[go: up one dir, main page]

EP1651799A1 - Electrochemical cell - Google Patents

Electrochemical cell

Info

Publication number
EP1651799A1
EP1651799A1 EP04740955A EP04740955A EP1651799A1 EP 1651799 A1 EP1651799 A1 EP 1651799A1 EP 04740955 A EP04740955 A EP 04740955A EP 04740955 A EP04740955 A EP 04740955A EP 1651799 A1 EP1651799 A1 EP 1651799A1
Authority
EP
European Patent Office
Prior art keywords
gap
electrolyte
cell
diffusion electrode
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04740955A
Other languages
German (de)
French (fr)
Other versions
EP1651799B1 (en
Inventor
Andreas Bulan
Michael Grossholz
Volker Michele
Hans-Joachim Brockhaus
Hans-Dieter Pinter
Fritz Gestermann
Rainer Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1651799A1 publication Critical patent/EP1651799A1/en
Application granted granted Critical
Publication of EP1651799B1 publication Critical patent/EP1651799B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention relates to an electrochemical cell, at least consisting of an anode half cell with an anode, a cathode half cell with a cathode and an ion exchange membrane arranged between the anode half cell and cathode half cell, the anode and / or the cathode being a gas diffusion electrode.
  • the invention further relates to a method for the electrolysis of an aqueous solution of alkali chloride.
  • a 01/57290 can consist of foams, wire nets or the like.
  • US Pat. No. 6,117,286 also describes an electrolysis cell with a gas diffusion electrode for the electrolysis of a sodium chloride solution, in which there is a layer of a hydrophilic material in the gap between the gas diffusion electrode and the ion exchange membrane.
  • the layer of hydrophilic material preferably has a porous structure which contains a corrosion-resistant metal or resin. As a porous structure e.g. Nets, fabrics or foams can be used.
  • Sodium hydroxide, the electrolyte flows under the force of gravity down over the layer of hydrophilic material to the bottom of the electrolytic cell.
  • EP-A 1 033 419 discloses an electrolysis cell with a gas diffusion electrode as the cathode for the electrolysis of a sodium chloride solution.
  • Metals, metal oxides or organic materials come into consideration as the porous material if they are corrosion-resistant.
  • the object of the present invention is therefore to provide an electrolytic cell which avoids the disadvantages of the prior art.
  • the invention relates to an electrochemical cell, at least consisting of an anode half cell with an anode, a " cathode half cell with a cathode and ion exchange membrane arranged between the anode half cell and cathode half cell, the anode and / or the cathode being a gas diffusion electrode and between the gas diffusion electrode and the Ion exchange membrane is arranged a gap and the half cell with gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the
  • Electrolyte inlet is tightly connected to the gap.
  • the electrolyte flows through the half cell from top to bottom in the gap between the gas diffusion electrode and the ion exchange membrane.
  • the gap is completely filled with electrolyte.
  • the remaining space of the half cell, the gas space is filled with gas which is fed in through the gas inlet and discharged through the gas outlet.
  • the electrolyte feed is tightly connected to the gap. This prevents gas from the gas space from entering the gap via the electrolyte inlet. Due to the tight connection between the electrolyte inlet and the gap, the electrolyte can be conveyed through the gap with the aid of a pump, so that the electrolyte stream does not flow freely in the gap along the gas diffusion electrode. With the help of the pump, the volume flow of the electrolyte flowing through the gap can be adjusted.
  • the volume flow is preferably set so that the flow rate of the electrolyte is lower than in free fall.
  • flow guiding structures are provided in the gap.
  • the flow guide structures also prevent a free fall of the electrolyte in the gap, so that the flow speed is reduced compared to the free fall. At the same time, however, the electrolyte must not build up in the gap due to the flow guide structures.
  • the flow guide structures are chosen so that the pressure loss the hydrostatic liquid column in the gap is compensated. If flow guiding structures are provided, they can completely take over the function of the pump, namely the reduction of the flow speed in the gap, so that no pump is necessary. However, a pump can also be used in combination with flow guide structures.
  • the flow guide structures consist of thin plates, foils or the like, which have openings for the electrolyte to flow through. They are across, i.e. arranged perpendicular or obliquely to the flow direction of the electrolyte in the gap.
  • the plate-shaped flow guide structures are preferably inclined with respect to the horizontal, wherein they are inclined either only in one axis or in both axes. If the flow guide structures are arranged obliquely to the direction of flow, they can be inclined both in the direction of the ion exchange membrane and in the direction of the gas diffusion electrode.
  • the inclination in the direction of the gas diffusion electrode or the ion exchange membrane corresponds to an inclination about an axis which runs parallel to the gas diffusion electrode or ion exchange membrane and horizontally.
  • the flow guide structures can be inclined across the width of the electrochemical cell. This corresponds to an inclination about an axis that runs perpendicular to the gas diffusion electrode or ion exchange membrane. This inclination can be 0 to 45 °, preferably 3 to 15 °.
  • the flow guide structures are also arranged such that they contact the gas diffusion electrode on the one hand and the ion exchange membrane on the other. The electrolyte therefore only passes through the openings of the conductive structures.
  • the flow control structures can be fixed or detachably connected to the gas diffusion electrode and the ion exchange membrane.
  • the flow guide structures are preferably clamped between the gas diffusion electrode and the ion exchange membrane.
  • the flow guide structures are fastened to a holding structure which is arranged essentially vertically in the gap, ie essentially parallel to the gas diffusion electrode and the ion exchange membrane.
  • the holding structure runs, for example, in the middle of the gap, so that the flow guide structures project on the one hand in the direction of the ion exchange membrane and on the other hand in the direction of the gas diffusion electrode.
  • the holding structure consists, for example, of a thin plastic rod, the diameter of which is smaller than the gap width between the gas diffusion electrode and the ion exchange membrane.
  • the number of holding structures, for example in the form of plastic rods, over the length of the gas diffusion electrode, and thus of the flow guide structures, depends on the material thickness of the flow guide structures, since the plastic rods
  • the flow guide structures can be flat. In order to facilitate the clamping of the flow guide structures between the gas diffusion electrode and the ion exchange membrane, the flow guide structures can have, for example, a Z, L, T, double T or trapezoidal profile.
  • the flow guide structures can also be angled or curved as desired. They preferably consist of an elastic plate which is wider than the width of the gap. When pinching between the gas diffusion electrode and the ion exchange membrane and under the action of the electrolyte current in the gap, the elastic plates bend downward. The flow guide structures are then curved downwards. However, it is also possible to use flow guide structures that are curved upward. Curved flow guide structures are advantageous because they compensate for the manufacturing tolerances of the electrochemical cell, which are expressed, for example, in the width of the gap.
  • the opening in the flow guide structures can have any shape, e.g. round or angular.
  • the openings in flow guidance structures arranged one above the other or one below the other can either lie one above the other or one below the other, i.e. the openings coincide.
  • the electrolyte flow runs essentially vertically through the gap. However, they can also be offset from one another so that the electrolyte flow does not flow through the gap in a straight line, but rather, for example, in a zigzag or meandering manner. This reduces the formation of dead zones.
  • the flow guiding structures can be made of an alkali-resistant material, in particular an alkali-resistant metal or plastic.
  • nickel or PTFE can be used as the material.
  • the number of flow guide structures and the number and cross-sectional area of the openings are chosen so that the flow rate of the electrolyte is lower than in free fall.
  • the openings have a diameter of 1 mm, for example.
  • 6 flow guide structures with 127 openings with a diameter of 0.5 mm could also be used.
  • the preferred volume flow of the electrolyte in the gap (with a width of the gap of, for example, 3 mm) is 100 to 300 1 / h.
  • the volume flow is preferably a maximum of 500 1 / h.
  • the flow rate is preferably a maximum of 1 cm / s.
  • the advantage of flow guide structures over the porous layers known from the prior art lies in the improved removal of gas bubbles which enter the gap through the gas diffusion electrode. Furthermore, the electrolyte is pumped through the gap between the gas diffusion electrode and the ion exchange membrane, whereby this gap is completely filled with electrolyte. Porous structures which the electrolyte passes through in free fall according to the prior art are usually not completely filled with electrolyte, which is noticeable by a higher electrolysis voltage.
  • the electrochemical cell according to the invention can be used for different electrolysis processes in which at least one electrode is a gas diffusion electrode.
  • the gas diffusion electrode preferably functions as a cathode, particularly preferably as an oxygen consumable cathode, the gas supplied to the electrochemical cell being an oxygen-containing gas, for example air, oxygen-enriched air or oxygen itself.
  • the cell of the invention for the electrolysis of an aqueous solution of an alkali halide •, in particular of sodium chloride is preferably used.
  • the gas diffusion electrode is constructed, for example, as follows: the gas diffusion electrode consists at least of an electrically conductive carrier and an electrochemically active coating.
  • the electrically conductive carrier is preferably a mesh, woven fabric, braid, knitted fabric, fleece or foam made of metal, in particular made of nickel, silver or silver-plated nickel.
  • the electrochemically active coating preferably consists of at least one catalyst, e.g. Silver (I) oxide, and a binder, e.g. Polytetrafluoroethylene (PTFE).
  • the electrochemically active coating can be constructed from one or more layers.
  • a gas diffusion layer for example made of a mixture of carbon and polytetrafluoroethylene, can be provided, which is applied to the carrier.
  • Electrodes made of titanium can be used as anode, e.g. are coated with ruthenium-iridium oxides or ruthenium oxide.
  • a commercially available membrane e.g. from DuPont,
  • the electrolysis cell according to the invention which is suitable for the electrolysis of an aqueous sodium chloride solution, has a gap between the gas diffusion electrode and the ion exchange membrane with a width of the order of 3 mm.
  • the flow guide structures are preferably made of thin plates made of PTFE or PVDF and have a thickness of 0.1 to 0.5 mm
  • the electrolyte inlet is a channel, for example a tube, which extends over the entire length of the gas diffusion electrode.
  • the electrolyte feed can be used to feed the electrolyte evenly over the entire length from above into the gap between the gas diffusion electrode and the ion exchange membrane.
  • the feed can also take place only in one area, for example in the upper area of one of the two ends of the gas diffusion electrode.
  • the flow guide structures which are inclined in an axis perpendicular to the gas diffusion electrode or to the ion exchange membrane, can be used to achieve a uniform distribution of the electrolyte over the entire length of the gap.
  • Another object of the invention is a method for the electrolysis of an aqueous alkali halide solution in an electrochemical cell, at least consisting of an anode half cell with an anode, a cathode half cell with a cathode and an ion exchange membrane arranged between anode half cell and cathode half cell, the anode and / or the cathode is a gas diffusion electrode and between the
  • Gas diffusion electrode and the ion exchange membrane a gap is arranged and the half cell with a gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the electrolyte flows by means of a pump in the gap from top to bottom, the gap being completely with Electrolyte is filled.
  • FIG. 1 shows a schematic cross section of a first embodiment of the electrochemical cell according to the invention without flow guide structures in the gap between the gas diffusion electrode and the ion exchange membrane
  • FIG. 2 shows a schematic cross section of a second embodiment of the electrochemical cell according to the invention with flow guide structures in the gap between the gas diffusion electrode and the ion exchange membrane
  • FIG. 1 shows an electrochemical cell 1 according to the invention, which is constructed from an anode half cell 2 with an anode 21 and a cathode half cell 3 with a gas diffusion electrode 31 as the cathode.
  • the two half cells 2, 3 are separated from one another by an ion exchange membrane 4.
  • the gas diffusion electrode 31 is separated from the ion exchange membrane 4 by a gap 32.
  • Seals 39 seal the half cell 3 from the outside.
  • the cathode half-cell 3 has an electrolyte inlet 33 and an electrolyte outlet 34 as well as a gas inlet 35 and a gas outlet 36.
  • the electrolyte inlet 33 is tightly connected to the gap 32.
  • the electrolyte is supplied to the half cell 3 via the electrolyte inlet 33 and flows downward in the gap 32 before it is removed from the half cell 3 via the electrolyte outlet 34.
  • the gap 32 is completely filled with electrolyte during operation of the electrolysis cell 1.
  • Gas is supplied to the gas space 37 of the half cell 3 via the gas inlet 35, flows upward in the gas space 37 and is discharged from the half cell 3 via the gas outlet 36.
  • the tight connection of the electrolyte inlet 33 with the gap 32 allows the electrolyte to be conveyed through the gap 32 with the aid of a pump and thus a desired volume flow or a desired flow adjust the speed of the electrolyte in the gap 32.
  • the tight connection must prevent gas from flowing out of the gas space 37 into the gap 32.
  • the electrolyte inlet 33 is completely filled.
  • the equalizing opening 38 is to be dimensioned such that a very low volume flow of the electrolyte flows out into the gas space 37 via the opening 38.
  • the volume flow through the opening 38 into the rear space is preferably less than 5% of the total volume flow.
  • the compensating opening 38 allows gas to escape, which is released in small quantities during operation of the electrolytic cell 1
  • Gas space 37 enters the gap 32 through the gas diffusion electrode 31 and in the form of
  • the electrolytic cell 1 in FIG. 2 has flow-guiding structures 51, 52, 53, 54 in the gap 32 in addition to the tight connection of the electrolyte inlet 33 to the gap 32.
  • the flow guide structures 51, 52, 53, 54 reduce the flow rate of the electrolyte in the gap 32 compared to the flow rate that the electrolyte would assume in free fall.
  • the flow guide structures 5b 52, 53, 54 consist of thin plates with openings 56 which allow the electrolyte to pass through. In the illustrated embodiments, they are clamped between the ion exchange membrane 4 and the gas diffusion electrode 31.
  • the flow guide structures 51 are substantially horizontal in the gap 32, i.e. arranged transversely to the flow direction of the electrolyte.
  • the flow guide structures 53 can be inclined, i.e. at an angle to the direction of flow, e.g. in the direction of the ion exchange membrane 4.
  • the flow guide structures 53 are V-shaped.
  • the flow guide structures 54 are curved downward.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The invention relates to an electrochemical cell (1) at least comprising an anode half-cell (2) with an anode (21), a cathode half-cell (3) with a cathode (31), and an ion exchange membrane (4) that is disposed between the anode half-cell and the cathode half-cell. The anode and/or the cathode is/are embodied as a gas diffusion electrode. A gap (32) is located between the gas diffusion electrode and the ion exchange membrane while the half-cell encompassing a gas diffusion electrode is provided with an electrolyte inlet (33) and an electrolyte outlet as well as a gas inlet (35) and a gas outlet (36). The inventive electrochemical cell is characterized in that the electrolyte inlet is tightly connected to the gap.

Description

Elektrochemische ZelleElectrochemical cell
Die Erfindung betrifft eine elektrochemische Zelle, wenigstens bestehend aus einer Anodenhalbzelle mit einer Anode, einer Kathodenhalbzelle mit einer Kathode und einer zwischen Anodenhalbzelle und Kathodenhalbzelle angeordneten Ionenaustauschermembran, wobei die Anode und/oder die Kathode eine Gasdiffusionselektrode ist. Die Erfindung betrifft ferner ein Verfahren zur Elektrolyse einer wässrigen Lösung von Alkalichlorid.The invention relates to an electrochemical cell, at least consisting of an anode half cell with an anode, a cathode half cell with a cathode and an ion exchange membrane arranged between the anode half cell and cathode half cell, the anode and / or the cathode being a gas diffusion electrode. The invention further relates to a method for the electrolysis of an aqueous solution of alkali chloride.
Aus WO-A 01/57290 ist eine Elektrolysezelle mit Gasdiffusionselektrode bekannt, bei der in dem Spalt zwischen der Gasdiffusionselektrode und der Ionenaustauschermembran eine poröse Schicht vorgesehen ist. Der Elektrolyt strömt von oben nach unten über die poröse Schicht unter Einwirkung der Schwerkraft durch den Spalt. Die poröse Schicht gemäß O-From WO-A 01/57290 an electrolysis cell with a gas diffusion electrode is known, in which a porous layer is provided in the gap between the gas diffusion electrode and the ion exchange membrane. The electrolyte flows from top to bottom over the porous layer under the influence of gravity through the gap. The porous layer according to O-
A 01/57290 kann aus Schäumen, Drahtnetzen o.dgb bestehen.A 01/57290 can consist of foams, wire nets or the like.
In US 6 117 286 ist ebenfalls eine Elektrolysezelle mit Gasdiffusionselektrode zur Elektrolyse einer Natriumchlorid-Lösung beschrieben, in der sich eine Schicht aus einem hydrophilen Material im Spalt zwischen der Gasdiffusionselektrode und der Ionenaus- tauschermembran befindet. Die Schicht aus hydrophilem Material hat vorzugsweise eine poröse Struktur, welche ein korrosionsbeständiges Metall oder Harz enthält. Als poröse Struktur können z.B. Netze, Gewebe oder Schäume verwendet werden. Natriumhydroxid, der Elektrolyt, strömt unter der Schwerkraft über die Schicht aus hydrophilem Material nach unten auf den Boden der Elektrolysezelle.US Pat. No. 6,117,286 also describes an electrolysis cell with a gas diffusion electrode for the electrolysis of a sodium chloride solution, in which there is a layer of a hydrophilic material in the gap between the gas diffusion electrode and the ion exchange membrane. The layer of hydrophilic material preferably has a porous structure which contains a corrosion-resistant metal or resin. As a porous structure e.g. Nets, fabrics or foams can be used. Sodium hydroxide, the electrolyte, flows under the force of gravity down over the layer of hydrophilic material to the bottom of the electrolytic cell.
Weiterhin ist aus EP-A 1 033 419 eine Elektrolysezelle mit Gasdiffusionselektrode als Kathode zur Elektrolyse einer Natriumchlorid-Lösung bekannt, hl der Kathodenhalbzelle, in der der Elektrolyt, von dem Gasraum durch eine Gasdiffusionselektrode getrennt, nach unten strömt, ist ein hydrophiles, poröses Material vorgesehen, durch das der Elektrolyt strömt. Als poröses Material kommen Metalle, Metalloxide oder organische Materialien in Betracht, sofern sie korrosionsbeständig sind.Furthermore, EP-A 1 033 419 discloses an electrolysis cell with a gas diffusion electrode as the cathode for the electrolysis of a sodium chloride solution. The cathode half-cell, in which the electrolyte flows downwards, separated from the gas space by a gas diffusion electrode, is a hydrophilic, porous material through which the electrolyte flows. Metals, metal oxides or organic materials come into consideration as the porous material if they are corrosion-resistant.
Nachteilig an' den aus dem Stand der Technik bekannten Elektrolysezellen mit Gasdiffu- sionselektrode ist, dass der Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran aufgrund des porösen Materials nicht vollständig mit Elektrolyt gefüllt werden kann. Hierdurch entstehen Bereiche in dem Spalt, in denen sich Gas befindet und ansammelt. In diesen Bereichen kann kein elektrischer Strom fließen. Strom fließt ausschließlich durch elektrolytgefüllte Bereiche in dem Spalt, sodass lokal eine höhere Stromdichte entsteht, die eine höherer Elekrolysespannung zur Folge hat. Sammelt sich das Gas an der Ionenaustauschermembran, so kann diese aufgrund des fehlenden Elektrolyten beschädigt werden. Poröse Schichten haben weiterhin den Nachteil, dass Gas, welches einmal in die poröse Struktur eingetreten ist, aus dieser nur schwierig wieder heraus gelangen kann. Innerhalb der porösen Schicht kann sich das Gas ansammeln, wodurch die oben genannten Nachteile entstehen. Gas aus dem Gasraum kann unter Betriebsbedingungen auch durch die Gasdiffusionselektrode aus dem Gasraum in den Spalt hindurchtreten.An 'disadvantage is known from the prior art electrolysis cells having gas diffusion electrode, that the gap between the gas diffusion electrode and the ion exchange membrane due to the porous material can not be completely filled with electrolyte. This creates areas in the gap in which gas is located and accumulates. No electrical current can flow in these areas. Current flows exclusively through electrolyte-filled areas in the gap, so that locally a higher current density arises, which results in a higher electrolysis voltage. The gas collects on the ion exchange membrane, this can be damaged due to the lack of electrolyte. Porous layers also have the disadvantage that gas which has once entered the porous structure can only get out of it with difficulty. The gas can accumulate within the porous layer, which creates the disadvantages mentioned above. Under operating conditions, gas from the gas space can also pass through the gas diffusion electrode from the gas space into the gap.
Die Aufgabe der vorliegenden Erfindung besteht demnach darin, eine Elek rolysezelle bereitzustellen, welche die Nachteile des Standes der Technik vermeidet.The object of the present invention is therefore to provide an electrolytic cell which avoids the disadvantages of the prior art.
Gegenstand der Erfindung ist eine elektrochemische Zelle, wenigstens bestehend aus einerAnodenhalbzelle mit einer Anode, einer" Kathodenhalbzelle mit einer Kathode und-einsr- zwischen Anodenhalbzelle und Kathodenhalbzelle angeordneten Ionenaustauschermembran, wobei die Anode und/oder die Kathode eine Gasdiffusionselektrode ist und zwischen der Gasdiffusionselektrode und der Ionenaustauschermembran ein Spalt angeordnet ist und die Halbzelle mit Gasdiffusionselektrode einen Elektrolytzulauf und einen Elektrolytablauf sowie einen Gaseintritt und einen Gasaustritt aufweist, dadurch gekennzeichnet, dass derThe invention relates to an electrochemical cell, at least consisting of an anode half cell with an anode, a " cathode half cell with a cathode and ion exchange membrane arranged between the anode half cell and cathode half cell, the anode and / or the cathode being a gas diffusion electrode and between the gas diffusion electrode and the Ion exchange membrane is arranged a gap and the half cell with gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the
Elektrolytzulauf mit dem Spalt dicht verbunden ist.Electrolyte inlet is tightly connected to the gap.
Im Betrieb der erfindungsgemäßen elektrochemischen Zelle strömt der Elektrolyt in dem Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran von oben nach unten durch die Halbzelle. Der Spalt ist dabei vollständig mit Elektrolyt gefüllt. Der übrige Raum der Halbzelle, der Gasraum, ist mit Gas gefüllt, welches durch den Gaseintritt zugeführt und durch den Gasaustritt abgeführt wird. Erfindungsgemäß ist der Elektrolytzulauf mit dem Spalt dicht verbunden. Dadurch wird verhindert, dass Gas aus dem Gasraum über den Elek- trolytzulauf in den Spalt eindringt. Aufgrund der dichten Verbindung zwischen Elektrolyt- zulauf und Spalt kann der Elektrolyt durch den Spalt mit Hilfe einer Pumpe gefördert wer- den, sodass der Elektrolytstrom nicht im freien Fall in dem Spalt an der Gasdiffusionselektrode entlang strömt. Mit Hilfe der Pumpe kann der Volumenstrom des Elektrolyten, welcher durch den Spalt strömt, eingestellt werden. Der Volumenstrom wird bevorzugt so eingestellt, dass die Strömungsgeschwindigkeit des Elektrolyten niedriger ist als im freien Fall.When the electrochemical cell according to the invention is in operation, the electrolyte flows through the half cell from top to bottom in the gap between the gas diffusion electrode and the ion exchange membrane. The gap is completely filled with electrolyte. The remaining space of the half cell, the gas space, is filled with gas which is fed in through the gas inlet and discharged through the gas outlet. According to the invention, the electrolyte feed is tightly connected to the gap. This prevents gas from the gas space from entering the gap via the electrolyte inlet. Due to the tight connection between the electrolyte inlet and the gap, the electrolyte can be conveyed through the gap with the aid of a pump, so that the electrolyte stream does not flow freely in the gap along the gas diffusion electrode. With the help of the pump, the volume flow of the electrolyte flowing through the gap can be adjusted. The volume flow is preferably set so that the flow rate of the electrolyte is lower than in free fall.
In einer bevorzugten Ausführungsform sind Strömungsleitstrukturen in dem Spalt vorge- sehen. Die Strömungsleitstrukturen verhindern ebenfalls einen freien Fall des Elektrolyten in dem Spalt, sodass die Strömungsgeschwindigkeit gegenüber dem freien Fall verringert ist. Gleichzeitig darf sich jedoch der Elektrolyt in dem Spalt aufgrund der Strömungsleitstrukturen nicht aufstauen. Die Strömungsleitstrukturen sind so gewählt, dass der Druckverlust der hydrostatischen Flüssigkeitssäule in dem Spalt kompensiert wird. Sind Strömungsleitstrukturen vorgesehen, können diese die Funktion der Pumpe, nämlich die Verringerung der Strömungsgeschwindigkeit in dem Spalt, vollständig übernehmen, so dass keine Pumpe notwendig ist. Es kann aber auch eine Pumpe in Kombination mit Strömungsleitstrukturen eingesetzt werden.In a preferred embodiment, flow guiding structures are provided in the gap. The flow guide structures also prevent a free fall of the electrolyte in the gap, so that the flow speed is reduced compared to the free fall. At the same time, however, the electrolyte must not build up in the gap due to the flow guide structures. The flow guide structures are chosen so that the pressure loss the hydrostatic liquid column in the gap is compensated. If flow guiding structures are provided, they can completely take over the function of the pump, namely the reduction of the flow speed in the gap, so that no pump is necessary. However, a pump can also be used in combination with flow guide structures.
Die Strömungsleitstrukturen bestehen aus dünnen Platten, Folien o.dgb, welche Öffnungen zum Durchströmen des Elektrolyten aufweisen. Sie sind quer, d.h. senkrecht oder schräg, zur Strömungsrichtung des Elektrolyten in dem Spalt angeordnet. Die plattenförmigen Strö- mungsleitstrukturen sind vorzugsweise gegenüber der Horizontalen geneigt, wobei sie ent- weder nur in einer Achse oder in beiden Achsen geneigt sind. Sind die Strömungsleitstrukturen schräg zur Strömungsrichtung angeordnet, können sie sowohl in Richtung der Ionenaustauschermembran als auch in Richtung der Gasdiffusionselektrode geneigt sein. Die Neigung in Richtung der Gasdiffusionselektrode bzw. der Ionenaustauschermembran entspricht einer Neigung um eine Achse, welche parallel zur Gasdiffusionselektrode bzw. Ionenaus- tauschermembran und -horizontal verläuft. Darüber hinaus können die Strömungsleitstrukturen über die Breite der elektrochemischen Zelle geneigt sein. Dies entspricht einer Neigung um eine Achse, die senkrecht zur Gasdiffusionselektrode bzw. Ionenaustauschermembran verläuft. Diese Neigung kann 0 bis 45° betragen, bevorzugt 3 bis 15°.The flow guide structures consist of thin plates, foils or the like, which have openings for the electrolyte to flow through. They are across, i.e. arranged perpendicular or obliquely to the flow direction of the electrolyte in the gap. The plate-shaped flow guide structures are preferably inclined with respect to the horizontal, wherein they are inclined either only in one axis or in both axes. If the flow guide structures are arranged obliquely to the direction of flow, they can be inclined both in the direction of the ion exchange membrane and in the direction of the gas diffusion electrode. The inclination in the direction of the gas diffusion electrode or the ion exchange membrane corresponds to an inclination about an axis which runs parallel to the gas diffusion electrode or ion exchange membrane and horizontally. In addition, the flow guide structures can be inclined across the width of the electrochemical cell. This corresponds to an inclination about an axis that runs perpendicular to the gas diffusion electrode or ion exchange membrane. This inclination can be 0 to 45 °, preferably 3 to 15 °.
Da im Betrieb der elektrochemischen Zelle immer auch geringe Mengen Gas aus dem Raum hinter der Gasdiffusionselektrode, d.h. dem der Ionenaustauschermembran ab gewandtenSince small amounts of gas from the space behind the gas diffusion electrode, i.e. that facing away from the ion exchange membrane
Raum der Halbzelle, durch die Gasdiffusionselektrode in den mit Elektrolyt durchströmten Spalt tritt, muss gewährleistet sein, dass das Gas aus dem Spalt abgeführt wird. Erhöht sich der Gehalt an Gas in dem Elektrolyten, steigt der Widerstand des Elektrolyten an. Sind Strömungsleitstrukturen in dem Spalt vorhanden, so kann das Gas entweder durch Öff- nungen in den Strömungsleitstrukturen nach oben entweichen oder es wird von der Elektro- lytströmung nach unten mitgerissen. Die Neigung der Strömungsleitstrukturen fördert insbesondere die Abführung der Gasblasen nach oben.Space of the half cell through which the gas diffusion electrode enters the gap through which electrolyte flows must ensure that the gas is removed from the gap. If the content of gas in the electrolyte increases, the resistance of the electrolyte increases. If flow guiding structures are present in the gap, the gas can either escape upward through openings in the flow guiding structures or it is carried downward by the electrolyte flow. The inclination of the flow guide structures in particular promotes the removal of the gas bubbles upwards.
Die Strömungsleitstrukturen sind ferner so angeordnet, dass sie die Gasdiffusionselektrode einerseits und die Ionenaustauschermembran andererseits kontaktieren. Somit tritt der Elek- trolyt nur durch die Öffnungen der Leitstrukturen hindurch. Die Strömungsleitstnikturen können fest oder lösbar mit der Gasdiffusionselektrode und der Ionenaustauschermembran verbunden sein. Bevorzugt sind die Strömungsleitstrukturen zwischen die Gasdiffusionselektrode und die Ionenaustauschermembran eingeklemmt. In einer besonders bevorzugten Ausführungsform sind die Strömungsleitstruk-uren an einer in dem Spalt im Wesentlichen vertikal, d.h. im Wesentlichen parallel zu der Gasdiffusionselektrode und der Ionenaustauschermembran, angeordneten Haltestruktur befestigt. Die Haltestruktur verläuft beispielsweise in der Mitte des Spaltes, sodass die Strömungsleitstrukturen einerseits in Richtung der Ionenaustauschermembran, andererseits in Richtung der Gasdiffusionselektrode ragen. Die Haltestruktur besteht beispielsweise aus einem dünnen Kunststoffstab, dessen Durchmesser kleiner ist als die Spaltbreite zwischen Gasdiffusionselektrode und Ionenaustauschermembran. Die Anzahl der Haltestrukturen, z.B. in Form von Kunststoffstäben, über die Länge der Gasdiffusionselektrode, und damit der Strömungsleitstrukturen, ist abhängig von der Materialdicke der Strömungsleitstrukturen, da die Kunststoffstäbe dieThe flow guide structures are also arranged such that they contact the gas diffusion electrode on the one hand and the ion exchange membrane on the other. The electrolyte therefore only passes through the openings of the conductive structures. The flow control structures can be fixed or detachably connected to the gas diffusion electrode and the ion exchange membrane. The flow guide structures are preferably clamped between the gas diffusion electrode and the ion exchange membrane. In a particularly preferred In one embodiment, the flow guide structures are fastened to a holding structure which is arranged essentially vertically in the gap, ie essentially parallel to the gas diffusion electrode and the ion exchange membrane. The holding structure runs, for example, in the middle of the gap, so that the flow guide structures project on the one hand in the direction of the ion exchange membrane and on the other hand in the direction of the gas diffusion electrode. The holding structure consists, for example, of a thin plastic rod, the diameter of which is smaller than the gap width between the gas diffusion electrode and the ion exchange membrane. The number of holding structures, for example in the form of plastic rods, over the length of the gas diffusion electrode, and thus of the flow guide structures, depends on the material thickness of the flow guide structures, since the plastic rods
Stabilität, z.B. beim Zusammenbau des Elektrolyseurs, bewirken.Stability, e.g. when assembling the electrolyzer.
Die Strömungsleitstrukturen können eben sein. Um das Einklemmen der Strömungsleitstrukturen zwischen Gasdiffusionselektrode und Ionenaustauschermembran zu erleichtern, können die Strömungsleitstrukturen beispielsweise ein Z-, L-, T-, Doppel-T- oder trapez- förmiges Profil aufweisen. Die Strömungsleitstrukturen können auch beliebig gewinkelt oder gekrümmt sein. Vorzugsweise bestehen sie aus einer elastischen Platte, welche breiter ist als die Breite des Spaltes. Beim Einklemmen zwischen Gasdiffusionselektrode und Ionenaustauschermembran und unter Einwirkung des Elektrolytstroms in dem Spalt biegen sich die elastischen Platten nach unten durch. Die Strömungsleitstrukturen sind dann nach unten gekrümmt. Es ist jedoch auch möglich, nach oben gekrümmte Strömungsleitstrukturen einzusetzen. Gekrümmte Strömungsleitstruk-uren sind vorteilhaft, da sie Fertigungstoleranzen der elektrochemischen Zelle, die sich beispielsweise in der Breite des Spaltes äußern, kompensieren.The flow guide structures can be flat. In order to facilitate the clamping of the flow guide structures between the gas diffusion electrode and the ion exchange membrane, the flow guide structures can have, for example, a Z, L, T, double T or trapezoidal profile. The flow guide structures can also be angled or curved as desired. They preferably consist of an elastic plate which is wider than the width of the gap. When pinching between the gas diffusion electrode and the ion exchange membrane and under the action of the electrolyte current in the gap, the elastic plates bend downward. The flow guide structures are then curved downwards. However, it is also possible to use flow guide structures that are curved upward. Curved flow guide structures are advantageous because they compensate for the manufacturing tolerances of the electrochemical cell, which are expressed, for example, in the width of the gap.
Die Öffnung in den Strömungsleitstrukturen können eine beliebige Form haben, z.B. rund oder eckig. Die Öffnungen in übereinander bzw. untereinander angeordneten Strömungsleitstruk-uren können entweder übereinander bzw. untereinander liegen, d.h. die Öffnungen decken sich. Die Elektrolytströmung verläuft dabei im Wesentlichen senkrecht durch den Spalt. Sie können jedoch auch gegeneinander versetzt sein, sodass die Elektrolytströmung nicht geradlinig, sondern beispielsweise zickzackförmig oder mäanderförmig durch den Spalt strömt. Dies reduziert die Bildung von Totzonen.The opening in the flow guide structures can have any shape, e.g. round or angular. The openings in flow guidance structures arranged one above the other or one below the other can either lie one above the other or one below the other, i.e. the openings coincide. The electrolyte flow runs essentially vertically through the gap. However, they can also be offset from one another so that the electrolyte flow does not flow through the gap in a straight line, but rather, for example, in a zigzag or meandering manner. This reduces the formation of dead zones.
Die Strömungsleitstrukturen können aus einem laugebeständigen Material, insbesondere aus einem laugebeständigen Metall oder Kunststoff, gefertigt sein. Beispielsweise kann als Material Nickel oder PTFE eingesetzt werden. Die Anzahl der Strömungsleitstrukturen sowie die Anzahl und die Querschnittsfläche der Öffnungen sind so gewählt, dass die Strömungsgeschwindigkeit des Elektrolyten niedriger ist als im freien Fall. Bei einer Bauhöhe des Elektrolyseurs von z.B. 1,3 m und einer Elek- trolytmenge von z.B. 180 1/h können z.B. 26 Strömungsleitstrukturen mit 64 Öffnungen eingesetzt werden. Die Öffnungen haben z.B. einen Durchmesser von 1 mm. Alternativ dazu könnten auch 6 Strömungsleitstrukturen mit 127 Öffnungen mit 0,5 mm Durchmesser einge- ■ setzt werden. Über den Drachmesser und die Anzahl der Öffnungen sowie die Anzahl der Strömungsleitstrukturen kann je nach Durchfluss eine entsprechende Druckkompensation erzielt werden. Der in dem Spalt nach unten strömende Elektrolyt darf sich an den Strömungsleitstrukturen nicht aufstauen. Daher muss gewährleistet sein, dass die Summe der Querschnittsflächen aller Öffnungen einer Strömungsleitstruktur für alle Strömungsleitstrukturen gleich groß ist. Dies kann durch Variation der Anzahl der Öffnungen oder der Querschnittsfläche geschehen. Unabhängig davon, ob der Elektrolyt mit Hilfe einer Pumpe durch den Spalt strömt oder ob Strömungsleitstrukturen vorgesehen sind oder beides, beträgt der bevorzugte Volumenstrom des Elektrolyten in dem Spalt (bei einer Breite des Spaltes von z.B. 3 mm) 100 bis 300 1/h. Der Volumenstrom beträgt bevorzugtmaximal 500 1/h. Die Strömungsgeschwindigkeit beträgt vorzugsweise maximal 1 cm/s. Der Vorteil von Strömungsleitstrukturen gegenüber den aus dem Stand der Technik bekannten porösen Schichten liegt in der verbesserten Abführung von Gasblasen, die durch die Gasdiffusionselektrode in den Spalt eintreten. Weiterhin wird der Elektrolyt mittels Pumpen durch den Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran gefördert, wodurch dieser Spalt vollständig mit Elektrolyt gefüllt wird. Poröse Strukturen, welche der Elektrolyt gemäß Stand der Technik im freien Fall durchläuft, sind meist nicht vollständig mit Elektrolyt gefüllt, was sich durch eine höhere Elektrolysespannung bemerkbar macht.The flow guiding structures can be made of an alkali-resistant material, in particular an alkali-resistant metal or plastic. For example, nickel or PTFE can be used as the material. The number of flow guide structures and the number and cross-sectional area of the openings are chosen so that the flow rate of the electrolyte is lower than in free fall. With an overall height of the electrolyzer of, for example, 1.3 m and an amount of electrolyte of, for example, 180 1 / h, for example 26 flow guide structures with 64 openings can be used. The openings have a diameter of 1 mm, for example. As an alternative, 6 flow guide structures with 127 openings with a diameter of 0.5 mm could also be used. Depending on the flow, appropriate pressure compensation can be achieved via the dragon knife and the number of openings and the number of flow guide structures. The electrolyte flowing down in the gap must not build up on the flow guide structures. It must therefore be ensured that the sum of the cross-sectional areas of all openings of a flow guide structure is the same for all flow guide structures. This can be done by varying the number of openings or the cross-sectional area. Regardless of whether the electrolyte flows through the gap with the aid of a pump or whether flow guidance structures are provided or both, the preferred volume flow of the electrolyte in the gap (with a width of the gap of, for example, 3 mm) is 100 to 300 1 / h. The volume flow is preferably a maximum of 500 1 / h. The flow rate is preferably a maximum of 1 cm / s. The advantage of flow guide structures over the porous layers known from the prior art lies in the improved removal of gas bubbles which enter the gap through the gas diffusion electrode. Furthermore, the electrolyte is pumped through the gap between the gas diffusion electrode and the ion exchange membrane, whereby this gap is completely filled with electrolyte. Porous structures which the electrolyte passes through in free fall according to the prior art are usually not completely filled with electrolyte, which is noticeable by a higher electrolysis voltage.
Die erfindungsgemäße elektrochemische Zelle kann für unterschiedliche Elektrolyseverfahren eingesetzt werden, in denen mindestens eine Elektrode eine Gasdiffusionselektrode ist. Vorzugsweise fungiert die Gasdiffusionselektrode als Kathode, besonders bevorzugt als Sauerstoffverzehrkathode, wobei das der elektrochemischen Zelle zugeführte Gas ein sauer- stoffhaltiges Gas ist, z.B. Luft, mit Sauerstoff angereicherte Luft oder Sauerstoff selbst. Bevorzugt wird die erfindungsgemäße Zelle für die Elektrolyse einer wässrigen Lösung eines Alkalihalogenids, insbesondere von Natriumchlorid, verwendet.The electrochemical cell according to the invention can be used for different electrolysis processes in which at least one electrode is a gas diffusion electrode. The gas diffusion electrode preferably functions as a cathode, particularly preferably as an oxygen consumable cathode, the gas supplied to the electrochemical cell being an oxygen-containing gas, for example air, oxygen-enriched air or oxygen itself. The cell of the invention for the electrolysis of an aqueous solution of an alkali halide •, in particular of sodium chloride is preferably used.
Im Falle der Elektrolyse einer wässrigen Natriumchlorid-Lösung ist die Gasdiffusionselektrode beispielsweise wie folgt aufgebaut: Die Gasdiffusionselektrode besteht wenigstens aus einem elektrisch leitfähigen Träger und einer elektrochemisch aktiven Beschichtung. Der elektrisch leitfahige Träger ist bevorzugt ein Netz, Gewebe, Geflecht, Gewirke, Vlies oder Schaum aus Metalb insbesondere aus Nickel, Silber oder versilbertem Nickel. Die elektrochemisch aktive Beschichtung besteht vorzugsweise wenigstens aus einem Katalysator, z.B. Silber(I)-Oxid, und einem Binder, z.B. Polytetrafluorethylen (PTFE). Die elektrochemisch aktive Beschichtung kann aus einer oder mehreren Schichten aufgebaut sein. Zusätzlich kann eine Gasdiffusionsschicht, beispielsweise aus einer Mischung aus Kohlenstoff und Polytetrafluorethylen, vorgesehen sein, welche auf dem Träger aufgebracht wird.In the case of the electrolysis of an aqueous sodium chloride solution, the gas diffusion electrode is constructed, for example, as follows: the gas diffusion electrode consists at least of an electrically conductive carrier and an electrochemically active coating. The electrically conductive carrier is preferably a mesh, woven fabric, braid, knitted fabric, fleece or foam made of metal, in particular made of nickel, silver or silver-plated nickel. The electrochemically active coating preferably consists of at least one catalyst, e.g. Silver (I) oxide, and a binder, e.g. Polytetrafluoroethylene (PTFE). The electrochemically active coating can be constructed from one or more layers. In addition, a gas diffusion layer, for example made of a mixture of carbon and polytetrafluoroethylene, can be provided, which is applied to the carrier.
Als Anode können beispielsweise Elektroden aus Titan eingesetzt werden, welche z.B. mit Ruthenium-Iridium-Oxiden oder Rutheniumoxid beschichtet sind.Electrodes made of titanium, for example, can be used as anode, e.g. are coated with ruthenium-iridium oxides or ruthenium oxide.
Als Ionenaustauschermembran kann eine handelsübliche Membran, z.B. der Fa. DuPont,A commercially available membrane, e.g. from DuPont,
Nafion X2010, eingesetzt werden.Nafion X2010.
Die erfindungsgemäße Elektrolysezelle, welche sich für die Elektrolyse einer wässrigen Natriumchlorid-Lösung eignet, hat einen Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran mit einer Breite in der Größenordnung von 3 mm. Die Strömungsleit- Strukturen werden vorzugsweise aus dünnen Platten aus PTFE oder PVDF gefertigt und haben eine Dicke von 0,1 bis 0,5 mmThe electrolysis cell according to the invention, which is suitable for the electrolysis of an aqueous sodium chloride solution, has a gap between the gas diffusion electrode and the ion exchange membrane with a width of the order of 3 mm. The flow guide structures are preferably made of thin plates made of PTFE or PVDF and have a thickness of 0.1 to 0.5 mm
Der Elektrolytzulauf ist ein Kanal, z.B. ein Rohr, welches sich über die gesamte Länge der Gasdiffusionselektrode erstreckt. In diesem Fall kann mit Hilfe des kanalförmigen Elektro- lytzulaufs der Elektrolyt gleichmäßig über die gesamte Länge von oben in den Spalt zwischen Gasdiffusionselektrode und Ionenaustauschermembran zugeführt werden. Anstelle eines Elektrolytzulaufs, der sich über die gesamte Länge der Gasdiffusionselektrode erstreckt, kann der Zulauf auch nur in einem Bereich, z.B. im oberen Bereich einer der beiden Enden der Gasdiffusionselektrode erfolgen. In diesem Fall kann mit Hilfe der Strömungsleitstrukturen, welche in einer Achse senkrecht zur Gasdiffusionselektrode bzw. zur Ionenaustauschermembran geneigt sind, eine gleichmäßige Verteilung des Elektrolyten über die gesamte Länge des Spaltes bewirkt werden. Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Elektrolyse einer wässrigen Alkalihalogenid-Lösung in einer elektrochemischen Zelle, wenigstens bestehend aus einer Anodenhalbzelle mit einer Anode, einer Kathodenhalbzelle mit einer Kathode und einer zwischen Anodenhalbzelle und Kathodenhalbzelle angeordneten Ionenaustauschermembran, wobei, die Anode und/oder die Kathode eine Gasdiffusionselektrode ist und zwischen derThe electrolyte inlet is a channel, for example a tube, which extends over the entire length of the gas diffusion electrode. In this case, the electrolyte feed can be used to feed the electrolyte evenly over the entire length from above into the gap between the gas diffusion electrode and the ion exchange membrane. Instead of an electrolyte feed, which extends over the entire length of the gas diffusion electrode, the feed can also take place only in one area, for example in the upper area of one of the two ends of the gas diffusion electrode. In this case, the flow guide structures, which are inclined in an axis perpendicular to the gas diffusion electrode or to the ion exchange membrane, can be used to achieve a uniform distribution of the electrolyte over the entire length of the gap. Another object of the invention is a method for the electrolysis of an aqueous alkali halide solution in an electrochemical cell, at least consisting of an anode half cell with an anode, a cathode half cell with a cathode and an ion exchange membrane arranged between anode half cell and cathode half cell, the anode and / or the cathode is a gas diffusion electrode and between the
Gasdiffusionselektrode und deb Ionenaustauschermembran ein Spalt angeordnet ist und die Halbzelle mit einer Gasdiffusionselektrode einen Elektrolytzulauf und einen Elektrolytablauf sowie einen Gaseintritt und einen Gasaustritt aufweist, dadurch gekennzeichnet, dass der Elektrolyt mittels einer Pumpe in dem Spalt von oben nach unten strömt, wobei der Spalt vollständig mit Elektrolyt angefüllt ist.Gas diffusion electrode and the ion exchange membrane a gap is arranged and the half cell with a gas diffusion electrode has an electrolyte inlet and an electrolyte outlet and a gas inlet and a gas outlet, characterized in that the electrolyte flows by means of a pump in the gap from top to bottom, the gap being completely with Electrolyte is filled.
Nachfolgend wird die Erfindung anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:The invention is explained in more detail below with reference to the accompanying drawings. Show it:
Figur 1 einen schematischen Querschnitt einer ersten Ausfuhrungsform der erfindungsgemäßen elektrochemischen Zelle ohne Strömungsleitstrukturen im Spalt zwischen Gas- diffusionselektrode und Ionenaustauschermembran1 shows a schematic cross section of a first embodiment of the electrochemical cell according to the invention without flow guide structures in the gap between the gas diffusion electrode and the ion exchange membrane
Figur 2 einen schematischen Querschnitt einer zweiten Ausführungsform der erfindungsgemäßen elektrochemischen Zelle mit Strömungsleitstrukturen im Spalt zwischen Gasdiffusionselektrode und IonenaustauschermembranFIG. 2 shows a schematic cross section of a second embodiment of the electrochemical cell according to the invention with flow guide structures in the gap between the gas diffusion electrode and the ion exchange membrane
In Figur 1 ist eine erfindungsgemäße elektrochemische Zelle 1 dargestellt, welche aus einer Anodenhalbzelle 2 mit einer Anode 21 und einer Kathodenhalbzelle 3 mit einer Gasdiffusionselektrode 31 als Kathode aufgebaut ist. Die beiden Halbzellen 2, 3 sind durch eine Ionenaustauschermembran 4 voneinander getrennt. Die Gasdiffusionselektrode 31 ist von der Ionenaustauschermembran 4 durch einen Spalt 32 getrennt. Dichtungen 39 dichten die Halbzelle 3 nach außen ab. Die Kathodenhalbzelle 3 besitzt einen Elektrolytzulauf 33 und einen Elektrolytablauf 34 sowie einen Gaseintritt- 35 und einen Gasaustritt 36. Der Elektrolytzulauf 33 ist mit dem Spalt 32 dicht verbunden. Der Elektrolyt wird über den Elektrolytzulauf 33 der Halbzelle 3 zugeführt und strömt im Spalt 32 nach unten, bevor er über den Elektrolytablauf 34 aus der Halbzelle 3 abgeführt wird. Der Spalt 32 ist im Betrieb der Elektrolysezelle 1 vollständig mit Elektrolyt gefüllt. Gas wird über den Gaseintritt 35 dem Gasraum 37 der Halbzelle 3 zugeführt, strömt in dem Gasraum 37 nach oben und wird über den Gasaustritt 36 aus der Halbzelle 3 abgeführt. Die dichte Verbindung des Elektrolytzulaufs 33 mit dem Spalt 32 erlaubt es, den Elektrolyten mit Hilfe eine Pumpe durch den Spalt 32 zu fördern und so einen gewünschten Volumenstrom bzw. eine gewünschte Strömungs- geschwindigkeit des Elektrolyten im Spalt 32 einzustellen. Die dichte Verbindung muss verhindern, dass Gas aus dem Gasraum 37 in den Spalt 32 strömt. Dazu ist der Elektrolyt- Zulauf 33 vollständig gefüllt. Die Ausgleichsöffhung 38 ist dabei so zu bemessen, dass ein sehr geringer Volumenstrom des Elektrolyten über die Öffnung 38 in den Gasraum 37 abfließt. Vorzugsweise beträgt der Volumenstrom über die Öffnung 38 in den Rückraum weniger als 5 % des Gesamtvolumenstromes. Gleichzeitig erlaubt die Ausgleichsöffhung 38 ein Austritt von Gas, welches im Betrieb der Elelctrolysezelle 1 in geringen Mengen vomFIG. 1 shows an electrochemical cell 1 according to the invention, which is constructed from an anode half cell 2 with an anode 21 and a cathode half cell 3 with a gas diffusion electrode 31 as the cathode. The two half cells 2, 3 are separated from one another by an ion exchange membrane 4. The gas diffusion electrode 31 is separated from the ion exchange membrane 4 by a gap 32. Seals 39 seal the half cell 3 from the outside. The cathode half-cell 3 has an electrolyte inlet 33 and an electrolyte outlet 34 as well as a gas inlet 35 and a gas outlet 36. The electrolyte inlet 33 is tightly connected to the gap 32. The electrolyte is supplied to the half cell 3 via the electrolyte inlet 33 and flows downward in the gap 32 before it is removed from the half cell 3 via the electrolyte outlet 34. The gap 32 is completely filled with electrolyte during operation of the electrolysis cell 1. Gas is supplied to the gas space 37 of the half cell 3 via the gas inlet 35, flows upward in the gas space 37 and is discharged from the half cell 3 via the gas outlet 36. The tight connection of the electrolyte inlet 33 with the gap 32 allows the electrolyte to be conveyed through the gap 32 with the aid of a pump and thus a desired volume flow or a desired flow adjust the speed of the electrolyte in the gap 32. The tight connection must prevent gas from flowing out of the gas space 37 into the gap 32. For this purpose, the electrolyte inlet 33 is completely filled. The equalizing opening 38 is to be dimensioned such that a very low volume flow of the electrolyte flows out into the gas space 37 via the opening 38. The volume flow through the opening 38 into the rear space is preferably less than 5% of the total volume flow. At the same time, the compensating opening 38 allows gas to escape, which is released in small quantities during operation of the electrolytic cell 1
Gasraum 37 durch die Gasdiffusionselektrode 31 in den Spalt 32 eintritt und in Form vonGas space 37 enters the gap 32 through the gas diffusion electrode 31 and in the form of
Gasblasen nach oben steigt. Auf diese Weise kann das Gas aus dem Spalt 32 über die Aus- gleichsöffnung 38 in dem Elektrolytzulauf 33 in den Gasraum 37 gelangen.Gas bubbles rise upwards. In this way, the gas can reach the gas space 37 from the gap 32 via the equalization opening 38 in the electrolyte inlet 33.
Im Vergleich zu der in Figur 1 dargestellten Ausführungsform weist die Elektrolysezelle 1 in Figur 2 zusätzlich zu der dichten Verbindung des Elektrolytzulaufs 33 mit dem Spalt 32 Strömungsleitstrukturen 51, 52, 53, 54 in dem Spalt 32 auf. Die Strömungsleitstrukturen 51, 52, 53, 54 verringern die Strömungsgeschwindigkeit des Elektrolyten in dem Spalt 32 gegenüber der Strömungsgeschwindigkeit, die der Elektrolyt im freien Fall annehmen würde. Die Strömi gsleitstrukturen 5b 52, 53, 54 bestehen aus dünnen Platten mit Öffnungen 56, die einen Durchtritt des Elektrolyten erlauben. Sie sind in den dargestellten Aus- führungsformen zwischen die Ionenaustauschermembran 4 und die Gasdiffusionselektrode 31 eingeklemmt. Die Strömungsleitstrukturen 51 sind in dem Spalt 32 im Wesentlichen horizontal, d.h. quer zur Strömungsrichtung des Elektrolyten, angeordnet. Ebenso können die Strömungsleitstrukturen 53 schräg, d.h. in einem Winkel zur Strömungsrichtung, z.B. in. Richtung der Ionenaustauschermembran 4 geneigt, angeordnet sein. In einer weiteren Ausführungsform sind die Strömimgsleitsfrukturen 53 V-förmig ausgebildet. Die Strömungsleitstrukturen 54 sind nach unten gekrümmt. In comparison to the embodiment shown in FIG. 1, the electrolytic cell 1 in FIG. 2 has flow-guiding structures 51, 52, 53, 54 in the gap 32 in addition to the tight connection of the electrolyte inlet 33 to the gap 32. The flow guide structures 51, 52, 53, 54 reduce the flow rate of the electrolyte in the gap 32 compared to the flow rate that the electrolyte would assume in free fall. The flow guide structures 5b 52, 53, 54 consist of thin plates with openings 56 which allow the electrolyte to pass through. In the illustrated embodiments, they are clamped between the ion exchange membrane 4 and the gas diffusion electrode 31. The flow guide structures 51 are substantially horizontal in the gap 32, i.e. arranged transversely to the flow direction of the electrolyte. Likewise, the flow guide structures 53 can be inclined, i.e. at an angle to the direction of flow, e.g. in the direction of the ion exchange membrane 4. In a further embodiment, the flow guide structures 53 are V-shaped. The flow guide structures 54 are curved downward.

Claims

Patentansprüche: claims:
1. . Elektrochemische Zelle (1), wenigstens bestehend aus einer Anodenhalbzelle (2) mit einer Anode (21), einer Kathodenhalbzelle (3) mit einer Kathode (31) und einer zwischen Anodenhalbzelle (2) und Kathodenhalbzelle (3) angeordneten Ionenaus-' tauschermembran (4), wobei die Anode (21) und/oder die Kathode (31) eine Gasdiffusionselektrode ist und zwischen der Gasdiffusionselektrode (31) und der Ionenaustauschermembran (4) ein Spalt (32) angeordnet ist und die Halbzelle (2, 3) mit Gasdiffusionselektrode (31) einen Elektrolytzulauf (33) und einen Elektrolytablauf (34) sowie einen Gaseintritt (35) und einen Gasaustritt (36) aufweist, dadurch gekennzeichnet, dass der Elektrolytzulauf (33) mit dem Spalt (32) dicht verbunden . ist. .1. . An electrochemical cell (1), at least consisting exchange membrane from an anode half-cell (2) having an anode (21), a cathode half-cell (3) having a cathode (31) and arranged between the anode half-cell (2) and cathode half-cell (3) ion-'( 4), the anode (21) and / or the cathode (31) being a gas diffusion electrode and a gap (32) being arranged between the gas diffusion electrode (31) and the ion exchange membrane (4) and the half cell (2, 3) having a gas diffusion electrode (31) has an electrolyte inlet (33) and an electrolyte outlet (34) as well as a gas inlet (35) and a gas outlet (36), characterized in that the electrolyte inlet (33) is tightly connected to the gap (32). is. ,
2. Elektrochemische Zelle nach Ansprach 1, dadurch gekennzeichnet, dass in dem Spalt (32) Strömungsleitstrukturen (51; 52; 53; 54) angeordnet sind.2. Electrochemical cell according spoke 1, characterized in that flow guide structures (51; 52; 53; 54) are arranged in the gap (32).
3. Elektrochemische Zelle nach einem der Ansprüche 1 oder 2, dadurch gekennzeich- net, dass die Strömungsleitstrukturen (51; 52; 53; 54) zwischen die Gasdiffusionselektrode (31) und die Ionenaustauschermembran (4) eingeklemmt sind.3. Electrochemical cell according to one of claims 1 or 2, characterized in that the flow guide structures (51; 52; 53; 54) are clamped between the gas diffusion electrode (31) and the ion exchange membrane (4).
4. Elektrochemische Zelle nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Strömungsleitstrukturen (51; 52; 53; 54) gegenüber der Horizontalen geneigt sind.4. Electrochemical cell according to one of claims 1-3, characterized in that the flow guide structures (51; 52; 53; 54) are inclined with respect to the horizontal.
5. Verfahren zur Elektrolyse einer wässrigen Alkalihalogenid-Lösung in einer elektrochemischen Zelle (1), wenigstens bestehend aus einer Anodenhalbzelle (2) mit einer Anode (21), einer Kathodenhalbzelle (3) mit einer Kathode (31) und einer zwischen Anodenhalbzelle (2) und Kathodenhalbzelle (3) angeordneten Ionenaustauschermembran (4), wobei die Anode (21) und/oder die Kathode (31) eine Gasdiffusions- elektrode ist und zwischen der Gasdiffusionselektrode (31) und der Ionenaustauschermembran (4) ein Spalt (32) angeordnet ist und die Halbzelle (2, 3) mit einer Gasdiffusionselektrode (31) einen Elektrolytzulauf (33) und einen Elektrolytablauf (34) sowie einen Gaseintritt (35) und einen Gasaustritt (36) aufweist, dadurch gekennzeichnet, dass der Elektrolyt mittels einer Pumpe in dem Spalt (32) von oben nach unten strömt, wobei der Spalt (32) vollständig mit Elektrolyt angefüllt ist. Verfahren nach Ansprach 5, dadurch gekennzeichnet, dass in dem Spalt5. A method for the electrolysis of an aqueous alkali halide solution in an electrochemical cell (1), at least consisting of an anode half-cell (2) with an anode (21), a cathode half-cell (3) with a cathode (31) and an anode half-cell (2 ) and cathode half cell (3) arranged ion exchange membrane (4), the anode (21) and / or the cathode (31) being a gas diffusion electrode and a gap (32) arranged between the gas diffusion electrode (31) and the ion exchange membrane (4) and the half-cell (2, 3) with a gas diffusion electrode (31) having an electrolyte inlet (33) and an electrolyte outlet (34) and a gas inlet (35) and a gas outlet (36), characterized in that the electrolyte by a pump flows in the gap (32) from top to bottom, the gap (32) being completely filled with electrolyte. Method according spoke 5, characterized in that in the gap
Strömungsleitstrukturen (51; 52; 53; 54) angeordnet sind. Flow guide structures (51; 52; 53; 54) are arranged.
EP04740955.2A 2003-07-24 2004-07-13 Electrochemical cell Expired - Lifetime EP1651799B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10333853A DE10333853A1 (en) 2003-07-24 2003-07-24 Electrochemical cell
PCT/EP2004/007713 WO2005012595A1 (en) 2003-07-24 2004-07-13 Electrochemical cell

Publications (2)

Publication Number Publication Date
EP1651799A1 true EP1651799A1 (en) 2006-05-03
EP1651799B1 EP1651799B1 (en) 2015-05-27

Family

ID=34088814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04740955.2A Expired - Lifetime EP1651799B1 (en) 2003-07-24 2004-07-13 Electrochemical cell

Country Status (8)

Country Link
US (2) US20050029116A1 (en)
EP (1) EP1651799B1 (en)
JP (1) JP4680901B2 (en)
CN (1) CN100549239C (en)
DE (1) DE10333853A1 (en)
HK (1) HK1097885A1 (en)
TW (1) TWI351447B (en)
WO (1) WO2005012595A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20060726A1 (en) * 2006-04-12 2007-10-13 De Nora Elettrodi S P A ELECTRIC DIFFUSION ELECTRODE FOR CELLS WITH ELECTROLYTE DISCHARGE
JP4198726B2 (en) * 2006-09-06 2008-12-17 クロリンエンジニアズ株式会社 Ion exchange membrane electrolytic cell
DE102008011473A1 (en) * 2008-02-27 2009-09-03 Bayer Materialscience Ag Process for the production of polycarbonate
DE102009004031A1 (en) * 2009-01-08 2010-07-15 Bayer Technology Services Gmbh Structured gas diffusion electrode for electrolysis cells
US8273254B2 (en) 2010-04-19 2012-09-25 Watkins Manufacturing Corporation Spa water sanitizing system
US8266736B2 (en) * 2009-07-16 2012-09-18 Watkins Manufacturing Corporation Drop-in chlorinator for portable spas
US9478803B2 (en) * 2011-06-27 2016-10-25 Primus Power Corporation Electrolyte flow configuration for a metal-halogen flow battery
GB2539478B (en) * 2015-06-17 2017-11-22 Siemens Ag Electrochemical cell and process
AU2017233774A1 (en) * 2016-03-17 2018-09-13 Hpnow Aps Electrochemical cell for gas-phase reactant in liquid environment
KR20180128962A (en) 2016-04-07 2018-12-04 코베스트로 도이칠란트 아게 Dual Functional Electrode and Electrolysis Device for Chlor-Alkaline Electrolysis
US11407661B2 (en) 2017-07-17 2022-08-09 Watkins Manufacturing Corporation Chlorine generator system
EP3805429A1 (en) * 2019-10-08 2021-04-14 Covestro Deutschland AG Method and electrolysis device for producing chlorine, carbon monoxide and hydrogen if applicable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749861B2 (en) * 1989-03-23 1998-05-13 三菱重工業株式会社 Gas diffusion electrode
DE4306889C1 (en) * 1993-03-05 1994-08-18 Heraeus Elektrochemie Electrode arrangement for gas-forming electrolytic processes in membrane cells and their use
DE19646950A1 (en) * 1996-11-13 1998-05-14 Bayer Ag Electrochemical gas diffusion half cell
JP3553775B2 (en) * 1997-10-16 2004-08-11 ペルメレック電極株式会社 Electrolyzer using gas diffusion electrode
US6368473B1 (en) * 1998-08-25 2002-04-09 Nagakazu Furuya Soda electrolytic cell provided with gas diffusion electrode
JP3086853B2 (en) * 1999-02-25 2000-09-11 長一 古屋 Electrolytic cell
IT1317753B1 (en) * 2000-02-02 2003-07-15 Nora S P A Ora De Nora Impiant ELECTROLYSIS CELL WITH GAS DIFFUSION ELECTRODE.
JP2001300537A (en) * 2000-04-25 2001-10-30 Matsushita Electric Works Ltd Water purifier
JP2002275670A (en) * 2001-03-13 2002-09-25 Association For The Progress Of New Chemistry Ion exchange membrane electrolytic cell and electrolysis method
ITMI20012379A1 (en) * 2001-11-12 2003-05-12 Uhdenora Technologies Srl ELECTROLYSIS CELL WITH GAS DIFFUSION ELECTRODES
DE10249508A1 (en) * 2002-10-23 2004-05-06 Uhde Gmbh Electrolysis cell with an inner channel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005012595A1 *

Also Published As

Publication number Publication date
CN1829825A (en) 2006-09-06
CN100549239C (en) 2009-10-14
HK1097885A1 (en) 2007-07-06
JP2006528730A (en) 2006-12-21
TW200519233A (en) 2005-06-16
TWI351447B (en) 2011-11-01
JP4680901B2 (en) 2011-05-11
DE10333853A1 (en) 2005-02-24
WO2005012595A1 (en) 2005-02-10
EP1651799B1 (en) 2015-05-27
US20050029116A1 (en) 2005-02-10
US20110073491A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
EP0717130B1 (en) Pressure compensated electrochemical cell
DE69415027T2 (en) CELL FOR THE RECOVERY OF METALS FROM DILUTED SOLUTIONS
EP0591293B1 (en) Electrolytic cell and capillary slit electrode for gas-developing or gas-consuming electrolytic reactions and electrolysis process therefor
DE2847955C2 (en) Process for producing halogens by electrolysis of aqueous alkali metal halides
EP2893586B1 (en) Flow-type electrochemical cell
DE2616614C2 (en) Electrolysis device
EP1651799B1 (en) Electrochemical cell
DE2534357A1 (en) ELECTRODE FOR ELECTROCHEMICAL REACTORS
EP0189535A1 (en) Electrolysis apparatus
DE2435185A1 (en) BIPOLAR ELECTROLYTE CELL
EP2183409B1 (en) Method for operating copper electrolysis cells
DE102004023161A1 (en) Electrolysis cell with multilayer expanded metal cathodes
EP0902847A1 (en) Electrochemical half-cell with pressure compensation
DE2262173A1 (en) DETACHABLE BIPOLAR ELECTRODE
WO1994020649A1 (en) Electrode arrangement for gas-forming electrolytic processes in membrane cells and its use
WO2004040040A1 (en) Electrolytic cell comprising an interior trough
EP1740739B1 (en) Electrochemical cell
DE2538000B2 (en) Bipolar electrode construction for a membrane-free electrolysis cell
EP0274138B1 (en) Electrode arrangement for an electrolyser producing a gas, featuring vertically disposed electrode plates
DE2022696B2 (en) Electrolysis cell for the production of adipic acid dinitrile
EP2772469A1 (en) Micro-lamellae electrode cells and their use
DE2818559C2 (en) Electrochemical device and process for its manufacture
DE2845832A1 (en) DEVICE FOR DIAPHRAGMA ELECTROLYSIS
DE112005002020B4 (en) The fuel cell system
DE2709093A1 (en) ELECTRODE FOR THE GENERATION OF A GAS IN A CELL WITH A MEMBRANE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110309

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014919

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 728926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014919

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150928

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004014919

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150527

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014919

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

26N No opposition filed

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150713

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150827

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 728926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160712

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150527

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004014919

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0009080000

Ipc: C25B0009190000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220628

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220531

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014919

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230713