EP1613389B8 - Osmotic pump with means for dissipating internal pressure - Google Patents
Osmotic pump with means for dissipating internal pressureInfo
- Publication number
- EP1613389B8 EP1613389B8 EP04758751A EP04758751A EP1613389B8 EP 1613389 B8 EP1613389 B8 EP 1613389B8 EP 04758751 A EP04758751 A EP 04758751A EP 04758751 A EP04758751 A EP 04758751A EP 1613389 B8 EP1613389 B8 EP 1613389B8
- Authority
- EP
- European Patent Office
- Prior art keywords
- osmotic
- osmotic pump
- reservoir
- vent
- semipermeable membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0002—Galenical forms characterised by the drug release technique; Application systems commanded by energy
- A61K9/0004—Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M31/00—Devices for introducing or retaining media, e.g. remedies, in cavities of the body
- A61M31/002—Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M2005/14513—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons with secondary fluid driving or regulating the infusion
Definitions
- the present invention relates to implantable osmotic pumps providing sustained delivery of a drug.
- the present invention is directed to an implantable osmotic pump including a vent that allows gradual venting of osmotic material after the drug formulation included in the osmotic pump is delivered.
- Implantable, controlled-release osmotic pumps are known in the art.
- osmotic pumps are known in the art.
- Osmotic pumps described in these references may be designed for implantation in a subject of choice and may be configured to deliver a range of drugs at various rates over predetermined periods of time.
- Osmotic pumps typically include a reservoir for containing an amount of drug formulation, an osmotic composition, a semipermeable membrane, a delivery orifice, and a piston separating the drug formulation from the osmotic composition.
- water is drawn through the semipermeable membrane of the osmotic pump into the osmotic composition, causing the osmotic composition to swell.
- the piston included in the osmotic pump is driven through its stroke, resulting in the expulsion of the drug formulation at a controlled rate through the delivery orifice.
- the rate of drug release from an osmotic pump may be adjusted by altering the composition or amount of the drug formulation or the osmotic composition included in the osmotic pump.
- the release rate of drag formulation provided by an osmotic pump may be adjusted by altering the composition or exposed surface area of the semipermeable membrane.
- osmotic pumps can advantageously provide long-term dosing of a desired drug without requiring frequent visits to a healthcare provider or repetitive self-medication. Therefore, • osmotic pumps can work to provide increased patient compliance, reduced irritation at the site of administration, fewer occupational hazards for healthcare providers, reduced waste hazards, and increased therapeutic efficacy through enhanced dosing control.
- the internal pressure generated by the osmotic composition within the pump generally remains relatively low.
- an osmotic system is left within an environment of operation after the piston included in the osmotic pump reaches the end of its stroke within the reservoir (e.g., after substantially all the drug formulation has been delivered)
- the osmotic composition will continue to draw water in from the environment of operation.
- the pressure within the system may rise to such an extent that a component of the osmotic pump is compromised or physically separated.
- the semipermeable membrane included in an osmotic pump is held in place through a friction fit, such as is described in, for example, U.S. Patent Nos. 5,985,305, 5,728,396, and 6,156,331, the semipermeable membrane is one of the components that is most likely to be separated from the osmotic pump if the internal pressure of the osmotic system increases well beyond normal operational pressures.
- an implantable osmotic pump is designed to dissipate internal pressure before such pressure reaches a level that could cause dissociation of one or more parts
- the design of the osmotic pump would ideally allow pressure dissipation without causing a release of osmotic material that results in discomfort or inflammation.
- the present invention is directed to an osmotic pump that includes a means for venting the osmotic composition included therein before the internal pressure of the pump has the opportunity to build to such an extent that the pump is structurally compromised, such as when one or more components of the pump are physically separated.
- the means for venting osmotic material included in an osmotic pump according to the present invention includes a vent that allows the material included in the osmotic composition of the pump to dissipate into an environment of operation, resulting in a reduction of the internal pressure
- the vent included in an osmotic pump of the present invention is formed through the reservoir of the osmotic pump and is positioned such that the vent is sealed from the osmotic composition under normal operating conditions.
- the vent is also positioned in the reservoir such that, if the pressure within the osmotic pump reaches a magnitude that results in displacement of one or more components, the vent is opened or exposed to the materials forming the osmotic composition, which allows release of materials forming the osmotic composition into the environment of operation and results in the dissipation of the internal pressure before one or more components of the osmotic pump fails or is separated from the device.
- an osmotic pump according to the present invention can be designed without compressive elements, the maximum rate of material expulsion from the vent will typically match the targeted release rate of the osmotic pump. Therefore, an osmotic pump according to the present invention can be easily designed to allow venting of the osmotic composition, while reducing or minimizing the likelihood that such venting will result in discomfort or irritation to the subject.
- an osmotic pump includes a vent that is sealed by the semipermeable membrane of the osmotic pump during normal operating conditions.
- the semipermeable membrane of such an embodiment is friction fit within the reservoir and is designed to allow progressive displacement of the semipermeable membrane once a threshold pressure is reached within the osmotic pump.
- the vent included in this embodiment of the present invention is positioned such that, if the internal pressure reaches the threshold pressure and the semipermeable membrane begins to be displaced relative to the reservoir, the vent is exposed well before the semipermeable membrane is separated from the device. Once the vent is exposed, the osmotic materials included in the osmotic composition may be expelled from the osmotic pump, resulting in a decrease in pressure within the pump and preventing separation of the semipermeable membrane.
- FIG. 1 provides a schematic illustration of one embodiment of an osmotic pump according to the present invention.
- FIG. 2 provides a schematic illustration of the osmotic pump shown in FIG. 1 as the pump functions to deliver drug formulation to an environment of operation.
- FIG. 3 provides a schematic illustration of the osmotic pump shown in
- FIG. 1 and FIG. 2 as delivery of the drug formulation is completed and the piston included in the osmotic pump reaches the end of its stroke within the reservoir.
- FIG. 4 provides a schematic illustration of the osmotic pump shown in FIG. 1 through FIG. 3 after the internal pressure of the osmotic pump has caused displacement of the semipermeable membrane, the vent has been exposed, and the osmotic composition is venting into the environment of operation.
- BEST MODE FOR CARRYING OUT THE INVENTION An osmotic pump 10 according to the present invention is illustrated in FIG. 1.
- an osmotic pump 10 includes a reservoir 12, a drag formulation 14, an osmotic composition 16, a piston 18, a semipermeable membrane 22, a delivery orifice 24, and a vent 26 formed through the wall 20 of the reservoir 12.
- the configuration of the osmotic pump 10 illustrated in FIG. 1 provides only one example of an osmotic pump according to the present invention and is not to be construed as limiting the present invention.
- the present invention is generally applicable to osmotic pumps, and an osmotic pump according to the present invention may be designed to conform to a wide range of desired sizes or shapes.
- an osmotic pump according to the present invention may be designed for application in various environments or administration by various routes, such as by oral administration, raminal administration, or implantation.
- the reservoir 12 of the osmotic pump 10 of the present invention may be sized and shaped as desired to suit a desired application or to facilitate placement of the osmotic pump 10 in a desired environment of operation.
- Materials suitable for forming the reservoir 12 must be sufficiently strong to ensure that the reservoir 12 does not leak, crack, break, or significantly distort under stresses to which it is subjected to during administration and operation of the osmotic pump 10.
- the reservoir 12 is formed of a material that is sufficiently rigid to withstand expansion of the osmotic composition 16 without undergoing substantial changes to the size or shape of the reservoir 12.
- the material used to form the reservoir 12 is also chosen to be largely impermeable to fluids from the environment of operation and to the material constituents included in the drag formulation 14 and the osmotic composition 16.
- the term "largely impermeable" indicates that the migration of materials into or out of the osmotic pump through the material forming the reservoir 12 is so low that any such migration of materials has substantially no adverse impact on the function of the device.
- the material used to form the reservoir 12 of an osmotic pump 10 according to the present invention is preferably not a bioerodible material and will remain intact even after the drag formulation 14 has been delivered. Such a design facilitates recovery or passage of the osmotic pump 10 after the drag formulation 14 contained therein has been delivered to a subject.
- Typical materials suitable for the construction of the reservoir 12 of an osmotic pump 10 according to the present invention include, but are not limited to, nonreactive polymers and biocompatible metals and alloys.
- suitable polymers include, but are not limited to, polyimide, polysulfone, polycarbonate, polyethylene, polypropylene, polyvinylchloride-acrylic copolymer, polycarbonate-acrylonitrile-butadiene-styrene, polystyrene,- acrylonitrile polymers, such as acrylonitrile-butadiene-styrene terpolymer and the like, halogenated polymers, such as polytetrafluoroethylene, polychlorotrifluorethylene copolymer, tetrafluorethylene and hexafluoropropylene.
- Metallic materials useful in forming the reservoir 12 include, but are not limited to, stainless steel, titanium, platinum, tantalum, gold, and their alloys, as well as gold-plated ferrous alloys, platinum-plated ferrous alloys, cobalt-chromium alloys, and titanium nitride coated stainless steel.
- the semipermeable membrane 22 included in an osmotic pump 10 of the present invention is formulated and prepared to be permeable to the passage of external liquids, such as water and biological liquids, but substantially impermeable to the passage of the drug, osmopolymers, osmagents, and the like that may be included in the osmotic pump 10.
- Suitable materials and methods for forming the semipermeable membrane 22 included in an osmotic pump 10 of the present invention are well known in the art and are detailed in, for example, U.S. Patent Nos. 3,797,492, 3,987,790, 4,008,719, 4,865,845, 4,874,388, 5,057,318, 5,059,423, 5,112,614, 5,137,727, 5,151,093, 5,234,692, 5,234,693, 5,279,608, 5,336,057, 5,728,396, 5,985,305, 5,997,527, 5,997,902, 6,113,938, 6,132,420, 6,217,906, 6,261,584, 6,270,787, and 6,375,978.
- Such possible semipermeable materials from which the semipermeable membrane 22 can be made include, but are not limited to, for example, Hytrel polyester elastomers (DuPont), cellulose esters, cellulose ethers, and cellulose ester-ethers, water flux enhanced ethylene-vinyl acetate copolymers, semipermeable membranes made by blending a rigid polymer with water-soluble low molecular weight compounds, and other semipermeable materials well known in the art.
- the above cellulosic polymers have a degree of substitution, D.S., on the anhydroglucose unit, from greater than 0 up to 3 inclusive.
- degree of substitution is meant the average number of hydroxyl groups originally present on the anhydroglucose unit comprising the cellulose polymer that is replaced by a substituting group.
- Representative materials include, but are not limited to, one selected from the group consisting of cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, cellulose triacetate, mono-, di-, and tricellulose alkanylates, mono-, di-, and tricellulose aroylates, and the like.
- Exemplary cellulosic polymers include cellulose acetate having a D.S. up to 1 and an acetyl content up to 21%; cellulose acetate having a D.S.
- More specific cellulosic polymers include cellulose propionate having a D.S. of 1.8 and a propionyl content of 39.2% to 45% and a hydroxyl content of 2.8% to 5.4%; cellulose acetate butyrate having a D.S.
- cellulose acetate butyrate having an acetyl content of 2 to 29%, a butyryl content of 17% to 53%, and a hydroxyl content of 0.5% to 4.7%; cellulose acetate butyrate having a D.S. of 1.8, an acetyl content of 4% average weight percent, and a butyryl content of 51%; cellulose triacylates having a D.S.
- cellulose trivalerate such as cellulose trivalerate, cellulose trilaurate, cellulose tripalmitate, cellulose trisuccinate, and cellulose trioctanoate
- cellulose diacylates having a D.S. of 2.2 to 2.6 such as cellulose disuccinate, cellulose dipalmitate, cellulose dioctanoate, cellulose dipentate
- coesters of cellulose such as cellulose acetate butyrate and cellulose, cellulose acetate propionate, and the like.
- a semipermeable membrane 22 useful in the osmotic pump 10 of the present invention include polyurethane, polyetherblockamide (PEBAX, commercially available from ELF ATOCHEM, Inc.), and injection-moldable thermoplastic polymers with some hydrophilicity such as ethylene vinyl alcohol (EVA).
- PEBAX polyetherblockamide
- EVA injection-moldable thermoplastic polymers with some hydrophilicity
- EVA ethylene vinyl alcohol
- the osmotic composition 16 included in the osmotic pump 10 of the present invention may be formed of any material that creates sufficient osmotic pressure to draw water into the osmotic composition 16 through the semipermeable membrane 22 such that the osmotic composition 16 causes delivery of the drag formulation 14 at a desired rate over a preselected period of time.
- the osmotic composition 16 is formed as one or more osmotic tablets formed of an initially solid or nonflowable composition.
- the osmotic composition 16 included in an osmotic pump 10 according to the present invention is not limited to a tableted and initially solid or nonflowable composition.
- the osmotic composition 16 loaded into a reservoir 12 of an osmotic pump 10 according to the present invention may be formed in any suitable shape, texture, density, and consistency.
- the osmotic composition 16 may be loaded into the reservoir 12 as a powdered material.
- the osmotic composition 16 includes an osmotic agent.
- the osmotic agent included in the osmotic composition is a water-attracting agent that serves to draw water into the osmotic pump 10 through the semipermeable membrane 22 and drive the flow of drag formulation 14 out from the osmotic pump 10.
- the osmotic agent included in the osmotic composition 16 may be an osmagent, an osmopolymer, or a mixture of the two.
- osmagents that fall within the category of osmagent include materials that are nonvolatile, soluble in water, and create an osmotic gradient suitable for driving the influx of water into the osmotic pump 10.
- osmagents that may be useful in the osmotic composition 16 of an osmotic pump 10 of the present invention include, but are not limited to, magnesium sulfate, magnesium chloride, sodium sulfate, lithium sulfate, sodium phosphate, potassium phosphate, d-mannitpl, sorbitol, inositol, urea, magnesium succinate, tartaric acid, raffinose, and various monosaccharides, oligosaccharides, and polysaccharides, such as sucrose, glucose, lactose, fructose, and dextran, as well as mixtures of any of these various species.
- Osmopolymers Materials that fall within the category of osmopolymer are hydrophilic polymers that swell upon contact with water.
- Osmopolymers may be natural (i.e., of plant or animal origin) or synthetic, and examples of osmopolymers are well known in the art.
- Particular osmopolymers that may be used in the osmotic composition 16 of an osmotic pump 10 of the present invention include, but are not limited to, poly(hydroxy-alkyl methacrylates) with molecular weights of 30,000 to 5,000,000, poly(vinylpyrrolidone) with molecular weights of 10,000 to 360,000, anionic and cationic hydrogels, polyelectrolyte complexes, poly(vinyl alcohol) having low acetate residual, optionally cross linked with glyoxal, formaldehyde or glutaraldehyde and having a degree of polymerization of 200 to 30,000, a mixture of methyl cellulose, cross linked agar and carboxymethylcellulose, a mixture of hydroxypropyl methylcellulose and sodium carboxymethylcellulose, polymers of N-vinyllactams, polyoxyethylene-polyoxypropylene gels, polyoxybutylene-polyethylene block copolymer gels, carob gum, polyacrylic
- an osmotic pump 10 may also include an additive or filler 28 distributed around the osmotic composition 16.
- This filler 28 may be any flowable composition, such as a liquid or gel composition, which is substantially incompressible, is suitable for use in the intended environment of operation, is compatible with the other components of the osmotic pump, works to displace air or gas from around the osmotic composition 16, and does not cause the osmotic composition 16 to swell and freeze-up, as described in U.S. Patent No. 6,132,420. Materials and methods suitable for providing a filler 28 suitable for use in an osmotic pump according to the present invention are also described in U.S. Patent No.
- a filler 28 is particularly helpful where the osmotic composition 16 is formed as a tableted composition. Machining and tableting tolerances require that there be a gap between the osmotic composition 16 and the surrounding reservoir wall 20. Small irregularities in the shape or contour of the tableted material may also create a gap between the osmotic composition 16 and a piston 18 included in an osmotic pump 10 according to the invention. Such gaps, which can typically range from between about 0.0254 mm to 2.54 mm (0.001 to 0.1 inches), are filled with air or other gaseous material, and even the smallest of such air gaps can create a start-up delay of several days to weeks.
- air-filled gaps problematically affect the delivery rate of drag formulation when the osmotic pump is subjected to different external pressures, such as when a patient with an implanted osmotic pump scuba dives or travels to higher altitudes.
- the inclusion of a filler 28 serves to reduce or eliminate the extent to which any gaps around the osmotic composition 16 are filled with air or another gaseous material and, thereby, works to reduce or eliminate the delays and drag delivery inconsistencies that such gaps can produce.
- the movable piston 18 included in an osmotic pump 10 according to the present invention is configured to fit within the reservoir 12 in a sealed manner that allows the piston 18 to be displaced within the reservoir 12 as water is taken into the osmotic composition 16 and the osmotic composition 16 expands.
- the piston 18 is formed of a substantially noncompressible material.
- a piston 18 suitable for use in an osmotic pump 10 of the present invention is preferably formed of a material that is impermeable to the osmotic composition 16 and the drug formulation 14, and may include one or more protrusions, which work to form a seal between the piston 18 and the wall 20 of the reservoir 12.
- Materials suitable for use in a piston 18 included in an osmotic pump 10 of the present invention include metallic materials, such as metal alloys, elastomeric materials, such as the nonreactive polymers already mentioned herein, as well as elastomers in general, such as polyurethanes, polyamides, chlorinated rubbers, styrene-butadiene rubbers, and chloroprene rubbers.
- the delivery orifice 24 included in an osmotic pump 10 of the present invention may simply include an orifice formed through one end of the wall 20 of the reservoir 12.
- a delivery orifice 24 can be provided using, for example, known molding methods or known mechanical or laser drilling methods.
- the reservoir 12 of an osmotic pump 10 of the present invention may include more than one delivery orifice 24.
- the delivery orifice 24 of an osmotic pump 10 of the present invention may be formed by an outlet plug (not illustrated) that is positioned at least partially within the reservoir 12.
- Such an outlet plug may be configured, for example, to provide a delivery orifice 24 that optimizes flow of drag formulation 14 or to regulate back diffusion of environmental fluids into the osmotic pump 10.
- the delivery orifice 24 of the osmotic pump 10 of the present invention is formed by an outlet plug, however, the outlet plug is prepared from a substantially noncompressible material.
- Outlet plugs suitable for application in an osmotic pump according to the present invention are known in the art and are described in, for example, U.S. Patent Nos. 5,985,305, 6,217,906, and 5,997,527.
- the dimensions of the delivery orifice 24, in terms of both diameter and length, will vary depending on, among other factors, the type of drug delivered, the rate at which the drag formulation 14 is expelled from the osmotic pump 10, and the environment into which it is to be delivered.
- osmotic pumps according to the present invention are preferably designed for and administered to human or animal physiological environments
- osmotic pumps according to the present invention are generally applicable for the delivery of beneficial agents to an environment of operation and are not limited in utility to physiological environments.
- the osmotic pumps according to the present invention may be used in intravenous systems (e.g., attached to an IV pump, and IV bag, or an IV bottle) for delivering beneficial agents to animals or humans, systems for blood oxygenation, kidney dialysis or electrophoresis, systems for delivering, for instance, nutrients or growth regulating compounds to cell cultures, as well as in pools, tanks, reservoirs and the like.
- the osmotic pump 10 of the present invention is applicable to the delivery of beneficial agents in general, and the term "drug” as it is used herein refers to any beneficial agent that may be delivered to an environment of operation and includes, but is not limited to, medicaments, vitamins, nutrients, biocides, sterilization agents, food supplements, sex sterilants, fertility inhibitors, and fertility promoters.
- drug refers to any beneficial agent that may be delivered to an environment of operation and includes, but is not limited to, medicaments, vitamins, nutrients, biocides, sterilization agents, food supplements, sex sterilants, fertility inhibitors, and fertility promoters.
- Specific drags that may be delivered by osmotic pumps of the present invention are detailed, for example, in U.S. Patent Nos. 6,132,420. Additional examples of drugs that may be delivered by an osmotic pump 10 according to the present invention can be found in the other patent references that are cited herein.
- the drag included in the drug formulation 14 contained within an osmotic pump 10 of the present invention can be present in a wide variety of chemical and physical forms. At the molecular level, the drag may be present as an uncharged molecule, molecular complex, or pharmaceutically acceptable acid addition or base addition salts, such as hydrochlorides, hydrobromides, sulfate, laurylate, oleate, and salicylate. Salts of metals, amines or organic cations may be used for acidic drag compounds. Derivatives of drugs, such as esters, ethers, and amides can also be used. Moreover, the drug formulation 14 included in an osmotic pump 10 according to the present invention may include more than one drag, resulting in an osmotic pump 10 capable of delivering multiple drugs during its functional lifetime.
- the drag formulation 14 included in an osmotic pump 10 according to the present invention may include any formulation suitable for delivering a drug from an osmotic pump 10 according to the present invention.
- the drug formulation 14 may be formulated as any flowable composition, such as a slurry, a suspension, or a solution, capable of delivering the desired drug to a chosen environment of operation.
- the drag formulation 14 included in an osmotic pump 10 according to the present invention may include one or more of various ingredients that work to allow delivery of the drag to the desired environment of operation, h particular, the drag formulation 14 included in an osmotic pump according to the present invention may optionally include preservatives, such as one or more antioxidants or other stabilizing agent, permeation enhancers, or carrier materials that are application appropriate.
- preservatives such as one or more antioxidants or other stabilizing agent, permeation enhancers, or carrier materials that are application appropriate.
- any carrier, preservative, or permeation enhancer used would be a pharmaceutically acceptable material.
- the vent 26 included in an osmotic pump 10 according to the present invention is formed through the wall 20 of the reservoir 12.
- the vent 26 may be formed by any suitable method, such as by mechanical drilling, laser drilling, molding, or any other known method that may be used to provide a vent 26 of a desired size and shape through the material forming the reservoir 12.
- the vent 26 is positioned in the reservoir 12 of an osmotic pump according to the present invention such that, during normal operation, it is sealed from the osmotic composition 16 under normal operating conditions.
- vent 26 is also positioned in the reservoir 12 such that, if the pressure within the osmotic pump 10 reaches a magnitude that causes displacement of one or more components, the vent 26 is opened or exposed, allowing the internal pressure of the osmotic pump 10 to dissipate before one or more components are separated from the osmotic pump 10.
- An osmotic pump 10 preferably includes a vent 26 that is initially sealed by the semipermeable membrane 22.
- the semipermeable membrane 22 is friction fit within the reservoir 12 and both the reservoir 12 and the semipermeable membrane 22 are configured such that, as a threshold pressure is reached within the osmotic pump 10, the semipermeable membrane 22 is progressively displaced from within the reservoir 12.
- threshold pressure indicates an internal pressure or range of pressures that will cause the semipermeable membrane 22 included in the osmotic pump 10 to begin to be displaced within the reservoir 12, but will not result in immediate separation of the semipermeable membrane 22 from the osmotic pump 10.
- both the semipermeable membrane 22 and the reservoir 12 may be altered, as desired, to achieve a semipermeable membrane that is progressively displaced at different threshold pressures.
- the semipermeable membrane 22 may be configured as a plug with multiple retaining rings ' (not shown) that function to increase the threshold pressure of the semipermeable membrane and work to facilitate progressive expulsion once the threshold pressure is reached.
- the position of the vent 26 in the reservoir 12 is chosen to provide a vent 26 that is effectively sealed by the semipermeable membrane 22 during normal operation of the osmotic pump 10. However, the vent 26 is also positioned to ensure the vent 26 is opened if the internal pressure of the osmotic pump 10 reaches or exceeds the threshold pressure for the semipermeable membrane 22.
- the osmotic material included in the osmotic composition 16 is released into the environment of operation, resulting in the dissipation of the internal pressure below the threshold pressure required to displace the semipermeable membrane 22.
- the positioning of the vent 26 is chosen to ensure venting of the osmotic composition 16 and dissipation of the internal pressure before the semipermeable membrane 22 is displaced to such a degree that the semipermeable membrane 22 could separate from d e osmotic pump when subjected to mechanical, chemical, or thermal stresses that are typical of the chosen environment of operation.
- the vent 26 included in an osmotic pump 10 of the present invention has the potential to affect release rate performance.
- the osmotic pump 10 according to the present invention is configured such that the vent 26 allows aqueous liquid from the environment of operation to contact the semipermeable membrane 22 during normal operation, the increase in exposed surface area provided by the vent 26 will result in an increase in the rate at which water permeates and flows through the semipermeable membrane 22.
- an osmotic pump 10 according to the present invention may exhibit relatively shorter start-up times and relatively faster release rates when compared to an osmotic pump that does not include a vent 26 or an osmotic pump that includes a vent that is protected from the environment of operation.
- the liquid permeation rate and release rate performance of an osmotic pump 10 according to the present invention can be preselected and controlled through, for example, selection or alteration of the materials used to form the semipermeable membrane, the geometry of the semipermeable membrane, and the surface area and location of the exposed portions of the semipermeable membrane.
- the potential impact that a vent 26 may have on the permeation or release rate provided by the semipermeable membrane 22 of the osmotic pump 10 of the present invention can be mitigated or avoided altogether.
- the vent 26 included in an osmotic pump 10 according to the present invention is sized such that the vent 26 increases the exposed surface area of the semipermeable membrane 22 by less than 1% relative to an identical device that does not include the vent 26.
- the vent 26 included in the osmotic pump 10 of the present invention is formed as a generally annular orifice that has a diameter of less than 0.254 mm (0.01 inches).
- the vent 26 may be sealed from the environment of operation by a water impermeable material, such as a wax or an oil, that is readily expelled as the vent 26 is opened and osmotic material is released.
- FIG. 2 through FIG. 4 illustrate the general function of an osmotic pump 10 according to the present invention.
- aqueous fluid is imbibed through the semipermeable membrane 22 at a predetermined rate into the osmotic composition 16.
- osmotic composition 16 takes up water, the osmotic composition 16 expands and acts against the piston 18, driving the piston 18 through its stroke within the reservoir 12.
- the drag formulation 14 is expelled from the osmotic p ⁇ mp 10 at a controlled rate through the delivery orifice 24.
- the drug formulation 14 is released from the osmotic pump 10 at a rate equal to the rate at which water is imbibed into the system, and, as a result, the pressure within the osmotic pump 10 remains relatively low as the osmotic pump 10 operates to deliver drug formulation 14 at a controlled rate over time.
- the internal pressure of the osmotic pump 10 decreases below the threshold pressure, and the displacement of the semipermeable membrane ceases.
- the design of the osmotic pump 10 of the present invention not only works to allow venting of the osmotic composition and dissipation of internal pressure, but the design of osmotic pump 10 of the present invention allows such performance to be achieved without causing a release of osmotic material that would result in discomfort or irritation to the subject.
- the components of the osmotic pump 10 are designed to be substantially incompressible.
- the osmotic composition 14 will typically be delivered from the osmotic pump 10 at a maximum rate that is equal to the maximum release rate provided by the osmotic pump 10.
- the osmotic pump 10 of the present invention not only works to dissipate internal pressure before it becomes undesirably high, but the design of the osmotic pump 10 allows such dissipation to occur in a way the reduces the risk of discomfort to the subject.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Surgical Instruments (AREA)
- External Artificial Organs (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45929603P | 2003-03-31 | 2003-03-31 | |
PCT/US2004/010106 WO2004089457A1 (en) | 2003-03-31 | 2004-03-31 | Osmotic pump with means for dissipating internal pressure |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1613389A1 EP1613389A1 (en) | 2006-01-11 |
EP1613389B1 EP1613389B1 (en) | 2008-02-27 |
EP1613389B8 true EP1613389B8 (en) | 2008-05-07 |
Family
ID=33159637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04758751A Expired - Lifetime EP1613389B8 (en) | 2003-03-31 | 2004-03-31 | Osmotic pump with means for dissipating internal pressure |
Country Status (20)
Country | Link |
---|---|
US (2) | US7207982B2 (en) |
EP (1) | EP1613389B8 (en) |
JP (1) | JP2006521897A (en) |
KR (1) | KR20060017749A (en) |
CN (1) | CN100548411C (en) |
AR (1) | AR043809A1 (en) |
AT (1) | ATE387236T1 (en) |
AU (1) | AU2004227985B2 (en) |
BR (1) | BRPI0408862A (en) |
CA (1) | CA2520610A1 (en) |
CL (1) | CL2004000696A1 (en) |
DE (1) | DE602004012081T2 (en) |
HK (1) | HK1091147A1 (en) |
IL (1) | IL170805A (en) |
MX (1) | MXPA05010605A (en) |
NO (1) | NO20055020L (en) |
NZ (1) | NZ542779A (en) |
TW (1) | TW200507893A (en) |
WO (1) | WO2004089457A1 (en) |
ZA (1) | ZA200508780B (en) |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY125870A (en) * | 1997-07-25 | 2006-08-30 | Alza Corp | Osmotic delivery system flow modulator apparatus and method |
US7258869B1 (en) * | 1999-02-08 | 2007-08-21 | Alza Corporation | Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicle |
US7919109B2 (en) | 1999-02-08 | 2011-04-05 | Intarcia Therapeutics, Inc. | Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicles |
ATE369119T1 (en) * | 2002-06-17 | 2007-08-15 | Alza Corp | EARLY ZERO ORDER THRUST MOTOR OSMOTIC DELIVERY SYSTEM HAVING AN OSMOTIC AGENT DISPERSED IN THE LIQUID VEHICLE |
US7731947B2 (en) * | 2003-11-17 | 2010-06-08 | Intarcia Therapeutics, Inc. | Composition and dosage form comprising an interferon particle formulation and suspending vehicle |
JP2006512370A (en) * | 2002-12-19 | 2006-04-13 | アルザ・コーポレーション | A stable non-aqueous single phase gel and its formulation for delivery from an implantable device |
EP1613389B8 (en) * | 2003-03-31 | 2008-05-07 | Intarcia Therapeutics, Inc. | Osmotic pump with means for dissipating internal pressure |
WO2004089334A2 (en) * | 2003-03-31 | 2004-10-21 | Alza Corporation | Osmotic delivery system and method for decreasing start-up times for osmotic delivery systems |
JP2007526792A (en) * | 2003-11-06 | 2007-09-20 | アルザ・コーポレーシヨン | Modular inhalation rate reducer for use with implantable osmotic pumps |
US20050266087A1 (en) * | 2004-05-25 | 2005-12-01 | Gunjan Junnarkar | Formulations having increased stability during transition from hydrophobic vehicle to hydrophilic medium |
WO2006083761A2 (en) | 2005-02-03 | 2006-08-10 | Alza Corporation | Solvent/polymer solutions as suspension vehicles |
US8052996B2 (en) * | 2005-02-03 | 2011-11-08 | Intarcia Therapeutics, Inc. | Two-piece, internal-channel osmotic delivery system flow modulator |
US20060263433A1 (en) * | 2005-02-03 | 2006-11-23 | Ayer Rupal A | Suspension formulation of interferon |
US11246913B2 (en) | 2005-02-03 | 2022-02-15 | Intarcia Therapeutics, Inc. | Suspension formulation comprising an insulinotropic peptide |
US7959938B2 (en) | 2005-03-15 | 2011-06-14 | Intarcia Therapeutics, Inc. | Polyoxaester suspending vehicles for use with implantable delivery systems |
US9447781B2 (en) * | 2005-07-22 | 2016-09-20 | University Of Utah Research Foundation | Osmotically driven dispense pump and related components for use in high pressure applications |
US8152477B2 (en) * | 2005-11-23 | 2012-04-10 | Eksigent Technologies, Llc | Electrokinetic pump designs and drug delivery systems |
PT2359808E (en) | 2006-08-09 | 2013-08-28 | Intarcia Therapeutics Inc | Osmotic delivery systems and piston assemblies |
JP4893195B2 (en) | 2006-09-27 | 2012-03-07 | カシオ計算機株式会社 | Liquid feeder connection structure, fuel cell type power generator and electronic device |
PL2157967T3 (en) | 2007-04-23 | 2013-06-28 | Intarcia Therapeutics Inc | Suspension formulations of insulinotropic peptides and uses thereof |
US8394644B2 (en) * | 2007-11-08 | 2013-03-12 | Honeywell International Inc. | Microfluidic osmotic pump |
CA2726861C (en) | 2008-02-13 | 2014-05-27 | Intarcia Therapeutics, Inc. | Devices, formulations, and methods for delivery of multiple beneficial agents |
NZ592113A (en) * | 2008-10-15 | 2012-04-27 | Intarcia Therapeutics Inc | Highly concentrated drug particles, formulations, suspensions and uses thereof |
HUE035862T2 (en) | 2009-09-28 | 2018-05-28 | Intarcia Therapeutics Inc | Rapid development and / or completion of substantially steady-state drug delivery |
US20120208755A1 (en) | 2011-02-16 | 2012-08-16 | Intarcia Therapeutics, Inc. | Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers |
CN103813814A (en) | 2011-05-05 | 2014-05-21 | 艾克西根特技术有限公司 | Gel coupling for electrokinetic delivery system |
US20130090633A1 (en) * | 2011-10-07 | 2013-04-11 | University Of Southern California | Osmotic patch pump |
JP2016508842A (en) | 2013-03-05 | 2016-03-24 | タリス バイオメディカル エルエルシー | Drug delivery device and method for controlled drug release through an opening in the device |
US9814671B2 (en) | 2013-03-15 | 2017-11-14 | Taris Biomedical Llc | Drug delivery devices and methods for drug delivery |
KR102385603B1 (en) * | 2013-08-19 | 2022-04-11 | 타리스 바이오메디컬 엘엘씨 | Multi-unit drug delivery devices and methods |
WO2015069723A1 (en) * | 2013-11-05 | 2015-05-14 | Taris Biomedical Llc | Osmotic drug delivery devices, kits, and methods |
CN103803679A (en) * | 2014-02-21 | 2014-05-21 | 上海万森水处理有限公司 | Osmotic pressure-driven medicine constant releasing device |
KR102338079B1 (en) * | 2014-03-06 | 2021-12-09 | 타리스 바이오메디컬 엘엘씨 | Drug delivery systems and methods for treatment of bladder cancer with gemcitabine |
US9889085B1 (en) | 2014-09-30 | 2018-02-13 | Intarcia Therapeutics, Inc. | Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c |
MX2017015504A (en) | 2015-06-03 | 2018-05-15 | Intarcia Therapeutics Inc | Implant placement and removal systems. |
CN108472264A (en) | 2015-11-05 | 2018-08-31 | 通用医疗公司 | Encode the intrathecal delivering of the nucleic acid sequence of the ABCD1 for treating adrenomyeloneuropathy |
CA3024479A1 (en) | 2016-05-16 | 2017-11-23 | Intarcia Therapeutics, Inc. | Glucagon-receptor selective polypeptides and methods of use thereof |
USD860451S1 (en) | 2016-06-02 | 2019-09-17 | Intarcia Therapeutics, Inc. | Implant removal tool |
USD840030S1 (en) | 2016-06-02 | 2019-02-05 | Intarcia Therapeutics, Inc. | Implant placement guide |
CA3040906A1 (en) | 2016-10-20 | 2018-04-26 | Peptron, Inc. | Methods of delivering a neuroprotective polypeptide to the central nervous system |
CN110225762A (en) | 2017-01-03 | 2019-09-10 | 因塔西亚制药公司 | The method of the co-administration of continuous administration and drug including GLP-1 receptor stimulating agent |
DK3432970T3 (en) | 2017-02-01 | 2021-05-10 | Taris Biomedical Llc | IN VIVO MEDICINE DELIVERY DEVICES |
MX2019010651A (en) | 2017-03-08 | 2020-01-13 | Intarcia Therapeutics Inc | Apparatus and methods for administration of a nauseogenic compound from a drug delivery device. |
USD933219S1 (en) | 2018-07-13 | 2021-10-12 | Intarcia Therapeutics, Inc. | Implant removal tool and assembly |
CA3116023A1 (en) | 2018-10-11 | 2020-04-16 | Intarcia Therapeutics, Inc. | Human amylin analog polypeptides and methods of use |
Family Cites Families (84)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3797492A (en) | 1972-12-27 | 1974-03-19 | Alza Corp | Device for dispensing product with directional guidance member |
US3987790A (en) | 1975-10-01 | 1976-10-26 | Alza Corporation | Osmotically driven fluid dispenser |
US4008719A (en) | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4305927A (en) | 1979-02-05 | 1981-12-15 | Alza Corporation | Method for the management of intraocular pressure |
US4865845A (en) | 1986-03-21 | 1989-09-12 | Alza Corporation | Release rate adjustment of osmotic or diffusional delivery devices |
US4874388A (en) | 1987-06-25 | 1989-10-17 | Alza Corporation | Multi-layer delivery system |
US5057318A (en) | 1988-12-13 | 1991-10-15 | Alza Corporation | Delivery system for beneficial agent over a broad range of rates |
US5059423A (en) | 1988-12-13 | 1991-10-22 | Alza Corporation | Delivery system comprising biocompatible beneficial agent formulation |
US5110596A (en) | 1988-12-13 | 1992-05-05 | Alza Corporation | Delivery system comprising means for delivering agent to livestock |
US5034229A (en) | 1988-12-13 | 1991-07-23 | Alza Corporation | Dispenser for increasing feed conversion of hog |
US5219572A (en) | 1989-03-17 | 1993-06-15 | Pitman-Moore, Inc. | Controlled release delivery device for macromolecular proteins |
US5112614A (en) | 1989-09-14 | 1992-05-12 | Alza Corporation | Implantable delivery dispenser |
US5030216A (en) * | 1989-12-15 | 1991-07-09 | Alza Corporation | Osmotically driven syringe |
US5234693A (en) | 1990-07-11 | 1993-08-10 | Alza Corporation | Delivery device with a protective sleeve |
US5234692A (en) | 1990-07-11 | 1993-08-10 | Alza Corporation | Delivery device with a protective sleeve |
US5151093A (en) * | 1990-10-29 | 1992-09-29 | Alza Corporation | Osmotically driven syringe with programmable agent delivery |
GB9027422D0 (en) | 1990-12-18 | 1991-02-06 | Scras | Osmotically driven infusion device |
CN2085662U (en) * | 1991-03-29 | 1991-10-02 | 毕勇 | Productive device for "osmotic pump" of medicines |
US5137727A (en) | 1991-06-12 | 1992-08-11 | Alza Corporation | Delivery device providing beneficial agent stability |
US5288214A (en) | 1991-09-30 | 1994-02-22 | Toshio Fukuda | Micropump |
DE4137649C2 (en) | 1991-11-15 | 1997-11-20 | Gerhard Dingler | Component |
US5308348A (en) * | 1992-02-18 | 1994-05-03 | Alza Corporation | Delivery devices with pulsatile effect |
US5368588A (en) | 1993-02-26 | 1994-11-29 | Bettinger; David S. | Parenteral fluid medication reservoir pump |
US5639477A (en) * | 1993-06-23 | 1997-06-17 | Alza Corporation | Ruminal drug delivery device |
US5697975A (en) | 1994-02-09 | 1997-12-16 | The University Of Iowa Research Foundation | Human cerebral cortex neural prosthetic for tinnitus |
US5672357A (en) * | 1994-07-01 | 1997-09-30 | Monsanto Company | Method and device for implantation of large diameter objects in bovines |
NL9401150A (en) | 1994-07-12 | 1996-02-01 | Nederland Ptt | Method for presenting on a receiving side a first number of video signals originating from a transmitting side, as well as a system, as well as a transmitter, as well as a network, and also a receiver. |
JP3251294B2 (en) | 1994-11-10 | 2002-01-28 | ユニヴァーシティ オブ ケンタッキー リサーチ ファウンデーション | Implantable / refillable release control device that delivers drugs directly into the body |
US7833543B2 (en) | 1995-06-07 | 2010-11-16 | Durect Corporation | High viscosity liquid controlled delivery system and medical or surgical device |
US5904935A (en) * | 1995-06-07 | 1999-05-18 | Alza Corporation | Peptide/protein suspending formulations |
US6261584B1 (en) | 1996-02-02 | 2001-07-17 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
EP0877599B1 (en) | 1996-02-02 | 2003-03-26 | Alza Corporation | Sustained delivery of leuprolide using an implantable system |
US6395292B2 (en) | 1996-02-02 | 2002-05-28 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US6156331A (en) | 1996-02-02 | 2000-12-05 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US6132420A (en) | 1996-02-02 | 2000-10-17 | Alza Corporation | Osmotic delivery system and method for enhancing start-up and performance of osmotic delivery systems |
US5976109A (en) | 1996-04-30 | 1999-11-02 | Medtronic, Inc. | Apparatus for drug infusion implanted within a living body |
US5932547A (en) * | 1996-07-03 | 1999-08-03 | Alza Corporation | Non-aqueous polar aprotic peptide formulations |
PT959873E (en) | 1996-12-20 | 2006-07-31 | Alza Corp | GEL COMPOSITION AND METHODS |
ZA981610B (en) | 1997-03-24 | 1999-08-26 | Alza Corp | Self adjustable exit port. |
US5874388A (en) | 1997-04-02 | 1999-02-23 | Dow Corning Corporation | Lubricant composition for disc brake caliper pin and a disc brake asembly containing the lubricant |
MY125849A (en) * | 1997-07-25 | 2006-08-30 | Alza Corp | Osmotic delivery system, osmotic delivery system semipermeable body assembly, and method for controlling delivery rate of beneficial agents from osmotic delivery systems |
MY125870A (en) * | 1997-07-25 | 2006-08-30 | Alza Corp | Osmotic delivery system flow modulator apparatus and method |
EP1041975B1 (en) | 1997-12-22 | 2002-09-04 | Alza Corporation | Rate controlling membranes for controlled drug delivery devices |
JP4173635B2 (en) | 1997-12-29 | 2008-10-29 | インターシア セラピューティクス,インコーポレイティド | Permeation supply apparatus having membrane plug holding mechanism |
PT1736145E (en) | 1997-12-30 | 2012-03-16 | Intarcia Therapeutics Inc | Beneficial agent delivery system with membrane plug |
US6245357B1 (en) * | 1998-03-06 | 2001-06-12 | Alza Corporation | Extended release dosage form |
US6248112B1 (en) | 1998-09-30 | 2001-06-19 | C. R. Bard, Inc. | Implant delivery system |
CA2356860C (en) * | 1998-12-31 | 2006-11-07 | Alza Corporation | Osmotic delivery system having space efficient piston |
US7258869B1 (en) | 1999-02-08 | 2007-08-21 | Alza Corporation | Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicle |
EP1152749B1 (en) | 1999-02-08 | 2006-04-12 | ALZA Corporation | Stable non-aqueous single phase viscous vehicles and formulations utilizing such vehicles |
US6541021B1 (en) | 1999-03-18 | 2003-04-01 | Durect Corporation | Devices and methods for pain management |
US20030059376A1 (en) | 1999-06-04 | 2003-03-27 | Libbey Miles A. | Formulations comprising dehydrated particles of pharmaceutical agents and process for preparing the same |
US6436091B1 (en) | 1999-11-16 | 2002-08-20 | Microsolutions, Inc. | Methods and implantable devices and systems for long term delivery of a pharmaceutical agent |
WO2001043528A2 (en) | 1999-12-17 | 2001-06-21 | Durect Corporation | Devices and methods in intracerebrospinal delivery of morphine-6-glucuronide |
ES2248156T3 (en) * | 1999-12-21 | 2006-03-16 | Alza Corporation | VALVE FOR OSMOTIC DEVICES. |
US6283949B1 (en) | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
US6572890B2 (en) | 2000-01-13 | 2003-06-03 | Osmotica Corp. | Osmotic device containing venlafaxine and an anti-psychotic agent |
EP1322308A2 (en) | 2000-10-06 | 2003-07-02 | Durect Corporation | Devices and methods for management of inflammation |
EP1335704A2 (en) | 2000-11-16 | 2003-08-20 | Durect Corporation | Implant dosage form and use thereof for the delivery of a cholesterol lowering agent |
CA2429945A1 (en) | 2000-11-29 | 2002-06-06 | Durect Corporation | Devices and methods for controlled delivery from a drug delivery device |
US7163688B2 (en) * | 2001-06-22 | 2007-01-16 | Alza Corporation | Osmotic implant with membrane and membrane retention means |
JP5078217B2 (en) | 2001-11-14 | 2012-11-21 | デュレクト コーポレーション | Injectable depot compositions and their use |
AU2002359407B2 (en) | 2001-11-14 | 2008-02-28 | Durect Corporation | Catheter injectable depot compositions and uses thereof |
GB0204722D0 (en) | 2002-02-28 | 2002-04-17 | Norferm Da | Method |
CN101287449B (en) | 2002-04-11 | 2010-11-03 | 米迪缪尼有限公司 | Preservation of bioactive materials by spray drying |
ATE369119T1 (en) * | 2002-06-17 | 2007-08-15 | Alza Corp | EARLY ZERO ORDER THRUST MOTOR OSMOTIC DELIVERY SYSTEM HAVING AN OSMOTIC AGENT DISPERSED IN THE LIQUID VEHICLE |
US20040001889A1 (en) | 2002-06-25 | 2004-01-01 | Guohua Chen | Short duration depot formulations |
AU2003256308B2 (en) * | 2002-06-26 | 2008-07-03 | Intarcia Therapeutics, Inc. | Minimally compliant, volume efficient piston for osmotic drug delivery systems |
JP2006503004A (en) | 2002-07-31 | 2006-01-26 | アルザ・コーポレーション | Injectable depot composition and use thereof |
EP1581181B1 (en) | 2002-11-06 | 2008-12-24 | ALZA Corporation | Controlled release depot formulations |
US7014636B2 (en) * | 2002-11-21 | 2006-03-21 | Alza Corporation | Osmotic delivery device having a two-way valve and a dynamically self-adjusting flow channel |
JP2006512370A (en) | 2002-12-19 | 2006-04-13 | アルザ・コーポレーション | A stable non-aqueous single phase gel and its formulation for delivery from an implantable device |
US7731947B2 (en) * | 2003-11-17 | 2010-06-08 | Intarcia Therapeutics, Inc. | Composition and dosage form comprising an interferon particle formulation and suspending vehicle |
RU2005133427A (en) * | 2003-03-31 | 2006-04-27 | Алза Корпорейшн (Us) | WATERLESS SINGLE-PHASE CARRIERS AND DRUGS USING SUCH CARRIERS |
EP1613389B8 (en) * | 2003-03-31 | 2008-05-07 | Intarcia Therapeutics, Inc. | Osmotic pump with means for dissipating internal pressure |
CA2537811A1 (en) * | 2003-10-31 | 2005-05-19 | Alza Corporation | Osmotic pump with self-retaining, fast-start membrane plug |
US20050118206A1 (en) | 2003-11-14 | 2005-06-02 | Luk Andrew S. | Surfactant-based gel as an injectable, sustained drug delivery vehicle |
US20050175701A1 (en) * | 2004-02-10 | 2005-08-11 | Alza Corporation | Capillary moderator for osmotic delivery system |
US20050266087A1 (en) * | 2004-05-25 | 2005-12-01 | Gunjan Junnarkar | Formulations having increased stability during transition from hydrophobic vehicle to hydrophilic medium |
US8052996B2 (en) * | 2005-02-03 | 2011-11-08 | Intarcia Therapeutics, Inc. | Two-piece, internal-channel osmotic delivery system flow modulator |
US20060216242A1 (en) * | 2005-02-03 | 2006-09-28 | Rohloff Catherine M | Suspending vehicles and pharmaceutical suspensions for drug dosage forms |
WO2006083761A2 (en) * | 2005-02-03 | 2006-08-10 | Alza Corporation | Solvent/polymer solutions as suspension vehicles |
US7959938B2 (en) * | 2005-03-15 | 2011-06-14 | Intarcia Therapeutics, Inc. | Polyoxaester suspending vehicles for use with implantable delivery systems |
US20070027105A1 (en) * | 2005-07-26 | 2007-02-01 | Alza Corporation | Peroxide removal from drug delivery vehicle |
-
2004
- 2004-03-31 EP EP04758751A patent/EP1613389B8/en not_active Expired - Lifetime
- 2004-03-31 AR ARP040101083A patent/AR043809A1/en active IP Right Grant
- 2004-03-31 AT AT04758751T patent/ATE387236T1/en not_active IP Right Cessation
- 2004-03-31 CL CL200400696A patent/CL2004000696A1/en unknown
- 2004-03-31 WO PCT/US2004/010106 patent/WO2004089457A1/en active IP Right Grant
- 2004-03-31 JP JP2006509603A patent/JP2006521897A/en active Pending
- 2004-03-31 BR BRPI0408862-0A patent/BRPI0408862A/en not_active IP Right Cessation
- 2004-03-31 MX MXPA05010605A patent/MXPA05010605A/en not_active Application Discontinuation
- 2004-03-31 AU AU2004227985A patent/AU2004227985B2/en not_active Ceased
- 2004-03-31 DE DE602004012081T patent/DE602004012081T2/en not_active Expired - Lifetime
- 2004-03-31 CN CNB2004800085837A patent/CN100548411C/en not_active Expired - Fee Related
- 2004-03-31 KR KR1020057018479A patent/KR20060017749A/en active IP Right Grant
- 2004-03-31 NZ NZ542779A patent/NZ542779A/en unknown
- 2004-03-31 CA CA002520610A patent/CA2520610A1/en not_active Abandoned
- 2004-03-31 US US10/814,801 patent/US7207982B2/en not_active Expired - Lifetime
- 2004-03-31 TW TW093108972A patent/TW200507893A/en unknown
-
2005
- 2005-09-12 IL IL170805A patent/IL170805A/en active IP Right Grant
- 2005-10-27 NO NO20055020A patent/NO20055020L/en not_active Application Discontinuation
- 2005-10-28 ZA ZA200508780A patent/ZA200508780B/en unknown
-
2006
- 2006-07-10 HK HK06107708A patent/HK1091147A1/en not_active IP Right Cessation
-
2007
- 2007-04-10 US US11/784,969 patent/US20070191818A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
KR20060017749A (en) | 2006-02-27 |
CA2520610A1 (en) | 2004-10-21 |
BRPI0408862A (en) | 2006-04-11 |
WO2004089457A1 (en) | 2004-10-21 |
US20050070884A1 (en) | 2005-03-31 |
IL170805A (en) | 2010-02-17 |
US7207982B2 (en) | 2007-04-24 |
HK1091147A1 (en) | 2007-01-12 |
CN1917917A (en) | 2007-02-21 |
AU2004227985A1 (en) | 2004-10-21 |
NZ542779A (en) | 2009-02-28 |
AR043809A1 (en) | 2005-08-17 |
MXPA05010605A (en) | 2005-11-23 |
TW200507893A (en) | 2005-03-01 |
DE602004012081T2 (en) | 2009-03-19 |
CN100548411C (en) | 2009-10-14 |
DE602004012081D1 (en) | 2008-04-10 |
ZA200508780B (en) | 2007-01-31 |
EP1613389B1 (en) | 2008-02-27 |
ATE387236T1 (en) | 2008-03-15 |
CL2004000696A1 (en) | 2005-05-20 |
AU2004227985B2 (en) | 2009-04-02 |
JP2006521897A (en) | 2006-09-28 |
EP1613389A1 (en) | 2006-01-11 |
NO20055020D0 (en) | 2005-10-27 |
US20070191818A1 (en) | 2007-08-16 |
NO20055020L (en) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1613389B8 (en) | Osmotic pump with means for dissipating internal pressure | |
US7241457B2 (en) | Osmotically driven active agent delivery device providing an ascending release profile | |
CA2402637C (en) | Valve for osmotic devices | |
US6132420A (en) | Osmotic delivery system and method for enhancing start-up and performance of osmotic delivery systems | |
US20050010196A1 (en) | Osmotic delivery system and method for decreasing start-up times for osmotic delivery systems | |
JP2005306885A (en) | Osmotic delivery system with semipermeable plug | |
EP1066081B1 (en) | Osmotic delivery system and method for enhancing start-up and performance of osmotic delivery systems | |
EP1246662B1 (en) | Osmotic beneficial agent delivery system | |
CA2244997C (en) | Sustained delivery of an active agent using an implantable system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051031 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1091147 Country of ref document: HK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: INTARCIA THERAPEUTICS, INC. |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004012081 Country of ref document: DE Date of ref document: 20080410 Kind code of ref document: P |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: INTARCIA THERAPEUTICS, INC. Effective date: 20080312 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1091147 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080607 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080527 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080721 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
26N | No opposition filed |
Effective date: 20081128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: INTARCIA THERAPEUTICS, INC. Free format text: INTARCIA THERAPEUTICS, INC.#2000 POWEL STREET, SUITE 1640#EMERYVILLE, CA 94608 (US) -TRANSFER TO- INTARCIA THERAPEUTICS, INC.#24650 INDUSTRIAL BLVD.#HAYWARD, CA 94545 (US) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080828 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20110325 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110331 Year of fee payment: 8 Ref country code: CH Payment date: 20110325 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110329 Year of fee payment: 8 Ref country code: GB Payment date: 20110325 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004012081 Country of ref document: DE Effective date: 20121002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120402 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |