dimensioned so that a hardening of the sheet metal alloy is achieved; a coating essentially composed of zinc is present on the surface; the coating contains one or more high oxygen affinity elements in a total quantity of 0.1 wt.% to 15 wt.%; the cooling has been achieved during the forming procedure, by means of cooled forming tools; in particular, a hardened steel component that has been manufactured with a method according to one of claims 1 through 24 and with a corrosion protection layer according to one of claims 25 through 37.
  39. The hardened steel component according to claim 38, characterized in that the component is embodied with a concentration range of at least one of the alloy elements within the following limits, expressed in wt.%: carbon up to 0.4, preferably 0.15 to 0.3 silicon up to 1.9, preferably 0.11 to 1.5 manganese up to 3.0, preferably 0.8 to 2.5 chromium up to 1.5, preferably 0.1 to 0.9 molybdenum up to 0.9, preferably 0.1 to 0.5 nickel up to 0.9, titanium up to 0.2, preferably 0.02 to 0.1 vanadium up to 0.2, tungsten up to 0.2, aluminum up to 0.2, preferably 0.02 to 0.07 boron up to 0.01, preferably 0.0005 to 0.005 sulfur max. 0.01, preferably max. 0.008 phosphorus max. 0.025, preferably max. 0.01
    and the rest, iron and impurities.
EP04739755.9A 2003-07-29 2004-06-09 Method for producing a hardened steel part Expired - Lifetime EP1658390B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT0120303A AT412878B (en) 2003-07-29 2003-07-29 Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction
AT12022003A AT412403B (en) 2003-07-29 2003-07-29 Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
PCT/EP2004/006251 WO2005021822A1 (en) 2003-07-29 2004-06-09 Method for producing a hardened steel part

Publications (2)

Publication Number Publication Date
EP1658390A1 EP1658390A1 (en) 2006-05-24
EP1658390B1 true EP1658390B1 (en) 2014-09-17

Family

ID=34275147

Family Applications (4)

Application Number Title Priority Date Filing Date
EP04736386.6A Expired - Lifetime EP1660693B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened profile part
EP04739755.9A Expired - Lifetime EP1658390B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened steel part
EP20090015813 Expired - Lifetime EP2177641B1 (en) 2003-07-29 2004-06-09 Steel plate having a galvanized corrosion protection layer
EP20040739756 Expired - Lifetime EP1651789B1 (en) 2003-07-29 2004-06-09 Method for producing hardened parts from sheet steel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04736386.6A Expired - Lifetime EP1660693B1 (en) 2003-07-29 2004-06-09 Method for producing a hardened profile part

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP20090015813 Expired - Lifetime EP2177641B1 (en) 2003-07-29 2004-06-09 Steel plate having a galvanized corrosion protection layer
EP20040739756 Expired - Lifetime EP1651789B1 (en) 2003-07-29 2004-06-09 Method for producing hardened parts from sheet steel

Country Status (14)

Country Link
US (4) US8181331B2 (en)
EP (4) EP1660693B1 (en)
JP (2) JP5054378B2 (en)
KR (2) KR100825975B1 (en)
CN (3) CN1829816A (en)
AT (1) ATE478971T1 (en)
BR (2) BRPI0412601B1 (en)
CA (2) CA2533633C (en)
DE (1) DE502004011583D1 (en)
ES (4) ES2421182T3 (en)
MX (2) MXPA06000825A (en)
PL (2) PL1651789T3 (en)
PT (2) PT1651789E (en)
WO (3) WO2005021821A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110864B3 (en) * 2017-05-18 2018-10-18 Voestalpine Metal Forming Gmbh Method and device for producing hardened sheet steel components with different sheet thicknesses
US11149327B2 (en) 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333165A1 (en) * 2003-07-22 2005-02-24 Daimlerchrysler Ag Production of press-quenched components, especially chassis parts, made from a semi-finished product made from sheet steel comprises molding a component blank, cutting, heating, press-quenching, and coating with a corrosion-protection layer
BRPI0412601B1 (en) * 2003-07-29 2013-07-23 method for producing a hardened steel part
US7685907B2 (en) * 2004-08-13 2010-03-30 Vip Tooling, Inc. Method for manufacturing extrusion die tools
US20100199738A1 (en) * 2004-08-13 2010-08-12 Vip Tooling, Inc., (An Indiana Corporation) Modular extrusion die tools
DE102005041741B4 (en) * 2005-09-02 2010-03-18 Daimler Ag Method for producing a press-hardened component
JP4690848B2 (en) * 2005-10-13 2011-06-01 新日本製鐵株式会社 High-tensile hot-dip Zn-plated steel material excellent in appearance, workability, and weldability, and its manufacturing method
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
US20100057254A1 (en) * 2006-11-13 2010-03-04 Salamanca Hugo P Methods for using robotics in mining and post-mining processing
DE102005059614A1 (en) * 2005-12-12 2007-06-14 Nano-X Gmbh Anti-corrosion and/or anti-scaling coating for metals (especially steel) is applied by wet methods and heat treated to give a weldable coating
SE531379C2 (en) * 2006-06-08 2009-03-17 Nord Lock Ab Method for hardening and coating steel washers for locking and steel lock washer
EP2126144B1 (en) * 2007-02-23 2017-12-27 Tata Steel IJmuiden BV Method of thermomechanical shaping a final product with very high strength and a product produced thereby
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
DE102007022174B3 (en) * 2007-05-11 2008-09-18 Voestalpine Stahl Gmbh Method for creating and removing a temporary protective layer for a cathodic coating
PL2171104T3 (en) * 2007-07-19 2018-08-31 Muhr Und Bender Kg Method for annealing a strip of steel having a variable thickness in length direction
PL2171102T3 (en) * 2007-07-19 2018-02-28 Muhr Und Bender Kg A strip of steel having a variable thickness in length direction
DE102007038215A1 (en) 2007-08-13 2009-02-19 Nano-X Gmbh Process for producing an active corrosion protection coating on steel components
DE102007038214A1 (en) 2007-08-13 2009-02-19 Volkswagen Ag Method for corrosion protection of body, chassis, engine components or exhaust systems
EP2025771A1 (en) * 2007-08-15 2009-02-18 Corus Staal BV Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Manufacturing method of high strength parts
DE102007043154B4 (en) * 2007-09-11 2017-01-26 Voestalpine Krems Gmbh Method and device for hardening profiles
DE102007048504B4 (en) * 2007-10-10 2013-11-07 Voestalpine Stahl Gmbh Anti-corrosion coating for steel sheets and method of conditioning a corrosion protection coating
DE102007050907A1 (en) 2007-10-23 2009-04-30 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
SE531689C2 (en) * 2007-11-26 2009-07-07 Gestamp Hardtech Ab Ways to make a lacquered high-strength product
DE102007061489A1 (en) 2007-12-20 2009-06-25 Voestalpine Stahl Gmbh Process for producing hardened hardenable steel components and hardenable steel strip therefor
CA2709520C (en) * 2007-12-28 2013-06-25 Greatpoint Energy, Inc. Petroleum coke compositions for catalytic gasification
PL2270257T3 (en) * 2008-04-22 2019-03-29 Nippon Steel & Sumitomo Metal Corporation Plated steel sheet and method of hot stamping plated steel sheet
DE102008037442B3 (en) * 2008-10-13 2010-02-25 Thyssenkrupp Steel Ag Method for determining changes in shape of a workpiece
WO2010069588A1 (en) * 2008-12-19 2010-06-24 Corus Staal Bv Method for manufacturing a coated part using hot forming techniques
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009007909A1 (en) 2009-02-06 2010-08-12 Thyssenkrupp Steel Europe Ag A method of producing a steel component by thermoforming and by hot working steel component
DE102009016852A1 (en) * 2009-04-08 2010-10-14 Bayerische Motoren Werke Aktiengesellschaft Process for the preparation of heat-treated sheet metal parts from a steel sheet material with a corrosion protection coating and such sheet metal part
CN101985199B (en) * 2009-07-29 2012-09-05 比亚迪股份有限公司 Method for preparing shell of electronics
EP2290133B1 (en) * 2009-08-25 2012-04-18 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
CN101935789B (en) * 2009-11-19 2012-03-07 江苏麟龙新材料股份有限公司 Hot-dipped cast aluminum alloy containing Al-Zn-Si-Mg-RE-Ti-Ni and manufacturing method thereof
DE102009056443A1 (en) * 2009-12-02 2011-06-09 Benteler Automobiltechnik Gmbh Crashbox and method for its production
KR101171450B1 (en) 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
DE102010004823B4 (en) * 2010-01-15 2013-05-16 Benteler Automobiltechnik Gmbh Method for producing a metallic molded component for motor vehicle components
US9593391B2 (en) 2010-02-19 2017-03-14 Tata Steel Nederland Technology Bv Strip, sheet or blank suitable for hot forming and process for the production thereof
DE102010017354A1 (en) * 2010-06-14 2011-12-15 Thyssenkrupp Steel Europe Ag Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
DE102010037077B4 (en) 2010-08-19 2014-03-13 Voestalpine Stahl Gmbh Process for conditioning the surface of hardened corrosion-protected steel sheet components
ES2663005T3 (en) 2010-08-31 2018-04-10 Tata Steel Ijmuiden Bv Method for hot forming a coated metal part and shaped part
EP2623226A4 (en) 2010-09-30 2017-11-01 Kabushiki Kaisha Kobe Seiko Sho Press-molded article and method for producing same
DE102011053941B4 (en) 2011-09-26 2015-11-05 Voestalpine Stahl Gmbh Method for producing hardened components with regions of different hardness and / or ductility
DE102011053939B4 (en) 2011-09-26 2015-10-29 Voestalpine Stahl Gmbh Method for producing hardened components
EP2656187B1 (en) * 2010-12-24 2020-09-09 Voestalpine Stahl GmbH Method for producing hardened structural elements
DE102011001140A1 (en) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
RU2560890C2 (en) * 2011-03-18 2015-08-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Steel plate of hot-stamped product and method of its manufacturing
ES2389188B1 (en) * 2011-03-29 2013-09-02 Rovalma Sa CATHODIC PROTECTION THROUGH COATING FOR COOLING CIRCUITS OR OTHER HOLES OR CHANNELS.
DE202011107125U1 (en) 2011-04-13 2011-11-30 Tata Steel Ijmuiden Bv Thermoformable strip, sheet or blank and thermoformed product
WO2012147863A1 (en) * 2011-04-27 2012-11-01 新日本製鐵株式会社 Steel sheet for hot stamping members and method for producing same
EP2718027A1 (en) * 2011-06-07 2014-04-16 Tata Steel IJmuiden BV Hot formable strip, sheet or blank, process for the production thereof, method for hot forming a product and hot formed product
DE102011108162B4 (en) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Process for producing a component by hot forming a precursor of steel
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
DE102011056444C5 (en) 2011-12-14 2015-10-15 Voestalpine Metal Forming Gmbh Method and device for partial hardening of sheet metal components
JP2015504005A (en) * 2011-12-20 2015-02-05 アクティエボラゲット・エスコーエッフ Method for producing steel components by flash butt welding, and components created using this method
DE102012101018B3 (en) 2012-02-08 2013-03-14 Thyssenkrupp Nirosta Gmbh Process for hot dip coating a flat steel product
US9605335B2 (en) 2012-03-30 2017-03-28 Kobe Steel, Ltd. Hot-dip galvanized steel sheet for stamping having excellent cold workability, die hardenability, and surface quality, and producing method thereof
DE102012024616A1 (en) * 2012-12-17 2014-06-18 GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) Sheet steel and molded part thereof
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
DE102013204449A1 (en) * 2013-03-14 2014-09-18 Zf Friedrichshafen Ag Method for producing a corrosion-protected sheet-metal part
RU2669663C2 (en) 2013-05-17 2018-10-12 Ак Стил Пропертиз, Инк. Zinc-coated steel for press hardening application and method of production
CN103342012B (en) * 2013-07-08 2015-12-02 湖北交投四优钢科技有限公司 A kind of alumetized steel expanded metals and preparation method
CN103320745B (en) * 2013-07-08 2014-01-08 湖北交投四优钢科技有限公司 Aluminized steel and preparation method thereof
DE102013108046A1 (en) 2013-07-26 2015-01-29 Thyssenkrupp Steel Europe Ag Method and device for partial hardening of semi-finished products
CN105018923B (en) * 2014-04-29 2018-10-02 宝山钢铁股份有限公司 One kind covering titanium low-carbon steel composite board preparation method
DE102014210008A1 (en) * 2014-05-26 2015-11-26 Muhr Und Bender Kg Method and plant for producing a hardened molded part
DE102014109315C5 (en) 2014-07-03 2022-02-24 Thyssenkrupp Ag Process for manufacturing metal profiles
DE102014109553A1 (en) * 2014-07-08 2016-01-14 Thyssenkrupp Ag Hardening tool and method for producing hardened profile moldings
US9850553B2 (en) 2014-07-22 2017-12-26 Roll Forming Corporation System and method for producing a hardened and tempered structural member
DE102014110415B4 (en) 2014-07-23 2016-10-20 Voestalpine Stahl Gmbh Method for heating steel sheets and apparatus for carrying out the method
DE102014110564B4 (en) * 2014-07-25 2016-12-22 Thyssenkrupp Ag Method for producing a profile and a production line for producing a profile
US20170321314A1 (en) * 2014-11-04 2017-11-09 Voestalpine Stahl Gmbh Method for producing an anti-corrosion coating for hardenable sheet steels and an anti-corrosion coating for hardenable sheet steels
CN104635748B (en) * 2014-12-18 2017-11-17 温州泓呈祥科技有限公司 Punching type solar power generation tracking rotary table
CN105296862A (en) * 2015-02-10 2016-02-03 苏州科胜仓储物流设备有限公司 High-strength antiseptic steel plate for shuttle car shelf and machining process thereof
CN104651728A (en) * 2015-02-10 2015-05-27 苏州科胜仓储物流设备有限公司 Anticorrosion steel sheet for storing equipment and preparation method of steel sheet
CA2987500C (en) 2015-05-29 2023-09-19 Voestalpine Stahl Gmbh Method for contactless cooling of steel sheets and apparatus therefor
DE102015113056B4 (en) 2015-08-07 2018-07-26 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
EP3303647B1 (en) 2015-06-03 2019-03-20 Salzgitter Flachstahl GmbH Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
EP3159419B1 (en) 2015-10-21 2018-12-12 Voestalpine Krems Gmbh Method of fabrication of roll formed partly hardened profiles
EP3162558A1 (en) 2015-10-30 2017-05-03 Outokumpu Oyj Component made of metallic composite material and method for the manufacture of the component by hot forming
DE102015016656A1 (en) 2015-12-19 2017-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) A method of making a coated hot worked cured body and a body made by the method
DE102016102504A1 (en) * 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminum-based coating for steel sheets or steel strips and method of making same
DE102016102344B4 (en) * 2016-02-10 2020-09-24 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
TWI601849B (en) * 2016-06-08 2017-10-11 China Steel Corp Method for manufacturing thermoformed zinc-based plated steel sheet and hot stamping method thereof
US10837072B2 (en) 2016-08-29 2020-11-17 Magna Powertrain Inc. Splined power transmission components made using heat-assisted calibration process and method of forming such splined power transmission components
DE102017214561B4 (en) 2016-08-29 2019-05-16 Magna Powertrain Inc. A method of forming a spline in a component using ultra high strength steel
US10371646B2 (en) * 2016-09-19 2019-08-06 The Boeing Company Method and system for automated data collection and part validation
DE102016122323A1 (en) 2016-11-21 2018-05-24 Illinois Tool Works Inc. Weldable threaded plate
PT3360981T (en) 2017-02-10 2020-10-08 Outokumpu Oy Steel for manufacturing a component by hot forming and use of the component
CA3092904A1 (en) * 2018-03-01 2019-09-06 Nucor Corporation Zinc alloy coated hardenable steels and method of manufacturing the same
US20210108301A1 (en) 2018-03-01 2021-04-15 Nucor Corporation Zinc-based alloy coating for steel and methods
US10481052B2 (en) 2018-03-28 2019-11-19 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts
US11084169B2 (en) * 2018-05-23 2021-08-10 General Electric Company System and method for controlling a robotic arm
KR102176342B1 (en) 2018-09-28 2020-11-09 주식회사 포스코 Method for manufacturing the electrical steel sheet product
EP3726206B1 (en) 2019-03-26 2022-11-02 FEI Company Methods and systems for inclusion analysis
EP4077741A1 (en) * 2019-12-20 2022-10-26 Autotech Engineering S.L. Process and production line for forming objects
WO2021154240A1 (en) * 2020-01-29 2021-08-05 Nucor Corporation Zinc alloy coating layer of press-hardenable steel
TWI741613B (en) * 2020-05-21 2021-10-01 元大興企業有限公司 Weather-resistant steel material and its manufacturing equipment
CN112011752B (en) * 2020-08-20 2022-06-21 马鞍山钢铁股份有限公司 High-corrosion-resistance hot-formed steel part and manufacturing method thereof
CN112846665A (en) * 2021-01-06 2021-05-28 王志刚 Production method of axial metal sealing ring
EP4029964A1 (en) 2021-01-14 2022-07-20 Hilti Aktiengesellschaft Hardening of a zinc coated screw body
DE102021123279A1 (en) 2021-09-08 2023-03-09 Voestalpine Metal Forming Gmbh Process for producing hardened sheet steel components
DE102022107131A1 (en) 2022-03-25 2023-09-28 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel sheet components
CN118786228A (en) * 2023-02-10 2024-10-15 奥钢联金属成型有限公司 Method for producing hardened steel parts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630792A (en) * 1969-04-28 1971-12-28 Cominco Ltd Process for the production of colored coatings
JPH05148606A (en) * 1991-11-28 1993-06-15 Nkk Corp Manufacture of galvannealed steel sheet excellent in press formability and spot weldability
EP0269005B1 (en) * 1986-11-21 1993-09-08 NIPPON MINING & METALS COMPANY, LIMITED Colored zinc coating
EP0508479B1 (en) * 1991-04-10 1995-10-25 Kawasaki Steel Corporation Corrosion resistant Zn or part-Zn plated steel sheet and method of producing the same
EP1288325A1 (en) * 2000-04-24 2003-03-05 Nkk Corporation Galvannealed sheet steel and method for production thereof
WO2003035922A1 (en) * 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Method for press working, plated steel product for use therein and method for producing the steel product

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791801A (en) * 1971-07-23 1974-02-12 Toyo Kohan Co Ltd Electroplated steel sheet
SE435527B (en) 1973-11-06 1984-10-01 Plannja Ab PROCEDURE FOR PREPARING A PART OF Hardened Steel
JPS52120252A (en) * 1976-04-02 1977-10-08 Honda Motor Co Ltd Method and device for forging thin plate member
JPS55110783A (en) * 1979-02-15 1980-08-26 Sumitomo Metal Ind Ltd Surface treated steel plate with excellent spot weldability
JPS569386A (en) * 1979-07-02 1981-01-30 Nippon Kokan Kk <Nkk> Production of electro-zinc plated steel plate
JPS58189363A (en) * 1982-04-26 1983-11-05 Nisshin Steel Co Ltd Manufacture of steel plate coated with alloyed zinc by galvanization
FR2534161B1 (en) * 1982-10-06 1985-08-30 Maubeuge Fer PROCESS AND DEVICE FOR THE CONTINUOUS PRODUCTION OF A GALVANIZED AND PROFILED METAL STRIP
JPS61119693A (en) * 1984-11-14 1986-06-06 Sumitomo Metal Ind Ltd Laminated plate steel sheet
JPS62142755A (en) * 1985-12-17 1987-06-26 Nippon Steel Corp Alloyed hot-dip galvanized steel sheet and its manufacturing method
JPS6362855A (en) * 1986-09-03 1988-03-19 Toyota Motor Corp Production of differential thickness alloyed hot dip zinc coated steel sheet
US4830683A (en) * 1987-03-27 1989-05-16 Mre Corporation Apparatus for forming variable strength materials through rapid deformation and methods for use therein
BE1001029A3 (en) * 1987-10-22 1989-06-13 Bekaert Sa Nv STEEL SUBSTRATE WITH METAL COATINGS TO STRENGTHEN vulcanisable elastomers.
JPH01242714A (en) * 1988-03-25 1989-09-27 Mitsubishi Heavy Ind Ltd Heat treatment of steel part
US4913746A (en) * 1988-08-29 1990-04-03 Lehigh University Method of producing a Zn-Fe galvanneal on a steel substrate
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet with excellent press formability
JPH042758A (en) * 1990-04-18 1992-01-07 Nippon Steel Corp Production of hot-dip zinc alloy coated steel sheet excellent in press formability and corrosion resistance after coating
JPH05214544A (en) * 1991-04-10 1993-08-24 Kawasaki Steel Corp Highly corrosion-resistant galvanized steel sheet and its production
AT402032B (en) * 1991-07-17 1997-01-27 Evg Entwicklung Verwert Ges MACHINE FOR THE PROCESSING OF GRID MATS FROM LENGTHED AND CROSSWIRE WELDED TOGETHER
JPH05171491A (en) * 1991-12-26 1993-07-09 Sumitomo Metal Ind Ltd Two-layer plated steel with excellent corrosion resistance after painting
AT397815B (en) * 1992-03-31 1994-07-25 Voest Alpine Ind Anlagen METHOD FOR GALVANIZING A TAPE AND SYSTEM FOR IMPLEMENTING THE METHOD
JPH06256925A (en) * 1993-03-08 1994-09-13 Nippon Steel Corp Zinc-iron hot dip galvannealed steel excellent in press formability
JP2962973B2 (en) * 1993-08-09 1999-10-12 滲透工業株式会社 Hot dip galvanizing equipment materials
JPH08325689A (en) * 1995-05-30 1996-12-10 Nippon Steel Corp Manufacturing facility for hot-dip galvanized steel sheet with excellent lubricity and chemical conversion treatment
JP3345219B2 (en) 1995-06-15 2002-11-18 酒井医療株式会社 Standing training bed
SE9602257L (en) 1996-06-07 1997-12-08 Plannja Hardtech Ab Ways to produce steel detail
JP3400289B2 (en) * 1997-03-26 2003-04-28 川崎製鉄株式会社 Manufacturing method of galvannealed steel sheet with excellent plating adhesion
IT1291883B1 (en) * 1997-04-18 1999-01-21 Sviluppo Materiali Spa PROCEDURE FOR THE CONTINUOUS PRODUCTION, THROUGH PHYSICAL DEPOSITION FROM THE STEAM PHASE, OF METALLIC TAPES COATED WITH HIGH
US6178800B1 (en) * 1998-07-14 2001-01-30 Msp Industries Corporation Zone heating methods and apparatuses for metal workpieces for forging
FR2787735B1 (en) 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
JP2000336467A (en) * 1999-03-24 2000-12-05 Kawasaki Steel Corp Galvanized steel sheet and production thereof
US6465114B1 (en) * 1999-05-24 2002-10-15 Nippon Steel Corporation -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same
JP3675313B2 (en) * 1999-07-15 2005-07-27 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP2001109121A (en) 1999-10-06 2001-04-20 Konica Corp Automatic developing device for silver halide photographic sensitive material
KR20010039405A (en) * 1999-10-30 2001-05-15 이계안 Manufacturing method of coating steel using Zn-Fe alloy
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same
JP2001295015A (en) * 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP2001264591A (en) 2000-03-22 2001-09-26 Yasuhiro Koike Light emitting composite parts for optical communication
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
DE10023312C1 (en) * 2000-05-15 2001-08-23 Thyssenkrupp Stahl Ag Galvannealed sheet and method of making such sheet
JP2001329352A (en) * 2000-05-19 2001-11-27 Sumitomo Metal Ind Ltd Alloyed hot-dip galvanized steel sheet with excellent slidability
DE10039375A1 (en) * 2000-08-11 2002-03-28 Fraunhofer Ges Forschung Corrosion-protected steel sheet and process for its manufacture
JP4489273B2 (en) * 2000-10-02 2010-06-23 本田技研工業株式会社 Body panel manufacturing method
DE10049660B4 (en) 2000-10-07 2005-02-24 Daimlerchrysler Ag Method for producing locally reinforced sheet-metal formed parts
CN1191007C (en) * 2000-12-19 2005-02-23 Posco公司 High strength steel plate having superior electric and magnetic shielding property and method for producing same
KR100455083B1 (en) * 2000-12-22 2004-11-08 주식회사 포스코 Zn-Co-W alloy electroplated steel sheet with excellent corrosion resistance and welding property and electrolyte therefor
DE10065495C2 (en) 2000-12-28 2002-11-14 Semikron Elektronik Gmbh The power semiconductor module
DE10120063C2 (en) 2001-04-24 2003-03-27 Benteler Automobiltechnik Gmbh Process for the production of metallic profile components for motor vehicles
DE10120919A1 (en) 2001-04-27 2002-10-31 Benteler Automobiltechnik Gmbh Process for producing a hardened sheet metal profile
JP3582504B2 (en) * 2001-08-31 2004-10-27 住友金属工業株式会社 Hot-press plated steel sheet
JP3582512B2 (en) * 2001-11-07 2004-10-27 住友金属工業株式会社 Steel plate for hot pressing and method for producing the same
DE10209264B4 (en) * 2002-03-01 2005-06-02 Ab Skf Method for producing a metal component
DE10254695B3 (en) 2002-09-13 2004-04-15 Daimlerchrysler Ag Production of a metallic component, especially a vehicle body component, from a semifinished product made of non-hardened heat-deformable sheet steel comprises cold-forming, trimming, hot-forming and press-hardening processes
DE10246614A1 (en) 2002-10-07 2004-04-15 Benteler Automobiltechnik Gmbh Method of making vehicle component with metallic coating from steel sheet or strip, involves coating metal from non-aqueous organic solution before cold forming, hot forming and hardening
DE10257737B3 (en) * 2002-12-10 2004-02-26 Thyssenkrupp Stahl Ag Electrolytic magnesium deposition on a substrate made from sheet metal with a zinc (alloy) coating, used in the automobile industry, using a solvent for the deposition and heat treating the coated substrate
BRPI0412601B1 (en) * 2003-07-29 2013-07-23 method for producing a hardened steel part

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3630792A (en) * 1969-04-28 1971-12-28 Cominco Ltd Process for the production of colored coatings
EP0269005B1 (en) * 1986-11-21 1993-09-08 NIPPON MINING &amp; METALS COMPANY, LIMITED Colored zinc coating
EP0508479B1 (en) * 1991-04-10 1995-10-25 Kawasaki Steel Corporation Corrosion resistant Zn or part-Zn plated steel sheet and method of producing the same
JPH05148606A (en) * 1991-11-28 1993-06-15 Nkk Corp Manufacture of galvannealed steel sheet excellent in press formability and spot weldability
EP1288325A1 (en) * 2000-04-24 2003-03-05 Nkk Corporation Galvannealed sheet steel and method for production thereof
WO2003035922A1 (en) * 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Method for press working, plated steel product for use therein and method for producing the steel product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIH H C ET AL: "The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 150, 1 February 2002 (2002-02-01), pages 70 - 75, XP002569257, ISSN: 0257-8972, DOI: 10.1016/S0257-8972(01)01508-0 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110864B3 (en) * 2017-05-18 2018-10-18 Voestalpine Metal Forming Gmbh Method and device for producing hardened sheet steel components with different sheet thicknesses
US11149327B2 (en) 2019-05-24 2021-10-19 voestalpine Automotive Components Cartersville Inc. Method and device for heating a steel blank for hardening purposes

Also Published As

Publication number Publication date
BRPI0412601B1 (en) 2013-07-23
MXPA06000826A (en) 2006-08-23
EP1660693A1 (en) 2006-05-31
KR20060033921A (en) 2006-04-20
CA2533327C (en) 2009-08-18
WO2005021822A1 (en) 2005-03-10
CN104372278A (en) 2015-02-25
CN1829817A (en) 2006-09-06
JP2007505211A (en) 2007-03-08
CN1829817B (en) 2015-01-07
EP1651789A1 (en) 2006-05-03
US7938949B2 (en) 2011-05-10
EP1660693B1 (en) 2014-09-17
US8181331B2 (en) 2012-05-22
US7832242B2 (en) 2010-11-16
CA2533633C (en) 2009-08-25
KR20060036111A (en) 2006-04-27
EP1658390A1 (en) 2006-05-24
EP2177641B1 (en) 2013-04-24
ES2421182T3 (en) 2013-08-29
ES2525731T3 (en) 2014-12-29
CN1829816A (en) 2006-09-06
ATE478971T1 (en) 2010-09-15
WO2005021821A1 (en) 2005-03-10
JP5113385B2 (en) 2013-01-09
ES2524324T3 (en) 2014-12-05
PL1651789T3 (en) 2011-03-31
WO2005021820A1 (en) 2005-03-10
BRPI0412599A (en) 2006-09-19
ES2350931T3 (en) 2011-01-28
US20070271978A1 (en) 2007-11-29
PT1660693E (en) 2015-01-05
PL2177641T3 (en) 2013-09-30
US20110045316A1 (en) 2011-02-24
BRPI0412599B1 (en) 2016-05-17
JP2007500285A (en) 2007-01-11
JP5054378B2 (en) 2012-10-24
KR100825975B1 (en) 2008-04-28
DE502004011583D1 (en) 2010-10-07
EP1651789B1 (en) 2010-08-25
PT1651789E (en) 2010-11-05
KR100834555B1 (en) 2008-06-02
US8021497B2 (en) 2011-09-20
US20070256808A1 (en) 2007-11-08
BRPI0412601A (en) 2006-09-19
EP2177641A1 (en) 2010-04-21
CA2533327A1 (en) 2005-03-10
CA2533633A1 (en) 2005-03-10
MXPA06000825A (en) 2006-08-23
US20070000117A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
EP1658390B1 (en) Method for producing a hardened steel part
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
DE202004021264U1 (en) Corrosion layer and hardened steel component
DE60006068T2 (en) HOT-DIP GALVANIZED STEEL SHEET WITH EXCELLENT BALANCE BETWEEN STRENGTH AND STRENGTH AND ADHESION BETWEEN STEEL AND COATING
EP2054536B1 (en) Process for coating a hot- or cold-rolled steel strip containing 6 - 30% by weight of mn with a metallic protective layer
EP2235229B9 (en) Method for coating a warm or cold-rolled flat steel product comprising 6 - 30 weight-% mn with a metallic protective layer
DE2922790C2 (en) Steel coated with manganese and process for its manufacture
EP2393953A1 (en) Method for producing a coated steel component by means of hot forming and steel component produced by means of hot forming
WO2009047183A1 (en) Method for the production of a steel component by thermoforming, and steel component produced by thermoforming
DE102015118869A1 (en) Method for producing a corrosion protection coating for hardenable steel sheets and corrosion protection layer for hardenable steel sheets
DE69201881T2 (en) Steel sheet clad with a nickel alloy with excellent properties in terms of pressability and phosphating as well as processes for its production.
DE69106552T2 (en) Surface-treated steel strip with improved weldability and coating properties and its manufacture.
DE102018102624A1 (en) Process for producing a steel strip with improved adhesion of metallic hot-dip coatings
DE69919660T2 (en) Annealed steel sheet and process for its production
WO2016026885A1 (en) Surface-finished steel sheet and method for the production thereof
DE69701070T2 (en) Hot-dip galvanized steel sheet and manufacturing process therefor
EP3872230A1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
DE69224630T2 (en) METHOD FOR PRODUCING STEEL PANELS COATED WITH LIQUID ZINC WITH UNCOATED AREAS
DE69728389T2 (en) HOT-DIPPED GALVANIZED STEEL PLATE WITH REDUCED DEFECTS, MADE BY MALFUNCTION, WITH EXCELLENT CONTACT COATING HAZARD, AND METHOD OF MANUFACTURING THEREOF
EP3947754B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
DE69407496T2 (en) Process for producing a galvanized sheet
EP4359575A1 (en) Method for producing a flat steel product having a zinc- or aluminium-based metal coating and corresponding flat steel product
WO2021148312A1 (en) Steel component comprising an anti-corrosion layer containing manganese
DE69305458T2 (en) A1-Si-Cr-COATED STEEL PLATE AND THEIR PRODUCTION
DE69218916T2 (en) ALUMINUM ALLOY SHEET WITH IMPROVED COMPRESSIBILITY AND METHOD FOR PRODUCING IT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAAB, ANNA, ELISABETH

Inventor name: FADERL, JOSEF

Inventor name: FLEISCHANDERL, MARTIN

Inventor name: LANDL, GERALD

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: BRANDSTAETTER, WERNER

17Q First examination report despatched

Effective date: 20090402

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140620

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 687754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014720

Country of ref document: DE

Effective date: 20141030

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2525731

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20141229

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141218

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004014720

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: TATA STEEL IJMUIDEN BV

Effective date: 20150616

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E024039

Country of ref document: HU

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150609

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150609

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502004014720

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20161023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230626

Year of fee payment: 20

Ref country code: FR

Payment date: 20230626

Year of fee payment: 20

Ref country code: DE

Payment date: 20230626

Year of fee payment: 20

Ref country code: CZ

Payment date: 20230525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230526

Year of fee payment: 20

Ref country code: SE

Payment date: 20230627

Year of fee payment: 20

Ref country code: HU

Payment date: 20230525

Year of fee payment: 20

Ref country code: AT

Payment date: 20230519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230627

Year of fee payment: 20

Ref country code: ES

Payment date: 20230703

Year of fee payment: 20

Ref country code: CH

Payment date: 20230702

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004014720

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20240608

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20240609

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240608

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 687754

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240609

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240608

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240609