EP1639703A2 - Rational sample rate conversion - Google Patents
Rational sample rate conversionInfo
- Publication number
- EP1639703A2 EP1639703A2 EP04777128A EP04777128A EP1639703A2 EP 1639703 A2 EP1639703 A2 EP 1639703A2 EP 04777128 A EP04777128 A EP 04777128A EP 04777128 A EP04777128 A EP 04777128A EP 1639703 A2 EP1639703 A2 EP 1639703A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- matrix
- filter
- input
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000005070 sampling Methods 0.000 claims description 63
- 239000011159 matrix material Substances 0.000 claims description 52
- 239000000872 buffer Substances 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 6
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 claims description 6
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 101100311460 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sum2 gene Proteins 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 238000003491 array Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0248—Filters characterised by a particular frequency response or filtering method
- H03H17/0264—Filter sets with mutual related characteristics
- H03H17/0273—Polyphase filters
- H03H17/0275—Polyphase filters comprising non-recursive filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/06—Non-recursive filters
- H03H17/0621—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/06—Non-recursive filters
- H03H17/0621—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing
- H03H17/0635—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies
- H03H17/0685—Non-recursive filters with input-sampling frequency and output-delivery frequency which differ, e.g. extrapolation; Anti-aliasing characterized by the ratio between the input-sampling and output-delivery frequencies the ratio being rational
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H2017/0298—DSP implementation
Definitions
- a multirate filter may convert a digital signal sampled at a particular frequency to a digital signal sampled at a different specified frequency.
- the performance of a multirate filter may be improved by increasing the total number of multiplications performed per second during the conversion process. Consequently, there may be need for improvements in such techniques in a device or network.
- FIG. 1 illusliales a system suitable for practicing one embodiment
- FIG. 2 illustrates a block diagram of a multirate filter in accordance with one embodiment
- FIG. 3 illustrates a set of matrices for polyphase filtering in accordance with one embodiment
- FIG. 4 illustrates a Y matrix in accordance with one embodiment
- FIG. 5 is a block flow diagram of the programming logic performed by a multirate filter in accordance with one embodiment
- FIG. 6 is a block diagram of a Polyphase Multirate Filter System (PMFS) in accordance with one embodiment.
- PMFS Polyphase Multirate Filter System
- the embodiments may be directed to a multirate filter for a digital signal processing system, such as used in a communication system, for example.
- a multirate filter may convert an input signal sampled at a first sampling rate ("input sampling rate”) to an output signal sampled at a second sampling rate (“output sampling rate”).
- input sampling rate an input signal sampled at a first sampling rate
- output sampling rate an output signal sampled at a second sampling rate
- a multirate filter may comprise a filter in which the input sampling rate and the output sampling rate are not equal.
- sampling rate as used herein may refer to sampling the instantaneous amplitude variation of a signal at discrete values in time.
- the sampling rate may be expressed as the number of samples per second. For example, if a signal has a maximum frequency component of 5 kilohertz (kHz), then the sampling rate may comprise 10,000 samples per second.
- the sampling rate may also be referred to herein as the sampling frequency.
- a multirate filter typically performs a large number of multiply-accumulate operations in converting a signal from the input sampling rate to the output sampling rate.
- the multiply-accumulate operations may be performed by, for example, a Multiply- Accumulator (MAC) unit.
- the MAC unit is typically part of the processing architecture used to implement the multirate filter.
- a multirate filter operating on a system with a processor having a single MAC unit can typically process a single sample per computational cycle. If the processor comprises multiple MAC units, however, it may be possible to process multiple samples per computational cycle. Processing multiple samples per computational cycle may increase the overall performance of the multirate filter.
- the embodiments may comprise a method and apparatus to perform sampling rate conversion for a multirate filter using multiple MAC units.
- a first signal may be received at a first sampling rate.
- the first signal may be converted to a second signal with a second sampling rate using a plurality of MAC units and a differential offset parameter.
- the efficient use of a plurality of MAC units may increase the number of multiplications performed per computational cycle, and therefore increase the throughput of the multirate filter. Improvements in the performance of multirate filters may lead to faster and more reliable communication services provided by communication systems in general. It is worthy to note that any reference in the specification to "one embodiment" or "an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
- FIG. 1 is a block diagram of a digital signal processing system 100.
- system 100 may comprise a data source 102, a multirate filter 104 and a data destination 106.
- Data source 102 may be any device or element that originates a signal sampled at an input sampling rate.
- Data destination 106 may any device or element that receives the signal sampled at an output sampling rate.
- Multirate filter 104 may convert the signal from the input sampling rate to the output sampling rate.
- FIG. 1 shows only three elements, it can be appreciated that any number of system elements may be added to system 100 and still fall within the scope of the embodiments.
- one or more communications mediums may connect the various elements.
- the term "communications medium" as used herein may refer to any medium capable of carrying information signals.
- Examples of communications mediums may include metal leads, semiconductor material, twisted-pair wire, co-axial cable, fiber optic, radio frequencies (RF) and so forth. If the communications medium comprises RF spectrum, then the embodiments may have the requisite elements needed to transmit and receive information, such as a transceiver and omni-directional antenna, for example.
- the terms "connection” or "interconnection,” and variations thereof, in this context may refer to physical connections and/or logical connections.
- System 100 may be representative of, for example, any number of systems that require a digital signal processing component.
- system 100 may represent a multimedia communication system wherein multimedia information is compressed, stored and or played out at a later time. Examples of multimedia information may include any multimedia data, such audio and video information.
- Examples of audio information may comprise speech, speech utterances, silence periods, background noise, comfort noise, tones, music, control signals, and so forth.
- Examples of video information may comprise images, frames, video frames, streaming video, graphics and so forth.
- An example of a multimedia communication system may comprise a digital audio system, a digital video system, analog voice privacy system, transmultiplexer system, multirate adaptive filter system, Voice Over Packet (VOP) system, a cellular system, large size plasma or other displays, a cable system, a satellite system and so forth.
- VOP Voice Over Packet
- data source 102 may comprise a studio recording system to record and store music.
- Data source 102 may produce a signal having a sampling rate of 48 kHz.
- Data destination 106 may comprise a Compact Disc (CD) mastering system.
- the CD mastering system may be used to store music on multiple CDs.
- Data destination 106 may require a sampling rate of 44.1 kHz.
- multirate filter 104 may receive the first signal from data source 102 at 48 kHz, convert the signal to 44.1 kHz, and send the converted signal to data destination 106.
- data destination 106 may comprise a digital audio broadcast system requiring a sampling rate of 32 kHz.
- multirate filter 104 may convert the signal from 48 kHz to 32 kHz.
- data source 102 may comprise a digital camera or digital video camera
- data destination 106 may comprise a storage system, such as a hard drive.
- data source 102 may comprise a digital telephone network.
- data source 102 may comprise a Time Division Multiplex (TDM) system
- data destination 106 may comprise a Frequency Division Multiplex (FDM) system.
- Multirate filter 104 may convert the signal from the TDM system to the required sampling rate needed by the FDM system.
- data source 102 may comprise part of a mobile handset.
- the mobile handset may receive analog audio signals from a human speaker, and convert the analog signals to digital signals using an Analog-to-Digital (A/D) converter.
- the digital audio signals may need to be stored in the handset memory, or perhaps converted to a lower sampling rate for the voice coder/decoder ("codec").
- Multirate filter 104 may receive the digital audio signals at an input sampling rate, which may be significantly higher than necessary to accurately represent the human voice, to an output sampling rate that is relatively low to conserve memory resources during storage.
- data destination 106 may comprise a memory.
- the converted digital audio signal at the output sampling rate may be sent to the memory for later processing. More particularly, there are typically three types of multirate filters.
- the first type of multirate filter may comprise an interpolation filter.
- the second type may comprise a decimation filter.
- the third type may comprise a combination of an interpolation filter and decimation filter.
- An interpolation filter may be used to increase the output sampling rate by inserting new sample points between the original sample values. The values of the new sample points are set to zero.
- An interpolation filter may be desirable near a physical interface such as a Digital to Analog (D/A) converter, for example. In this case the interpolation filter may output the signal with an increased sampling rate to the D/A converter, and thereby generate more sample values to create a smoother waveform.
- a decimation filter may be used to decrease the output sampling rate by removing sample values from the original set of sample values.
- a decimation filter may also be desirable near a physical interface, such as an A/D converter. Using a decimation filter to receive information from the A/D converter may allow the data to be downsampled to a point where it can be correctly recovered at a later time.
- a combination interpolation filter and decimation filter may be used to change the output sampling rate by a non-integer factor.
- the non-integer factor may be represented by a rational number, e.g., a ratio of two integers. For example, if the two integers were identified as I and D, respectively, the ratio of I/D should be as close to the desired factor as possible.
- the ratio of I/D may be referred to herein as a conversion rate.
- interpolation and decimation are not inverse processes, meaning that a signal run through an interpolation filter followed by a decimation filter does not necessarily produce the original signal.
- the conversion rate for this example would be a non-integer factor of 3/2.
- the interpolation filter may receive a 2 kHz signal, and increase the signal to 6 kHz by a factor of 3.
- FIG. 2 may illustrate a multirate filter in accordance with one embodiment.
- FIG. 2 may illustrate a multirate filter 200.
- Multirate filter 200 may be representative of, for example, multirate filter 104 of system 100.
- Multirate filter 200 may comprise a combination filter of the third type described above.
- multirate filter 200 may convert a digital signal from an input sampling rate to an output sampling rate.
- the input sampling rate and output sampling rate may be different, and further may be any sampling frequency desired for a particular implementation.
- Multirate filter 200 and its elements may be implemented using an architecture that may vary in accordance with any number of factors, such as desired computational rate, power levels, heat tolerances, processing cycle budget, input data rates, output data rates, memory resources, data bus speeds and other performance constraints.
- a processor may be a general-purpose or dedicated processor.
- the software may comprise computer program code segments, programming logic, instructions or data.
- the software may be stored on a medium accessible by a machine, computer or other processing system.
- acceptable mediums may include computer-readable mediums such as readonly memory (ROM), random-access memory (RAM), Programmable ROM (PROM), Erasable PROM (EPROM), magnetic disk, optical disk, and so forth.
- the medium may store programming instructions in a compressed and/or encrypted format, as well as instructions that may have to be compiled or installed by an installer before being executed by the processor.
- one embodiment may be implemented as dedicated hardware, such as an Application Specific Integrated Circuit (ASIC), Programmable Logic Device (PLD) or Digital Signal Processor (DSP) and accompanying hardware structures.
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- DSP Digital Signal Processor
- one embodiment may be implemented by any combination of programmed general-purpose computer components and custom hardware components. The embodiments are not limited in this context.
- multirate filter 200 may comprise an interpolator 202, a Low Pass Filter (LPF) 204, and a decimator 206, all of which may be connected to a processor 208 and a buffer 214.
- Processor 208 may further comprise MAC units 210 and 212.
- MAC units 210 and 212.
- MAC units may be used as desired for a particular implementation.
- the functions provided by any of the elements of multirate filter 200 may be implemented using more or less elements, and still fall within the scope of the embodiments.
- interpolator 202 may receive a first signal x[n] that represents a plurality of input sample values sampled at an input sampling rate. Interpolator 202 may increase the input sampling rate of the first signal x[n] by generating new sample values that are inserted between the input sample values. Interpolator 202 may output an intermediate signal w[k] comprising a plurality of intermediate sample values at an intermediate sampling rate. More particularly, interpolator 202 may insert 1-1 zero-valued samples between two samples of the original signal x[n] to form a new signal w[k]. LPF 204 may receive the intermediate signal w[k] and perform low pass filtering on it. Inserting zeros into the data in the time domain may create reflections or signal images of the original spectrum in the frequency domain. The reflections may represent
- LPF 204 may remove the noise from intermediate signal w[k], LPF 204 may output a filtered intermediate signal v[k] at an intermediate sampling rate.
- LPF 204 may also be referred to sometimes as a synthesis filter.
- LPF 204 may also assist in preparing the intermediate signal for input to decimator 206. In this role, LPF 204 may attempt to reduce aliasing by limiting each channel's bandwidth by a certain amount. LPF 204 may also be referred to sometimes as an analysis filter or anti-aliasing filter while providing this function.
- Decimator 206 may receive the filtered intermediate signal v[k] and perform decimation on the filtered intermediate signal. Decimator 206 may decrease the intermediate sampling rate to yield the output sampling rate.
- Decimator 206 accomplishes this by removing D-l sample values from the original block of sample values of size D. Decimator 206 may output a second signal y[m] at the output sampling rate.
- each element or stage of multirate filter 200 may be implemented using a polyphase structure to reduce the computation rate.
- a polyphase structure typically comprises multiple shorter filters that operate at different points in time. This technique may be referred to as polyphase decomposition. Therefore, in one embodiment interpolator 202 may operate as a polyphase interpolator, and decimator 206 may operate as a polyphase decimator. The use of polyphase structures may reduce the overall performance requirements for multirate filter 200. This may be further described with reference to FIGS. 3-6. FIG.
- FIG. 3 illustrates a set of matrices for polyphase filtering in accordance with one embodiment.
- FIG. 3 illustrates a set of matrices 300 for a polyphase filter.
- the vector of filter coefficients ⁇ ho, hi, Georgia, h -i ⁇ for the polyphase filter may be formed into a matrix H of I columns and M/I rows, where N represents a length of vector h[n].
- Vector h[n] may represent the filter as implemented as a Finite Impulse
- the input array x[n] may be formed into a matrix X having N/I columns.
- the rows of X may represent the state of the shift registers for the filter at consecutive instances of time at the input sampling rate.
- the length selected for input buffer 214 may determine the number of rows.
- the convolution of X and H produces a Y matrix, from which samples are picked based on decimation factor D.
- An example of a Y matrix may be discussed with reference to FIG. 4.
- FIG. 4 illustrates a Y matrix in accordance with one embodiment.
- FIG.4 illustrates a Y matrix 400.
- the output sampling rate can be generated by selecting every D th element from Y matrix 400 by iterating row-wise.
- the output sample values for second signal y[m] should comprise ⁇ yo, yo, y2D, y3D •• ⁇ Avoiding the computation of unused elements in the Y matrix further increases the efficiency of multirate filter 200.
- the underlined elements of the Y matrix 400 denote the output sample values for second signal y[m]. As shown in the Y matrix 400, every 9 th element is underlined. If processor 208 of multirate filter 200 included a single MAC unit, then each of the output elements for second signal y[m] may need to be calculated at a rate of one per computational cycle.
- the number of output sample values that can be calculated in parallel may equal the number of MAC units available to processor 208. This can be accomplished as long as processor 208 utilizes Single Instruction Multiple Data (SIMD) instructions that can be executed in parallel with one or more SIMD instructions. It can be appreciated that the number of MAC units for processor 208, and therefore parallel processed output sample values, are not limited in this context. As shown by matrices 300 and Y matrix 400, the columns of Y matrix 400 are calculated by a single column of the H matrix.
- SIMD Single Instruction Multiple Data
- processor 208 includes 2 MAC units 210 and 212, the output sample values ⁇ yo, can be calculated in parallel. This may be implemented using 3 buffer pointers for buffer 214. The first buffer pointer may point to xo, the second buffer pointer may point to xg, and the third buffer pointer may point to the first column of the H matrix. This process may continue for the other output sample values ⁇ y 9 , y 5 ⁇ , ⁇ y 18 , y 54 ⁇ and ⁇ y 27 , y 63 ⁇ , respectively, for example. It may be appreciated that all the rows of the X matrix may not be useful and therefore may be skipped while calculating multiple output sample values. For example, this may occur in the case where 31 > D > 21.
- a differential offset parameter may be used to calculate the multiple output sample values.
- the input row vector of the X matrix should be shifted (oinot shifted) by a particular value, and may need to be convoluted by a particular column of the X matrix.
- the information indicating when to shift and by what amount is encoded into the differential offset parameter.
- the differential offset parameter may be constant for a given value for I and D. The use of the differential offset parameter not only facilitates the calculation of multiple output sample values, but also may reduce or avoid the use of if-ihen-else type statements in the algorithm.
- the number of shift values or offsets needed for a particular implementation is dependent upon I.
- the offsets should be small numbers. Therefore, it may be more efficient to store the differences between consecutive values in the differential offset table rather than absolute values. For example, if 2 bits are used for each differential offset parameter, then shift up to 3 (i.e., D ⁇ 41) can be handled. This should be sufficient for most implementations since the filter may be separated into multiple cascaded stages of filters when I and D are large and relatively prime to each other. Further, I groups of 2-bit values may be stuffed in 8-bits or 16-bits, depending on the type of processor for processor 208. Table 2 below may illustrate a list of predetermined differential offset parameters for various types of I/D multirate filters.
- FIG. 5 is a block flow diagram of the operations performed by a multirate filter in accordance with one embodiment.
- the multirate filter may refer to the software and/or hardware used to implement the functionality for one or more embodiments as described herein.
- the multirate filter may be implemented as a DSP and accompanying architecture.
- FIG. 5 illustrates a first block flow diagram of the programming logic for a multirate filter in accordance with one embodiment.
- FIG. 5 illustrates a programming logic 500.
- Programming logic 500 may illustrate the programming logic to perform sampling rate conversion for a multirate filter.
- a first signal having a first sampling rate may be received at block 502.
- the first signal may have a plurality of input samples.
- the first signal may be converted to a second signal having a second sampling rate using a plurality of MAC units and a differential offset parameter at block 504.
- the second signal may also have a plurality of output samples.
- PMFS 600 illustrates a block diagram for a polyphase multirate filter system (PMFS) in accordance with one embodiment.
- PMSF 600 may comprise an implementation of multirate filter 200, for example, although the embodiments are not limited in this context.
- PMFS 600 may comprise a Sample Rate Conversion (SRC) Execution Unit 616, connected to a processor 608 and a memory 614.
- SRC 616 may further comprise input shift registers (X) 602, a polyphase filter (H) 604 and an output buffer (Y) 606.
- Processor 608 may further comprise MAC units 610 and 612, although the embodiments are not limited in this context.
- SRC 616 may perform sample rate conversion in accordance with the following pseudo code:
- the first signal may be arranged into an X matrix, such as the X matrix described with reference to FIG.
- Input shift registers (X) 602 may be used to hold the X matrix.
- the differential offset parameter for a particular filter may be used to construct the rows by proper shifting of input samples.
- the X matrix may be convoluted with the time varying filter (columns of H matrix), to remove noise at polyphase filter 604.
- the result of the convolution is stored in decimated form in output buffer (Y) 606.
- the pseudo-code shown above may illustrate the implementation of an embodiment for implementing a general I/D multirate filter and can be optimized for any processors supporting multiple MAC units. For optimization purpose there is one
- the input buffer which this algorithm can process would be of length ( ⁇ D)M, where
- M is any non-zero positive integer.
- the length of output buffer would be ( ⁇ I)M.
- the input buffer is pointed by x, and the output buffer is pointed by y.
- the program variables x arrayl, x_array2, ... x_array ⁇ will be used to point at different locations of input
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Physics & Mathematics (AREA)
- Complex Calculations (AREA)
- Time-Division Multiplex Systems (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Image Processing (AREA)
- Liquid Crystal Substances (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Analogue/Digital Conversion (AREA)
- Emergency Protection Circuit Devices (AREA)
- Digital Magnetic Recording (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/611,078 US6847313B2 (en) | 2003-06-30 | 2003-06-30 | Rational sample rate conversion |
PCT/US2004/020538 WO2005006549A2 (en) | 2003-06-30 | 2004-06-24 | Rational sample rate conversion |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1639703A2 true EP1639703A2 (en) | 2006-03-29 |
EP1639703B1 EP1639703B1 (en) | 2009-11-18 |
Family
ID=33541242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04777128A Expired - Lifetime EP1639703B1 (en) | 2003-06-30 | 2004-06-24 | Rational sample rate conversion |
Country Status (7)
Country | Link |
---|---|
US (1) | US6847313B2 (en) |
EP (1) | EP1639703B1 (en) |
CN (1) | CN1578137B (en) |
AT (1) | ATE449458T1 (en) |
DE (1) | DE602004024202D1 (en) |
TW (1) | TWI292124B (en) |
WO (1) | WO2005006549A2 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7839887B1 (en) * | 2003-10-16 | 2010-11-23 | Network Equipment Technologies, Inc. | Method and system for providing frame rate adaption |
US7426199B2 (en) * | 2005-06-29 | 2008-09-16 | Intel Corporation | Wireless communication device and method for reducing carrier frequency offsets over a simultaneous multi-user uplink in a multicarrier communication network |
US7480497B2 (en) * | 2005-06-29 | 2009-01-20 | Intel Corporation | Multicarrier receiver and method for carrier frequency offset correction and channel estimation for receipt of simultaneous transmissions over a multi-user uplink |
US7706248B2 (en) * | 2005-06-29 | 2010-04-27 | Intel Corporation | Multicarrier receiver and method for time-delay compensation in a multi-user uplink |
US7466964B2 (en) * | 2005-06-29 | 2008-12-16 | Intel Corporation | Wireless communication device and method for coordinated channel access with reduced latency in a wireless network |
US7528745B2 (en) * | 2006-02-15 | 2009-05-05 | Qualcomm Incorporated | Digital domain sampling rate converter |
CN101378251B (en) * | 2007-08-28 | 2012-05-30 | 深圳迈瑞生物医疗电子股份有限公司 | Method for improving signal display quality under a condition of low sampling rate |
US8631224B2 (en) * | 2007-09-13 | 2014-01-14 | Freescale Semiconductor, Inc. | SIMD dot product operations with overlapped operands |
US7719446B2 (en) * | 2007-11-16 | 2010-05-18 | Teradyne, Inc. | Method and apparatus for computing interpolation factors in sample rate conversion systems |
US8755515B1 (en) | 2008-09-29 | 2014-06-17 | Wai Wu | Parallel signal processing system and method |
US20100100389A1 (en) * | 2008-10-22 | 2010-04-22 | Vns Portfolio Llc | System for Signal Sample Rate Conversion |
US7864080B1 (en) * | 2008-12-29 | 2011-01-04 | Altera Corporation | Sample rate conversion by controlled selection of filter outputs |
US8542786B2 (en) * | 2010-08-04 | 2013-09-24 | Evertz Microsystems Ltd. | Multi-channel sample rate converter |
CN102420611B (en) * | 2011-01-24 | 2014-09-17 | 展讯通信(上海)有限公司 | Sampling rate conversion method and device of digital signal |
US8582420B2 (en) * | 2011-03-29 | 2013-11-12 | Intel Corporation | Time domain signal generation |
CN102170111B (en) * | 2011-05-03 | 2015-02-18 | 国网电力科学研究院 | Optimal-design-based variable sampling rate re-sampling method |
US11243611B2 (en) | 2013-08-07 | 2022-02-08 | Nike, Inc. | Gesture recognition |
US9385724B1 (en) * | 2013-10-03 | 2016-07-05 | Altera Corporation | Methods for operating configurable storage and processing blocks at double and single data rates |
US9030337B2 (en) * | 2013-10-07 | 2015-05-12 | Telefonaktiebolaget L M Ericsson (Publ) | Multi-branch down converting fractional rate change filter |
US9432043B2 (en) * | 2014-09-25 | 2016-08-30 | Analog Devices Global | Sample rate converter, an analog to digital converter including a sample rate converter and a method of converting a data stream from one data rate to another data rate |
CN104849561A (en) * | 2015-04-14 | 2015-08-19 | 西安电子科技大学 | Method for calculating standing-wave ratio in high precision under low-sampling rate and under-sampling rate |
JP6107994B1 (en) * | 2016-03-08 | 2017-04-05 | Nttエレクトロニクス株式会社 | Data processing apparatus, data processing method, and communication apparatus |
ES2834301T3 (en) * | 2016-05-31 | 2021-06-17 | Octo Telematics Spa | Method and apparatus for sample rate conversion of a sample stream |
CN107786476B (en) * | 2016-08-31 | 2020-09-08 | 华为技术有限公司 | Filter, time domain equalizer and receiver |
RU183556U1 (en) * | 2018-04-02 | 2018-09-25 | Олег Владимирович Гребенюк | LATERAL FRAME FOR THE SPRING BLOCK OF THE MATTRESS |
US10720904B2 (en) * | 2018-11-12 | 2020-07-21 | Analog Devices International Unlimited Company | Techniques for input formatting and coefficient selection for sample rate converter in parallel implementation scheme |
CN110840452B (en) * | 2019-12-10 | 2024-08-27 | 广西师范大学 | Brain wave signal filtering device and method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4020332A (en) * | 1975-09-24 | 1977-04-26 | Bell Telephone Laboratories, Incorporated | Interpolation-decimation circuit for increasing or decreasing digital sampling frequency |
KR0165512B1 (en) * | 1996-01-29 | 1999-03-20 | 김광호 | Clock rate conversion method and apparatus to digital image signal using size effect corelation method |
US5986589A (en) * | 1997-10-31 | 1999-11-16 | Ati Technologies, Inc. | Multi-stream audio sampling rate conversion circuit and method |
US6347123B1 (en) * | 1998-07-10 | 2002-02-12 | Qualcomm Incorporated | Low-current sample rate converter |
US6496546B1 (en) * | 1998-07-15 | 2002-12-17 | Lucent Technologies Inc. | Software-defined transceiver for a wireless telecommunications system |
US6427157B1 (en) * | 1998-07-31 | 2002-07-30 | Texas Instruments Incorporated | Fir filter structure with time- varying coefficients and filtering method for digital data scaling |
JP3762609B2 (en) * | 2000-03-15 | 2006-04-05 | シャープ株式会社 | Communication device, frequency spectrum inversion calculation method, and program storage medium |
DE10039666B4 (en) * | 2000-08-14 | 2011-08-11 | Rohde & Schwarz GmbH & Co. KG, 81671 | Method and device for estimating the frequency and / or the phase of a digital signal |
US6388600B1 (en) * | 2000-11-13 | 2002-05-14 | Trw Inc. | Asynchronous superconductor serial multiply-accumulator |
-
2003
- 2003-06-30 US US10/611,078 patent/US6847313B2/en not_active Expired - Lifetime
- 2003-12-30 CN CN2003101238339A patent/CN1578137B/en not_active Expired - Fee Related
-
2004
- 2004-06-24 WO PCT/US2004/020538 patent/WO2005006549A2/en active Application Filing
- 2004-06-24 EP EP04777128A patent/EP1639703B1/en not_active Expired - Lifetime
- 2004-06-24 DE DE602004024202T patent/DE602004024202D1/en not_active Expired - Lifetime
- 2004-06-24 AT AT04777128T patent/ATE449458T1/en not_active IP Right Cessation
- 2004-06-28 TW TW093118838A patent/TWI292124B/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO2005006549A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2005006549A2 (en) | 2005-01-20 |
ATE449458T1 (en) | 2009-12-15 |
CN1578137B (en) | 2010-05-26 |
CN1578137A (en) | 2005-02-09 |
TW200504589A (en) | 2005-02-01 |
US20040263363A1 (en) | 2004-12-30 |
WO2005006549A3 (en) | 2005-06-02 |
EP1639703B1 (en) | 2009-11-18 |
US6847313B2 (en) | 2005-01-25 |
TWI292124B (en) | 2008-01-01 |
DE602004024202D1 (en) | 2009-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6847313B2 (en) | Rational sample rate conversion | |
US6175849B1 (en) | System for digital filtering in a fixed number of clock cycles | |
US8405532B1 (en) | Asynchronous sample rate converter | |
US6167415A (en) | Recursive digital filter with reset | |
US6487573B1 (en) | Multi-rate digital filter for audio sample-rate conversion | |
US6215429B1 (en) | Distributed gain for audio codec | |
WO2010074849A1 (en) | Multi-staging recursive audio frame-based resampling and time mapping | |
CN111566934B (en) | Low delay decimating filter and interpolator filter | |
US6531969B2 (en) | Resampling system and apparatus | |
US7653204B2 (en) | Method and system for codec with polyringer | |
US6000834A (en) | Audio sampling rate conversion filter | |
JP2008021119A (en) | Digital filter and image processor using the same | |
US6430671B1 (en) | Address generation utilizing an adder, a non-sequential counter and a latch | |
US20040052300A1 (en) | Digital sampling rate conversion using a poly-phase filter and a polynomial interpolator | |
JP5541832B2 (en) | Sampling rate conversion | |
EP1879292B1 (en) | Partitioned fast convolution | |
JPH0732343B2 (en) | Asynchronous sampling frequency conversion method | |
JPH05235701A (en) | Method and device for processing digital filter bank by ring convolution | |
JP2002300007A (en) | Sampling frequency converter | |
WO2019152101A1 (en) | Sample rate conversion with pitch-based interpolation filters | |
EP1295390A1 (en) | Universal sampling rate converter for digital audio frequencies | |
JP4276258B2 (en) | System and method for implementing sample rate converters using hardware and software to maximize speed and flexibility | |
EP1570574A1 (en) | Multirate filter and a display system and a mobile telephone comprising said multirate filter | |
CN111585543A (en) | Method for realizing audio sampling rate conversion by Farrow structure | |
CN119010839A (en) | Digital decimation filter, signal processing method and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050921 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20060412 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004024202 Country of ref document: DE Date of ref document: 20091231 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20091118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100228 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100318 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100218 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20100819 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100624 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100519 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091118 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160622 Year of fee payment: 13 Ref country code: GB Payment date: 20160622 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004024202 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170624 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180103 |