EP1630356A1 - Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase - Google Patents
Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase Download PDFInfo
- Publication number
- EP1630356A1 EP1630356A1 EP04020155A EP04020155A EP1630356A1 EP 1630356 A1 EP1630356 A1 EP 1630356A1 EP 04020155 A EP04020155 A EP 04020155A EP 04020155 A EP04020155 A EP 04020155A EP 1630356 A1 EP1630356 A1 EP 1630356A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas turbine
- liquid
- rotor
- cooling
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 21
- 238000002347 injection Methods 0.000 title claims description 4
- 239000007924 injection Substances 0.000 title claims description 4
- 239000012530 fluid Substances 0.000 title 1
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000002485 combustion reaction Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000005406 washing Methods 0.000 claims description 5
- 239000012153 distilled water Substances 0.000 claims description 4
- 239000003570 air Substances 0.000 description 12
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/002—Cleaning of turbomachines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/34—Turning or inching gear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/70—Suction grids; Strainers; Dust separation; Cleaning
- F04D29/701—Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
- F04D29/705—Adding liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/212—Heat transfer, e.g. cooling by water injection
Definitions
- the invention relates to a method for cooling a gas turbine with a rotor, which is carried out after the operation of the gas turbine and in which the rotor is at least temporarily driven during a cooling phase at a reduced rated speed.
- the object of the invention is to provide a method for cooling a gas turbine with a rotor, which causes even faster cooling of the gas turbine to further reduce the service life of the gas turbine.
- the solution provides that for faster cooling, at least temporarily during the cooling phase, a liquid is introduced into the air stream, which flows through the flow channel of the gas turbine.
- the invention is based on the idea that can be better cooled by the introduction of a liquid in the air stream, so that the liquid-enriched air stream can absorb a larger amount of heat per unit time from the still heated gas turbine and transported away. This leads to faster cooling of the gas turbine than in the previously known from the prior art method.
- the faster cooling of the gas turbine allows inspections, inspections and maintenance to be carried out earlier by the installation staff. This reduces the service life of the gas turbine and increases its availability.
- the embodiment of the method in which the rotational speed of the rotor during the liquid introduction is higher than the rotational speed at which no liquid introduction takes place. Due to the higher speed, more air is pumped through the gas turbine. Thus, the airflow can absorb more liquid without water retention causing cracks or crack growth on the components of the gas turbine.
- the introduction of the liquid takes place in front of the compressor of the gas turbine.
- the introduction of the liquid takes place by means of a compressor washing device.
- Design changes to the gas turbine are to carry out the Procedure not necessary, so that the retrofitting of existing gas turbines to carry out such a method is particularly inexpensive and easy.
- the compressor washing device can also be used a Eindüsvorraum for a liquid which is provided at the compressor inlet and which injects a liquid in the sucked ambient air during operation of the gas turbine to increase the mass flow.
- This method which is carried out during operation of the gas turbine, is known by the term "wet compression” or else "wet compression”.
- FIG. 1 shows a gas turbine 1 with a rotor 5 rotatably mounted about a rotation axis 3.
- the gas turbine 1 has an intake chamber 7, a compressor 9, a toroidal annular combustion chamber 11 and a turbine unit 13.
- Both in the compressor 9 and in the turbine unit 13 guide vanes 15 and blades 17 are each arranged in rings.
- a blade ring 19 is followed by a blade ring 21.
- the rotor blades 17 are fastened to the rotor 5 by means of rotor disks 23, whereas the stator blades 15 are fixedly mounted on the housing 25.
- Wreaths 21 of guide vanes 15 are likewise arranged in the turbine unit 13, which, viewed in the direction of the flow medium, is followed by a ring of rotor blades 17.
- the respective blade profiles of the guide vanes 15 and of the rotor blades 17 extend radially in an annular flow channel 27.
- air 29 is sucked through the intake manifold 7 and compressed by the compressor.
- the compressed air is guided to the burners 33, which are provided on a ring lying on the annular combustion chamber 11.
- the compressed air 29 is mixed with a fuel 35, which mixture in the annular combustion chamber 11 is burned to a hot gas 37.
- the hot gas 37 flows through the flow channel 27 of the turbine unit 13 past guide vanes 15 and blades 17.
- the hot gas 37 relaxes on the blades 17 of the turbine unit 13 to perform work.
- the rotor 5 of the gas turbine 1 in a rotary motion at its rated speed, for example, 3000 min -1 or 3600 min -1 , which serves to drive the compressor 9 and to drive a working engine or generator, not shown.
- FIG. 2 shows a cross section through the intake housing 7 of the gas turbine 1.
- the air inlet-side end 39 of the compressor 9 with the centrally mounted rotor 5 is shown in cross section.
- only a few of the guide vanes 15 arranged in the flow channel 27 are shown.
- a device 41 for introducing, in particular injection of a liquid 43, for example distilled water, is arranged.
- the device 41 can be, for example, a compressor washing device 45 or a injection circuit for wet compression.
- the method for cooling the gas turbine 1 is performed.
- the rotor 5 is driven by a rotating device, not shown, at a reduced speed, for example in the range of 80 min -1 to 160 min -1 , preferably at 120 min -1 , to cool it.
- the rotor 5 pumps relative to the operation of the gas turbine 1, a comparatively small mass of air through the flow channel 27 of the gas turbine first
- the cooling process is further accelerated by additionally called distilled water during the rotary operation, also called cooling operation, in the sucked air flow.
- the evaporation of the water cools the sucked-in air flow, as a result of which, as it flows through the gas turbine 1, it increasingly absorbs and removes the heat stored in the gas turbine 1.
- the rotational speed of the rotor 5 can be increased, for example to 4% to 10% of the nominal rotational speed.
- the introduction of the liquid 43 can take place by suitable means both in the annular combustion chamber 11 and in the flow channel 27 of the turbine unit 13.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Nonmetallic Welding Materials (AREA)
- Ceramic Products (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum Abkühlen einer Gasturbine (1) mit einem Rotor (5),
welches im Anschluss an den Betrieb der Gasturbine (1) durchgeführt wird und bei welchem der Rotor (5) zumindest zeitweise während einer Abkühlphase mit verminderter Nenndrehzahl angetrieben wird.
welches im Anschluss an den Betrieb der Gasturbine (1) durchgeführt wird und bei welchem der Rotor (5) zumindest zeitweise während einer Abkühlphase mit verminderter Nenndrehzahl angetrieben wird.
Um eine Gasturbine mit verringerter Standzeit anzugeben, wird vorgeschlagen, dass zur weiteren Abkühlung zumindest zeitweise während der Abkühlphase eine Flüssigkeit (43) in den bzw. vor den Strömungskanal (27) der Gasturbine (1) eingebracht wird.
Description
- Die Erfindung betrifft ein Verfahren zum Abkühlen einer Gasturbine mit einem Rotor, welches im Anschluss an den Betrieb der Gasturbine durchgeführt wird und bei welchem der Rotor zumindest zeitweise während einer Abkühlphase mit verminderter Nenndrehzahl angetrieben wird.
- Es ist bekannt, dass im Anschluss an den Betrieb einer Gasturbine der Rotor mit geringer Drehzahl angetrieben wird, um die durch den Betrieb aufgeheizte Gasturbine schneller abzukühlen. Durch die Rotation des Rotors und der an ihm angeordneten Laufschaufeln wird durch den Strömungskanal des Verdichters, die Brennkammer und die Turbineneinheit kühle Umgebungsluft gepumpt. Diese nimmt beim Durchströmen die in der Gasturbine, d.h. im Gehäuse und im Rotor, gespeicherte Wärme auf und transportiert sie ab. Hierdurch kühlt die Gasturbine schneller ab, so dass Service- bzw. Wartungsarbeiten frühzeitig angefangen werden können, denn es ist ein allgemeines Bestreben, die Stillstandszeiten einer Gasturbine zu verringern.
- Aufgabe der Erfindung ist es, ein Verfahren zum Abkühlen einer Gasturbine mit einem Rotor anzugeben, welches ein noch schnelleres Abkühlen der Gasturbine bewirkt, um die Standzeiten der Gasturbine weiter zu verringern.
- Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.
- Die Lösung sieht vor, dass zur schnelleren Abkühlung zumindest zeitweise während der Abkühlphase eine Flüssigkeit in den Luftstrom eingebracht wird, welcher den Strömungskanal der Gasturbine durchströmt.
- Die Erfindung geht dabei von der Idee aus, dass durch das Einbringen einer Flüssigkeit in den Luftstrom besser gekühlt werden kann, so dass der mit Flüssigkeit angereicherte Luftstrom eine größere Wärmemenge pro Zeiteinheit aus der noch aufgeheizten Gasturbine aufnehmen und abtransportieren kann. Dies führt zum schnelleren Abkühlen der Gasturbine als bei den bisher aus dem Stand der Technik bekannten Verfahren.
- Durch das schnellere Abkühlen der Gasturbine können Revisionen, Inspektionen und Wartungsarbeiten vom Montagepersonal frühzeitiger durchgeführt werden. Dies verringert die Standzeiten der Gasturbine und erhöht ihre Verfügbarkeit.
- Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
- Besonders vorteilhaft ist die Ausgestaltung des Verfahrens, bei der die Drehzahl des Rotors während der Flüssigkeitseinbringung höher ist als die Drehzahl, bei der keine Flüssigkeitseinbringung erfolgt. Durch die höhere Drehzahl wird mehr Luft durch die Gasturbine gepumpt. Somit kann der Luftstrom mehr Flüssigkeit aufnehmen, ohne dass Wasseransammlungen Risse bzw. Risswachstum an den Komponenten der Gasturbine hervorrufen.
- In einer vorteilhaften Ausgestaltung des Verfahrens erfolgt die Einbringung der Flüssigkeit vor dem Verdichter der Gasturbine. Dies hat den Vorteil, dass der Luftstrom bereits am eintrittsseitigen Ende der Gasturbine mit der im Inneren verdampfenden Flüssigkeit angereichert wird. Hierdurch kann die Gasturbine entlang ihrer vollständigen Längserstreckung entlang des Rotors schneller abgekühlt werden.
- Vorteilhafter Weise erfolgt die Einbringung der Flüssigkeit mittels einer Verdichterwascheinrichtung. Konstruktive Änderungen an der Gasturbine sind zur Durchführung des Verfahrens nicht nötig, so dass die Nachrüstung von bereits existierenden Gasturbinen zur Durchführung eines solchen Verfahrens besonders kostengünstig und einfach möglich ist. Anstelle der Verdichterwascheinrichtung kann auch eine Eindüsvorrichtung für eine Flüssigkeit verwendet werden, welche am Verdichtereintritt vorgesehen ist und welche beim Betrieb der Gasturbine zur Erhöhung des Massenstromes eine Flüssigkeit in die angesaugte Umgebungsluft eindüst. Dieses, beim Betrieb der Gasturbine durchgeführte Verfahren, ist unter dem Begriff "Wet Compression" oder auch "nasse Verdichtung" bekannt.
- In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist es denkbar, dass die Einbringung der Flüssigkeit in eine Brennkammer der Gasturbine oder in den Strömungskanal einer Turbineneinheit erfolgt. Hierdurch ist es möglich, die beim Betrieb der Gasturbine besonders thermisch belasteten Bereiche nach dem Abschalten der Gasturbine gesondert durch die dabei entstehende Verdunstungskälte zu kühlen.
- Besonders vorteilhaft ist es, wenn als Flüssigkeit destilliertes Wasser eingebracht wird. Hierdurch können Ablagerungen im Strömungskanal der Gasturbine vermieden werden.
- Die Erfindung wird anhand einer Zeichnung erläutert.
- Es zeigt:
- FIG 1
- einen Längsteilschnitt durch eine Gasturbine und
- FIG 2
- eine Verdichterwascheinrichtung in einem Ansaughaus einer Gasturbine.
- Verdichter und Gasturbinen sowie deren Arbeitsweisen sind allgemein bekannt. Hierzu zeigt FIG 1 eine Gasturbine 1 mit einem um eine Rotationsachse 3 drehbar gelagerten Rotor 5.
- Entlang der Rotationsachse 3 weist die Gasturbine 1 ein Ansaughaus 7, einen Verdichter 9, eine torusartige Ringbrennkammer 11 und eine Turbineneinheit 13 auf.
- Sowohl im Verdichter 9 als auch in der Turbineneinheit 13 sind Leitschaufeln 15 und Laufschaufeln 17 jeweils in Kränzen angeordnet. Im Verdichter 9 folgt einem Laufschaufelkranz 19 ein Leitschaufelkranz 21. Die Laufschaufeln 17 sind am Rotor 5 mittels Rotorscheiben 23 befestigt, wohingegen die Leitschaufeln 15 feststehend am Gehäuse 25 montiert sind.
- Ebenso sind in der Turbineneinheit 13 Kränze 21 aus Leitschaufeln 15 angeordnet, denen jeweils in Richtung des Strömungsmediums gesehen ein Kranz aus Laufschaufeln 17 folgt.
- Die jeweiligen Schaufelprofile der Leitschaufeln 15 und der Laufschaufeln 17 erstrecken sich strahlenförmig in einem ringförmigen Strömungskanal 27.
- Beim Betrieb der Gasturbine 1 wird vom Verdichter 9 Luft 29 durch das Ansaughaus 7 angesaugt und verdichtet. Am Austritt 31 des Verdichters 9 wird die verdichtete Luft zu den Brennern 33 geführt, welche auf einem Ring liegend an der Ringbrennkammer 11 vorgesehen sind. In den Brennern wird die verdichtete Luft 29 mit einem Brennmittel 35 vermischt, welches Gemisch in der Ringbrennkammer 11 zu einem Heißgas 37 verbrannt wird. Anschließend strömt das Heißgas 37 durch den Strömungskanal 27 der Turbineneinheit 13 an Leitschaufeln 15 und Laufschaufeln 17 vorbei. Dabei entspannt sich das Heißgas 37 an den Laufschaufeln 17 der Turbineneinheit 13 arbeitsleistend. Hierdurch wird der Rotor 5 der Gasturbine 1 in eine Drehbewegung mit seiner Nenndrehzahl, beispielsweise 3000 min-1 oder 3600 min-1, versetzt, welche zum Antrieb des Verdichters 9 und zum Antrieb einer nicht dargestellten Arbeits-Kraftmaschine oder Generators dient.
- FIG 2 zeigt einen Querschnitt durch das Ansaughaus 7 der Gasturbine 1. Das für die Luft eintrittsseitige Ende 39 des Verdichters 9 mit dem zentral gelagerten Rotor 5 ist im Querschnitt dargestellt. Der Klarheit halber sind nur einige der im Strömungskanal 27 angeordneten Leitschaufeln 15 gezeigt.
- Oberhalb des Verdichtereintritts ist eine Vorrichtung 41 zur Einbringung, insbesondere Eindüsung einer Flüssigkeit 43, beispielsweise destilliertes Wasser, angeordnet. Die Vorrichtung 41 kann beispielsweise eine Verdichterwascheinrichtung 45 oder ein Eindüsrack für "Wet Compression" sein.
- Nach dem Betrieb der Gasturbine 1 wird das Verfahren zum Abkühlen der Gasturbine 1 durchgeführt. Dabei wird der Rotor 5 von einer nicht gezeigten Dreheinrichtung mit verminderter Drehzahl, beispielsweise im Bereich von 80 min-1 bis 160 min-1, vorzugsweise mit 120 min-1, angetrieben, um diese abzukühlen. Dabei pumpt der Rotor 5 bezogen auf den Betrieb der Gasturbine 1 eine vergleichsweise geringe Masse von Luft durch den Strömungskanal 27 der Gasturbine 1.
- Der Abkühlvorgang wird weiter beschleunigt, indem während des Drehbetriebes, auch Abkühlbetrieb genannt, in den angesaugten Luftstrom zusätzlich destilliertes Wasser eingebracht wird. Die Verdampfung des Wassers kühlt den angesaugten Luftstrom, wodurch diese beim Durchströmen der Gasturbine 1 vermehrt die in der Gasturbine 1 gespeicherte Wärme aufnehmen und abtransportieren kann. Während der Wassereinbringung kann die Drehzahl des Rotors 5, beispielsweise auf 4% bis 10% der Nenndrehzahl, erhöht werden.
- Ferner kann das Einbringen der Flüssigkeit 43 durch geeignete Mittel sowohl in der Ringbrennkammer 11 als auch in den Strömungskanals 27 der Turbineneinheit 13 erfolgen.
Claims (6)
- Verfahren zum Abkühlen einer Gasturbine (1) mit einem Rotor (5),
welches im Anschluss an den Betrieb der Gasturbine (1) durchgeführt wird und bei welchem der Rotor (5) zumindest zeitweise während einer Abkühlphase mit verminderter Nenndrehzahl angetrieben wird,
dadurch gekennzeichnet,
dass zur Abkühlung zumindest zeitweise während der Abkühlphase eine Flüssigkeit (43) in den Luftstrom eingebracht wird, welcher den Strömungskanal (27) der Gasturbine (1) durchströmt. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass die Drehzahl des Rotors (5) während der Flüssigkeitseinbringung höher ist als die Drehzahl, bei der keine Flüssigkeitseinbringung erfolgt. - Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Einbringung der Flüssigkeit (43) vor einem Verdichter (9) der Gasturbine erfolgt. - Verfahren nach Anspruch 3,
dadurch gekennzeichnet,
die Eindüsung der Flüssigkeit (43) mittels einer Verdichterwascheinrichtung (45) erfolgt. - Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass die Einbringung der Flüssigkeit (43) in eine Brennkammer der Gasturbine (1) oder in den Strömungskanal (27) einer Turbineneinheit erfolgt. - Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
dass als Flüssigkeit (43) destilliertes Wasser eingebracht wird.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04020155A EP1630356A1 (de) | 2004-08-25 | 2004-08-25 | Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase |
AT05777877T ATE389785T1 (de) | 2004-08-25 | 2005-08-12 | Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase |
DE502005003367T DE502005003367D1 (de) | 2004-08-25 | 2005-08-12 | Nd einer abkühlphase |
PCT/EP2005/053969 WO2006021520A1 (de) | 2004-08-25 | 2005-08-12 | Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase |
PT05777877T PT1784557E (pt) | 2004-08-25 | 2005-08-12 | Injecção de líquido numa turbina a gás durante uma fase de refrigeração |
US11/660,639 US7752847B2 (en) | 2004-08-25 | 2005-08-12 | Liquid injection in a gas turbine during a cooling down phase |
ES05777877T ES2304709T3 (es) | 2004-08-25 | 2005-08-12 | Inyeccion de liquido en una turbina de gas durante una fase de refrigeracion. |
EP05777877A EP1784557B1 (de) | 2004-08-25 | 2005-08-12 | Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04020155A EP1630356A1 (de) | 2004-08-25 | 2004-08-25 | Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1630356A1 true EP1630356A1 (de) | 2006-03-01 |
Family
ID=34926292
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04020155A Withdrawn EP1630356A1 (de) | 2004-08-25 | 2004-08-25 | Flüssigkeitseinspritzung in einer Gasturbine während einer Abkühlphase |
EP05777877A Not-in-force EP1784557B1 (de) | 2004-08-25 | 2005-08-12 | Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05777877A Not-in-force EP1784557B1 (de) | 2004-08-25 | 2005-08-12 | Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase |
Country Status (7)
Country | Link |
---|---|
US (1) | US7752847B2 (de) |
EP (2) | EP1630356A1 (de) |
AT (1) | ATE389785T1 (de) |
DE (1) | DE502005003367D1 (de) |
ES (1) | ES2304709T3 (de) |
PT (1) | PT1784557E (de) |
WO (1) | WO2006021520A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2365197A1 (de) * | 2010-03-02 | 2011-09-14 | Alstom Technology Ltd | Beschleunigte Kühlung einer Gasturbine |
EP2620604A1 (de) * | 2012-01-25 | 2013-07-31 | Siemens Aktiengesellschaft | Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten |
ITFI20120046A1 (it) * | 2012-03-08 | 2013-09-09 | Nuovo Pignone Srl | "device and method for gas turbine unlocking" |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8777793B2 (en) | 2011-04-27 | 2014-07-15 | United Technologies Corporation | Fan drive planetary gear system integrated carrier and torque frame |
US10400629B2 (en) | 2012-01-31 | 2019-09-03 | United Technologies Corporation | Gas turbine engine shaft bearing configuration |
US8863491B2 (en) | 2012-01-31 | 2014-10-21 | United Technologies Corporation | Gas turbine engine shaft bearing configuration |
US9038366B2 (en) | 2012-01-31 | 2015-05-26 | United Technologies Corporation | LPC flowpath shape with gas turbine engine shaft bearing configuration |
US20130192198A1 (en) | 2012-01-31 | 2013-08-01 | Lisa I. Brilliant | Compressor flowpath |
US10823054B2 (en) * | 2012-11-06 | 2020-11-03 | Fuad AL MAHMOOD | Reducing the load consumed by gas turbine compressor and maximizing turbine mass flow |
US10480533B2 (en) | 2013-09-10 | 2019-11-19 | United Technologies Corporation | Fluid injector for cooling a gas turbine engine component |
EP3023604A1 (de) * | 2014-11-18 | 2016-05-25 | Siemens Aktiengesellschaft | Verfahren und system zum abkühlen einer gasturbine |
US10082087B2 (en) * | 2016-08-25 | 2018-09-25 | General Electric Company | Systems and methods to improve shut-down purge flow in a gas turbine system |
US10082089B2 (en) * | 2016-08-25 | 2018-09-25 | General Electric Company | Systems and methods to improve shut-down purge flow in a gas turbine system |
US10082091B2 (en) * | 2016-08-25 | 2018-09-25 | General Electric Company | Systems and methods to improve shut-down purge flow in a gas turbine system |
US10082090B2 (en) * | 2016-08-25 | 2018-09-25 | General Electric Company | Systems and methods to improve shut-down purge flow in a gas turbine system |
US10947993B2 (en) | 2017-11-27 | 2021-03-16 | General Electric Company | Thermal gradient attenuation structure to mitigate rotor bow in turbine engine |
US11879411B2 (en) | 2022-04-07 | 2024-01-23 | General Electric Company | System and method for mitigating bowed rotor in a gas turbine engine |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903691A (en) * | 1972-05-26 | 1975-09-09 | Joseph Szydlowski | Method and devices for avoiding the formation of thermal imbalances in turbine engines |
US4314442A (en) * | 1978-10-26 | 1982-02-09 | Rice Ivan G | Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine |
US4338780A (en) * | 1977-12-02 | 1982-07-13 | Hitachi, Ltd. | Method of cooling a gas turbine blade and apparatus therefor |
EP0961011A1 (de) * | 1998-05-28 | 1999-12-01 | Asea Brown Boveri AG | Verfahren zum Betrieb von Gasturbinen und Kombikraftwerken |
EP1108870A2 (de) * | 1996-05-14 | 2001-06-20 | The Dow Chemical Company | Methode und Einrichtung um die Leistung von Gasturbinen durch Verdunstungskühlung zu steigern |
US6310022B1 (en) * | 1999-11-30 | 2001-10-30 | Biogenesis Enterprises, Inc. | Chemical cleaning solution for gas turbine blades |
US20030035714A1 (en) * | 2001-08-17 | 2003-02-20 | Franz Kreitmeier | Cooling method for turbines |
US20040088998A1 (en) * | 2002-11-11 | 2004-05-13 | Peter Tiemann | Turbine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4196020A (en) * | 1978-11-15 | 1980-04-01 | Avco Corporation | Removable wash spray apparatus for gas turbine engine |
SE504323C2 (sv) * | 1995-06-07 | 1997-01-13 | Gas Turbine Efficiency Ab | Förfaringssätt för tvättning av objekt såsom t ex turbinkompressorer |
US6659715B2 (en) * | 2002-01-17 | 2003-12-09 | Siemens Aktiengesellschaft | Axial compressor and method of cleaning an axial compressor |
US7065955B2 (en) * | 2003-06-18 | 2006-06-27 | General Electric Company | Methods and apparatus for injecting cleaning fluids into combustors |
-
2004
- 2004-08-25 EP EP04020155A patent/EP1630356A1/de not_active Withdrawn
-
2005
- 2005-08-12 PT PT05777877T patent/PT1784557E/pt unknown
- 2005-08-12 EP EP05777877A patent/EP1784557B1/de not_active Not-in-force
- 2005-08-12 DE DE502005003367T patent/DE502005003367D1/de active Active
- 2005-08-12 US US11/660,639 patent/US7752847B2/en not_active Expired - Fee Related
- 2005-08-12 ES ES05777877T patent/ES2304709T3/es active Active
- 2005-08-12 WO PCT/EP2005/053969 patent/WO2006021520A1/de active IP Right Grant
- 2005-08-12 AT AT05777877T patent/ATE389785T1/de not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3903691A (en) * | 1972-05-26 | 1975-09-09 | Joseph Szydlowski | Method and devices for avoiding the formation of thermal imbalances in turbine engines |
US4338780A (en) * | 1977-12-02 | 1982-07-13 | Hitachi, Ltd. | Method of cooling a gas turbine blade and apparatus therefor |
US4314442A (en) * | 1978-10-26 | 1982-02-09 | Rice Ivan G | Steam-cooled blading with steam thermal barrier for reheat gas turbine combined with steam turbine |
EP1108870A2 (de) * | 1996-05-14 | 2001-06-20 | The Dow Chemical Company | Methode und Einrichtung um die Leistung von Gasturbinen durch Verdunstungskühlung zu steigern |
EP0961011A1 (de) * | 1998-05-28 | 1999-12-01 | Asea Brown Boveri AG | Verfahren zum Betrieb von Gasturbinen und Kombikraftwerken |
US6310022B1 (en) * | 1999-11-30 | 2001-10-30 | Biogenesis Enterprises, Inc. | Chemical cleaning solution for gas turbine blades |
US20030035714A1 (en) * | 2001-08-17 | 2003-02-20 | Franz Kreitmeier | Cooling method for turbines |
US20040088998A1 (en) * | 2002-11-11 | 2004-05-13 | Peter Tiemann | Turbine |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2365197A1 (de) * | 2010-03-02 | 2011-09-14 | Alstom Technology Ltd | Beschleunigte Kühlung einer Gasturbine |
CH702827A1 (de) * | 2010-03-02 | 2011-09-15 | Alstom Technology Ltd | Verfahren zum Abkühlen einer Gasturbine. |
EP2620604A1 (de) * | 2012-01-25 | 2013-07-31 | Siemens Aktiengesellschaft | Verfahren zur Steuerung eines Abkühlungsprozesses von Turbinenkomponenten |
WO2013110365A1 (de) * | 2012-01-25 | 2013-08-01 | Siemens Aktiengesellschaft | Verfahren zur steuerung eines abkühlungsprozesses von turbinenkomponenten |
CN104081008A (zh) * | 2012-01-25 | 2014-10-01 | 西门子公司 | 用于控制涡轮机部件的冷却过程的方法 |
CN104081008B (zh) * | 2012-01-25 | 2015-11-25 | 西门子公司 | 用于控制涡轮机部件的冷却过程的方法 |
RU2589419C2 (ru) * | 2012-01-25 | 2016-07-10 | Сименс Акциенгезелльшафт | Способ управления процессом охлаждения компонентов турбины |
US9422832B2 (en) | 2012-01-25 | 2016-08-23 | Siemens Aktiengesellschaft | Method for controlling a cooling process of turbine components |
ITFI20120046A1 (it) * | 2012-03-08 | 2013-09-09 | Nuovo Pignone Srl | "device and method for gas turbine unlocking" |
WO2013131968A1 (en) * | 2012-03-08 | 2013-09-12 | Nuovo Pignone Srl | Device and method for gas turbine unlocking after shut down |
US9845730B2 (en) | 2012-03-08 | 2017-12-19 | Nuovo Pignone Srl | Device and method for gas turbine unlocking |
Also Published As
Publication number | Publication date |
---|---|
DE502005003367D1 (de) | 2008-04-30 |
ATE389785T1 (de) | 2008-04-15 |
US20070251210A1 (en) | 2007-11-01 |
US7752847B2 (en) | 2010-07-13 |
PT1784557E (pt) | 2008-06-27 |
ES2304709T3 (es) | 2008-10-16 |
WO2006021520A1 (de) | 2006-03-02 |
EP1784557A1 (de) | 2007-05-16 |
EP1784557B1 (de) | 2008-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1784557B1 (de) | Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase | |
DE602004000527T2 (de) | Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk | |
DE69930876T2 (de) | Vorrichtung und verfahren zur leistungssteigerung einer turbine | |
DE102010038132A1 (de) | Temperaturmodulierter Kühlstrom von Gasturbinentriebwerken | |
EP1640587B1 (de) | Kühlsystem für eine Gasturbine und Verfahren zum Kühlen einer Gasturbine | |
EP2136052A1 (de) | Turboproptriebwerk mit einer Vorrichtung zum Erzeugen eines Kühlluftstroms | |
EP0770771A1 (de) | Zwischengekühlter Verdichter | |
EP1084327A1 (de) | Gasturbine sowie verfahren zur kühlung einer turbinenstufe | |
WO2005028876A1 (de) | Verdichterreinigung | |
EP1706597B1 (de) | Strömungsmaschine mit einem axial verschiebbaren rotor | |
EP1675702B1 (de) | Gasturbine und laufschaufel für eine strömungsmaschine | |
DE602005005903T2 (de) | Zusammenbau einer Nasenhaube einer Turbomaschine und einer Fanschaufel-Welle. | |
EP1510676B1 (de) | Gasturbinenanlage | |
DE4336143C2 (de) | Kühlverfahren für Turbomaschinen | |
EP1117913A1 (de) | Brennstoffvorwärmung in einer gasturbine | |
WO2013182381A1 (de) | Eine in eine hohle, gekühlte turbinenschaufel einsetzbare kühlmittelüberbrückungsleitung für eine gasturbine | |
DE69109173T2 (de) | Hochdruck-Zweiwellengasturbine mit Radialrotoren. | |
AT513223B1 (de) | Verfahren zum Entfernen von Verunreinigungen aus dem Diffusor eines Turboladers und Vorrichtung zu dessen Durchführung | |
EP1636461B1 (de) | Strömungsmaschine, insbesondere gasturbine | |
EP1716316A1 (de) | Gasturbine mit einem gegen auskühlen geschützten verdichtergehäuse und verfahren zum betrieb einer gasturbine | |
DE102006010863B4 (de) | Turbomaschine, insbesondere Verdichter | |
DE10220507B4 (de) | Verbrennungsmotor | |
DE4118786A1 (de) | Gaslaser, insbesondere axialstromgaslaser | |
CH205304A (de) | Verfahren und Einrichtung zum Betrieb einer Gasturbine. | |
EP1709300B1 (de) | Vorrichtung zum verstellen von leitschaufeln |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20060902 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |