[go: up one dir, main page]

EP1611334B1 - Procede pour faire fonctionner un moteur a combustion interne a auto-allumage - Google Patents

Procede pour faire fonctionner un moteur a combustion interne a auto-allumage Download PDF

Info

Publication number
EP1611334B1
EP1611334B1 EP04711992A EP04711992A EP1611334B1 EP 1611334 B1 EP1611334 B1 EP 1611334B1 EP 04711992 A EP04711992 A EP 04711992A EP 04711992 A EP04711992 A EP 04711992A EP 1611334 B1 EP1611334 B1 EP 1611334B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
combustion
gas temperature
exhaust gas
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04711992A
Other languages
German (de)
English (en)
Other versions
EP1611334A1 (fr
Inventor
Uwe Gärtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP1611334A1 publication Critical patent/EP1611334A1/fr
Application granted granted Critical
Publication of EP1611334B1 publication Critical patent/EP1611334B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure

Definitions

  • the invention relates to a method for operating an internal combustion engine with auto-ignition according to the preamble of claim 1.
  • the aim of the development of new diesel engine is to minimize the formation of exhaust emissions, in particular the nitrogen oxide emissions.
  • Exhaust gas recirculation is often used as a means for reducing emissions, with an exhaust gas recirculation rate being set as a function of the load point.
  • Further reduction of nitrogen oxide emissions can be achieved by means of an SCR catalyst in which the addition or dosage of a reducing agent, e.g. Ammonia, is made proportional to the Nitoxoxidstehstehung in the internal combustion engine.
  • a reducing agent e.g. Ammonia
  • the required safety devices allow only limited sales of such an SCR catalyst, since the raw nitrogen oxide emissions of the internal combustion engine can only be determined from known map data. Sensors for the direct measurement of nitrogen oxide or ammonia concentrations in exhaust gas are still in the research stage, although currently available sensors are still unreliable.
  • a method for determining the nitrogen oxide content in exhaust gases of internal combustion engines in which the internal combustion engine supplied air mass is detected, wherein from at least one current measured value of the engine operation, a determination of the center of gravity of the combustion takes place. From the value of the position of the center of gravity of the combustion and the values of the detected fuel quantity and air mass, the raw NOx emissions are calculated. The parallel determination of air mass, fuel mass and recirculated exhaust gas mass is associated with considerable effort.
  • the focal point of combustion based on the first law of thermodynamics, describes that state in the combustion chamber where 50% of the fuel energy has been converted.
  • the location of the center of gravity is the associated crank angle position, i. a crank angle position of the piston at which 50% of the amount of fuel participating in the combustion has been converted into heat.
  • the invention is therefore based on the object to provide a method for determining or minimizing nitrogen oxide emissions.
  • the inventive method is characterized in that during combustion in the combustion chamber an average gas temperature in the cylinder is determined so that a gradient of the average gas temperature is calculated, and from a value of the gradient of the average gas temperature and / or from a position of the gradient average gas temperature in the combustion chamber, a raw nitrogen oxide emission of the internal combustion engine is determined.
  • the NOx emission of the autoignition internal combustion engine formed is directly related to the gradient of the average gas temperature in the cylinder. Accordingly, the engine parameters are adjusted such that the combustion results in a gradient in which reduced NOx emissions are formed.
  • the method according to the invention is characterized in that a mean gas temperature in the cylinder is determined during combustion in the combustion chamber, so that from a maximum value of the average gas temperature in the combustion chamber and / or from a position of the maximum value of the average gas temperature, a raw NOx emission of the internal combustion engine is determined.
  • the NOx emission of the self-igniting internal combustion engine formed is directly related to the maximum value of the average gas temperature in the cylinder. Accordingly, the engine parameters are adjusted such that a certain maximum value is set during combustion or a predetermined maximum value is not exceeded. This allows a simplified determination of the NOx emissions are made, in which the metrological effort is reduced.
  • the inventive method is further characterized by the fact that a mean gas temperature in the cylinder is determined in the combustion chamber, and from a value of a mean gas temperature when closing the inlet valve and / or a value of a compression end in the combustion chamber, a raw NOx emission of the internal combustion engine is determined.
  • the raw NOx emission produced by the autoignition internal combustion engine is directly related to the value of the average gas temperature determined before the onset of combustion at the time of closing the intake valve and / or the end of the compression.
  • the mean gas temperature is determined in a defined crank angle range.
  • a crank angle range is selected, in which the mean gas temperature in the cylinder runs almost linearly.
  • an amount of a reducing agent for the downstream exhaust aftertreatment system is determined from the determined nitrogen oxide raw emission. Accordingly, the exhaust aftertreatment is optimized and, for example, a metered amount of an SCR catalyst is varied.
  • the metered amount of fuel is injected into the combustion chamber in such a way, that a predetermined gradient of the average gas temperature in the combustion chamber and / or a predetermined position of the maximum value of the mean gas temperature in the combustion chamber is set.
  • the mean gas temperature can be changed such that according to the invention the formation of the NOx emissions takes place at a minimum level or minimized as far as possible.
  • a predetermined increase in the gas temperature per unit time or a predetermined position of the maximum value is set.
  • a predetermined maximum temperature value of the average gas temperature at which the formation of NOx emissions increases can not be exceeded.
  • the metered amount of fuel is injected into the combustion chamber such that a focus of the combustion is at a certain crank angle position. In this case, an increased NOx formation can be avoided.
  • an exhaust gas recirculation amount for adjusting a defined oxygen concentration in the combustion chamber is set as a function of a focal point of the combustion.
  • the required exhaust gas recirculation rate is calculated from a determined raw NOx emission of the internal combustion engine and the exhaust gas recirculation is controlled until a defined oxygen concentration results in the combustion chamber.
  • a reduction of the oxygen concentration required for a nitrogen oxide reduction is calculated from the calculated raw nitrogen oxide emission, so that a device for exhaust gas recirculation is set such that after mixing combustion air with recirculated exhaust gas a defined oxygen concentration a cylinder charge takes place before or in the combustion chamber.
  • a targeted and rapid control of the internal combustion engine is achieved at the respective load point, so that a reduced NOx raw emission is achieved.
  • setpoint values of the oxygen concentration are stored in a characteristic map of the internal combustion engine in the engine control device.
  • an oxygen concentration of the combustion air is measured before entering the combustion chamber by means of an oxygen sensor, wherein a defined oxygen concentration of the combustion air is adjusted before or in the combustion chamber depending on the measured concentration by means of the device for exhaust gas recirculation.
  • an oxygen concentration of the exhaust gases is measured after exiting the exhaust gases from the combustion chamber by means of an oxygen sensor, wherein from this signal, an exhaust gas recirculation rate and a measured amount of combustion air, an oxygen concentration of the combustion air is calculated before entering the combustion chamber , And depending on the calculated concentration by means of the device for exhaust gas recirculation, a defined oxygen concentration of the combustion air is adjusted before or in the combustion chamber.
  • Fig. 1 is a cylinder block 1 of a self-igniting internal combustion engine with direct injection shown in cross section.
  • a piston 12 is slidably guided, with the top and a cylinder head 13, a combustion chamber 11 is limited.
  • An inlet valve 14 and an outlet valve 17 are arranged in the cylinder head 13, wherein the necessary combustion air is supplied via a suction pipe 15 through the inlet valve 14 to the combustion chamber 11.
  • the respective air mass is detected by an air mass meter 16, which is connected via a line 22 to a motor control device 6.
  • an exhaust gas recirculation line 19 branched off from the exhaust gas line 18 serves to recirculate combustion gases into the intake manifold 15.
  • this exhaust gas recirculation line 19 is a flow meter 20 for detecting the recirculated exhaust gas flow and for adjusting the amount of recirculated exhaust gas. The detected amount of the recirculated exhaust gas is transmitted to the engine control device 6 via a line 21.
  • a pressure sensor 3 is arranged in the cylinder head 13 in the combustion chamber 11, with which a present in the combustion chamber pressure is transmitted via a connecting line 4 to the engine control device 6.
  • a fuel injection valve 25 is further arranged in the cylinder head 13, which is connected via an injection line 26 with an injection pump 23. Between the injection pump 23 and the fuel injection valve 25, a measuring device 24 is provided for fuel quantity detection. This fuel measuring device 24 is connected via an electrical line 27 to the engine control device 6.
  • the injection pump 23 is also connected to the engine controller through a control line 28.
  • an oxygen concentration of the combustion air supplied into the combustion chamber 11 is detected by means of an oxygen sensor 29, which is preferably arranged in the intake pipe in front of the inlet valve 14 and is connected via a line 30 to the engine control device 6.
  • an oxygen sensor 29a is disposed in the exhaust pipe 18 or in the exhaust gas recirculation line 19.
  • the inventive method aims to minimize the formation of NOx emissions during operation of the internal combustion engine or to optimize the exhaust aftertreatment.
  • a load-dependent amount of fuel is introduced into the combustion chamber 11 by means of the fuel injection valve 25.
  • a profile of the mean gas temperature in the combustion chamber is determined, from which a gradient dT / dphi of the gas temperature in a defined crank angle window in accordance with Fig. 3 is formed.
  • a relatively narrow crank angle range is evaluated, in which the mean gas temperature in the cylinder is almost linear.
  • Such an area may be according to Fig. 2 eg between 0 ° CA and 30 ° CA after top dead center.
  • an instantaneous nitrogen oxide emission of the internal combustion engine is determined.
  • the average gas temperature is usually determined from the pressure curve of the combustion.
  • Fig. 3 illustrates this situation using the example of a change in the start of injection of the fuel in the direction of early, that is, the fuel is injected into the combustion chamber earlier, so that with a higher temperature gradient achieved an increase in the NOx emission is effected. If the fuel injection is made such that the obtained temperature gradient becomes smaller, then a decrease in NOx emission becomes Fig. 2 expected.
  • the nitrogen oxide raw emission of the internal combustion engine can be determined either from a value and / or from the profile of the gradient of the average gas temperature or from a maximum value of the mean gas temperature in the combustion chamber 11.
  • a mean gas temperature T ES be used for determining the NOx emission, which is determined at the time of closing of the intake valve.
  • a mean gas temperature T KE which is determined at the end of the compression phase of the internal combustion engine, also for determining the NOx emission according to Fig. 5 be taken into account.
  • T KE a mean gas temperature
  • an evaluation of the maxima of the average gas temperature in the combustion chamber for the determination of the NOx emission used which also shows an excellent correlation with the current nitrogen oxide emission of the internal combustion engine.
  • Fig. 6 causes, for example, by an advance adjustment of the combustion over the start of injection, an increase in the NOx emission.
  • a relative reduction in NOx can be achieved by exhaust gas recirculation.
  • the relative NOx reduction is directly related to the oxygen concentration of the cylinder charge.
  • the oxygen concentration of the cylinder charge is used as a measured or controlled variable. Accordingly, a defined oxygen concentration of the combustion air in the combustion chamber 11 is then set. This is according to Fig. 8 measured or used as a control and measured variable.
  • the present method is particularly suitable for diesel internal combustion engines, in which a device for recirculating exhaust gas and / or a metering device for reducing agent for exhaust aftertreatment are provided in a downstream catalyst.
  • the raw NOx emission of the diesel engine is calculated from the gradient of the average gas temperature in a defined crank angle window, and then the amount of reducing agent for the downstream exhaust gas aftertreatment system is determined therefrom.
  • the raw NOx emission from the maximum value of the average gas temperature in the cylinder can be checked for plausibility. From the calculated raw NOx emission then a necessary NOx reduction rate is calculated, with which an exhaust gas recirculation is set. Accordingly, after Mixing the combustion air with the recirculated exhaust gas set a defined oxygen concentration before or in the combustion chamber 11.
  • the desired value of the oxygen concentration can preferably be stored as a constant value in the engine map data.
  • focus position of the combustion is a consumption-optimized operation of the internal combustion engine, in which also takes place a low NOx emission.
  • the efficiency of the autoignition internal combustion engine is also directly related to the location of the combustion center. Therefore, the engine parameters, in particular the fuel injection parameters such as injection timing, injection duration and injection timing are adjusted such that the optimum position of the center of gravity is present during the respective combustion or during each combustion.
  • the optimum position of the combustion or the desired center of gravity of the combustion for example, for the respective internal combustion engine. be determined on the test bench. This desired value is then stored in the engine control device 6 for the respective internal combustion engine.
  • the adjustment of the center of gravity position or the adaptation of the current value to the desired value can be achieved by means of a variation of the start of the autoignition and / or by means of the variation of the fuel injection.
  • a targeted and rapid control of the internal combustion engine performed respective load point, so that the internal combustion engine is operated with high efficiency while reducing the NOx emission.
  • a pressure curve in the combustion chamber 11 during a working cycle is preferably detected and forwarded to the engine control device 6. From the recorded pressure curve, the current center of gravity position of the combustion can be determined. The position of the center of gravity changes with respect to the crank angle when the combustion process changes. With the aid of the detected pressure curve and the metered amount of fuel per working cycle, an efficiency of the internal combustion engine is determined with the aid of the engine control device 6, which is directly related to the position of the center of gravity of the combustion.
  • the center of gravity of the combustion can be calculated from the indexing of the cylinder pressure in combination with a measurement of the piston position in the combustion chamber via the first law of thermodynamics.
  • the raw NOx emission of the self-igniting internal combustion engine is then determined with the aid of the determined data, so that the mode of operation or adjustment in FIG Fig. 1 Not shown exhaust gas aftertreatment device is optimized.
  • a determination of the raw NOx emission of the internal combustion engine for example, to optimize a downstream exhaust aftertreatment device is precisely made and performed on a fast track. Accordingly, with proper combustion control, the formation of NOx emissions during combustion can be minimized.
  • the determined raw NOx emission of the internal combustion engine is used for a desired necessary NOx reduction and from there according to Fig. 8 the required oxygen concentration the charge mass or the combustion air determined.
  • the exhaust gas recirculation quantity is accordingly regulated in such a way that a defined oxygen concentration is established in the inlet channel 15 or in the combustion chamber 11.
  • a desired value of an oxygen concentration is preferably stored in the engine control device 6 as a constant value or in characteristic maps.
  • an oxygen concentration of the combustion air is measured before entry into the combustion chamber by means of the oxygen sensor 29.
  • the device for exhaust gas recirculation 20 is then controlled such that a certain amount of exhaust gas passes into the intake manifold 15.
  • a defined oxygen concentration in the combustion air is adjusted before or in the combustion chamber.
  • the oxygen sensor in the exhaust pipe 18 may alternatively be measured by means of the oxygen sensor 29a, an oxygen concentration of the exhaust gases after exiting the exhaust gases from the combustion chamber. From this signal, an exhaust gas recirculation rate and a measured amount of combustion air, the oxygen concentration of the combustion air is then calculated before entering the combustion chamber.
  • the device for exhaust gas recirculation 20 is then controlled so that a certain amount of exhaust gas passes into the intake manifold 15, so that a defined oxygen concentration in the combustion air is adjusted before or in the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un moteur à combustion interne à auto-allumage, selon lequel une température moyenne des gaz dans le cylindre est déterminée pendant la combustion dans la chambre de combustion, afin de calculer un gradient de température moyenne des gaz. Ensuite, l'émission brute d'oxyde d'azote du moteur à combustion interne est déterminée à partir d'une valeur du gradient de température moyenne des gaz et/ou à partir d'une valeur maximale de température moyenne des gaz dans le cylindre. Puis les paramètres du moteur sont réglés de sorte que la courbe de température moyenne des gaz pendant la combustion est telle que les émissions de NOx sont réduites.

Claims (11)

  1. Procédé pour faire fonctionner un moteur à combustion interne à auto-allumage, qui comprend un cylindre (2) dans lequel est agencée une chambre de combustion (11), un dispositif de commande de moteur (6), un dispositif d'alimentation en carburant et un système de retraitement des gaz d'échappement, procédé selon lequel de l'air de combustion est amené à la chambre de combustion (11) et une quantité de carburant y est fournie de manière dosée, pendant un cycle de travail, en fonction du point de fonctionnement, et une loi de variation en fonction du temps d'une température de gaz moyenne (T) dans la chambre de combustion (11) étant déterminée pendant une combustion,
    caractérisé
    - en ce qu'à partir de la loi de variation en fonction du temps de la température de gaz moyenne (T), on forme un gradient (dT/dphi) de la température de gaz moyenne (T) dans une plage partielle d'angle de vilebrequin, prescrite, du cycle de travail, et
    - en ce qu'on détermine à partir de la valeur du gradient (dT/dphi) et/ou à partir d'une position du gradient (dT/dphi) dans la plage partielle d'angle de vilebrequin, une émission brute d'oxyde d'azote du moteur à combustion interne.
  2. Procédé pour faire fonctionner un moteur à combustion interne à auto-allumage, qui comprend un cylindre (2) dans lequel est agencée une chambre de combustion (11), un dispositif de commande de moteur (6), un dispositif d'alimentation en carburant et un système de retraitement des gaz d'échappement, procédé selon lequel de l'air de combustion est amené à la chambre de combustion (11) et une quantité de carburant y est fournie de manière dosée, pendant un cycle de travail, en fonction du point de fonctionnement, et une température de gaz moyenne (T) étant déterminée dans la chambre de combustion (11),
    caractérisé
    - en ce qu'on détermine, à partir d'une valeur (TES) de la température de gaz moyenne (T) lors de la fermeture d'une soupape d'admission (14) du cylindre (2) et/ou à partir d'une valeur (TKE) d'une température finale de compression dans la chambre de combustion, une émission brute d'oxyde d'azote du moteur à combustion interne.
  3. Procédé selon la revendication 1,
    caractérisé en ce que le gradient (dT/dphi) de la température de gaz moyenne (T) est déterminé dans une plage d'angle de vilebrequin de 0°KW à 30°KW après le point mort haut.
  4. Procédé selon l'une des revendications 1 à 3,
    caractérisé en ce que la température de gaz moyenne (T) est déterminée à partir d'une loi de variation de la pression mesurée dans la chambre de combustion (11).
  5. Procédé selon l'une des revendications 1 à 4,
    caractérisé en ce qu'à partir de l'émission brute d'oxyde d'azote ayant été déterminée, on définit une quantité d'un agent de réduction pour le système de retraitement des gaz d'échappement.
  6. Procédé selon l'une des revendications 1 à 5,
    caractérisé en ce que la quantité de carburant dosée fournie est injectée dans la chambre de combustion (11) de façon à ce qu'il s'établisse un gradient prescrit (dT/dphi) de la température de gaz moyenne (T) dans la chambre de combustion (11) et/ou une position angulaire de vilebrequin prescrite d'une valeur maximale (Tmax) de la température de gaz moyenne dans la chambre de combustion (11).
  7. Procédé selon l'une des revendications 1 à 6,
    caractérisé en ce que la quantité de carburant dosée fournie est injectée dans la chambre de combustion (11) de façon à ce qu'un point principal de la combustion se situe au niveau d'une position angulaire de vilebrequin déterminée.
  8. Procédé selon l'une des revendications 1 à 7,
    caractérisé en ce qu'une quantité de recyclage de gaz d'échappement pour établir une concentration en oxygène définie dans la chambre de combustion (11), est réglée en fonction d'une position de point principal de la combustion.
  9. Procédé selon l'une des revendications 1 à 8,
    caractérisé en ce qu'à partir de l'émission brute d'oxyde d'azote calculée, on calcule un abaissement de la concentration en oxygène nécessité pour une réduction des oxydes d'azote, et on règle un dispositif pour le recyclage de gaz d'échappement de façon qu'après le mélange d'air de combustion avec du gaz d'échappement recyclé, il en résulte une concentration définie en oxygène d'une charge de cylindre, avant ou dans la chambre de combustion (11).
  10. Procédé selon l'une des revendications 1 à 9,
    caractérisé en ce qu'on mesure, au moyen d'un capteur d'oxygène (29), une concentration en oxygène de l'air de combustion avant l'entrée dans la chambre de combustion (11), et, en fonction de la concentration mesurée, on règle au moyen d'un dispositif de recyclage de gaz d'échappement, une concentration en oxygène définie de l'air de combustion avant ou dans la chambre de combustion (11).
  11. Procédé selon l'une des revendications 1 à 10,
    caractérisé en ce qu'on mesure, au moyen d'un capteur d'oxygène (29a), une concentration en oxygène des gaz d'échappement après la sortie de la chambre de combustion (11), et on calcule à partir de ce signal, d'un taux de recyclage de gaz d'échappement et d'une quantité d'air de combustion mesurée, une concentration en oxygène de l'air de combustion avant l'entrée dans la chambre de combustion (11), et, en fonction de la concentration calculée, on règle au moyen du dispositif de recyclage de gaz d'échappement, une concentration en oxygène définie de l'air de combustion avant ou dans la chambre de combustion (11).
EP04711992A 2003-04-09 2004-02-18 Procede pour faire fonctionner un moteur a combustion interne a auto-allumage Expired - Lifetime EP1611334B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10316112A DE10316112A1 (de) 2003-04-09 2003-04-09 Verfahren zum Betrieb einer Brennkraftmaschine mit Selbstzündung
PCT/EP2004/001518 WO2004090311A1 (fr) 2003-04-09 2004-02-18 Procede pour faire fonctionner un moteur a combustion interne a auto-allumage

Publications (2)

Publication Number Publication Date
EP1611334A1 EP1611334A1 (fr) 2006-01-04
EP1611334B1 true EP1611334B1 (fr) 2008-05-14

Family

ID=33038937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04711992A Expired - Lifetime EP1611334B1 (fr) 2003-04-09 2004-02-18 Procede pour faire fonctionner un moteur a combustion interne a auto-allumage

Country Status (5)

Country Link
US (1) US20070157599A1 (fr)
EP (1) EP1611334B1 (fr)
JP (1) JP2006522888A (fr)
DE (1) DE10316112A1 (fr)
WO (1) WO2004090311A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20050601A1 (it) * 2005-04-11 2006-10-12 Iveco Spa Metodo e sistema di controllo per un motore dotato di impianto scr
DE102005058820B4 (de) * 2005-12-09 2016-11-17 Daimler Ag Verfahren zur Regelung einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine
DE102006061659B4 (de) * 2006-12-27 2010-04-08 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102007019649A1 (de) 2007-04-26 2008-10-30 Daimler Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102008004214B4 (de) * 2008-01-14 2017-07-13 Robert Bosch Gmbh Verfahren zur Bestimmung der NOx-Emission einer Brennkraftmaschine mit Abgasrückführung
DE102008004360A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Steuern eines selbstzündenden Verbrennungsmotors
DE102009021793B4 (de) 2009-05-18 2020-08-06 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Bestimmen der Stickoxidemission im Brennraum eines Dieselmotors
DE102010046491B4 (de) 2010-09-24 2022-05-05 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Bestimmen einer Schadstoffemission im Brennraum eines Dieselmotors
FR2999648B1 (fr) * 2012-12-18 2017-12-01 Continental Automotive France Procede de determination de la concentration en oxydes d'azote a la sortie d'un moteur a combustion interne
US10508606B2 (en) * 2014-10-22 2019-12-17 Ge Global Sourcing Llc Method and systems for airflow control
DE102015216303B3 (de) * 2015-08-26 2016-09-29 Ford Global Technologies, Llc Korrektur einer eingespritzten Brennstoffmenge
KR102110626B1 (ko) * 2015-12-18 2020-05-14 한국조선해양 주식회사 이원 연료 엔진의 저부하 운전 시스템 및 이를 이용한 저부하 운전 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621603A (en) * 1985-10-29 1986-11-11 General Motors Corporation Engine combustion control with fuel balancing by pressure ratio management
US4887574A (en) * 1987-04-21 1989-12-19 Hitachi, Ltd. Control apparatus for internal combustion engines
KR920004491B1 (ko) * 1987-05-21 1992-06-05 미쓰비시전기 주식회사 기관제어장치
DE4203219A1 (de) 1992-02-05 1993-08-12 Basf Ag Verfahren zur stickoxidminderung in abgasen durch gesteuerte nh(pfeil abwaerts)3(pfeil abwaerts)-zugabe
DE4406743C1 (de) * 1994-03-02 1995-02-16 Man Nutzfahrzeuge Ag Verfahren zur Minimierung der Stichoxidbildung bei luftverdichtenden, aufgeladenen Brennkraftmaschinen
DE19734494C1 (de) 1997-08-08 1998-10-08 Daimler Benz Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE19741820B4 (de) * 1997-09-23 2009-02-12 Robert Bosch Gmbh Verfahren zur Auswertung des Brennraumdruckverlaufs
DE19754354C1 (de) * 1997-12-08 1999-07-01 Man B & W Diesel Ag Diesel-Gasmotor
DE10043383C2 (de) 2000-09-02 2002-06-20 Daimler Chrysler Ag Verfahren zur Bestimmung des Stickoxidgehalts in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
JP2002195071A (ja) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp 内燃機関制御装置
US6662795B2 (en) * 2001-08-20 2003-12-16 Caterpillar Inc Method and apparatus configured to maintain a desired engine emissions level
US6425372B1 (en) * 2001-08-30 2002-07-30 Caterpillar Inc. Method of controlling generation of nitrogen oxides in an internal combustion engine
DE10148663A1 (de) * 2001-10-02 2003-04-10 Daimler Chrysler Ag Abgasreinigungsanlage einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE10316112A1 (de) 2004-10-28
US20070157599A1 (en) 2007-07-12
WO2004090311A1 (fr) 2004-10-21
EP1611334A1 (fr) 2006-01-04
JP2006522888A (ja) 2006-10-05

Similar Documents

Publication Publication Date Title
DE10227838B4 (de) Katalysatorleistungsabbau-Erfassungsvorrichtung
EP1524417B1 (fr) Moteur à combustion interne comprenant un turbocompresseur à gaz d'échappement et une injection d'air secondaire, ainsi qu'un diagnostic et une commande de l'injection d'air secondaire
EP2226482B1 (fr) Procédé d'adaptation de la quantité de dosage d'un moyen de réduction destiné à la réduction catalytique sélective
EP1611334B1 (fr) Procede pour faire fonctionner un moteur a combustion interne a auto-allumage
DE19506980C2 (de) Regelungsverfahren für die Kraftstoffeinspritzung einer Verbrennungskraftmaschine, welche mit einem Katalysator zur Reduzierung von NO¶x¶ versehen ist, und eine Vorrichtung zur Durchführung dieses Regelungsverfahrens
DE102013106323A1 (de) System und Verfahren zum Verbessern des Betriebs eines SCR
EP2657478B1 (fr) Procédé et dispositif de vérification de la capacité de fonctionnement d'un catalyseur d'oxydation NO
DE102014110780A1 (de) System und verfahren zur steuerung einer dosierung von abgasfluid
DE10001133B4 (de) Vorrichtung zum Steuern des Luft-Kraftstoffverhältnisses bei einer Verbrennungskraftmaschine
DE102006022321A1 (de) System und Verfahren zum Reduzieren von NOx-Emissionen bei einer einen Dieselmotor aufweisenden Vorrichtung
DE10155929A1 (de) Steuersystem für einen Abgaszustrom zu einem NOx-Katalysator
DE102008026706A1 (de) Abgasreinigungssteuervorrichtung und -steuerverfahren für eine Brennkraftmaschine
WO2007128593A1 (fr) ProcÉdÉ et dispositif de diagnostic de l'efficacitÉ d'un catalyseur de gaz d'Échappement
EP1611335B1 (fr) Procede pour faire fonctionner un moteur a combustion interne a allumage automatique
DE112012002686B4 (de) Steuervorrichtung für Direkteinspritzmotor
WO2003078816A1 (fr) Procede et dispositif pour surveiller et reguler le fonctionnement d'un moteur a combustion interne a emissions de nox reduites
EP1431557A2 (fr) Procédé d'équilibrage des cylindres
EP1247008B1 (fr) Procede pour faire fonctionner un catalyseur a trois voies dans un moteur a combustion interne
DE102007063102B4 (de) Verfahren zur Erfassung eines periodisch pulsierenden Betriebsparameters
DE102007057142A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1365234A2 (fr) Procédé de correction du signal NOx d'un capteur de NOx
DE102004015131B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102019207142A1 (de) Systeme und Verfahren zur Kompensation eines Reduktionsmittelabgabesystems in einem Nachbehandlungssystem eines Verbrennungsmotors
WO2017157580A1 (fr) Procédé et dispositif de commande pour la détermination d'une quantité d'un composant de remplissage dans un cylindre d'un moteur à combustion interne
DE19908401A1 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs bei magerem Kraftstoff/Luft-Gemisch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLER AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100226

Year of fee payment: 7

Ref country code: IT

Payment date: 20100223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100218

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110218