EP1656498B1 - Fuel injection valve controlled by a pilot valve - Google Patents
Fuel injection valve controlled by a pilot valve Download PDFInfo
- Publication number
- EP1656498B1 EP1656498B1 EP04738118A EP04738118A EP1656498B1 EP 1656498 B1 EP1656498 B1 EP 1656498B1 EP 04738118 A EP04738118 A EP 04738118A EP 04738118 A EP04738118 A EP 04738118A EP 1656498 B1 EP1656498 B1 EP 1656498B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control
- space
- injection valve
- fuel injection
- pilot valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002347 injection Methods 0.000 title claims abstract description 129
- 239000007924 injection Substances 0.000 title claims abstract description 129
- 239000000446 fuel Substances 0.000 title claims abstract description 67
- 238000007789 sealing Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 230000008602 contraction Effects 0.000 claims 3
- 238000000034 method Methods 0.000 abstract description 17
- 238000004891 communication Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910000639 Spring steel Inorganic materials 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0014—Valves characterised by the valve actuating means
- F02M63/0015—Valves characterised by the valve actuating means electrical, e.g. using solenoid
- F02M63/0026—Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/02—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
- F02M45/04—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
- F02M45/08—Injectors peculiar thereto
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/025—Hydraulically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
Definitions
- the present invention relates to a fuel injection valve for intermittent fuel injection into the combustion chamber of an internal combustion engine according to the patent claim 1.
- a fuel injection valve is for example in the EP-A-1476652 described.
- a hollow cylindrical housing is fixed to the housing a designated in the document as a control body drain body formed with a control passage.
- control sleeve on the one hand operatively connected to an injection valve member control piston and on the other hand arranged as a slide valve body control body slidably disposed in a close sliding fit.
- the control piston defines downwardly a control chamber, which is bounded above by the control body and laterally by the control sleeve.
- a throttle restriction having throttle passages are formed, of which a throttle passage is connected via the throttle restriction with the control passage in Abiserraumoasa and with the control chamber in flow communication.
- a throttle inlet formed in the control body opens into this control passage on the control chamber side, which is in flow communication with a high-pressure chamber via a cavity formed in the control sleeve, a slot in the control sleeve, and a flow gap formed between the sleeve and the housing, in which high-pressure fuel pressure prevails.
- the control chamber is constantly via the throttle inlet directly to the high-pressure chamber in a flow connection.
- Another fuel injection valve is in the EP-A-1273791 disclosed.
- the control chamber of this fuel injection valve is bounded on the one hand by a piston of the injection valve member, on the other hand by a control body designated as a slide valve body and peripherally by a control sleeve. Both the double-acting piston and the control body are guided in a tight sliding fit on the control sleeve.
- a throttle passage which is permanently connected to a control passage in a designated as a control body discharge space body flow-connected.
- the discharge space body is partially supported on the control sleeve. From the high-pressure chamber, the throttle inlet leads into the control passage.
- EP-A-0 426 205 Further fuel injection valves are in EP-A-0 426 205 .
- EP-A-1 273 791 disclosed. They have a controlled by an electromagnetic actuator Pilotvantistatt which separates in the closed position provided with a throttle restriction outlet channel of a control chamber of a low-pressure outlet.
- Pilotvantiux When the pilot valve pin is lifted from the pilot valve seat, fuel from the exhaust passage flows directly to the low pressure outlet.
- an injection process is initiated and closing the pilot valve causes the closing movement of the injection valve member to terminate the injection process.
- a fuel injection valve of this kind is in DE 101 00390 A disclosed. It comprises a nozzle module which has a valve control piston which cooperates with a nozzle needle and a valve control chamber delimited by a spring plate and an end face of the valve control piston which communicates with a high-pressure feed line via an inlet channel and which is actuated via a discharge channel with a piezoelectric actuator unit
- Valve-shaped valve control module is in operative connection.
- the valve control module has a arranged in a valve chamber and cooperating with two valve seats valve closing member, wherein the nozzle needle is opened via a caused by the valve control module pressure reduction in the valve control chamber via the flow channel and is closed by a filling of the valve control chamber.
- the injection valve has means for filling the valve control chamber via the inlet channel and the outlet channel.
- the throttle passage may be formed by a sliding fit for the pilot valve pin, but preferably the pilot valve pin is guided in a tight sliding fit and the relief space is connected to the low pressure outlet via a separately formed throttle passage.
- the behavior of the fuel injector upon opening, that is, at the beginning of an injection event, may be very similar to that of known fuel injectors in which the exhaust port is provided with a throttle restriction.
- the pilot valve pin is moved into the discharge chamber at high speed until it bears against the pilot valve seat. Since the throttle passage prevents rapid escape of the fuel from the discharge space, the said movement of the pilot valve pin and the associated displacement of fuel is followed by a very rapid increase in pressure in the discharge space and in a discharge space adjoining the latter upstream of the pilot valve seat, which results in a very rapid closing movement of the Injector valve member causes. This closing movement can be further supported be used that the movement of the pilot valve pin is mechanically utilized.
- Fig. 1 shows in longitudinal section an inventive fuel injection valve 10 having a substantially cylindrical, a lateral high-pressure inlet 12 having valve housing 14.
- This has a running in the direction of the longitudinal axis 16, continuous, stepped bore 17, in which an electric controlled actuator 18, a controlled by this control device 20 and a needle-shaped injection valve member 22 are arranged with a closing spring 24.
- the injection valve member 22 is held by means of the closing spring 24 to an injection valve seat 26 in abutment, which is formed on an injection valve seat body 28.
- This is substantially rotationally symmetrical to the longitudinal axis 16, is located on the front side of the valve housing 14 and is held by a cap nut 30 sealingly on the valve housing 14.
- injection valve nozzles 32 are formed in a known manner, through which fuel is injected under very high pressure in a combustion chamber, not shown, of an internal combustion engine, when the injection valve member 22 by means of the actuated by the actuator 18 hydraulic control device 20 in the direction the longitudinal axis 16 is lifted from the injection valve seat 26.
- the injection valve seat 26 delimits a high-pressure space 34 in which the injection valve member 22 is arranged and which, on the other hand, is delimited by the control device 20 and peripherally by the injection valve seat body 28 and valve housing 14.
- the high-pressure chamber 34 is connected to the high-pressure inlet 12, through which fuel is supplied under very high pressure of up to 1000 bar or even 1800 bar or more to the high-pressure chamber 34 for injection into the combustion chamber of the internal combustion engine and for controlling the injection valve member 22.
- the injection valve member 22 delimits, with its end region facing away from the injection valve seat 26, a control chamber 36, on the other hand, from a control body 38 is limited, in which concentric to the longitudinal axis 16 is formed with a throttle restriction 40 'Auslraw barnlass 40 is formed; see in particular also Fig. 2 , which a section of the fuel injection valve 10 of Fig. 1 with the control device 20 shows enlarged.
- the control body 38 With its end face 42 facing away from the control chamber 36, the control body 38, with the assistance of a compression spring 44 which is supported on the control body 38 and on the injection valve member 22, seals against a face 46 'of a mushroom-shaped discharge space body 46 facing it.
- a discharge space 48 is formed by a longitudinal bore 16 coaxial longitudinal bore, without throttling constriction - which is aligned with the outlet passage 40 and with this flow directly connected.
- the substantially circular cylindrical control body 38 is slidably mounted with a radial play of about 0.02 mm to 0.1 mm or 0.2 mm in a control sleeve 50 in the direction of the longitudinal axis 16 and forms a valve member together with the discharge chamber body 46, whose end face 46 'acts as a valve seat, an intermediate valve 52.
- the control sleeve 50 at whose the injection valve seat 26 facing the end of the closing spring 24 is supported, is held by the force of this closing spring 24 on Abpoundraum stresses 46 in sealing engagement.
- the injection valve member 22 is guided in close sliding fit with a game of about 2 microns to 10 microns.
- the mushroom-shaped discharge space body 46 is sealingly against a by a, in an internal thread on the valve housing 14 einindeten retaining nut 54 with its hat part against a Ablageschulter 56 of the valve housing 14 pressed. Furthermore, the retaining nut 54 and the drainage space body 46 lie flat against one another in a sealing manner.
- the stem part of the mushroom-shaped discharge chamber body 46 distributed in the circumferential direction, at least 2 high-pressure channels 58 are formed, on the one hand with a valve housing 14, the stem and the head portion of Ab Wegraum stressess 46 and the control sleeve 50 limited annular space 60 in fluid communication and the other on the other the valve seat of the intermediate valve 52 forming end face 46 'open.
- the annular space 60 is connected to the high-pressure chamber 34 and thus to the high-pressure inlet 12 by a longitudinal groove 62, which extends in the axial direction and is integrally formed on the radially outer side of the control sleeve 50.
- the high pressure channels 58 may, as in Fig. 1 and Fig. 2 shown to the right of the longitudinal axis 16, by oblique holes in the discharge chamber body 46 or, as in Fig. 2 shown to the left of the longitudinal axis 16, be generated by angular holes.
- a recess 64 may be formed on the drainage space body 46, which ensures that the contact surface extends as a relatively narrow band-shaped area along the outer circumference of the control body 38 and around the mouths of the high-pressure channels 58.
- corresponding recesses may be formed on the control body 38.
- a pilot valve pin 66 slidably mounted in close sliding fit of about 2 microns to 10 microns in the direction of the longitudinal axis 16.
- the drainage space body 46 forms an annular pilot valve seat 68, which forms a pilot valve 70 together with the pilot valve pin 66 as a valve member around the mouth side opening of the drainage space 48.
- the pilot valve seat 68 is designed as a flat seat.
- An annular relief chamber 72 directly adjoins the pilot valve seat 68 on the low-pressure side, which is formed on the retaining nut 54 serving as a relief space body as a recess running around the pilot valve pin 66.
- This otherwise closed relief space 72 is permanently connected via a throttle passage 74 to a low-pressure outlet 76 of the valve housing 14. Fuel flowing out through the low-pressure outlet 76 is returned to a fuel storage container in a known manner.
- Fig. 2 is shown in solid lines that the throttle passage 74 as an oblique bore in the pilot valve pin 66 or, as indicated by dashed lines, may be formed on the retaining nut 54.
- the diameter of the throttle body 74 'of the otherwise larger diameter throttle passage 74 is for example about ten times smaller than the diameter of the pilot valve pin 66 and about five times smaller than the clear diameter of the discharge space 48. However, these ratios may be different. From Another advantage is that the pilot valve pin 66, when lifted from the pilot valve seat 68, very quickly releases a substantially larger flow cross-section than it is defined by the throttle point 74 '.
- the pilot valve pin 66 is held in abutment with the pilot valve seat 68 by means of the actuator 18.
- an actuator shaft 78 lies with its ball-shaped end on the pilot valve seat 68 facing away from the end face of the pilot valve pin 66 at this.
- the actuator 18 is a piezoelectric or magnetostrictive actuator.
- Such actuators 18 allow only a relatively small stroke of the Aktuatorschafts 78 and thus the pilot valve pin 66, for example, 0.03 mm. However, they have the advantage that they move the pilot valve pin 66 with great speed and great force.
- the actuator 18 is arranged in an actuator housing 80, which projects into the valve housing 14 and is fastened thereto by means of a fastening screw 82.
- the clearance between the control body 38 and the control sleeve 50 ensures that through this clearance and the outlet passage 40 the control chamber 36 is filled with fuel very quickly as soon as - to terminate an injection process by closing the pilot valve 70 - the control body 38 is out of its installation is moved away from the drainage space body 46.
- the closing spring 24 bears against an intermediate disk 86, which in turn bears against a support disk 86 'which is supported on a shoulder of the injection valve member 22.
- the intermediate disc 86 is replaceable in order to tune the behavior of the Brennstöffeinspritzventils 10 by selecting the desired thickness.
- FIGS. 3 to 6 are used for the training according to FIGS. 1 and 2 corresponding parts use the same reference numerals as in FIG. 1 and FIG. 2 , In the following, only the differences between the embodiment shown in the relevant figure and those according to the FIGS. 1 and 2 explained.
- the high-pressure passage 58 opens, as in the in the Fig. 2 and 3 shown embodiment, in the annular space 60, which is connected to the high-pressure chamber 34.
- the recess 64 in the drainage space body 46 is annular formed so that radially inside a running around the mouth of the high-pressure passage 58 sealing surface and radially outside an annular sealing surface for cooperation with the control body 38 remains.
- the outlet passage 40 extends obliquely with respect to the longitudinal axis 16 so that it opens into the annular space formed by the recess 64.
- the discharge space 48 is formed by a bore oblique with respect to the longitudinal axis 16 through the discharge space body 46, the discharge space 48 opening into the recess 64 on the one hand and the mouth of the discharge space 48 being arranged on the side of the pilot valve 70 centric to the longitudinal axis 16.
- the pilot valve pin 76 is in turn in the retaining nut 54, in which the discharge chamber 72 is excluded, mounted in close sliding fit.
- the throttle passage 74 is formed on the pilot valve pin 66 by a blind hole from the actuator side, which - instead of a single throttle 94 '- by means of a radial first throttle bore 90 with the relief space 72 and a radial second throttle bore 90' with the low pressure outlet 76 in Flow connection is.
- the diameter of these two throttle bores 90, 90 ' in comparison to the single throttle restriction 74' in the throttle passage 74 according to FIG. 1 and 2 , are slightly larger and therefore somewhat inaccurate, in order to achieve a corresponding throttle effect.
- the cooperating with the pilot valve pin 66 end face of Aktuatorschafts 78 is flat to To seal the blind hole in the pilot valve pin 68.
- control body 38 is similar to that according to Fig. 2 however, the throttle restriction 40 'of the outlet passage 40 is located in the end region facing the outflow chamber 48.
- the otherwise circular-cylindrical outlet passage 40 has in its control-chamber-side end region a conical shape, in which the counter-shaped end portion of the injection valve member 22 engages when the injection valve member 22 is in the maximum open position. This leads to a very good sealing of the outlet passage 40 and contributes at the end of the injection process a very rapid lifting of the control body 38 from the injection valve body 28 and thus a very fast closing movement of the injection valve member 22 at.
- FIG. 4 left or right of the longitudinal axis 16, two other possible embodiments for the high-pressure passage 58 shown. These are formed by bores in the discharge space body 46, which extend obliquely to the longitudinal axis 16 and communicate with the annular space 60, and by bores, which are in flow communication with the former and parallel or oblique to the longitudinal axis 16, but in that region on the front side 46 'open, which acts as a valve seat of the intermediate valve 52.
- the drainage space body 46 is no longer mushroom-shaped but pill-shaped and pressed by means of the retaining nut 54 in sealing contact with the contact shoulder 56 of the valve housing 14. Further, the relief space 72 is disposed in the interior of the drain chamber body 46, on which also the pilot valve pin 66 is guided in close sliding fit. In this case, the drainage space body 46 also serves as a relief space body. The sealing of the high-pressure chamber 34 with respect to the low-pressure outlet 76 thus takes place by the sealing abutment of the discharge space body 46 on the abutment shoulder 56.
- valve seats In addition to the valve seats, only these two interacting surfaces have to be designed with high precision, in contrast to the embodiments according to FIGS Figures 1 - 3 where also the abutting end faces of the discharge chamber body 46 and the retaining nut 54 are to be formed as sealing surfaces.
- the pilot valve seat 68 When in the Fig. 4 training form shown is the pilot valve seat 68 and, thereafter, the relief chamber 72 by a conical extension - seen from the control body 38 forth - the drainage chamber 48 forming hole formed.
- part of the pilot valve pin 66 Corresponding to the same the cooperating with the pilot valve seat 68 part of the pilot valve pin 66 is formed conically.
- the relief space 72 in turn extends as an annular space around the pilot valve pin 66 around and the throttle passage 74 is formed as with respect to the longitudinal axis 16 oblique bore in the pilot valve pin 66, but now - in contrast to the embodiment according to the FIGS. 1 and 2 -
- Throttle throat 74 ' located in the low pressure outlet 76 facing end portion of the throttle passage 44. Hydraulically, therefore, the volume of the throttle passage 74 upstream of the throttle restriction 74 'is part of the relief space 72.
- the retaining nut 54 is formed to tighten with a hexagon socket, which at the same time surrounds the pilot valve pin 66 at a distance to form the flow connection between the throttle passage 74 and the low-pressure outlet 76.
- Fig. 5 shows one of the Fig. 3 very similar form of training, the drainage space body 46 is no longer mushroom but pills shaped.
- the annular space 60 extends around the overhead end region of the control sleeve 50.
- the high-pressure channel 58 is formed by two bores running obliquely with respect to one another and with respect to the longitudinal axis 16. The one opens to the annular space 60 and the other in the middle of the end face 46 'of the discharge space body 46.
- the throttle restriction 40 'of the outlet passage 40 at the recess 64 which is integrally formed on the control body 38.
- non-inventive fuel injection valve 10 is the Outflow chamber 46 formed pills and centrally has the run-off in the axial direction of the drain chamber 48 but no high-pressure channel 58 on. With the drain space body 46, the pilot valve pin 66 cooperates, which as in Fig. 1 and Fig. 2 is shown formed.
- the control body 38 is guided in the manner of a slide valve body in the control sleeve 50 in close sliding fit of about 2 microns to 10 microns.
- the annular space 60 which is recessed radially on the inside of the control sleeve 50 extends around its end region facing the discharge space body 46 and is connected to the high-pressure space 34 via a radial passage and the longitudinal groove 62.
- Concentric with the longitudinal axis 16 extends through the control body 38 through the outlet passage 40 with its throttle restriction 40 'at the control chamber 36 end facing. Parallel thereto, but offset radially with respect to the longitudinal axis 16, extends through the control body 38 through a connecting channel 94, which is closed when ab Wegraum Economics 46 Ab kgraum Economics control body 38.
- connection channel 94 connects the control space 36 to the high-pressure space 34.
- the connection channel 94 has the same function as in the embodiments shown above, the radial clearance between the control body 38 and the control sleeve 50th Next are on the control body 38, formed on the end face 42, inner and outer recesses 64, which serve to form the surface with which the control body 38 sealingly against the discharge chamber body 46, small in order to achieve a high surface pressure. Further, by a more or less large radially outer recess 64 the dynamic behavior of the control body 38 relative to lift-off from the installation on the discharge room body 46 can be varied.
- Fig. 7 shows a non-inventive fuel injection valve 10, wherein the control body 38 is replaced by a leaf spring 96.
- the leaf spring 96 is similar to that of EP-A-1 273 791 formed known leaf spring. From a disc of spring steel, a C- or U-shaped slot is excluded, which separates a radially inner leaf spring tongue 98 of a retaining ring 100.
- the leaf spring 96 is held clamped with its retaining ring 100 between the control sleeve 50 and the drain chamber body 46. For radial alignment of the retaining ring 100 and the control sleeve 50 are jointly encompassed by a centering ring 102.
- the throttle restriction 40 ' is formed on the leaf spring tongue 98, kozentrisch to the longitudinal axis 16 as a through hole.
- the leaf spring tongue 98 closes when it concerns the discharge chamber body 46 both from the high-pressure passage 58 formed therein and from the discharge space 48 extending centrally with respect to the longitudinal axis 16.
- a throttle admission 92 may be excluded, which connects the high-pressure chamber 34 with the discharge chamber 48.
- the effect of this throttle admission 92 is the same as that of the throttle passage 92 of the embodiments according to Fig. 3 and 8th , namely In particular, when using an electromagnetic actuator 18 to support the rapid closing of the injection valve member for the completion of the injection process.
- the retaining nut 54 with the relief space 72 and the pilot valve pin 66 with the first and second throttle bore 90, 90 ', and the actuator 18 with its actuator shaft 78 are formed the same as in the embodiment according to the Fig. 3 ,
- the control body 38 is now mushroom-shaped and its trunk is slidably guided in a blind hole-like recess of the injection valve member 22 in the direction of the longitudinal axis 16.
- the compression spring 44 is supported on the one hand at the bottom of this blind hole and on the other hand on the trunk of the control body 38.
- the control sleeve 50 limits the control chamber 36, engages around the hat of the control body 38 with a radial distance and lies with its end face sealingly against the end face 46 'of the discharge space body 46.
- the throttle restriction 40 ' is formed. It communicates with the annular recess 64 on the discharge chamber body 46 and thus communicates with the discharge space 48 in fluid communication.
- a radial clearance is present between the stem of the mushroom-shaped control body 38 and the injection valve member 22, a radial clearance is present to achieve a rapid pressure equalization between the control chamber 36 and the space in which the compression spring 44 is arranged.
- the actuator 18 pulls the actuator shaft 78 in the axial direction upwards, that is, in the direction away from the pilot valve seat 68. Since there is high pressure in the discharge space 48, the pilot valve pin .66 is lifted off the pilot valve seat 68 in accordance with the movement of the actuator shaft 78. This leads to a very rapid increase in pressure in the relief space 72 and a correspondingly rapid pressure reduction in the discharge space 48 and in the outlet passage 40 downstream of the throttle restriction 40 '. From the discharge space 72, the fuel flows through the throttle passage 74 attenuated to the low-pressure outlet 76. The throttle restriction 40 'attenuates the flow of fuel out of the control chamber 36. This leads to a pressure reduction in the control chamber 36, whereby the injection valve member 22 in a known manner is lifted from the injection valve seat 26.
- the pilot valve pin 66 is moved very quickly by means of the actuator 18 down into abutment with the pilot valve pin 66, thereby closing the pilot valve 70. Since the pilot valve seat 68 very quickly dives deeper into the relief space 72, an increase in pressure generated, which propagates through the drainage chamber 48 and leads to the lifting of the control body 38, or the leaf spring tongue 98, from the drain chamber body 46, since a rapid pressure equalization in the control chamber 36 due to the throttle restriction 40 'can not be done. By lifting off the control body 38 immediately the entire end face 42 of the control body 38 is acted upon by fuel under high pressure, since the high pressure passage 58 and the high pressure passages 58 are released.
- the fuel injection valve 10 comprises a pilot valve 70
- the fuel losses caused thereby are small since, during the period in which the pilot valve 70 is open, in the embodiment according to FIGS Fig, 1 . 2 . 4 . 5 and 6 no hydraulic connection between the drainage chamber 48 and the high-pressure chamber 34 is made.
- a throttle passage 92 is present; however, because of the very small cross-section, the throttle passage 92 prevents rapid outflow of a larger amount of fuel.
- Piezoelectric and magnetostrictive actuators are therefore particularly suitable for fuel injectors 10 according to the invention because they can apply very large forces, so that said pressure increase practically does not delay the movement of the pilot valve pin 66.
- the aforementioned actuators 18 have a faster switching behavior than electromagnets, such can be used.
- Fig. 9 shown embodiment has, in addition to those in the context of the embodiments according to Fig. 1 to 8 shown benefits, increased ability for multiple injections in very short time intervals.
- Fig. 9 the same reference numerals as used in connection with the Fig. 1 to 8 ,
- the discharge space 72 is formed by a recess on the retaining nut 54 and it is through the throttle body 74 'and the throttle passage 74 in the retaining nut 54 permanently connected to the low-pressure chamber, in the same manner as in the Fig. 2 indicated by dashed lines.
- the retaining nut 54 of the pill-shaped drainage chamber body 46 On the front side of the retaining nut 54 of the pill-shaped drainage chamber body 46 is sealingly. It has an axial passage centrally, which forms the discharge space 48.
- the pilot valve pin 66 and the pilot valve seat 68 form the pilot valve 70 controlled by an actuator 18, which in the closed state separates the discharge chamber 48 from the discharge chamber 72 ,
- the discharge space 48 is formed by a central bore which widens in the direction of the control body 38 in a funnel shape. This discharge space 48 is penetrated by a transfer pin 104 whose diameter is smaller than the diameter of the cylindrical portion of the discharge space 48 and whose length is greater than the measured in the direction of the longitudinal axis 16 thickness of Abpoundraum stressess 46.
- the pilot valve 70 is closed thus the transfer pin 104 via the drainage space body 46 on the side facing away from the retaining nut 54 and the control body 38 side facing.
- the high-pressure channel 58 is formed on the drainage space body 46, which is formed by a radial blind bore and one of the end face 46 'of the drainage space body 46 in FIG axial direction in the blind hole leading through hole is formed.
- the high-pressure passage 58 opens at the end face 46 'at a distance from the discharge space 48, so that the control body 38, when resting against the end face 46', closes the mouth of the high-pressure passage 58.
- the discharge space body 46 forms with its end face 46 'and the control body 38, in turn, an intermediate valve 52nd
- an intermediate body 50' in the central passage of the control body 38 in the direction of the longitudinal axis 16 is slidably disposed. Between the control body 48 and the intermediate body 50 ', an annular gap is present.
- the intermediate body 50 ' is cup-shaped, wherein the bottom of the discharge chamber body 46 faces, and in the interior of the control body 38 is a compression spring 44 which holds the control body 38 - with open pilot valve 70 - with the bottom of the transfer pin 104 in abutment.
- Through the bottom of the control body 38 passes through the outlet passage 40, which is formed without throttle restriction 40 'and communicates with at the end face 46' fitting control body 38 with the discharge chamber 48. If the control body 38 is located on the front side 46 ', it closes the mouth of the high-pressure channel 58.
- the bottom of the control body 38 is at a distance from the end face 46 'which is given by the difference in length between the transmission pin 104 and the thickness of the discharge space body 46.
- the stroke of the pilot valve pin. 66 is at least as large, but preferably greater than this distance.
- the compression spring 44 is supported with its end facing away from the bottom of the control body 38 at an end face of a control chamber body 50 '' from which sealingly bears with its end face on the intermediate body 50 '.
- the control chamber body 50 '' circumferentially bounded the control chamber 36, which is also bounded by the injection valve member 22, which is guided on the control chamber body 50 '' in close sliding fit.
- the injection valve member 22 is desaxsiert with respect to the common longitudinal axis 16.
- the control space 36 is continuously throttled in flow communication with the interior of the cup-shaped control body 38 and the drainage space 48.
- control chamber body 50 "and the retaining nut 54 are clamped against each other so that the retaining nut 54 on Abpoundraum stresses 46, this on the other hand on the intermediate body 50 ', and this in turn on the other hand control chamber body 50' 'sealingly.
- the intermediate body 50 'and control chamber body 50 may be integrally formed in one piece, similar to the control sleeve 50. It is also conceivable to form the control chamber body 50" in one piece together with the injection valve seat body 28 or the valve housing 14.
- Ableraumelasticity 46 may be an open towards the end 46 'annular groove 106 may be formed, in which the high pressure channel 58 opens and which is closed at the front side 46' abutting control body 38 of this.
- control body 38 viewed in the direction of the longitudinal axis 16, shorter form, so that the shell portion of the cup protrudes only slightly above the bottom of the control body 38 to the end of the Comprise compression spring 44.
- the control body 38 is formed as a disc with an outlet passage 40 and the spring formed as a compression spring 44 replaced by a plate spring or wave spring.
- a coaxial arrangement of the injection valve member 22 with the longitudinal axis 16 is conceivable, wherein the compression spring 44 is supported for example on the end face of the control chamber body 50 '' or on a supporting shoulder formed thereon.
- pilot valve pin 66 may have a shoulder cooperating with the retaining nut 54 to limit the stroke of the pilot valve pin 66 in the opening direction of the pilot valve 70.
- fuel injector 10 operates as follows.
- the pilot valve 70 is closed.
- the control body 38 is lifted off the front side 46 'of the discharge space body 46, whereby the discharge space 48 and the control space 46 are connected to the high-pressure inlet 12 via the high-pressure passage 58.
- the injection valve member 22 is in contact with the injection valve seat 26 in the closed position; see also Fig. 1 .
- the actuator 18 retracts the actuator shaft 78, thereby moving the pilot valve pin 66 away from the pilot valve seat 68 and connecting the drain chamber 48 and thus the control chamber 36 to the discharge chamber 72.
- the extremely fast movement of the pilot valve pin 66 follows the transmission pin 104 and the control body 38, with the result that the intermediate valve 52 is closed very quickly and a subsequent flow of fuel through the high-pressure passage 58 is prevented.
- the pressure drop in the control chamber 36 and thus a lifting of the injection valve member 22 from the injection valve seat 26 are made very quickly.
- the pilot valve pin 66 is brought into contact with the pilot valve seat 68 by means of the actuator 18 in a known manner.
- the transmission pin 104 is moved in the direction against the control body 38 which inevitably lifts off the end face 46 '.
- the intermediate valve 52 opens and is formed by the high-pressure passage 58, a connection between the control chamber 36 and the high-pressure inlet 12. Further, this pressure increase is supported by the movement of the pilot valve pin 66 into the discharge chamber 72 inside.
- the injection valve member 22 is thus very quickly brought into abutment with the injection valve seat 26 whereby the injection process is completed.
- control body 38 moves with the transmission pin 104 and thus with the pilot valve pin 66, the high-pressure passage 58 is closed or opened very quickly by the control body 38, which results in several Injections in short to very short time intervals is of great advantage.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum einer Verbrennungskraftmaschine gemäss dem Patentanspruchs 1.The present invention relates to a fuel injection valve for intermittent fuel injection into the combustion chamber of an internal combustion engine according to the patent claim 1.
Ein Brennstoffeinspritzventil ist beispielsweise in der
Ein weiteres Brennstoffeinspritzventil ist in der
Weitere Brennstoffeinspritzventile sind in
Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein gattungsgemässes Brennstoffeinspritzventil derart weiterzubilden, dass die Schliessbewegung des Einspritzventilgliedes für die Beendigung eines Einspritzvorganges sehr rasch erfolgt, während die Öffnungsbewegung zu Beginn eines Einspritzvorgangs relativ langsam erfolgen kann.Based on this prior art, it is an object of the present invention to develop a generic fuel injection valve such that the closing movement of the injection valve member for the completion of an injection process is very fast, while the opening movement can be done relatively slowly at the beginning of an injection process.
Ein Brennstoffeinspritzventil dieser Art ist in
Diese Aufgabe wird mittels eines Brennstoffeinspritzventils gelöst, welches die Merkmale des Patentanspruchs 1 aufweist.This object is achieved by means of a fuel injection valve, which has the features of patent claim 1.
Besonders bevorzugte Ausbildungsformen des erfindungsgemässen Brennstoffeinspritzventils sind in den abhängigen Patentansprüchen angegeben.Particularly preferred embodiments of the fuel injection valve according to the invention are specified in the dependent claims.
Beim Öffnen des Pilotventils eines erfindungsgemässen Brennstoffeinspritzventils fliesst Brennstoff in einen Entlastungsraum, aus welchem er nur durch einen Drosseldurchlass zu Niederdruckauslass weiterströmen kann. Eine Minimierung des Brennstoffverlusts durch den Niederdruckauslass während des Einspritzvorganges wird erzielt. Der Drosseldurchlass kann durch eine Gleitpassung für den Pilotventilsstift gebildet sein, vorzugsweise ist der Pilotventilstift jedoch in einer engen Gleitpassung geführt und ist der Entlastungsraum mit dem Niederdruckauslass über einen separat ausgebildeten Drosseldurchlass verbunden. Das Verhalten des Brennstoffeinspritzventils beim Öffnen, das heisst beim Beginn eines Einspritzvorgangs, kann sehr ähnlich jenem bekannter Brennstoffeinspritzventile sein, bei welchen der Auslasskanal mit einer Drosselverengung versehen ist. Zum Beenden eines Einspritzvorgangs wird jedoch bei einem erfindungsgemässen Brennstoffeinspritzventil der Pilotventilstift mit grosser Geschwindigkeit in den Entlassungsraum hinein bewegt, bis er am Pilotventilsitz anliegt. Da der Drosseldurchlass ein schnelles Abfliessen des Brennstoffs aus dem Entlastungsraum verhindert, erfolgt durch die genannte Bewegung des Pilotventilstifts und die damit verbundene Verdrängung von Brennstoff ein sehr rascher Druckanstieg im Entlastungsraum und in einem an diesen stromaufwärts des Pilotventilsitzes anschliessenden Abflussraum, was eine sehr schnelle Schliessbewegung des Einspritzventilgliedes verursacht. Diese Schliessbewegung kann weiter dadurch unterstützt werden, dass die Bewegung des Pilotventilstifts mechanisch ausgenützt wird.When the pilot valve of a fuel injection valve according to the invention is opened, fuel flows into a relief space, from which it can only continue to flow to a low-pressure outlet through a throttle passage. Minimization of fuel loss through the low pressure outlet during the injection process is achieved. The throttle passage may be formed by a sliding fit for the pilot valve pin, but preferably the pilot valve pin is guided in a tight sliding fit and the relief space is connected to the low pressure outlet via a separately formed throttle passage. The behavior of the fuel injector upon opening, that is, at the beginning of an injection event, may be very similar to that of known fuel injectors in which the exhaust port is provided with a throttle restriction. In order to terminate an injection process, however, in a fuel injection valve according to the invention, the pilot valve pin is moved into the discharge chamber at high speed until it bears against the pilot valve seat. Since the throttle passage prevents rapid escape of the fuel from the discharge space, the said movement of the pilot valve pin and the associated displacement of fuel is followed by a very rapid increase in pressure in the discharge space and in a discharge space adjoining the latter upstream of the pilot valve seat, which results in a very rapid closing movement of the Injector valve member causes. This closing movement can be further supported be used that the movement of the pilot valve pin is mechanically utilized.
Die Erfindung wird anhand in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen rein schematisch:
- Fig. 1
- im Längsschnitt eine erste Ausbildungsform eines erfindungsgemässen Brennstoffeinspritzventils, bei welchem ein Entlastungsraum an einer Haltemutter ausgebildet ist;
- Fig. 2
- ebenfalls im Längsschnitt einen Ausschnitt des in
Fig. 1 gezeigten Brennstoffeinspritzventils vergrössert; - Fig. 3
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt aus einer zweiten Ausbildungsform eines erfindungsgemässen Brennstoffeinspritzventils mit einem zwei Drosselverengungen aufweisenden Drosseldurchlass im Pilotventilstift; - Fig. 4
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt aus einer dritten Ausbildungsform eines erfindungsgemässen Brennstoffeinspritzventils, bei welchem der Entlastungsraum vollständig in einem Abflussraumkörper angeordnet ist, an welchem auch der Pilotventilstift gelagert ist; - Fig. 5
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt aus einer vierten Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils, ähnlich jener gemässFig. 3 , mit jedoch nur einer einzigen Drosselverengung im Drosseldurchlass; - Fig. 6
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt eines nicht erfindungsgemässen Brennstoffeinspritzventils mit einem Schieberventil, wie es beispielsweise inEP-A-1 273 791 PCT/CH/03/0005 - Fig. 7
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt eines nicht erfindungsgemässen Brennstoffein spritzventils mit einem Blattfederventil, ähnlich wie aus derEP-A-1 273 791 - Fig. 8
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt aus einer fünften Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils, bei welcher ein Steuerkörper pilzartig ausgebildet und im Einspritzventilglied verschiebbar gelagert ist; und - Fig. 9
- in gleicher Darstellung wie
Fig. 2 , einen Ausschnitt aus einer sechsten Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils, bei welcher ein Übertragungsstift die Bewegung des Pilotventilstiftes an einen Steuerkörper überträgt.
- Fig. 1
- in longitudinal section a first embodiment of a fuel injection valve according to the invention, in which a relief space is formed on a retaining nut;
- Fig. 2
- also in longitudinal section a section of the in
Fig. 1 shown enlarged fuel injection valve; - Fig. 3
- in the same representation as
Fig. 2 , A section of a second embodiment of a fuel injection valve according to the invention with a throttle restriction having throttle passage in the pilot valve pin; - Fig. 4
- in the same representation as
Fig. 2 a section of a third embodiment of a fuel injection valve according to the invention, in which the discharge chamber is arranged completely in a discharge chamber body, on which also the pilot valve pin is mounted; - Fig. 5
- in the same representation as
Fig. 2 , a section of a fourth embodiment of the inventive fuel injection valve, similar to that according toFig. 3 but with only a single throttle restriction in the throttle passage; - Fig. 6
- in the same representation as
Fig. 2 , A section of a non-inventive fuel injection valve with a slide valve, as for example inEP-A-1 273 791 PCT / CH / 03/0005 - Fig. 7
- in the same representation as
Fig. 2 , A section of a non-inventive Kraftstoffein injection valve with a leaf spring valve, similar to that ofEP-A-1 273 791 - Fig. 8
- in the same representation as
Fig. 2 , A section of a fifth embodiment of the inventive fuel injection valve, in which a control body is formed like a mushroom and slidably mounted in the injection valve member; and - Fig. 9
- in the same representation as
Fig. 2 , A section of a sixth embodiment of the inventive fuel injection valve, in which a transmission pin transmits the movement of the pilot valve pin to a control body.
Das Einspritzventilglied 22 begrenzt mit seinem dem Einspritzventilsitz 26 abgewandten Endbereich einen Steuerraum 36, der andererseits von einem Steuerkörper 38 begrenzt ist, in welchem konzentrisch zur Längsachse 16 ein mit einer Drosselverengung 40' ausgestatteter Auslassdurchlass 40 ausgebildet ist; siehe dazu insbesondere auch
Der im wesentlichen kreiszylinderförmig ausgebildete Steuerkörper 38 ist mit radialem Spiel von etwa 0,02 mm bis 0,1 mm oder 0,2 mm in einer Steuerhülse 50 in Richtung der Längsachse 16 verschiebbar gelagert und bildet als Ventilglied zusammen mit dem Abflussraumkörper 46, dessen Stirnseite 46' als Ventilsitz wirkt, ein Zwischenventil 52. Die Steuerhülse 50, an deren dem Einspritzventilsitz 26 zugewandten Ende sich die Schliessfeder 24 abstützt, ist von der Kraft dieser Schliessfeder 24 am Abflussraumkörper 46 in dichtender Anlage gehalten. An der den Steuerraum 36 umfangsseitig begrenzenden Steuerhülse 50 ist das Einspritzventilglied 22 in enger Gleitpassung mit einem Spiel von etwa 2 µm bis 10 µm geführt.The substantially circular
Der pilzförmige Abflussraumkörper 46 ist mittels einer, in ein Innengewinde am Ventilgehäuse 14 eingewindeten Haltemutter 54 mit seinem Hutteil dichtend gegen eine Anlageschulter 56 des Ventilgehäuses 14 gedrückt. Weiter liegen die Haltemutter 54 und der Abflussraumkörper 46 flächig dichtend aneinander an. Im Stammteil des pilzförmigen Abflussraumkörpers 46 sind, in Umfangsrichtung verteilt, mindestens 2 Hochdruckkanäle 58 ausgebildet, die einerseits mit einem vom Ventilgehäuse 14, dem Stamm- und dem Kopfteil des Abflussraumkörpers 46 sowie der Steuerhülse 50 begrenzten Ringraum 60 in Strömungsverbindung stehen und die andererseits an der den Ventilsitz des Zwischenventils 52 bildenden Stirnseite 46' münden. Der Ringraum 60 ist durch eine in axialer Richtung verlaufende, an der radial aussenliegenden Seite der Steuerhülse 50 angeformte Längsnut 62 mit dem Hochdruckraum 34 und somit dem Hochdruckeinlass 12 verbunden. Die Hochdruckkanäle 58 können, wie in
Die Mündungsöffnungen der Hochdruckkanäle 58 an der Stirnseite 46' sind durch den Steuerkörper 38 verschlossen, wenn dieser am Abflussraumkörper 46 anliegt. Um die Dichtwirkung des Zwischenventils 52 durch Erhöhen der Flächenpressung zu verbessern, kann, wie
An der Haltemutter 54 ist konzentrisch zur Längsachse 16 ein Pilotventilsstift 66 in enger Gleitpassung von ca. 2 µm bis 10 µm in Richtung der Längsachse 16 verschiebbar gelagert. In seiner in den
An den Pilotventilsitz 68 schliesst niederdruckseitig unmittelbar ein ringförmiger Entlastungsraum 72 an, der an der als Entlastungsraumkörper dienenden Haltemutter 54 als ein um den Pilotventilstift 66 herum verlaufende Ausnehmung ausgebildet ist. Dieser ansonsten verschlossene Entlastungsraum 72 ist über einen Drosseldurchlass 74 mit einem Niederdruckauslass 76 des Ventilgehäuses 14 dauernd strömungsverbunden. Durch den Niederdruckauslass 76 ausströmender Brennstoff wird in bekannter Art und Weise wieder einem Brennstoffvorratsbehälter zugeführt.An
In
Der Pilotventilstift 66 wird mittels des Aktuators 18 am Pilotventilsitz 68 in Anlage gehalten. Dabei liegt ein Aktuatorschaft 78 mit seinem ballig ausgeformten Ende auf der dem Pilotventilsitz 68 abgewandten Stirnseite des Pilotventilstifts 66 an diesem an. In bevorzugter Weise handelt es sich beim Aktuator 18 um einen piezoelektrischen oder magnetostriktiven Aktuator. Derartige Aktuatoren 18 ermöglichen einen nur relativ kleinen Hub des Aktuatorschafts 78 und somit des Pilotventilstifts 66 von beispielsweise 0,03 mm. Sie haben jedoch den Vorteil, dass sie den Pilotventilstift 66 mit grosser Geschwindigkeit und grosser Kraft bewegen.The
Der Aktuator 18 ist in einem Aktuatorgehäuse 80 angeordnet, das in das Ventilgehäuse 14 hineinragt und mittels einer Befestigungsschraube 82 an diesem befestigt ist.The
Das Spiel zwischen dem Steuerkörper 38 und der Steuerhülse 50 gewährleistet, dass durch dieses Spiel hindurch und den Auslassdurchlass 40 der Steuerraum 36 sehr schnell mit Brennstoff gefüllt wird, sobald - zum Beenden eines Einspritzvorgangs durch das Schliessen des Pilotventils 70 - der Steuerkörper 38 aus seiner Anlage am Abflussraumkörper 46 weg bewegt ist.The clearance between the
Mit "H" ist in
Auf der der Steuerhülse 50 abgewandten Seite liegt die Schliessfeder 24 an einer Zwischenscheibe 86 an, die ihrerseits an einer sich an einer Schulter des Einspritzventilglieds 22 abstützenden Stützscheibe 86' anliegt. Die Zwischenscheibe 86 ist auswechselbar, um durch die Auswahl der gewünschten Dicke das Verhalten des Brennstöffeinspritzventils 10 abzustimmen.On the side facing away from the
Mittels am Einspritzventilglied 22 ausgebildeten, sternartig vorstehenden Führungsrippen 88 ist dieses am Einspritzventilkörper 28 verschiebbar gelagert, wobei das Zuströmen des Brennstoffs zum Einspritzventilsitz 26 gewährleistet ist.By means of the
In den
Bei der in der
Anschliessend an die koaxial zur Längsachse 16 am Steuerkörper 38 ausgebildete Drosselverengung 40' verläuft der Auslassdurchlass 40 bezüglich der Längsachse 16 schräg, sodass er in den durch die Ausnehmung 64 gebildeten Ringraum mündet. Entsprechend ist auch der Abflussraum 48 durch eine bezüglich der Längsachse 16 schräge Bohrung durch den Entlassungsraumkörper 46 hindurch gebildet, wobei der Abflussraum 48 einerseits in die Ausnehmung 64 mündet und die Mündung des Abflussraum 48 auf der Seite des Pilotventils 70 zentrisch zur Längsachse 16 angeordnet ist.Subsequent to the throttle restriction 40 'formed coaxially with the
Der Pilotventilstift 76 ist wiederum in der Haltemutter 54, an welcher der Entlassungsraum 72 ausgenommen ist, in enger Gleitpassung gelagert. Der Drosseldurchlass 74 ist am Pilotventilstift 66 durch eine von der Aktuatorseite her vorgenommene, sacklochartige Bohrung gebildet, welche - anstelle einer einzigen Drosselstelle 94' - mittels einer radialen ersten Drosselbohrung 90 mit dem Entlastungsraum 72 und einer radiale zweiten Drosselbohrung 90' mit dem Niederdruckauslass 76 in Strömungsverbindung steht. Der Durchmesser dieser beiden Drosselbohrungen 90, 90' kann, im Vergleich zur einzigen Drosselverengung 74' im Drosseldurchlass 74 gemäss
Auch bei der in der
Bei der in der
Der ansonsten kreiszylinderförmige Auslassdurchlass 40 weist in seinem steuerraumseitigen Endbereich eine konische Form auf, in welche der gegengleich geformte Endbereich des Einspritzventilgliedes 22 eingreift, wenn sich das Einspritzventilglied 22 in maximalen Offenstellung befindet. Dies führt dabei zu einer sehr guten Abdichtung des Auslassdurchlasses 40 und trägt bei Beendigung des Einspritzvorgangs einem sehr schnellen Abheben des Steuerkörpers 38 ab dem Einspritzventilkörper 28 und somit einer sehr schnellen Schliessbewegung des Einspritzventilgliedes 22 bei.The otherwise circular-
Weiter sind in
Der Abflussraumkörper 46 ist bei dieser Ausbildungsform nicht mehr pilzförmig sondern pillenförmig ausgebildet und mittels der Haltemutter 54 in dichtender Anlage an die Anlageschulter 56 des Ventilgehäuses 14 gepresst. Weiter ist der Entlastungsraum 72 im Innern des Abflussraumkörpers 46 angeordnet, an welchem ebenfalls der Pilotventilstift 66 in enger Gleitpassung geführt ist. In diesem Fall dient der Abflussraumkörper 46 auch als Entlastungsraumkörper. Das Abdichten des Hochdruckraums 34 gegenüber dem Niederdruckauslass 76 erfolgt somit durch das dichtende Anliegen des Abflussraumkörpers 46 an der Anlageschulter 56. Es sind - neben den Ventilsitzen - nur diese beiden zusammenwirkenden Flächen hoch präzis auszubilden, im Gegensatz zu den Ausbildungsformen gemäss den
Bei der in der
In diesem Fall ist die Haltemutter 54 zu deren Anziehen mit einem Innensechskant ausgebildet, welcher zugleich den Pilotventilstift 66 mit Abstand umgreift um die Strömungsverbindung zwischen dem Drosseldurchlass 74 und dem Niederdruckauslass 76 zu bilden.In this case, the retaining
Bei dem in
Der Steuerkörper 38 ist in der Art eines Schieberventilkörpers in der Steuerhülse 50 in enger Gleitpassung von ca. 2 µm bis 10 µm geführt. Um seinen dem Abflussraumkörper 46 zugewandten Endbereich herum verläuft der an der Steuerhülse 50 radial innen ausgenommene Ringraum 60, der über einen Radialdruchlass und die Längsnut 62 mit dem Hochdruckraum 34 verbunden ist. Konzentrisch zur Längsachse 16 verläuft durch den Steuerkörper 38 hindurch der Auslassdurchlass 40 mit seiner Drosselverengung 40' beim dem Steuerraum 36 zugewandten Ende. Parallel dazu, jedoch bezüglich der Längsachse 16 radial versetzt, verläuft durch den Steuerkörper 38 hindurch ein Verbindungskanal 94, der bei am Abflussraumkörper 46 anliegendem Steuerkörper 38 verschlossen ist. Liegt der Steuerkörper 38 nicht am Abflussraumkörper 46 an, verbindet der Verbindungskanal 94 den Steuerraum 36 mit dem Hochdruckraum 34. Funktionsmässig hat der Verbindungskanal 94 dieselbe Aufgabe wie bei den weiter oben gezeigten Ausbildungsformen das radiale Spiel zwischen dem Steuerkörper 38 und der Steuerhülse 50. Weiter sind am Steuerkörper 38, an dessen Stirnseite 42, innere und äussere Ausnehmungen 64 angeformt, die dazu dienen, die Fläche, mit welcher der Steuerkörper 38 dichtend am Entlassungsraumkörper 46 anliegt, klein auszubilden, um eine hohe Flächenpressung zu erreichen. Weiter kann durch eine mehr oder weniger grosse radial äussere Ausnehmung 64 das dynamische Verhalten des Steuerkörpers 38 bezüglich Abheben von der Anlage am Entlassungsraumkörper 46 variiert werden.The
Bei der in der
Alle in den
Zum Auslösen eines Einspritzvorgangs zieht der Aktuator 18 den Aktuatorschaft 78 in axialer Richtung nach oben, das heisst in Richtung vom Pilotventilsitz 68 weg. Da im Abflussraum 48 Hochdruck herrscht, wird der Pilotventilstift .66 nach Massgabe der Bewegung des Aktuatorschafts 78 vom Pilotventilsitz 68 abgehoben. Dies führt zu einem sehr schnellen Druckanstieg im Entlastungsraum 72 und einer entsprechend rascher Druckreduktion im Abflussraum 48 und im Auslassdurchlass 40 stromabwärts der Drosselverengung 40'. Aus dem Entlastungsraum 72 fliesst der Brennstoff durch den Drosseldurchlass 74 gedämpft zum Niederdruckauslass 76. Durch die Drosselverengung 40' gedämpft erfolgt das Ausfliessen von Brennstoff aus dem Steuerraum 36. Dies führt zu einer Druckreduktion im Steuerraum 36, wodurch das Einspritzventilglied 22 in bekannter Art und Weise vom Einspritzventilsitz 26 abgehoben wird.To initiate an injection process, the
Zur Beendigung des Einspritzvorgangs wird der Pilotventilstift 66 sehr schnell mittels des Aktuators 18 nach unten in Anlage an den Pilotventilstift 66 bewegt und dadurch das Pilotventil 70 geschlossen. Da dabei der Pilotventilsitz 68 sehr rasch tiefer in den Entlastungsraum 72 eintaucht, wird eine Druckerhöhung erzeugt, die sich durch den Abflussraum 48 fortpflanzt und zum Abheben des Steuerkörpers 38, beziehungsweise der Blattfederzunge 98, ab dem Abflussraumkörper 46 führt, da ein schneller Druckausgleich in den Steuerraum 36 wegen der Drosselverengung 40' nicht erfolgen kann. Durch das Abheben des Steuerkörpers 38 wird sofort die gesamte Stirnseite 42 des Steuerkörpers 38 mit unter Hochdruck stehendem Brennstoff beaufschlagt, da der Hochdruckkanal 58 beziehungsweise die Hochdruckkanäle 58 freigegeben werden. Dies führt zu einer sehr raschen Bewegung des Steuerkörpers 38 vom Abflussraumkörper 46 weg und zu einer schnellen Druckerhöhung im Steuerraum 36, was eine schnelle Schliessbewegung des Einspritzventilgliedes 22 zur Beendigung des Einspritzvorgangs verursacht. Mit Hilfe der Kraft der Druckfeder 44 beziehungsweise der Federkraft der Blattfederzunge 98 legt sich der Steuerkörper 38 beziehungsweise die Blattfederzunge 98 wieder am Einspritzventilsitzkörper 28 an. Damit diese Bewegung nicht zu stark verzögert wird, kann Brennstoff durch die Drosselverengung 40' und relativ rasch durch den Radialspalt zwischen dem Steuerkörper 38 und der Steuerhülse 50 beziehungsweise durch den Verbindungskanal 94, und bei der Ausbildungsform gemäss
Obwohl das erfindungsgemässe Brennstoffeinspritzventil 10 ein Pilotventil 70 aufweist, sind die dadurch verursachten Verluste am Brennstoff gering, da während der Zeitspanne, in welcher das Pilotventil 70 offen ist, bei dem Ausbildungsformen gemäss den
Je schneller der Pilotventilstift 66 zum Schliessen des Pilotventils 70 bewegt wird, um so schneller erfolgt eine Druckerhöhung und somit ein sehr rasches Schliessen des Einspritzventils. Diese rasche und grosse Druckerhöhung hat eine Rückwirkung auf den Aktuator 18 zur Folge. Piezoelektrische und magnetostriktive Aktuatoren sind deshalb für erfindungsgemässe Brennstoffeinspritzventile 10 besonders geeignet, weil sie sehr grosse Kräfte aufbringen können, sodass der genannte Druckanstieg die Bewegung des Pilotventilstifts 66 praktisch nicht verzögert. Obwohl die genannten Aktuatoren 18 ein schnelleres Schaltverhalten als Elektromagnete aufweisen, können auch solche eingesetzt werden. Durch die Auslegung des Durchmessers und des Hubes des Pilotventilstifts 66 kann somit die gewünschte Druckerhöhung erzielt werden.The faster the
Die in
In der Haltemutter 54 ist der Pilotventilstift 66 in enger Gleitpassung geführt. Der Entlassungsraum 72 ist durch eine Ausnehmung an der Haltemutter 54 gebildet und er ist durch die Drosselstelle 74' und den Drosseldurchlass 74 in der Haltemutter 54 dauernd mit dem Niederdruckraum verbunden, in gleicher Art und Weise wie in der
An der Stirnseite der Haltemutter 54 liegt der pillenförmig ausgebildete Abflussraumkörper 46 dichtend an. Er weist zentral einen axialen Durchlass auf, welcher den Abflussraum 48 bildet. In gleicher Art und Weise wie im Zusammenhang mit den
Der Abflussraum 48 ist durch eine zentrale Bohrung gebildet welche sich in Richtung zum Steuerkörper 38 hin trichterförmig erweitert. Dieser Abflussraum 48 ist von einem Übertragungsstift 104 durchgriffen dessen Durchmesser kleiner ist als der Durchmesser des zylindrischen Teils des Abflussraums 48 und dessen Länge grösser ist als die in Richtung der Längsachse 16 gemessene Dicke des Abflussraumkörpers 46. Bei geschlossenem Pilotventil 70 steht somit der Übertragungsstift 104 über den Abflussraumkörper 46 auf der der Haltemutter 54 abgewandten und dem Steuerkörper 38 zugewandten Seite vor.The
Weiter ist am Abflussraumkörper 46 der Hochdruckkanal 58 ausgeformt welcher durch eine radiale Sacklochbohrung und eine von der Stirnseite 46' des Abflussraumkörpers 46 in axialer Richtung in die Sacklochbohrung führende Durchgangsbohrung gebildet ist. Der Hochdruckkanal 58 mündet an der Stirnseite 46' in einem Abstand zum Abflussraum 48 sodass der Steuerkörper 38, bei Anlage an der Stirnseite 46', die Mündung des Hochdruckkanals 58 verschliesst. Der Abflussraumkörper 46 bildet mit seiner Stirnseite 46' und dem Steuerkörper 38 wiederum ein Zwischenventil 52.Furthermore, the high-
An der Stirnseite 46' des Abflussraumkörpers 46 liegt dichtend ein Zwischenkörper 50' an in dessen zentralem Durchlass der Steuerkörper 38 in Richtung der Längsachse 16 verschiebbar angeordnet ist. Zwischen dem Steuerkörper 48 und dem Zwischenkörper 50' ist ein Ringspalt vorhanden. Der Zwischenkörper 50' ist becherförmig ausgebildet, wobei der Boden dem Abflussraumkörper 46 zugewandt ist, und sich im Innern des Steuerkörpers 38 eine Druckfeder 44 befindet, die den Steuerkörper 38 - bei geöffnetem Pilotventil 70 - mit dessen Boden am Übertragungsstift 104 in Anlage hält. Durch den Boden des Steuerkörpers 38 hindurch verläuft der Auslassdurchlass 40, welcher ohne Drosselverengung 40' ausgebildet ist und bei an der Stirnseite 46' anliegendem Steuerkörper 38 mit dem Abflussraum 48 kommuniziert. Liegt der Steuerkörper 38 an der Stirnseite 46' an, verschliesst er die Mündung des Hochdruckkanals 58.On the end face 46 'of the
Bei geschlossenem Pilotventil 70, wie in der
Die Druckfeder 44 stützt sich mit ihrem dem Boden des Steuerkörpers 38 abgewandten Ende an einer Stirnseite eines Steuerraumkörpers 50'' ab, welcher mit seiner Stirnseite dichtend am Zwischenkörper 50' anliegt. Der Steuerraumkörper 50'' begrenzt umfangsseitig den Steuerraum 36, welcher auch vom Einspritzventilglied 22 begrenzt ist, welches am Steuerraumkörper 50'' in enger Gleitpassung geführt ist. Das Einspritzventilglied 22 ist bezüglich der gemeinsamen Längsachse 16 desaxsiert. Der Steuerraum 36 ist jedoch drossellos dauernd in Strömungsverbindung mit dem Innern des becherförmigen Steuerkörpers 38 sowie dem Abflussraum 48.The
In allgemein bekannter Art und Weise sind der Steuerraumkörper 50'' und die Haltemutter 54 gegeneinander verspannt sodass die Haltemutter 54 am Abflussraumkörper 46, dieser andererseits am Zwischenkörper 50', und dieser wiederum andererseits am Steuerraumkörper 50'' dichtend anliegen. Der Zwischenkörper 50' und Steuerraumkörper 50" können, ähnlich der Steuerhülse 50 in den ändern Ausführungsbeispielen, gemeinsam einstückig ausgebildet sein. Es ist auch denkbar, den Steuerraumkörper 50'' zusammen mit dem Einspritzventilsitzkörper 28 oder dem Ventilgehäuse 14 einstückig auszubilden.In a well-known manner, the
Im Abflussraumkörper 46 kann eine zur Stirnseite 46' hin offene Ringnut 106 ausgebildet sein, in welche der Hockdruckkanal 58 mündet und welche bei an der Stirnseite 46' anliegendem Steuerkörper 38 von diesem verschlossen ist.In
Es ist auch denkbar den Steuerkörper 38, in Richtung der Längsachse 16 gesehen, kürzer auszubilden, sodass der Mantelteil des Bechers nur geringfügig über dem Boden des Steuerkörpers 38 vorsteht, um den Endbereich der Druckfeder 44 aufzunehmen. Bei einer in axialer Richtung besonders Platz sparender Ausbildungsform ist der Steuerkörper 38 als Scheibe mit einem Auslassdurchlass 40 ausgebildet und die als Schraubenfeder ausgebildete Druckfeder 44 durch eine Tellerfeder oder Wellenfeder ersetzt.It is also conceivable, the
Auch eine koaxiale Anordnung des Einspritzventilgliedes 22 mit der Längsachse 16 ist denkbar, wobei sich die Druckfeder 44 beispielsweise an der Stirnseite des Steuerraumkörpers 50'' oder an einer daran angeformten Stützschulter abstützt.A coaxial arrangement of the
Im in der
Schlussendlich sei erwähnt, dass der Pilotventilstift 66 eine mit der Haltemutter 54 zusammenwirkende Schulter aufweisen kann um den Hub des Pilotventilstifts 66 in Öffnungsrichtung des Pilotventils 70 zu begrenzen.Finally, it should be mentioned that the
Das in der
Für die Beendigung des Einspritzvorgangs wird der Pilotventilstift 66 mittels des Aktuators 18 in bekannter Art und Weise in Anlage an den Pilotventilsitz 68 gebracht. Dabei wird der Übertragungsstift 104 in Richtung gegen den Steuerkörper 38 bewegt welcher sich zwangsläufig von der Stirnseite 46' abhebt. Dabei öffnet das Zwischenventil 52 und entsteht durch den Hochdruckkanal 58 eine Verbindung zwischen dem Steuerraum 36 und dem Hochdruckeinlass 12. Weiter wird dieser Druckanstieg durch die Bewegung des Pilotventilstifts 66 in den Entlassungsraum 72 hinein unterstützt. Das Einspritzventilglied 22 wird somit sehr rasch in Anlage an den Einspritzventilsitz 26 gebracht wodurch der Einspritzvorgang beendet ist.For the completion of the injection process, the
Da sich der Steuerkörper 38 mit dem Übertragungsstift 104 und somit mit dem Pilotventilstift 66 bewegt, wird der Hochdruckkanal 58 durch den Steuerkörper 38 sehr schnell verschlossen beziehungsweise geöffnet, was bei mehreren Einspritzungen in kurzen bis sehr kurzen Zeitintervallen von grossem Vorteil ist.Since the
Claims (13)
- Fuel injection valve for intermittent fuel injection into the combustion space of an internal combustion engine, with a valve housing (14) having a bore (17) running in the direction of its longitudinal axis (16), and with an injection valve seat (26) which delimits a high-pressure space (34) which is connected to a high-pressure inlet (12) of the valve housing (14) and is delimited, on the other hand, by a hydraulic control device (20), arranged in the bore (17) and controlled by an actuator, and circumferentially by the valve housing (14), and also with a needle-shaped injection valve member (22) arranged in the high-pressure space (34) and cooperating with the injection valve seat (26), the control device (20) having a control sleeve (50) which circumferentially separates a control space (36) sealingly from the high-pressure space (34) and in which the injection valve member (22) is guided in a close sliding fit with its end region facing away from the injection valve seat (26), so as to delimit the control space (36), the control sleeve (50) being held in sealing bearing contact against an outflow space body (46), a control body (38) which delimits the control space (36) being mounted in the control sleeve (50) so as to be displaceable in the axial direction with radial play, the radial play forming a flow connection between the high-pressure inlet (12) and the control space (36), and the control body (38) forming as a valve member, together with the outflow space body (46), the end face (46') of which serves as a valve seat, an intermediate valve (52) of the control device (20), in order to close releasably at least one high-pressure duct (58) running through the outflow space body (46).
- Fuel injection valve according to Claim 1, characterized in that the outflow space body (46) has formed in it an outflow space (48) connected to the control space (36) and leading to a pilot valve seat (68) of a pilot valve (70).
- Fuel injection valve according to Claim 2, characterized in that the control space (36) is flow-connected to the outflow space (48) via a throttle contraction (40') in the control body (38).
- Fuel injection valve according to Claim 3, characterized in that the control body (38) has an outlet passage (40) which is equipped with the throttle contraction (40').
- Fuel injection valve according to Claim 4, characterized in that the throttle contraction (40') of the outlet passage (40) is formed either in an end region located on the outflow space body side or in an end region located on the control space side, of the control body (38).
- Fuel injection valve according to Claim 4 or 5, characterized in that the outlet passage (40) and the outflow space (48) are designed cylindrically, and their cylinder axes are oriented either both coaxially or both obliquely with respect to the longitudinal axis (16).
- Fuel injection valve according to one of Claims 2 to 6, characterized by a throttle admission (92) which connects the outflow space (48) to the high-pressure inlet (12).
- Fuel injection valve according to one of Claims 2 to 7, characterized in that a recess (64) is formed on the outflow space (48) of the outflow space body (46) on the control body side or on the outlet passage (40) of the control body (38) on the outflow space body side.
- Fuel injection valve according to one of Claims 2 to 8, characterized in that, with the intermediate valve (52) open, the radial play of the control body (38) in the control sleeve (50) forms the flow connection between the high-pressure inlet (12) and the control space (36).
- Fuel injection valve according to one of Claims 2 to 9, characterized in that the control sleeve (50) has a stroke limitation shoulder (84) for the control body (38).
- Fuel injection valve according to one of Claims 2 to 10, characterized in that a compression spring (44) holds the control body (38) in bearing contact against the outflow space body (46) in a manner in which said control body is capable of being lifted off.
- Fuel injection valve according to one of Claims 2 to 11, characterized in that the pilot valve (70) has a pilot valve pin (66) which cooperates, on the one hand, with an electrically activated actuator (18) and, on the other hand, with the pilot valve seat (68) and which, in the closing position, separates the control space (36) of the control device (20) from a low-pressure outlet (76), and in that the pilot valve seat (68) has adjoining it, on its side facing the low-pressure outlet (76), a closed relief space (72) which is permanently connected to the low-pressure outlet (76) by means of a throttle passage (74) and into which the pilot valve pin (66) projects.
- Fuel injection valve according to Claim 12, characterized in that the pilot valve pin (66) is guided in the delimiting body (54) in a sliding fit, preferably in a close sliding fit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH14422003 | 2003-08-22 | ||
PCT/CH2004/000478 WO2005019637A1 (en) | 2003-08-22 | 2004-07-30 | Fuel injection valve controlled by a pilot valve |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1656498A1 EP1656498A1 (en) | 2006-05-17 |
EP1656498B1 true EP1656498B1 (en) | 2008-11-26 |
Family
ID=34200992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04738118A Expired - Lifetime EP1656498B1 (en) | 2003-08-22 | 2004-07-30 | Fuel injection valve controlled by a pilot valve |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1656498B1 (en) |
AT (1) | ATE415554T1 (en) |
DE (1) | DE502004008540D1 (en) |
WO (1) | WO2005019637A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122051A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社デンソー | Fuel injection device |
JP2011226458A (en) * | 2010-03-31 | 2011-11-10 | Denso Corp | Fuel injection system |
DE102011056406A1 (en) | 2010-12-17 | 2012-06-21 | Denso Corporation | Fuel injection device |
JP2012127329A (en) * | 2010-12-17 | 2012-07-05 | Denso Corp | Fuel injection device |
DE102012100020A1 (en) | 2011-01-07 | 2012-07-12 | Denso Corporation | Fuel injector |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005026967B4 (en) * | 2005-06-10 | 2014-09-25 | Siemens Aktiengesellschaft | Valve, in particular servo valve |
CH697562B1 (en) * | 2005-08-09 | 2008-11-28 | Ganser Hydromag | Fuel injection valve. |
BRPI0708551B1 (en) | 2006-03-03 | 2019-07-02 | Ganser-Hydromag Ag | FUEL INJECTION VALVE FOR INTERMITTENT FUEL INJECTION WITHIN THE FUEL CHAMBER OF AN INTERNAL FUEL ENGINE |
JP5493966B2 (en) * | 2009-06-02 | 2014-05-14 | 株式会社デンソー | Fuel injection device |
DE102009039609A1 (en) * | 2009-09-01 | 2011-03-03 | Continental Automotive Gmbh | Injector assembly for fuel injection valve of diesel engine of motor vehicle, has throttle element located in channel at lower pressure in switching position with throttle resistance, which differs from another throttle resistance |
JP5152220B2 (en) | 2010-02-18 | 2013-02-27 | 株式会社デンソー | Fuel injection device |
JP5327117B2 (en) * | 2010-03-24 | 2013-10-30 | 株式会社デンソー | Fuel injection device |
DE102011078399A1 (en) * | 2011-06-30 | 2013-01-03 | Robert Bosch Gmbh | fuel injector |
DE102012202546A1 (en) * | 2012-02-20 | 2013-08-22 | Robert Bosch Gmbh | Fuel injector |
DE102012202549A1 (en) * | 2012-02-20 | 2013-08-22 | Robert Bosch Gmbh | Fuel injector |
DE102012010614B4 (en) * | 2012-05-30 | 2014-07-03 | L'orange Gmbh | injector |
DE102012212614A1 (en) * | 2012-07-18 | 2014-01-23 | Continental Automotive Gmbh | Piezo injector with hydraulically coupled nozzle needle movement |
DE102012222509A1 (en) | 2012-12-07 | 2014-06-12 | Continental Automotive Gmbh | piezoinjector |
DE102012223934B4 (en) | 2012-12-20 | 2015-10-15 | Continental Automotive Gmbh | piezoinjector |
US9803603B2 (en) | 2013-03-01 | 2017-10-31 | Ganser-Hydromag Ag | Device for injecting fuel into the combustion chamber of an internal combustion engine |
WO2016208130A1 (en) * | 2015-06-26 | 2016-12-29 | 株式会社デンソー | Injector |
JP6256440B2 (en) * | 2015-06-26 | 2018-01-10 | 株式会社デンソー | Injector |
WO2019078881A1 (en) | 2017-10-20 | 2019-04-25 | Cummins Inc. | Fuel injector with flexible member |
DE102018107238A1 (en) * | 2018-03-27 | 2019-10-02 | Liebherr-Components Deggendorf Gmbh | Injector for injecting fuel |
DE102018109206A1 (en) * | 2018-04-18 | 2019-10-24 | Liebherr-Components Deggendorf Gmbh | Injector for injecting fuel |
WO2020260285A1 (en) | 2019-06-25 | 2020-12-30 | Ganser Hydromag Ag | Fuel injection valve for combustion engines |
WO2021110663A1 (en) * | 2019-12-03 | 2021-06-10 | Ganser-Hydromag Ag | Fuel injection valve having a slide valve for internal combustion engines |
DE102023000400A1 (en) * | 2023-02-09 | 2024-08-29 | Hydac Fluidtechnik Gmbh | valve |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19516565C2 (en) * | 1995-05-05 | 1998-07-30 | Orange Gmbh | Injection valve of an internal combustion engine |
DE10100390A1 (en) * | 2001-01-05 | 2002-07-25 | Bosch Gmbh Robert | Injector |
ATE470065T1 (en) * | 2001-07-03 | 2010-06-15 | Crt Common Rail Tech Ag | FUEL INJECTION VALVE FOR COMBUSTION ENGINES |
-
2004
- 2004-07-30 AT AT04738118T patent/ATE415554T1/en active
- 2004-07-30 DE DE502004008540T patent/DE502004008540D1/en not_active Expired - Lifetime
- 2004-07-30 WO PCT/CH2004/000478 patent/WO2005019637A1/en active Application Filing
- 2004-07-30 EP EP04738118A patent/EP1656498B1/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011122051A1 (en) * | 2010-03-31 | 2011-10-06 | 株式会社デンソー | Fuel injection device |
JP2011226459A (en) * | 2010-03-31 | 2011-11-10 | Denso Corp | Fuel injection device |
JP2011226458A (en) * | 2010-03-31 | 2011-11-10 | Denso Corp | Fuel injection system |
CN102472211A (en) * | 2010-03-31 | 2012-05-23 | 株式会社电装 | Fuel injection device |
DE102011001563A1 (en) | 2010-03-31 | 2014-03-06 | Denso Corporation | Fuel injector |
CN102472211B (en) * | 2010-03-31 | 2014-10-01 | 株式会社电装 | Fuel injection device |
DE102011056406A1 (en) | 2010-12-17 | 2012-06-21 | Denso Corporation | Fuel injection device |
US20120152206A1 (en) * | 2010-12-17 | 2012-06-21 | Denso Corporation | Fuel injection device |
JP2012127329A (en) * | 2010-12-17 | 2012-07-05 | Denso Corp | Fuel injection device |
US9109556B2 (en) * | 2010-12-17 | 2015-08-18 | Denso Corporation | Fuel injection device |
DE102012100020A1 (en) | 2011-01-07 | 2012-07-12 | Denso Corporation | Fuel injector |
Also Published As
Publication number | Publication date |
---|---|
WO2005019637A1 (en) | 2005-03-03 |
DE502004008540D1 (en) | 2009-01-08 |
EP1656498A1 (en) | 2006-05-17 |
ATE415554T1 (en) | 2008-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1656498B1 (en) | Fuel injection valve controlled by a pilot valve | |
EP1991773B1 (en) | Fuel injection valve for internal combustion engines | |
DE60126380T2 (en) | Fuel injection valve | |
EP2394049B1 (en) | Fuel injection valve for internal combustion engines | |
EP1654455B1 (en) | Control valve for a fuel injector that contains a pressure intensifier | |
EP1831537B1 (en) | Injector for a fuel-injection system in an internal combustion engine | |
AT502260B1 (en) | FUEL INJECTION VALVE | |
EP1476652B1 (en) | Fuel injection valve for internal combustion engines | |
EP1431567A2 (en) | Fuel injection valve for internal combustion engines | |
EP0976924B1 (en) | Injector with a servo valve | |
EP1395744B1 (en) | Fuel injection device for combustion motors, especially common rail injector, fuel system and internal combustion engine | |
DE19946906A1 (en) | Fuel injection valve for internal combustion engines | |
EP1381774B1 (en) | Fuel injection device with two coaxial valve elements | |
DE102004024527A1 (en) | Fuel injection system | |
EP1126160B1 (en) | Injector for injecting fuel in an internal combustion engine | |
DE10100390A1 (en) | Injector | |
EP1335128A2 (en) | High pressure hydraulic valve, in particularly for an internal combustion engine fuel injection apparatus | |
EP1719904A1 (en) | Fuel injector | |
DE102004046191B3 (en) | Servo valve and injector | |
WO2008049668A1 (en) | Injector for injecting fuel into combustion chambers of internal combustion engines | |
WO2003074865A1 (en) | Installation for the pressure-modulated formation of the injection behavior | |
EP1630409A1 (en) | Servo valve and injection valve | |
EP1927747B1 (en) | Fuel injector valve for combustion engines | |
DE102005005713A1 (en) | Jet construction group with injection valve for internal combustion engine has two recesses in jet needle | |
EP2085604A1 (en) | Fuel injector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060214 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004008540 Country of ref document: DE Date of ref document: 20090108 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090308 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090226 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090226 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090427 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090827 |
|
BERE | Be: lapsed |
Owner name: GANSER-HYDROMAG AG Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081126 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004008540 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB PATENT-, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004008540 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004008540 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004008540 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004008540 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004008540 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R055 Ref document number: 502004008540 Country of ref document: DE |
|
PLCP | Request for limitation filed |
Free format text: ORIGINAL CODE: EPIDOSNLIM1 |
|
PLCQ | Request for limitation of patent found admissible |
Free format text: ORIGINAL CODE: 0009231 |
|
LIM1 | Request for limitation found admissible |
Free format text: SEQUENCE NO: 1; FILED AFTER OPPOSITION PERIOD Filing date: 20180719 Effective date: 20180719 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
PLCO | Limitation procedure: reply received to communication from examining division + time limit |
Free format text: ORIGINAL CODE: EPIDOSNLIR3 |
|
PLCR | Communication despatched that request for limitation of patent was allowed |
Free format text: ORIGINAL CODE: 0009245 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R056 Ref document number: 502004008540 Country of ref document: DE |
|
PLCM | Reason for rejection of request for limitation recorded |
Free format text: ORIGINAL CODE: EPIDOSNRJL1 |
|
PLCL | Despatch of rejection of request for limitation |
Free format text: ORIGINAL CODE: EPIDOSNRJL2 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R451 Ref document number: 502004008540 Country of ref document: DE |
|
PLCV | Request for limitation of patent rejected |
Free format text: ORIGINAL CODE: 0009240 |
|
RJL4 | Request for limitation rejected because rall (request allowed) requirements not fulfilled |
Free format text: SEQUENCE NO. 1; DECISION DESPATCHED ON 20191011 Effective date: 20191021 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R451 Ref document number: 502004008540 Country of ref document: DE Effective date: 20191011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20230719 Year of fee payment: 20 Ref country code: CH Payment date: 20230802 Year of fee payment: 20 Ref country code: AT Payment date: 20230720 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230719 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004008540 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20240729 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 415554 Country of ref document: AT Kind code of ref document: T Effective date: 20240730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240729 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240729 |