EP1606490B1 - Device for heating and thermally insulating at least one undersea pipeline - Google Patents
Device for heating and thermally insulating at least one undersea pipeline Download PDFInfo
- Publication number
- EP1606490B1 EP1606490B1 EP04720038A EP04720038A EP1606490B1 EP 1606490 B1 EP1606490 B1 EP 1606490B1 EP 04720038 A EP04720038 A EP 04720038A EP 04720038 A EP04720038 A EP 04720038A EP 1606490 B1 EP1606490 B1 EP 1606490B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- internal chamber
- pipe
- transfer fluid
- main pipe
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 51
- 230000009975 flexible effect Effects 0.000 claims abstract description 77
- 239000011810 insulating material Substances 0.000 claims abstract description 53
- 238000002347 injection Methods 0.000 claims abstract description 51
- 239000007924 injection Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 50
- 238000007667 floating Methods 0.000 claims abstract description 35
- 230000005012 migration Effects 0.000 claims abstract description 17
- 238000013508 migration Methods 0.000 claims abstract description 17
- 238000007493 shaping process Methods 0.000 claims abstract description 17
- 239000013535 sea water Substances 0.000 claims abstract description 15
- 239000012188 paraffin wax Substances 0.000 claims abstract description 14
- -1 polypropylene Polymers 0.000 claims abstract description 11
- 239000007787 solid Substances 0.000 claims abstract description 9
- 238000002844 melting Methods 0.000 claims abstract description 8
- 230000008018 melting Effects 0.000 claims abstract description 8
- POOSGDOYLQNASK-UHFFFAOYSA-N tetracosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC POOSGDOYLQNASK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 150000002430 hydrocarbons Chemical group 0.000 claims abstract description 7
- 230000008093 supporting effect Effects 0.000 claims abstract description 7
- 239000004743 Polypropylene Substances 0.000 claims abstract description 4
- 229920001155 polypropylene Polymers 0.000 claims abstract description 4
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 3
- 229920002635 polyurethane Polymers 0.000 claims abstract description 3
- 239000004814 polyurethane Substances 0.000 claims abstract description 3
- 239000013529 heat transfer fluid Substances 0.000 claims description 80
- 238000004519 manufacturing process Methods 0.000 claims description 35
- 238000005192 partition Methods 0.000 claims description 31
- 150000001875 compounds Chemical class 0.000 claims description 26
- 238000009434 installation Methods 0.000 claims description 23
- 230000000284 resting effect Effects 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 16
- 230000008602 contraction Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 238000006073 displacement reaction Methods 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 7
- 239000013505 freshwater Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 239000012782 phase change material Substances 0.000 claims description 6
- 239000011343 solid material Substances 0.000 claims description 6
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 5
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 150000002191 fatty alcohols Chemical class 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 3
- 150000002334 glycols Chemical class 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 230000002035 prolonged effect Effects 0.000 claims description 3
- 239000001993 wax Substances 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims description 2
- 229920003020 cross-linked polyethylene Polymers 0.000 claims description 2
- 239000004703 cross-linked polyethylene Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000003094 microcapsule Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000003134 recirculating effect Effects 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 46
- 238000000576 coating method Methods 0.000 abstract description 34
- 239000011248 coating agent Substances 0.000 abstract description 33
- 239000012530 fluid Substances 0.000 abstract description 31
- 239000004698 Polyethylene Substances 0.000 abstract description 2
- 229920000573 polyethylene Polymers 0.000 abstract description 2
- 241000195940 Bryophyta Species 0.000 abstract 1
- 230000004888 barrier function Effects 0.000 abstract 1
- 235000011929 mousse Nutrition 0.000 abstract 1
- 239000002826 coolant Substances 0.000 description 27
- 239000010779 crude oil Substances 0.000 description 19
- 239000000543 intermediate Substances 0.000 description 18
- 239000012071 phase Substances 0.000 description 16
- 238000002955 isolation Methods 0.000 description 15
- 239000003921 oil Substances 0.000 description 15
- 238000003303 reheating Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 6
- 150000004677 hydrates Chemical class 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 244000261422 Lysimachia clethroides Species 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000002283 diesel fuel Substances 0.000 description 4
- BJQWYEJQWHSSCJ-UHFFFAOYSA-N heptacosane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCC BJQWYEJQWHSSCJ-UHFFFAOYSA-N 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000004873 anchoring Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 235000011837 pasties Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011269 tar Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000012815 thermoplastic material Substances 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 208000018672 Dilatation Diseases 0.000 description 1
- 241001644893 Entandrophragma utile Species 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001944 accentuation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 235000019577 caloric intake Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 235000013310 margarine Nutrition 0.000 description 1
- 239000003264 margarine Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/01—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/01—Risers
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/12—Methods or apparatus for controlling the flow of the obtained fluid to or in wells
- E21B43/121—Lifting well fluids
- E21B43/122—Gas lift
Definitions
- the present invention relates to devices and a method for heating and thermal insulation of at least one underwater pipe at great depth. It relates more particularly to the bottom-surface connection pipes connecting the seabed to floating surface supports.
- the technical field of the invention is the field of the manufacture and assembly of insulation and heating systems outside and around the pipes in which circulate hot effluents whose heat losses are to be limited.
- This invention applies more particularly to deep-sea oil field developments, ie offshore oil installations, in which surface equipment is generally located on floating structures, the wellheads being
- the ducts concerned by the present invention being more particularly the risers called bottom-surface connection pipes going up to the surface, but also the pipes connecting the well heads to said bottom surface connection pipes.
- the present invention also relates to a bottom-surface connection installation of at least one deep-sea pipe installed at great depth of the hybrid tower type.
- the main application of the invention is the thermal insulation and heating of submerged or underwater pipes or pipes, and more particularly at great depth, beyond 300 meters, and carrying hot oil products including a Too much cooling would be problematic both in normal production and in case of production stoppage.
- Deep sea developments are carried out by water depths currently reaching 1500 m. Future developments are envisaged by water depths up to 3000-4000 m and beyond.
- Paraffins and asphaltenes remain attached to the wall and then require cleaning by scraping the inside of the pipe; on the other hand, hydrates are even more difficult, and sometimes even impossible to absorb.
- the thermal insulation and the heating of such pipes therefore has the function of delaying the cooling of the petroleum effluents conveyed not only in the established production regime, so that their temperature is for example at least 40 ° C when arriving at the surface, for a production temperature at the inlet of the pipe from 70 ° C to 80 ° C, but also in case of reduction or even stop of the production, in order to prevent the temperature of the effluents from falling for example below 30 ° C, to limit the above problems, or at least to allow to make them reversible.
- the length of pipe In the case of the installation of single pipes or bundles of pipes (commonly called “bundles”), it is generally preferred to prefabricate said shore pipes in unit lengths of 250 to 500 m, which are then drawn from the open sea. using a tug.
- the length of pipe In the case of a tower-type bottom-surface connection, the length of pipe generally represents from 50 to 95% of the water height, ie it can reach 2400 m for a depth of water of 2500 m.
- the first unit length is pulled from the sea and then tied to the next, the tug holding the assembly in tension during the splicing phase, which can last several hours or even days.
- the assembly is towed towards the site, generally in subsurface, substantially horizontally, where it is then "cabane”, that is to say rocked in vertical position, to reach the vertical position, then he set up in final position.
- the hydrostatic pressure is of the order of 200 bars, or 20 Mega Pascals, which implies that all the pipes and their coating of insulating material must be able to withstand not only these pressures without degradation during pressurization and depressurization of the pipe in which circulates the hot fluid, but also to temperature cycles which generate volume variations of the various components, and therefore positive or negative pressures that can lead to partial destruction or total of the envelope either by exceeding the allowable stresses, or by implosion of this external envelope (negative internal pressure variations).
- thermal insulation systems which make it possible to reach the required level of performance and to withstand the pressure of the sea floor which is of the order of 150 bar to 1500 m of depth.
- Examples include "pipe-in-pipe” concepts, including a pipe carrying the hot fluid installed in an external protective pipe, the space between the two pipes being either simply filled with a heat insulation, confined or not under vacuum, or simply drawn to vacuum.
- Many other insulating materials have been developed to provide high performance insulation, some of them being pressure resistant. These insulating materials simply surround the hot pipe and are generally confined within a flexible or rigid outer shell, in equipression and whose main function is to maintain a substantially constant geometry in time.
- All these devices carrying a hot fluid in an insulated pipe have, to varying degrees, differential expansion phenomena.
- the inner pipe usually steel
- the outer shell often also steel
- the outer shell is at seawater temperature, ie around 4 ° C.
- the forces generated on the connecting elements between the inner pipe and the outer casing are considerable and can reach several tens or even hundreds of tons and the resulting overall elongation is of the order of 1 to 2 m in the case of insulated pipework. 1000 to 1200 m in length.
- a problem posed according to the present invention is to be able to make and install such bottom-surface connections for submarine pipes at great depths, such as beyond 1000 meters for example, and of type comprising a vertical tower and whose transported fluid must be kept above a minimum temperature until it reaches the surface, minimizing components subject to heat loss, avoiding the disadvantages created by the clean thermal expansion, or differential, of the various components of said tower so as to withstand the extreme stresses and phenomena cumulative fatigue over the life of the structure, which currently exceeds 20 years.
- WO 00/40886 discloses a solid-liquid phase change thermal insulation material and latent heat of fusion, capable of restoring calories to the inner pipe, and confined around said inner pipe within a sealed envelope and deformable, which makes it able to track the expansion and contraction of various components under the influence of all environmental parameters, including internal and external temperatures.
- WO 00/40886 uses a solid-liquid phase change isolation material and latent heat of fusion, and whose phase change is effected at a temperature T 0 greater than the temperature T 1. from which the oil circulating inside the pipe becomes too viscous, in general the temperature T 1 is between 20 ° and 60 ° C and lower than the temperature T 2 of the crude oil at the inlet of the conduct.
- phase-change material hereinafter referred to as "PCM” (Phase Change Material)
- PCM Phase Change Material
- Phase Change Material makes it possible, in case of production stoppage, to keep the fluid normally circulating inside the pipe at a high temperature, way to avoid the formation of paraffins or hydrates in the oil.
- phase-change materials are conceivable, such as hydrated or non-hydrated salts, storing and returning considerable energy during phase changes.
- the temperature of the PCM remains substantially constant and equal to T 0 , for example 36 ° C, and therefore, the internal pipe containing crude oil remains at a temperature greater than or substantially equal to that (T o ) of the PCM, ie 36 ° C, thus preventing the formation of paraffins or hydrates in the crude oil.
- phase change materials described previously generally have a significant volume change when they change state, up to 20% in the case of paraffins.
- the outer protective casing must be able to accommodate without any damage from these variations in volume.
- this phase-change insulating material is confined within a sealed and deformable envelope, which makes it capable of following the expansion and contraction of the various components under the influence. all environment parameters, including internal and external temperatures.
- the pipe is thus either confined within a thermoplastic flexible envelope, in particular polyethylene or polypropylene, for example circular, the increase or reduction of the internal volume, due to temperature variations, comparable to breathing is absorbed by the flexibility the envelope consisting for example of a thermoplastic material having a large elastic limit.
- a semi-rigid envelope made of a resistant material such as steel or a composite material, such as a compound made from a binder such as an epoxy resin and inorganic or organic fibers such as glass or carbon fibers, but then the beam is given an ovoid or flattened shape, with or without counter-curvature, which gives it, at constant perimeter, a section smaller than the corresponding circle.
- the "breathing" of the beam will lead, in the case of an increase and a reduction in volume, respectively to a "surrender to the round" of the envelope, or to an accentuation of the flattening of said envelope .
- the bundle-envelope assembly is designated by the term "flat bundle” as opposed to a circular envelope.
- the problem of the present invention is, more particularly, to provide an improved thermal insulation system of an underwater pipe or a bundle of pipes incorporating an insulating material, in particular a PCM material, and whose behavior in phase restarting such that said restart can be performed in a reduced time compared to the prior art.
- the calories will migrate from the inside of the pipe to the external ambient environment, generally at 4 ° C and, during the whole heating phase, most of the calories conveyed by the diesel fuel circulating will be absorbed by the PCM for its reliquefaction, which can take several days or weeks if the driving is very long, or if the production of calories at the floating support is insufficient. It is only after this heating phase with circulation of diesel, that we can reconnect the wellheads and resume production. Indeed, if the production is restarted prematurely, the PCM insulating material will be only partially liquid and the internal temperature will be less than or equal to T 0 (phase change temperature), and therefore low, over the entire sub-pipe. marine, and we then observe the following phenomena.
- T 0 phase change temperature
- the PCM gradually reliquifies and the complete liquefaction front progresses slowly towards the FPSO.
- the temperature remains stable around T 0 and liquefaction can only continue if the crude oil is always at a temperature above T 0 .
- the PCM in the case of very long lines, for example 5 or 6 km, in an area very far from the hot source, ie close to the FPSO, there is not enough calories and the PCM then loses calories to the environment at 4 ° C. To provide these calories it gradually goes to the solid state.
- An object of the present invention is therefore to provide a pipe insulation system for heating and maintaining the temperature of the effluent flowing in an underwater pipe beyond a fixed value, so that after a stop prolonged, the duration of the restart phase is reduced and such that, for example, it may be possible, if necessary, just to partially heat the pipe without having to wait until all the PCM material, if any, is completely liquefied.
- the preamble before the characteristics a) and b) is known from document FR-A-2 821 917.
- said internal chamber is traversed by at least one internal gas injection pipe capable of allowing the injection of gas into said main pipe, said inner gas injection pipe being connected to said main pipe. at one end in the longitudinal direction of said main pipe, within said inner chamber, where appropriate at a lower end, and preferably said gas injection pipe extending outside said internal chamber in the form of an external gas injection pipe connecting said internal gas injection pipe to a floating support.
- gas injection at the bottom of a riser-type bottom-surface connection creates bubbles in the upwardly rising effluent, which reduces its density and thus promotes the rise of said effluent.
- This technology called "gas lift”, ie elevation by gas injection is well known to those skilled in the art and will not be described in more detail here.
- said internal chamber comprises means for circulating a coolant comprising at least one inner conduit for supplying a heat transfer fluid extending inside said internal chamber from a first orifice located at a first end of the inner chamber, preferably to near the second end of said inner chamber in the longitudinal direction, and a second outlet of said heat transfer fluid, preferably at said first end of the inner chamber, said inner conduit for supplying a coolant being located next to said main pipe, between the latter and said external insulating material.
- the supply line of the heat transfer fluid travels the internal chamber over almost all of its length, it can also contribute to the heating of the interior of the inner chamber.
- said internal gas injection pipe is a spirally wound pipe around said inner pipe for supplying said heat transfer fluid inside said inner chamber, preferably a rigid pipe formed in a spiral.
- This embodiment is particularly advantageous because it makes it possible to constitute a possible reserve of elongation of said internal gas injection pipe when said main pipe undergoes length variations as a result of the temperature variations of the hot effluent circulating at the same time. inside.
- this configuration of the internal gas injection pipe wound spirally around the inner conduit for supplying the heat transfer fluid also makes it possible to heat the gas before injecting it into the main pipe and thus to improve the performance of "gas-lift".
- said inner conduit for supplying the coolant is extended by a flexible external supply line for said heat transfer fluid from said first orifice to a floating support, and said second heat transfer fluid outlet orifice. is connected to a second flexible outer conduit for returning said heat transfer fluid to said floating support.
- said heat transfer fluid can be heated by passing it into boilers or heat exchangers on board said floating support, in particular by recovering calories from, for example, gas turbines.
- said internal conduit for supplying heat transfer fluid is connected to means for circulating and reheating the heat transfer fluid comprising a pump cooperating with said first heat transfer fluid supply orifice and with said second outlet orifice. heat transfer fluid at a said first end of the inner chamber, said pump for circulating the heat transfer fluid successively inside said inner pipe for supplying the coolant, and then inside the internal chamber and to make it come out of said internal chamber by said second orifice, then to recirculate it in a loop in said internal chamber through said first orifice, an external pipe for circulating the coolant between said floating support and the body of the pump or said first orifice, for adjusting the amount of coolant circulating in the cha in the various pipes
- the device according to the invention comprises a means for heating the heat transfer fluid inside said inner conduit for supplying the coolant, preferably in the form of an electrical resistance.
- This heating means makes it possible to heat the heat transfer fluid in a very efficient manner, since the electrical resistance constitutes a very simple element that is easy to feed from the floating support by a small cable, as long as a high voltage is used. .
- the amount of energy transferred to the coolant can be simply adjusted by varying the voltage or intensity, or both.
- the device according to the invention comprises at least one end wall transverse to at least one said first end, said transverse end partition supporting said main pipe and said circulation means and being traversed by said main pipe and, if appropriate, first and second ports allowing the circulation of said heat transfer fluid inside and outside said inner chamber through said orifices.
- the device according to the invention comprises first and second end transverse partitions, respectively at each of the two ends of the internal chamber, said first end wall including, where appropriate, said first end walls. and second orifices, and the two said transverse end partitions supporting said outer envelope and said internal chamber and ensuring their tight connection, while ensuring, at least at said first end, the confinement of the heat transfer fluid inside the the internal chamber.
- the device according to the invention comprises a second end wall comprising a large orifice of diameter greater than that of the main pipe, through which orifice passes said main pipe, so that the coolant is in contact with the sea water at the lower end of the inner chamber.
- the coolant is a non-polluting fluid such as fresh water as explained in the detailed description below. This embodiment makes it possible to avoid difficulties that may result from differential expansions of the main pipe and the inner chamber.
- said second end wall comprises an orifice integrally surrounding a tubular sleeve within which said main duct can slide with reduced clearance, preferably sealingly.
- This embodiment is more particularly suitable if the coolant is a polluting fluid.
- said main pipe is coated with a second insulating coating at least at said second end of the inner chamber, said coolant flowing in said inner chamber outside said second coating.
- said second coating is constituted by a thermal insulating material, preferably a solid insulating material, more preferably foam syntactically, said solid material directly surrounding said main duct, more preferably said second insulating material completely filling the space between said main duct and a second coaxial duct, acting as a sleeve, and inside which said duct is inserted main.
- said insulating coating around the inner chamber is an insulating material subject to migration and at least said outer shell and / or said inner chamber is or consist of a flexible solid material or semi-rigid adapted to follow the deformation of said insulating material and able to stay in contact with it when deformed.
- said insulating coating comprises a phase change insulating material having a liquid / solid melting temperature (T0) preferably between 20 and 80 ° C, higher than that (T2) of the marine environment of said conduct operation and less than that (T1) from which the effluents circulating inside the pipe have an increase in viscosity damaging to their circulation in said pipe.
- T0 liquid / solid melting temperature
- the term "insulating material” is intended to mean a material preferably having a thermal conductivity of less than 0.5 W ⁇ m -1 ⁇ K -1 , more preferably between 0.05 and 0.2 W ⁇ m -1 ⁇ K -1 (Watt / meter / Kelvin). ).
- Said PCM insulating material is chosen in particular from materials consisting of at least 90% of chemical compounds chosen from alkanes, in particular comprising a hydrocarbon chain of at least 10 carbon atoms, or salts that are hydrated or not, glycols, bitumens, tars, waxes and other fatty substances which are solid at ambient temperature, such as tallow, margarine or fatty alcohols and fatty acids, preferably the incompressible material consists of paraffin comprising a hydrocarbon chain of from minus 14 carbon atoms.
- phase change insulating material comprises chemical compounds of the alkane family, preferably a paraffin comprising a hydrocarbon chain of at least fourteen carbon atoms.
- paraffin is heptacosane of formula C 17 H 36 or, preferably, tetracosane of formula C 24 H 50 having a melting temperature about 50 ° C. It is also possible to use an industrial paraffinic cut centered on heptacosane or tetracosane.
- said insulating material consists of an insulating complex comprising a first compound consisting of a hydrocarbon compound such as paraffin or gas oil, mixed with a second compound consisting of a gelling and / or structuring compound, in particular by crosslinking, such as a second compound of the polyurethane, crosslinked polypropylene, crosslinked polyethylene or silicone type, preferably said first compound being in the form of a particle or microcapsule dispersed within a matrix of said second compound and, more particularly, as first compounds; chemical compounds of the family of alkanes, such as paraffins or waxes, bitumens, tars, fatty alcohols, glycols, more particularly compounds whose melting temperature of the materials is between the temperature T 1 of the hot effluents circulating in one of the pipes and the temperature T 2 of the surrounding environment of the pipe in operation, or in fact in general a melting temperature of between 20 and 80 ° C.
- a hydrocarbon compound such as paraffin or gas oil
- insulating materials are materials "subject to migration", that is to say, liquid materials, pasty or solid consistency, such as the consistency of a fat, a paraffin or a gel, which are capable of being deformed by the stresses resulting from differential pressures between two distinct points of the envelope and / or of temperature variations within said insulating material.
- the device according to the present invention comprises an insulating coating which consists of a viscous solid material subject to migration and at least two transverse transverse bulkheads, each of said transverse partitions.
- intermediates consisting of a closed rigid structure traversed by said inner chamber and secured to the walls of said chamber and said outer casing, preferably said intermediate transverse partitions being spaced at regular intervals along the longitudinal axis of the inner chamber and casing outer coaxial, preferably from a distance of 50 to 200 meters.
- This rigid structure integral with the envelope prevents the displacement of said envelope facing said partition and with respect thereto and thus freezes the geometry of the cross section of the envelope at said partition.
- sealed and “closed” mean that said partition does not allow the passage of the material constituting said an insulating coating through said partition, and that in particular, the junction between said conduit and the orifices through which said conduit passes through said intermediate transverse partition does not allow the passage of said material of the insulating coating.
- the said intermediate transverse transverse bulkheads ensure the confinement of the at least one insulating material (s) subject to migration constituting said insulating coating between said envelope and said partitions.
- a "flat bundle” is sensitive to variations in pressure due to declivities: overpressure at the bottom, depression at the top, and the towing phase is critical, because the length can reach several kilometers, the "bundle” is in fact never perfectly horizontally and this results in significant differential pressure variations during said towing and especially during the cabanage operation.
- the pressure differential created by the low density of the insulating material associated with the volume variation created by the thermal expansion of the insulating material, generates movements of the insulating material that must be able to support the outer shell. It seeks to avoid particle movements parallel to the axis of the bundle, ie migrations of insulating material between two remote areas of the "bundle", as they may destroy the actual structure of the insulating material.
- This device with transverse transverse bulkheads sealed can be manufactured at the best cost a "bundle" on the ground, to be able to set up a coating of insulating material of semi-fluid or pasty type, to tow in subsurface, cabaner in position vertical to install it, while respecting the integrity of the whole until it goes into production and throughout its lifetime, which generally exceeds 30 years.
- This device with transverse intermediate transverse bulkheads also makes it possible to insulate at least one submarine pipe intended to be placed on the bottom, in particular at great depth, particularly in steep declining areas, starting from watertight "flat bundle” type casing, capable of providing substantial transverse flexibility to absorb volume variations, while maintaining sufficient longitudinal rigidity to allow handling, such as on-site prefabrication, site towing, and conservation the mechanical integrity of said envelope throughout the life of the product, which reaches and exceeds 30 years.
- said closed structure of said intermediate transverse sealed partition comprises a cylindrical piece which has a cross section whose perimeter has the same fixed shape as that of said cross section of the envelope.
- cross-section is understood to mean the section in a plane XX ', YY' perpendicular to the longitudinal axis ZZ 'of said envelope, said envelope being of tubular shape and having a central longitudinal axis ZZ', and preferably, the section cross-section of said envelope defining a perimeter having two axes of symmetry XX 'and YY' perpendicular to each other, and to said longitudinal axis ZZ '.
- peripheral of the cross-section is understood to mean the closed-curve line defining the plane surface defined by said transverse section.
- the perimeter of the transverse section of the outer envelope at the level of the watertight bulkheads is of fixed shape and can not therefore be deformed by contraction or by expansion of said envelope at this level.
- said cross section of the outer envelope is circular in shape, or oval, or rectangular in shape, preferably with rounded corners.
- Said intermediate transverse bulkheads create thermal bridges. It is therefore sought to space them as far as possible to reduce the diermic bridges.
- the spacing between two said successive transverse transverse bulkheads along said longitudinal axis ZZ 'of said envelope is from 50 to 200 meters, in particular from 100 to 150 meters.
- the device comprises at least one, preferably a plurality of jig (s) shaping (s), consisting (s) of a rigid structure integral with said internal chamber and traversed by it and secured to said outer shell at its periphery, disposed (s) between two said successive transverse transverse bulkheads, said shaping jig having openings allowing the passage of the constituent material of said insulating material subject to migration through said shaping jig.
- jig jig
- shaping consisting (s) of a rigid structure integral with said internal chamber and traversed by it and secured to said outer shell at its periphery, disposed (s) between two said successive transverse transverse bulkheads, said shaping jig having openings allowing the passage of the constituent material of said insulating material subject to migration through said shaping jig.
- said shaping jig freezes the shape of the cross section of the outer casing and the inner chamber at said shaping jig, while minimizing thermal bridges.
- said open structure of said shaping jig comprises a cylindrical piece which has a cross section whose perimeter is in a geometrical figure identical to the geometrical figure defined by the shape of the perimeter of the cross section of said watertight partition.
- a device comprises a plurality of shaping jigs arranged along said longitudinal axis ZZ 'of the envelope, preferably at regular intervals, two successive shaping jigs being preferably spaced 5 to 50 meters apart, preferably 5 to 20 meters.
- the device according to the invention further comprises at least one centralizing template, preferably a plurality of centralizing templates, arranged preferably at regular intervals, between two said successive intermediate transverse bulkheads along of said longitudinal axis, each centralizing template being constituted by a rigid part integral with the wall of the internal chamber or of said outer casing, having a shape which allows a limited displacement of said outer casing or said inner chamber, in contraction and expansion, opposite said jig centralizer, at least said outer envelope or said inner chamber respectively being made of a flexible or semi-rigid material adapted, if necessary, to remain in contact with the insulating coating when it is deformed.
- each centralizing template being constituted by a rigid part integral with the wall of the internal chamber or of said outer casing, having a shape which allows a limited displacement of said outer casing or said inner chamber, in contraction and expansion, opposite said jig centralizer, at least said outer envelope or said inner chamber respectively being made of a flexible or semi-rigid material adapted, if necessary, to
- said centralizing template is preferably constituted by a rigid piece with an external free surface or a cylindrical internal surface whose perimeter of the transversal section is set back relative to said outer envelope or said internal chamber respectively and limits the deformations of said outer casing or said internal chamber by mechanical abutment thereof on said rigid part in at least two opposite points of the perimeter of the cross section of said outer casing or said internal chamber respectively.
- Said displacement of the outer envelope or said internal chamber respectively, facing a said centralizing template can represent a variation of 0.1 to 10%, preferably 0.1 to 5%, of the distance between the two points opposite the perimeter of the cross section of said outer envelope or said inner chamber respectively.
- said rigid piece constituting said centralizing template having a part of the external or internal free surface sufficiently recessed with respect to the surface of the outer envelope or respectively of the internal chamber, and / or having perforations therethrough, of so as to create a space that allows the transfer of constituent material of said insulating coating through said centralizer template.
- This centralizing template aims to ensure a minimum coating insulating coating around said inner chamber in case of deformation by contraction of the casing and transfer of said flowable material between the two said bulkheads.
- said centralizing template has a cross section whose perimeter is inscribed within a geometrical figure which is substantially homothetic with respect to the geometrical figure defined by the perimeter of the cross section of said intermediate transverse sealed partition.
- the distance between two centralizing jigs along said longitudinal axis ZZ ' is such as to ensure that a quantity of material constituting said insulating coating, sufficient to ensure the minimum coating required for the insulation, is maintained. thermal of said inner chamber, given contraction deformations supported by said outer casing and / or said internal chamber.
- the device according to the invention comprises a plurality of centralizing templates, and two successive centralizing templates are spaced along said longitudinal axis ZZ 'of the envelope by a distance of 2 to 5 meters.
- said outer envelope and said internal chamber are co-axial along a longitudinal axis ZZ 'and define a perimeter having at rest two symmetry axes XX' and YY 'perpendicular to each other and to said longitudinal axis ZZ ', and at least one of the constituent walls of said outer casing and / or inner chamber is made of a flexible or semi-rigid material (that is to say capable of following the deformations of the insulating material and able to remain in contact with the latter when deformed), preferably, the other envelope being rigid and preferably still circular cross section.
- said inner chamber is made of rigid material and said outer shell of flexible or semi-rigid material.
- the cross section of the outer casing and / or the inner chamber is or are of circular or oval shape, or of rectangular shape, preferably with rounded corners.
- the cross section of said outer envelope or said inner chamber is preferably elongate in the same direction as this plane.
- the outer perimeter of the cross section of said outer protective envelope or of said inner chamber is a closed curve whose ratio of the square and the length on the surface it delimits is at least 13, as described. in WO 00/40886.
- the outer envelope or said internal chamber will then tend to deform to a circular shape, which mathematically constitutes the shape having, at constant perimeter, the largest surface.
- the capacity of the envelope or of said internal chamber to absorb the expansions due to the expansion of the various components under the effect of the temperature is increased, without creating any significant overpressure. because the envelope has the opportunity to go back to the round.
- the shape of the envelope will then be selected as a function of the overall expansion of the volume of the insulating outer coating, under the effect of temperature variations.
- a rectangular shape, a polygonal shape or an oval shape allows an expansion by bending of the wall while inducing a minimum of tensile stresses in the outer casing .
- the cross section of the inner chamber preferably made of a rigid material
- the cross section of the outer envelope preferably made of a flexible or semi-rigid material
- the transverse section of the outer envelope preferably made of a rigid material
- the cross section of said inner chamber preferably made of a flexible or semi-rigid material, is oval or rectangular in shape with rounded corners.
- said main pipe and, if appropriate, said inner pipe for supplying heat transfer fluid cooperate inside said inner chamber with centralizing elements which maintain said pipe or pipes substantially parallel to the axis ZZ 'of said internal chamber while allowing the movement of said pipes due to the differential expansions thereof along said axis ZZ '.
- the present invention also relates to a device for heating and thermal insulation of a bundle of subsea main pipes, characterized in that it comprises a thermal insulation and heating device according to the invention comprising at least two said main pipes arranged in parallel and inside said internal chamber.
- connection between the lower end of the vertical riser and said underwater pipe resting at the bottom of the sea is via an anchoring system comprising a base resting on the bottom, said base ensuring the maintenance and guidance of the connecting elements between the lower end of the vertical riser and the end of said pipe resting at the bottom of the sea, and said connecting elements comprising a curved pipe element and a pipe connection element , preferably a single connecting element, more preferably a single automatic connector, and said vertical riser comprising in its lower end portion a flexible joint allowing angular movements of the portion of the vertical riser located above said flexible joint, and said connecting elements comprising said flexible seal or vertical riser portion located below said flexible seal.
- vertical riser is used here to account for the theoretical position of the riser when the riser is at rest, provided that the riser axis can know angular movements with respect to the vertical and move in a cone.
- angle ⁇ whose apex corresponds to the point of attachment of the lower end of the riser on said base.
- connection elements in particular of the automatic connector type, are known to those skilled in the art and comprise the locking between a male part and a complementary female part, this locking being designed to be done very simply at the bottom of the sea. using a ROV, robot controlled from the surface, without requiring direct manual intervention of personnel.
- the installation according to the present invention is advantageous because it has a relatively static geometry of said connecting elements relative to said base, and more particularly with respect to said movable support, said connecting elements being held rigidly on said movable support.
- the lower part of the tower is thus perfectly stabilized and no longer supports any effort, especially at the connection between the vertical riser and the pipe resting at the bottom of the sea, since the longitudinal translation movements of the mobile support creates flexibility to the end of the submarine pipe resting at the bottom of the sea, said flexibility being able to absorb by deformation the elongation or retraction of the underwater pipe under the effect of temperature and pressure, avoiding thus to create considerable pushing forces within the underwater pipe, these efforts being able to reach 100, even 200 tons or more, and to transmit them to the foundation structure of the riser tower.
- said vertical riser comprises in its lower end portion a flexible seal, preferably reinforced, which allows angular movements ⁇ of the portion of said vertical riser located above said flexible seal, and said joining elements comprise said flexible seal or vertical riser portion below said flexible seal.
- a flexible seal allows a large variation of the angle ⁇ between the axis of the riser and its theoretical vertical position at rest, without creating significant stress in the pipe portions located on either side of said flexible seal: these flexible joints are known to those skilled in the art and may be constituted by a spherical ball joint with seal, or a laminated ball joint consisting of sandwiches of elastomer sheets and adhered sheet metal, capable of absorbing significant angular movements by deformation of the elastomers, while maintaining a perfect seal due to the absence of friction seal. Said angle ⁇ is in general between 10 and 15 degrees.
- said flexible seal is hollow to let the fluid, and its inner diameter is preferably of substantially the same diameter as the adjacent pipes connected thereto, in particular that of the vertical riser.
- reinforced flexible joint here means a seal capable of transferring to the mobile support the vertical forces created by the tension generated by the sub-surface float, and the horizontal forces created by the swell, and the current acting on the portion vertical riser, float and the flexible connection to the floating support, as well as by the movements of said floating support.
- said connecting elements comprise said flexible seal
- said flexible seal is thus fixedly fixed relative to said movable support.
- Said flexible seal then corresponds to an end element of the connecting elements ensuring the junction with said vertical riser.
- the method of intervention inside the pipes consists of pushing a rigid tube of small diameter, generally 20 to 50 mm, through the pipe.
- Said rigid tube is stored wound by simple bending on a drum, then unstripped when uncoiling it.
- Said tube can measure several thousand meters in a single length.
- the end of the tube located at the drum of the storage drum is connected by via a rotating joint to a pumping device capable of injecting a liquid at high pressure and at high temperature.
- the installation according to the invention therefore advantageously comprises a device in the shape of a gooseneck ensuring the connection between the upper end of said riser and a connecting pipe with the floating support, so that one can intervene with the inside said vertical riser from the upper part of the float through said gooseneck-shaped device, so as to access the interior of the riser and clean it by liquid injection and / or by scraping the inner wall of said riser, then, if necessary, of the underwater pipe resting at the bottom of the sea.
- the installation according to the invention comprises a second outer envelope with a circular cross section containing at least one insulation and heating device according to the invention, said outer envelope of said thermal insulation and heating device being made integral.
- said second outer envelope, preferably by elastic links and more preferably said second outer envelope comprises spiral means on its outer periphery capable of preventing the formation of vortex or tubular recess under the effect of marine current.
- This embodiment is particularly advantageous when the insulation and reheating device according to the invention comprises an outer envelope of non-circular cross section or when the installation comprises at least two so-called insulation and heating devices with two said external envelopes side by side with circular or non-circular cross section.
- the subject of the present invention is also a process for reheating and thermal insulation of at least one bottom-surface underwater main pipe intended to ensure the circulation of a hot effluent at the bottom of the sea or from the bottom of the sea to the surface, characterized in that a heating and thermal insulation device according to the invention is used, preferably in an installation according to the invention, and a heat transfer fluid is circulated inside. of said internal chamber.
- said coolant is selected from seawater, fresh water, diesel, oil.
- a heat transfer fluid with a density lower than that of the water is chosen so that it contributes to providing buoyancy to the insulation and reheating device according to the present invention. It may be, in particular gas oil density of the order of 0.85.
- a heat transfer fluid of high specific heat such as seawater or fresh water
- the method of heating and thermal insulation according to the invention is particularly advantageous when heating said main pipe by said circulation of said heat transfer fluid during a production restart phase after a prolonged shutdown.
- the various flexible pipes 6 2 , 6 3 , 7 2 and 12 are suspended on the edge of the FPSO and are connected to the top of the installation, the latter being called hereinafter turn, or at a table 11 1 , ie at a gooseneck device 24. All these flexible pipes adopt a chain configuration.
- the installation comprises indeed a gooseneck-shaped device 24 ensuring the connection between the upper end of said vertical riser 1a, 1b and a said connecting pipe 12 with the floating support 10, so that one can intervene inside said vertical riser from the upper part of said float 14 through said gooseneck-shaped device 24, so as to access the interior of said vertical riser 5 and clean it by liquid injection and / or by scraping the inner wall of said vertical riser 5, then, if necessary, said underwater pipe 13 resting at the bottom of the sea.
- Said flexible pipe 12 of production is thus connected to the gooseneck 24 at the top of which is installed a float 14 of high capacity.
- the gooseneck 24 is connected to the float 14 via a flexible pipe, which makes it possible to carry out, from the surface, cleaning operations of the vertical pipe 1a with the aid of a ship 10 1 equipped with a "coiled-tubing" device known to those skilled in the art
- the production pipe 1a passes through the entire insulation and reheating device 1 according to the invention and ends in its lower part by a flexible seal 22 tight whose inner diameter substantially corresponds to the diameter of the main pipe 1a.
- the base 19 is anchored to the bottom of the sea 31 and connected via a pipe-shaped elbow 20 and an automatic connector 21, the underwater pipe 13 resting on the seabed 30
- said flexible seal 22 allows the angular movements of the insulating and reheating device 1 under the effect of the swell and the current and, in addition, is capable of taking up the vertical tensioning forces created by the float. 14, as well as the possible inherent buoyancy of the insulating components integrated in the insulating and reheating device 1.
- the upper table 11 1 is integral with the vertical production line 1a and traversed 8 5 by thereof, while supporting the outer shell 3 1 and the tubular peripheral wall of the inner chamber 4.
- the production line 1a supports the full tension created by the float 14, and in addition, supports the table greater than 11 1 and the components of the insulating and heating device 1 consisting of the outer casing 3 and the internal chamber 4.
- the heat transfer fluid is supplied at the top of the isolation device and reheating 1 according to the invention by the flexible outer pipe 6 2, which is connected to an inner pipe 6 1 of circulation of the coolant within the chamber 4 at the first orifice 8 1 passing through the upper table 11 1 .
- the inner pipe 6 extends parallel to the main pipe 1a in the longitudinal direction ZZ 'of the internal chamber 4, so that the coolant discharges into the internal chamber 4 at the end 6 5 of the supply conduit 6 1 near the lower end 4 2 of the insulating and reheating device 1.
- the circulation of the coolant 5 inside the chamber 4 is by suction at the outlet orifice 8 2 at the top 4 1 of the insulation and reheating device 1 according to two embodiments.
- the second outlet orifice 8 2 of the heat-transfer fluid is connected to a second flexible external duct 6 3 for returning said heat-transfer fluid to the floating support 10, and this is at the level of floating support 10 that is a pumping system and fluid heating.
- a pump device 9 is installed on the upper Board 11 1 so as to cooperate with said first orifice 8 1 of coolant 5 and second orifice 8 2 output of the coolant fluid which allows the heat transfer fluid to circulate inside the chamber 4 in a loop.
- the pump 9 which can be electrical, hydraulic or pneumatic is contained inside a container 9 1 resting on the upper table 11 1 .
- the suction port of the pump is connected to outlet 8 of the orifice 2 of the heat transfer fluid at the table 11 1 and the pump outlet is connected to the power 8 of the 1-hole fluid inside the chamber 4 at the level of the upper table 11 1 .
- the electrical resistance 6 4 dips inside the pipe 6 1 for a sufficient length so that the coolant 5 can be warmed to the proper temperature before continuing its course down the chamber 4.
- the orifice 8 3 of the gas injection pipe 7 1 has been offset to the left with respect to the representation of FIGS. 7 and 8.
- the electrical resistance 6 4 and the motor of the pump 9 are supplied by a 6 6 electric cable chain configuration connecting the edge of the FPSO (not shown).
- the external flexible pipe 6 2 supplying heat transfer fluid cooperates with the orifice 6 7 and makes it possible to fill the heat transfer fluid of the chamber 5.
- the pump 9 and the electrical resistance device 6 4 within the container 9 1 can be maintained because the container 9 1 is independent and is connected by means not shown at the upper table 11 1 . It is therefore possible to disconnect the container 9 1 and lifting it to an intervention vessel 10 1 positioned vertically to the table 11 1 . After repair or replacement, the container 9 1 is down, the electrical cables are reconnected, the isolation valves, not shown, are open and the heat transfer fluid 5 can be recirculated and reheated as needed.
- This second embodiment with a pump 9 installed at the top of the insulating device 1 is advantageous in the case where the heat necessary for heating the heat transfer fluid 5 are produced by electric generators.
- the first variant represented in FIGS. 7 and 8 is advantageous in the case where the calories are recovered in various existing installations on board the floating support and, in particular, at the level of gas turbines, diesel units or pollutant disposal furnaces.
- the upper table 11 1 is secured to the main pipe 1a at the level of reinforcement 11 4 and supported by the latter.
- the wall of the inner chamber 4 and the outer casing 3 are tightly secured to the upper table 11 1 .
- the inner supply line 6 1 of the heat transfer fluid is supported in a sealed manner by the upper table 11 1 by means of reinforcement 11 5 , said supply line 6 1 traverses the entire height of the internal chamber 4 to open into a point 6 5 near the bottom 4 2 .
- the coolant 5 fills the entire space between the various pipes 1a, 6, inside the inner chamber 4, the space defined at its apex by the upper table 11 1 .
- the internal gas injection pipe 7 1 is sealingly secured to the upper table 11 1 with the aid of reinforcement 11 6 where it is kept in suspension.
- the inner pipe 7 gas injection is advantageously spirally wound around the feed line 6 1 of hot heat transfer fluid to be finally connected directly 4 to 7 the main pipe 1a production to perform the "gas- lift "(elevation by gas injection).
- the gas is injected under a pressure slightly greater than the internal pressure prevailing in the main pipe 1a at the orifice 7 4 , for example 0.5 to 2 bars more, which produces bubbles 7 3 at in crude oil, which have the effect of modifying the density and thus create an accelerating effect on the fluid vein.
- the hydrostatic pressure within the crude oil decreases, which causes an increase of the volume of the bubbles, thus reducing the bulk density of the oil and accelerating the process of transferring the crude oil from the bottom of the sea to the FPSO.
- the insulating coating 2 is confined in the space between the upper Board 11 1 the internal chamber 4, the outer casing 3, and the transverse partition 11 2 located at the lower end 4 of the device 2 insulation and warming 1.
- This transverse end partition 11 2 to the lower end 4 2 of the device is open at its center by an 8 port 4 so that the bottom of the device 1, the inside of the chamber 4 is in direct contact with the seawater.
- an interface zone is created between the hot heat transfer fluid and the seawater.
- the heat transfer fluid can be hot fresh water and the possible mixing of the water does not present any major inconvenience if it is not to lose locally a small portion of the calories of the coolant.
- an additional insulation 2 1 is advantageously provided, for example syntactic foam or a section of pipe in pipe extending, for example, over a height of 30 to 40 meters, centered on the interface zone between coolant and seawater, in the longitudinal direction ZZ '.
- the lower end 6 5 of the supply line 6 1 of the heat transfer fluid to, for example, 20 meters from the low point 4 2 of the internal chamber 4 and advantageously still equipping the end 6 5 of the supply duct 6 1 of heat transfer fluid, a deflector 6 6 , the hot water-cold water interface is maintained largely above the low point 4 2 of the internal chamber 4 and unnecessary heat losses are minimized.
- the complementary insulation 2 1 extending well above the baffle 6 8 is guaranteed, in addition to an excellent level of insulation, fully effective heating to the pipe 1a in its lower portion.
- This embodiment wherein the lower end 4 2 of the internal chamber 4 is opened by an orifice 8 4 of diameter greater than that of the main pipe 1a equipped with its coating supplementary insulator 2 1 is advantageous because it allows elongation and retraction of the riser 1a as a result of the temperature variations without having to deal with the mechanical difficulties of interface for the connection of the lower end of the main pipe 1a with the lower end transverse wall 11 2 of the isolation device 1 according to the invention.
- FIG. 8 shows an alternative embodiment, in which the lower end transverse partition 11 2 cooperates with a tubular sleeve 11 3 surrounding the lower end of the main pipe 1a equipped with its complementary insulating coating 2 1 of so as to confine, preferably in a sealed manner, the interior of the chamber 4.
- the coolant is a polluting fluid such as diesel fuel.
- the outer surface of the insulating means 2 1 surrounding the main pipe 1a at its lower end slides with reduced clearance inside the tubular sleeve 11 3 , and, to eliminate the risk of leakage, it is advantageous to install gaskets , not shown, at least one of the two ends of the tubular sleeve 11 3, the latter being secured to the bulkhead lower end 11 2
- centralizing elements 16 1 are shown inside the internal chamber 4, which make it possible to maintain the pipes 1a and 6 1 substantially parallel in the longitudinal direction ZZ 'of the chamber, while allowing the movements due to the differential expansions along said axis ZZ'.
- FIG 8 there is also shown an alternative embodiment with intermediate bulkheads 15, centralizers 16 and shaping templates 17 in the space between the inner chamber 4 and the outer shell 3 in the case where the insulating coating 2 is a material subject to migration.
- Intermediate watertight partitions 15, centralizing templates 16 and conforming templates 17 limit the expansion and contraction of the insulating material subject to migration, and therefore the deformations of the outer shell 3 as explained above.
- the intermediate transverse bulkheads 15 as well as the end bulkheads 11 1 , 11 2 consist of a closed solid rigid structure, traversed by the wall of said inner chamber 4 and integral with the wall of the outer shell 3; they are preferably spaced at regular intervals of at least 200 meters in the direction ZZ '.
- Each centralizing template 16 consists of a rigid part integral with the wall of the internal chamber 4 and has a shape that allows a limited displacement of the outer shell 3 both contraction and expansion.
- This embodiment is suitable for an internal chamber whose wall is rigid, in particular of circular shape, and the outer envelope 3 is made of a flexible or semi-rigid material able to remain in contact with the outer surface of the insulating coating 2 when it is deformed.
- FIG. 8A shows an embodiment where the perimeter of the cross-section of the cylindrical outer free surface of the rigid part constituting the centralizing template 16 is set back from that of the intermediate bulkhead 15 and limits the deformations of the outer casing 3 by mechanical stop of the latter on the rigid part 16 in at least two opposite points of the perimeter of the cross section of said outer casing 3.
- the rigid part 16 has a portion of its cylindrical outer free surface sufficiently recessed with respect to the surface of the outer casing 3 and / or has perforations therethrough so as to create a space which allows the transfer of insulating material 2 through the centralizing template or around the centralizing template 16.
- the outer envelope 3 when the outer envelope 3 is made of rigid material and has a profile of circular horizontal cross section and it is the inner chamber 4 which is made of flexible or semi-rigid material, preferably with an oval or elongated rectangular cross-sectional profile of rectangular type, the rigid piece constituting centralizing templates 16 is integral with the outer casing 3 and it is the cylindrical internal free surface of the rigid part 16 which is then set back relative to the wall of the internal chamber 4, so as to allow the expansion or contraction of the wall of the internal chamber 4 facing the centralizing template 16.
- shaping jigs 17 between two centralizing jigs 16 as shown in the lower compartment between the lower end wall 11 2 and the first intermediate transverse bulkhead 15 in FIG 8.
- This shaping jig 17 consists of a rigid structure integral with the walls of the outer casing 3 and the inner chamber 4.
- the shaping jig 17 has openings 17 1 allowing the passage of the material subject to migration of said insulating material 2 through the forming jig 17 and then to obtain the technical effect described above described in FR 2 821 915.
- FIGS. 2 to 6 show different types of geometrical configuration of the horizontal cross-section of the internal chambers 4 and outer casing 3, first of all the internal chambers 4 and outer casings 3 may both consist of a material rigid and have a horizontal cross section of circular configuration. This type of configuration may be suitable when the thermal insulating material 2 is a rigid material such as syntactic foam.
- the thermal insulating material 2 is a material subject to migration, in particular of the gel type, and more particularly still a phase-change compound such as paraffin or a combination of these various insulation and storage accumulation systems. energy, it is preferable that the outer envelope 3 and / or the inner chamber 4 are made of a flexible or semi-rigid material adapted to follow the deformations of said insulating material Various configurations may be envisaged.
- FIG. 2 to 6 there is shown an insulation and heating device which comprises a bundle of pipes 1a, 1b arranged parallel to the interior of the inner chamber 4 along its longitudinal direction ZZ '.
- FIGS. 3 and 4 there is shown an isolation device 1 more particularly adapted to the insulating coating 2 of gel type or phase change material subject to large volume variations due to the temperature and / or the phenomena of change. of phases.
- These devices have the capacity to absorb large volume variations by "rounded" the shape of the outer casing shown in Figure 3 with a horizontal cross section of rectangular type with rounded corners and in Figure 4 with a horizontal cross section in oval configuration.
- the outer casing 3 deforms in expansion towards a circular shape without generating significant stress in the outer casing 3 during increases in internal volume.
- the outer casing can be made of semi-rigid material, steel or any other metal or composite material.
- the wall of the inner chamber 4 may itself be made of semi-rigid material but it is preferably made of rigid material type.
- FIGS. 5 and 6 show an inverted configuration of the horizontal cross-section of the internal chambers 4 and outer envelopes 3.
- the deformable shape under the effect of the expansion / contraction of the insulating material 2 is constituted by the wall of the inner chamber 4 whose horizontal cross section has an elongate shape of rectangular type with rounded edge ( Figure 6) or oval ( Figure 5) and the outer casing 3 then being of circular configuration and may be made of a rigid material.
- the wall of the chamber 4 tends to return to the round, while it flattens when the insulating material 2 expands.
- FIG. 10 there is shown in horizontal section an installation comprising two insulating and reheating devices 1 according to the invention, each having an outer casing 3 whose horizontal cross section has a rectangular profile with a rounded angle. Both devices 1 are installed at the center of a second circular outer casing 3 1 acting as screen. Second circular screen envelopes have also been described in the state of the art. Said second circular envelope 3 1 minimizes the clean hydrodynamic coefficients of the assembly and therefore the forces due to the marine current.
- This second circular casing 3 is made integral with one of the devices 1 by resilient pads 3 5, made of elastomer or thermoplastic material or by simple springs.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
Abstract
Description
La présente invention concerne des dispositifs et un procédé de réchauffage et d'isolation thermique d'au moins une conduite sous-marine à grande profondeur. Elle concerne plus particulièrement les conduites de liaison fond-surface reliant le fond de la mer à des supports flottant en surface.The present invention relates to devices and a method for heating and thermal insulation of at least one underwater pipe at great depth. It relates more particularly to the bottom-surface connection pipes connecting the seabed to floating surface supports.
Le secteur technique de l'invention est le domaine de la fabrication et du montage de systèmes d'isolation et de réchauffage à l'extérieur et autour des conduites dans lesquelles circulent des effluents chauds dont on veut limiter les déperditions de chaleur.The technical field of the invention is the field of the manufacture and assembly of insulation and heating systems outside and around the pipes in which circulate hot effluents whose heat losses are to be limited.
Cette invention s'applique plus particulièrement aux développements de champs pétroliers en mer profonde, c'est à dire des installations pétrolières installées en pleine mer, dans lesquelles les équipements de surface sont en général situés sur des structures flottantes, les têtes de puits étant au fond de la mer. Les conduites concernées par la présente invention étant plus particulièrement les risers appelés conduites de liaison fond-surface remontant vers la surface, mais aussi les conduites reliant les têtes de puits auxdites conduites de liaisons fond surface.This invention applies more particularly to deep-sea oil field developments, ie offshore oil installations, in which surface equipment is generally located on floating structures, the wellheads being The ducts concerned by the present invention being more particularly the risers called bottom-surface connection pipes going up to the surface, but also the pipes connecting the well heads to said bottom surface connection pipes.
La présente invention concerne également une installation de liaison fond-surface d'au moins une conduite sous-marine installée à grande profondeur de type tour hybride.The present invention also relates to a bottom-surface connection installation of at least one deep-sea pipe installed at great depth of the hybrid tower type.
L'application principale de l'invention est l'isolation thermique et le réchauffage de conduites ou canalisations immergées, sous-marines ou subaquatiques, et plus particulièrement à grande profondeur, au-delà de 300 mètres, et véhiculant des produits pétroliers chauds dont un trop grand refroidissement serait problématique aussi bien en régime de production normale qu'en cas d'arrêt de production. Les développements en mer profonde sont effectués par des profondeurs d'eau atteignant actuellement 1500 m. Les développements futurs sont envisagés par des profondeurs d'eau jusqu'à 3000-4000 m et au-delà.The main application of the invention is the thermal insulation and heating of submerged or underwater pipes or pipes, and more particularly at great depth, beyond 300 meters, and carrying hot oil products including a Too much cooling would be problematic both in normal production and in case of production stoppage. Deep sea developments are carried out by water depths currently reaching 1500 m. Future developments are envisaged by water depths up to 3000-4000 m and beyond.
Dans ce type d'applications, de nombreux problèmes se posent si la température des produits pétroliers diminue d'une valeur significative importante par rapport à leur température de production qui est souvent au-delà de 60 à 80°C alors que la température de l'eau environnante surtout à grande profondeur peut être largement inférieure à 10°C et atteindre 4°C. Si les produits pétroliers se refroidissent par exemple en dessous de 30° à 60°C pour une température initiale de 70 à 80°C on observe en général :
- une forte augmentation de la viscosité qui diminue alors le débit de la conduite,
- une précipitation de paraffine dissoute qui augmente alors la viscosité du produit et dont le dépôt peut diminuer le diamètre intérieur utile de la conduite,
- la floculation des asphaltènes induisant les mêmes problèmes,
- la formation soudaine, compacte et massive d'hydrates de gaz qui précipitent à forte pression et faible température, obstruant ainsi brusquement la conduite.
- a sharp increase in viscosity which then decreases the flow of the pipe,
- a dissolved paraffin precipitation which then increases the viscosity of the product and the deposition of which may reduce the effective inner diameter of the pipe,
- flocculation of asphaltenes inducing the same problems,
- the sudden, compact and massive formation of gas hydrates that precipitate at high pressure and low temperature, thus abruptly obstructing the pipe.
Paraffines et asphaltènes restent accrochés à la paroi et nécessitent alors un nettoyage par raclage de l'intérieur de la conduite ; en revanche, les hydrates sont encore plus difficiles, voire même parfois impossibles à résorber.Paraffins and asphaltenes remain attached to the wall and then require cleaning by scraping the inside of the pipe; on the other hand, hydrates are even more difficult, and sometimes even impossible to absorb.
De plus, dans les colonnes montantes, le gaz mélangé au pétrole brut à l'eau a tendance à se détendre au fur et à mesure de sa remontée, car la pression hydrostatique baisse. Cette détente étant quasi-adiabatique, les calories sont prélevées sur le fluide polyphasique même, et il en résulte un abaissement significatif de la température interne, ce dernier pouvant atteindre 8 à 15°C sur une dénivellation de 1500m.In addition, in the risers, the gas mixed with crude oil with water tends to relax as it rises, because the hydrostatic pressure drops. This relaxation being quasi-adiabatic, the calories are taken from the multiphase fluid itself, and this results in a significant lowering of the internal temperature, the latter being able to reach 8 to 15 ° C on a slope of 1500m.
L'isolation thermique et le réchauffage de telles conduites a donc pour fonction de retarder le refroidissement des effluents pétroliers véhiculés non seulement en régime de production établi, pour que leur température soit par exemple d'au moins 40°C en arrivant en surface, pour une température de production à l'entrée de la conduite de 70°C à 80°C, mais également en cas de diminution ou même d'arrêt de la production, afin d'éviter que la température des effluents ne descende par exemple en dessous de 30°C, afin de limiter les problèmes ci-dessus, ou tout au moins, de permettre de les rendre réversibles.The thermal insulation and the heating of such pipes therefore has the function of delaying the cooling of the petroleum effluents conveyed not only in the established production regime, so that their temperature is for example at least 40 ° C when arriving at the surface, for a production temperature at the inlet of the pipe from 70 ° C to 80 ° C, but also in case of reduction or even stop of the production, in order to prevent the temperature of the effluents from falling for example below 30 ° C, to limit the above problems, or at least to allow to make them reversible.
Dans le cas de l'installation de conduites uniques ou de faisceaux de conduites (appelés communément « bundles »), on préfère en général préfabriquer lesdites conduites à terre en longueurs unitaires de 250 à 500 m, que l'on tire ensuite depuis le large à l'aide d'un remorqueur. Dans le cas d'une liaison fond-surface de type tour, la longueur de conduite représente en général de 50 à 95% de la hauteur d'eau, c'est à dire qu'elle peut atteindre 2400 m pour une profondeur d'eau de 2500 m. Lors de sa fabrication à terre, on tire depuis la mer la première longueur unitaire que l'on raboute à la suivante, le remorqueur maintenant l'ensemble en traction pendant la phase de raboutage, laquelle peut durer plusieurs heures, voire plusieurs jours. Lorsque l'intégralité de la conduite ou du faisceau de conduites a été mise à l'eau, l'ensemble est remorqué vers le site, en général en subsurface, sensiblement à l'horizontale, où il est alors « cabané », c'est à dire basculé en position verticale, pour atteindre la position verticale, puis il mis en place en position définitive.In the case of the installation of single pipes or bundles of pipes (commonly called "bundles"), it is generally preferred to prefabricate said shore pipes in unit lengths of 250 to 500 m, which are then drawn from the open sea. using a tug. In the case of a tower-type bottom-surface connection, the length of pipe generally represents from 50 to 95% of the water height, ie it can reach 2400 m for a depth of water of 2500 m. When it is manufactured on land, the first unit length is pulled from the sea and then tied to the next, the tug holding the assembly in tension during the splicing phase, which can last several hours or even days. Where the entire pipe or pipe bundle has been launching, the assembly is towed towards the site, generally in subsurface, substantially horizontally, where it is then "cabane", that is to say rocked in vertical position, to reach the vertical position, then he set up in final position.
On connaît un dispositif d'isolation d'au moins une conduite sous-marine qui peut être en effet seule ou assemblée avec d'autres conduites, constituant alors ce que l'on appelle des « bundles » ou « faisceaux » destinée à être posée sur le fond à grande profondeur, comportant un revêtement extérieur isolant entourant celle-ci et une enveloppe externe de protection. L'isolation de la ou des conduites ou du faisceau de conduite communément dénommé « bundle » est alors protégée par une enveloppe extérieure de protection qui a une double fonction :
- d'une part d'éviter les endommagements qui peuvent se produire lors de la fabrication ou lors du remorquage comme lors de la pose, surtout dans les zones de faible profondeur d'eau, ledit remorquage pouvant dans certains cas se faire sur des distances de plusieurs centaines de kilomètres. A cet effet, on utilise des matériaux assez résistants tels qu'en acier, en composé thermoplastique ou thermodurcissable ou encore en matériau composite ;
- d'autre part de créer un confinement étanche autour du système d'isolation. Ce confinement est nécessaire dans le cas de revêtements extérieurs isolants constitués de matériaux sujets à migration, voire comprenant des composés fluides.
- on the one hand to avoid damage that may occur during manufacture or during towing as during installation, especially in areas of shallow water, said towing may in some cases be done over distances of several hundred kilometers. For this purpose, fairly strong materials such as steel, thermoplastic or thermosetting compound or composite material are used;
- on the other hand to create a sealed containment around the insulation system. This confinement is necessary in the case of insulating outer coatings consisting of materials that are subject to migration, or even including fluid compounds.
En effet, par des fonds de 2000 m, la pression hydrostatique est de l'ordre de 200 bars, soit 20 Méga Pascals, ce qui implique que l'ensemble des conduites et de leur revêtement en matériau isolant doit être capable de résister non seulement à ces pressions sans dégradation lors des pressurisations et dépressurisations de la conduite dans laquelle circule le fluide chaud, mais encore aux cycles de température lesquels engendrent des variations de volume des différents composants, et donc de pressions positives ou négatives pouvant conduire à la destruction partielle ou totale de l'enveloppe soit par dépassement des contraintes admissibles, soit par implosion de cette enveloppe externe (variations de pression interne négatives).Indeed, with 2000 m depth, the hydrostatic pressure is of the order of 200 bars, or 20 Mega Pascals, which implies that all the pipes and their coating of insulating material must be able to withstand not only these pressures without degradation during pressurization and depressurization of the pipe in which circulates the hot fluid, but also to temperature cycles which generate volume variations of the various components, and therefore positive or negative pressures that can lead to partial destruction or total of the envelope either by exceeding the allowable stresses, or by implosion of this external envelope (negative internal pressure variations).
Le pétrole brut cheminant sur de très grandes distances, plusieurs kilomètres, on cherche à leur fournir un niveau d'isolation extrême pour, d'une part minimiser l'augmentation de viscosité qui conduirait à une réduction de la production horaire des puits, et d'autre part d'éviter le blocage du flot par dépôt de paraffine, ou formation d'hydrates dès lors que la température descend aux alentours de 30-40°C. Ces derniers phénomènes sont d'autant plus critiques, particulièrement en Afrique de l'Ouest, que la température du fond de la mer est de l'ordre de 4°C et que les pétroles bruts sont de type paraffinique.Since crude oil travels a great distance over several kilometers, it is sought to provide them with an extreme level of insulation in order, on the one hand, to minimize the increase in viscosity which would lead to a reduction in the hourly production of the wells, and on the other hand to avoid the blockage of the flow by deposition of paraffin, or formation of hydrates when the temperature drops to about 30-40 ° C. These last phenomena are all the more critical, particularly in West Africa, that the temperature of the sea floor is of the order of 4 ° C and that the crude oils are of the paraffinic type.
On connaît de nombreux systèmes d'isolation thermique qui permettent d'atteindre le niveau de performances requis et de résister à la pression du fond de la mer qui est de l'ordre de 150 bars à 1500 m de profondeur. On cite entre autres les concepts de type "pipe-in-pipe", comprenant une conduite véhiculant le fluide chaud installée dans une conduite de protection externe, l'espace entre les deux conduites étant, soit simplement rempli d'un calorifuge, confiné ou non sous vide, soit simplement tiré au vide. De nombreux autres matériaux isolants ont été développés pour assurer une isolation à hautes performances, certains d'entre eux étant résistants à la pression. Ces matériaux isolants entourent simplement la conduite chaude et sont en général confinés au sein d'une enveloppe extérieure souple ou rigide, en équipression et dont la fonction principale est de maintenir dans le temps une géométrie sensiblement constante.Many thermal insulation systems are known which make it possible to reach the required level of performance and to withstand the pressure of the sea floor which is of the order of 150 bar to 1500 m of depth. Examples include "pipe-in-pipe" concepts, including a pipe carrying the hot fluid installed in an external protective pipe, the space between the two pipes being either simply filled with a heat insulation, confined or not under vacuum, or simply drawn to vacuum. Many other insulating materials have been developed to provide high performance insulation, some of them being pressure resistant. These insulating materials simply surround the hot pipe and are generally confined within a flexible or rigid outer shell, in equipression and whose main function is to maintain a substantially constant geometry in time.
Tous ces dispositifs véhiculant un fluide chaud au sein d'une conduite isolé présentent, à des degrés divers, des phénomènes de dilatation différentielle. En effet la conduite interne, en général en acier, se trouve à une température que l'on cherche à maintenir le plus élevé possible, par exemple 60 ou 80°C, alors que l'enveloppe externe, bien souvent elle aussi en acier, se trouve à la température de l'eau de mer, c'est à dire aux alentours de 4°C. Les efforts engendrés sur les éléments de liaison entre conduite interne et enveloppe externe sont considérables et peuvent atteindre plusieurs dizaines, voire plusieurs centaines de tonnes et l'élongation globale résultante est de l'ordre de 1 à 2 m dans le cas de conduites isolées de 1000 à 1200 m de longueur.All these devices carrying a hot fluid in an insulated pipe have, to varying degrees, differential expansion phenomena. Indeed the inner pipe, usually steel, is at a temperature that is sought to maintain the highest possible, for example 60 or 80 ° C, while the outer shell, often also steel, is at seawater temperature, ie around 4 ° C. The forces generated on the connecting elements between the inner pipe and the outer casing are considerable and can reach several tens or even hundreds of tons and the resulting overall elongation is of the order of 1 to 2 m in the case of insulated pipework. 1000 to 1200 m in length.
Dans les brevets WO 00/49263, WO 02/066786 et WO 02/103153 au nom de la demanderesse, on a décrit différentes installations du type tour hybride, comportant des conduites isolées.In patents WO 00/49263, WO 02/066786 and WO 02/103153 in the name of the applicant, there have been described various installations of the hybrid tower type, comprising isolated conduits.
Un problème posé selon la présente invention est de pouvoir réaliser et installer de telles liaisons fond-surface pour conduites sous-marines à grandes profondeurs, telles qu'au delà de 1 000 mètres par exemple, et de type comportant une tour verticale et dont le fluide transporté doit être maintenu au dessus d'une température minimale jusqu'à son arrivée en surface, en réduisant au minimum les composants sujets à déperdition thermique, en évitant les inconvénients créés par l'expansion thermique propre, ou différentielle, des divers composants de ladite tour, de manière à résister aux contraintes extrêmes et aux phénomènes de fatigue cumulée sur la durée de vie de l'ouvrage, qui dépasse couramment 20 années.A problem posed according to the present invention is to be able to make and install such bottom-surface connections for submarine pipes at great depths, such as beyond 1000 meters for example, and of type comprising a vertical tower and whose transported fluid must be kept above a minimum temperature until it reaches the surface, minimizing components subject to heat loss, avoiding the disadvantages created by the clean thermal expansion, or differential, of the various components of said tower so as to withstand the extreme stresses and phenomena cumulative fatigue over the life of the structure, which currently exceeds 20 years.
Le brevet WO 00/40886 décrit un matériau d'isolation thermique à changement de phase solide-liquide et chaleur latente de fusion, capable de restituer des calories à la conduite interne, et confiné autour de ladite conduite interne au sein d'une enveloppe étanche et déformable, ce qui la rend capable de suivre l'expansion et la contraction des divers composants sous l'influence de tous les paramètres d'environnement, dont les températures interne et externe.WO 00/40886 discloses a solid-liquid phase change thermal insulation material and latent heat of fusion, capable of restoring calories to the inner pipe, and confined around said inner pipe within a sealed envelope and deformable, which makes it able to track the expansion and contraction of various components under the influence of all environmental parameters, including internal and external temperatures.
Plus précisément dans WO 00/40886, on met en oeuvre un matériau d'isolation à changement de phase solide-liquide et chaleur latente de fusion, et dont le changement de phase s'effectue à une température T0 supérieure à la température T1 , à partir de laquelle le pétrole circulant à l'intérieur de la conduite devient trop visqueux, en général la température T1 est comprise entre 20° et 60°C et inférieure à la température T2 du pétrole brut à l'entrée de la conduite.More specifically, WO 00/40886 uses a solid-liquid phase change isolation material and latent heat of fusion, and whose phase change is effected at a temperature T 0 greater than the temperature T 1. from which the oil circulating inside the pipe becomes too viscous, in general the temperature T 1 is between 20 ° and 60 ° C and lower than the temperature T 2 of the crude oil at the inlet of the conduct.
Ce matériau à changement de phase, ci après dénommé "PCM" (Phase Change Material), permet de conserver, en cas d'arrêt de production, le fluide normalement en circulation à l'intérieur de la conduite intérieure à une température élevée, de manière à éviter la formation de paraffines ou d'hydrates dans le pétrole. D'autres matériaux à changement de phase sont envisageables, tels des sels hydratés ou non, stockant et restituant une énergie considérable lors des changement de phase.This phase-change material, hereinafter referred to as "PCM" (Phase Change Material), makes it possible, in case of production stoppage, to keep the fluid normally circulating inside the pipe at a high temperature, way to avoid the formation of paraffins or hydrates in the oil. Other phase-change materials are conceivable, such as hydrated or non-hydrated salts, storing and returning considerable energy during phase changes.
Ainsi, lors des arrêts de production, le pétrole brut ne circule plus et reste en position au sein de la conduite et la déperdition de calories vers l'environnement extérieur, en général à 4°C par très grand fond, est effectuée au détriment du PCM, le pétrole brut restant toujours à une température supérieure ou sensiblement égale à celle dudit PCM.Thus, during production shutdowns, crude oil no longer circulates and remains in position within the pipe and the loss of heat to the outside environment, generally at 4 ° C by very deep bottom, is carried out to the detriment of PCM, the crude oil still remaining at a temperature greater than or substantially equal to that of said PCM.
Pendant toute la phase de solidification ou cristallisation du PCM, la température du PCM reste sensiblement constante et égale à T0, par exemple 36°C, et donc, la conduite interne comportant du pétrole brut reste à une température supérieure ou sensiblement égale à celle (To) du PCM, c'est à dire 36°C, empêchant ainsi la formation de paraffines ou d'hydrates dans le pétrole brut.During the entire phase of solidification or crystallization of the PCM, the temperature of the PCM remains substantially constant and equal to T 0 , for example 36 ° C, and therefore, the internal pipe containing crude oil remains at a temperature greater than or substantially equal to that (T o ) of the PCM, ie 36 ° C, thus preventing the formation of paraffins or hydrates in the crude oil.
Les matériaux à changement de phase décrits précédemment présentent généralement une variation volumique importante lors de leur changement d'état, pouvant atteindre 20 % dans le cas des paraffines. L'enveloppe extérieure de protection doit pouvoir s'accommoder sans dommage de ces variations de volume.The phase change materials described previously generally have a significant volume change when they change state, up to 20% in the case of paraffins. The outer protective casing must be able to accommodate without any damage from these variations in volume.
C'est pourquoi, selon WO 00/40886, ce matériau isolant à changement de phase est confiné au sein d'une enveloppe étanche et déformable, ce qui la rend capable de suivre l'expansion et la contraction des divers composants sous l'influence de tous les paramètres d'environnement, dont les températures interne et externe. La conduite est ainsi soit confinée au sein d'une enveloppe souple thermoplastique, notamment en polyéthylène ou polypropylène, par exemple circulaire, l'accroissement ou la réduction du volume intérieur, dû aux variations de température, comparable à une respiration est absorbée par la souplesse de l'enveloppe constituée par exemple d'un matériau thermoplastique présentant une grande limite élastique. Pour résister aux contraintes mécaniques, on utilise de préférence une enveloppe semi-rigide constituée d'un matériau résistant tel l'acier ou un matériau composite, tel qu'un composé réalisé à partir d'un liant tel qu'une résine époxy et des fibres minérales ou organiques telles que des fibres de verre ou de carbone, mais alors on donne au faisceau une forme ovoïde ou aplatie, avec ou sans contre-courbure, ce qui lui confère, à périmètre constant, une section inférieure au cercle correspondant. Ainsi, la « respiration » du faisceau, conduira, dans le cas d'une augmentation et d'une réduction du volume, respectivement à une « remise au rond » de l'enveloppe, ou à une accentuation de l'aplatissement de ladite enveloppe. Dans ce cas, l'ensemble faisceau-enveloppe est désigné par le terme «bundle plat », par opposition à une enveloppe circulaire.This is why, according to WO 00/40886, this phase-change insulating material is confined within a sealed and deformable envelope, which makes it capable of following the expansion and contraction of the various components under the influence. all environment parameters, including internal and external temperatures. The pipe is thus either confined within a thermoplastic flexible envelope, in particular polyethylene or polypropylene, for example circular, the increase or reduction of the internal volume, due to temperature variations, comparable to breathing is absorbed by the flexibility the envelope consisting for example of a thermoplastic material having a large elastic limit. To resist mechanical stresses, a semi-rigid envelope made of a resistant material such as steel or a composite material, such as a compound made from a binder such as an epoxy resin and inorganic or organic fibers such as glass or carbon fibers, but then the beam is given an ovoid or flattened shape, with or without counter-curvature, which gives it, at constant perimeter, a section smaller than the corresponding circle. Thus, the "breathing" of the beam, will lead, in the case of an increase and a reduction in volume, respectively to a "surrender to the round" of the envelope, or to an accentuation of the flattening of said envelope . In this case, the bundle-envelope assembly is designated by the term "flat bundle" as opposed to a circular envelope.
Le problème de la présente invention est, plus particulièrement, de fournir un système amélioré d'isolation thermique d'une conduite sous-marine ou d'un faisceau de conduites intégrant un matériau isolant, notamment un matériau PCM, et dont le comportement en phase de redémarrage soit tel que ledit redémarrage puisse être réalisé en un temps réduit par rapport à l'art antérieur.The problem of the present invention is, more particularly, to provide an improved thermal insulation system of an underwater pipe or a bundle of pipes incorporating an insulating material, in particular a PCM material, and whose behavior in phase restarting such that said restart can be performed in a reduced time compared to the prior art.
En effet, en cas d'arrêt de plusieurs jours ou de plusieurs semaines, pendant la période active du PCM, on prend en général la précaution de purger la ligne en effectuant une circulation en boucle d'un produit de substitution, par exemple du gazole, de manière à garder l'ensemble en sécurité avant de laisser la conduite descendre en température jusqu'à 4°C. Et, lors du redémarrage, on utilise en général le même gazole pour effectuer le réchauffage de la conduite en le faisant circuler en boucle à partir du support flottant où on le réchauffe en le faisant passer dans des chaudières ou des échangeurs de chaleur, en récupérant des calories en provenance des turbines à gaz. Ainsi, lors du réchauffage, les calories vont migrer de l'intérieur de la conduite vers le milieu ambiant extérieur, en général à 4°C et, pendant toute de la phase de réchauffage, la majeure partie des calories véhiculées par le gazole en circulation vont être absorbées par le PCM pour sa reliquéfaction, ce qui peut prendre plusieurs jours, voire plusieurs semaines si la conduite est très longue, ou si la production de calories au niveau du support flottant est insuffisante. Ce n'est qu'après cette phase de réchauffage avec circulation de gazole, que l'on peut reconnecter les têtes de puits et reprendre la production. En effet, si on redémarre prématurément la production, le matériau isolant PCM ne sera que partiellement liquide et la température interne sera inférieure ou égale à T0 (température de changement de phase), donc basse, sur l'ensemble de la conduite sous-marine, et l'on observe alors les phénomènes suivants.Indeed, in case of stopping for several days or weeks, during the active period of the PCM, it is generally taken care to purge the line by looping a loop of a substitute product, for example diesel so as to keep the assembly safe before allowing the pipe to cool down to 4 ° C. And, during the restart, the same diesel is generally used to reheat the pipe by circulating it in a loop from the floating support where it is heated by passing it through boilers or heat exchangers, recovering calories from gas turbines. Thus, during reheating, the calories will migrate from the inside of the pipe to the external ambient environment, generally at 4 ° C and, during the whole heating phase, most of the calories conveyed by the diesel fuel circulating will be absorbed by the PCM for its reliquefaction, which can take several days or weeks if the driving is very long, or if the production of calories at the floating support is insufficient. It is only after this heating phase with circulation of diesel, that we can reconnect the wellheads and resume production. Indeed, if the production is restarted prematurely, the PCM insulating material will be only partially liquid and the internal temperature will be less than or equal to T 0 (phase change temperature), and therefore low, over the entire sub-pipe. marine, and we then observe the following phenomena.
Au cours de la progression du pétrole sortant du puits à une température élevée, par exemple 75°C, vers le FPSO, il fournit des calories au PCM pour sa liquéfaction, et de ce fait, la température du pétrole baisse rapidement, car le PCM joue le rôle, non pas de système d'isolation, mais le rôle inverse d'absorbeur de calories, conduisant à un refroidissement accéléré du pétrole brut. Ainsi, après un parcours de quelques kilomètres, voire de quelques centaines de mètres seulement, la température du pétrole descend à la valeur critique de T1 à laquelle des phénomènes redoutés de formation de bouchons d'hydrates ou de paraffine au sein du pétrole circulant dans la conduite peuvent se produire et alors conduire à un blocage du flux de pétrole brut. Dans la zone proche des têtes de puits, le PCM se reliquéfie progressivement et le front de reliquéfaction complète progresse lentement vers le FPSO. Dans une zone plus éloignée, la température reste stable aux alentours de T0 et la liquéfaction ne peut se poursuivre que si le pétrole brut est toujours à une température supérieure à T0. Ainsi, dans le cas de lignes très longues, par exemple de 5 ou 6 km, dans une zone très éloignée de la source chaude, c'est à dire proche du FPSO, il n'y a pas suffisamment d'apport de calories et le PCM perd alors des calories vers le milieu ambiant à 4°C. Pour fournir ces calories il passe progressivement à l'état solide.During the progression of oil from the well at a high temperature, eg 75 ° C, to the FPSO, it provides calories to the PCM for liquefaction, and as a result, the temperature of the oil drops rapidly as the PCM plays the role, not of insulation system, but the reverse role of caloric absorber, leading to accelerated cooling of crude oil. Thus, after a journey of a few kilometers, or even a few hundred meters only, the oil temperature drops to the critical value of T 1 at which dreaded phenomena of formation of hydrate or paraffin plugs within the oil circulating in driving can occur and then lead to a blockage of the crude oil flow. In the area near the wellheads, the PCM gradually reliquifies and the complete liquefaction front progresses slowly towards the FPSO. In a more distant zone, the temperature remains stable around T 0 and liquefaction can only continue if the crude oil is always at a temperature above T 0 . Thus, in the case of very long lines, for example 5 or 6 km, in an area very far from the hot source, ie close to the FPSO, there is not enough calories and the PCM then loses calories to the environment at 4 ° C. To provide these calories it gradually goes to the solid state.
Pour des conduites très longues, il apparaît que, lors d'un redémarrage, le PCM dans la zone proche des têtes de puits peut être en phase de reliquéfaction, alors qu'à l'autre extrémité, proche du FPSO, le PCM est en phase de resolidification, car la déperdition de calories vers le milieu ambiant est supérieure à l'apport en calorie par le pétrole brut circulant dans la conduite. En fait le PCM est en attente d'un front chaud de pétrole brut qui le transformera à nouveau en phase liquide.For very long pipes, it appears that, during a restart, the PCM in the zone near the wellheads can be in reliquefaction phase, while at the other end, close to the FPSO, the PCM is in resolidification phase, because the loss of calories to the environment is higher than the calorie intake by the crude oil circulating in the pipe. In fact the PCM is waiting for a hot crude oil front that will turn it back into the liquid phase.
Un but de la présente invention est donc de réaliser un système d'isolation de conduite permettant de réchauffer et maintenir en température l'effluent circulant dans une conduite sous-marine au-delà d'une valeur fixée, de sorte qu'après un arrêt prolongé, la durée de la phase de redémarrage soit réduite et tel que, par exemple, on puisse, le cas échéant, se contenter de réchauffer partiellement la conduite sans avoir à attendre que l'intégralité du matériau PCM, le cas échéant, soit complètement liquéfiée.An object of the present invention is therefore to provide a pipe insulation system for heating and maintaining the temperature of the effluent flowing in an underwater pipe beyond a fixed value, so that after a stop prolonged, the duration of the restart phase is reduced and such that, for example, it may be possible, if necessary, just to partially heat the pipe without having to wait until all the PCM material, if any, is completely liquefied.
Pour ce faire, la présente invention fournit un dispositif de réchauffage et d'isolation thermique d'au moins une conduite principale sous-marine destinée à la circulation d'un effluent chaud, comportant :
- un revêtement d'un matériau isolant thermique entourant la ou lesdites conduites principales,
- ledit revêtement isolant étant recouvert d'une enveloppe externe de protection étanche, de préférence de forme cylindrique,
- a) une chambre interne de préférence de forme cylindrique et coaxiale à ladite enveloppe externe, telle que :
- le dit revêtement isolant entoure ladite chambre interne et, de préférence, remplit l'espace annulaire entre ladite enveloppe externe et ladite chambre interne, et
- ladite conduite principale est contenue à l'intérieur de ladite chambre interne, de préférence de forme cylindrique, et
- b) des moyens aptes à maintenir un fluide caloporteur en température et le faire circuler à l'intérieur de ladite chambre interne, ledit fluide caloporteur entourant la conduite principale contenue à l'intérieur de ladite chambre interne.
- a coating of a thermal insulating material surrounding the at least one main pipe,
- said insulative coating being covered by an outer protective casing, preferably cylindrical,
- a) an internal chamber preferably cylindrical in shape and coaxial with said outer envelope, such that:
- said insulative coating surrounds said inner chamber and, preferably, fills the annular space between said outer shell and said inner chamber, and
- said main pipe is contained within said internal chamber, preferably of cylindrical shape, and
- b) means capable of maintaining a heat-transfer fluid in temperature and circulating it inside said internal chamber, said coolant surrounding the main pipe contained inside said internal chamber.
Le préambule avant les caractéristiques a) et b) est connu du document FR-A-2 821 917.The preamble before the characteristics a) and b) is known from document FR-A-2 821 917.
Dans un mode de réalisation avantageux, ladite chambre interne est parcourue par au moins une conduite interne d'injection de gaz apte à permettre l'injection de gaz dans ladite conduite principale, ladite conduite interne d'injection de gaz étant raccordée à ladite conduite principale au niveau d'une extrémité dans la direction longitudinale de ladite conduite principale, à l'intérieur de ladite chambre interne, le cas échéant au niveau d'une extrémité inférieure, et, de préférence, ladite conduite d'injection de gaz s'étendant à l'extérieur de cette dite chambre interne sous forme d'une conduite externe d'injection de gaz reliant ladite conduite interne d'injection de gaz à un support flottant.In an advantageous embodiment, said internal chamber is traversed by at least one internal gas injection pipe capable of allowing the injection of gas into said main pipe, said inner gas injection pipe being connected to said main pipe. at one end in the longitudinal direction of said main pipe, within said inner chamber, where appropriate at a lower end, and preferably said gas injection pipe extending outside said internal chamber in the form of an external gas injection pipe connecting said internal gas injection pipe to a floating support.
L'injection de gaz en pied d'une liaison fond-surface de type riser, crée des bulles au sein de l'effluent en progression ascendante, ce qui réduit sa densité et favorise ainsi la remontée dudit effluent. Cette technologie appelée "gas-lift", c'est à dire élévation par injection de gaz, est bien connu de l'homme de l'art et ne sera pas décrite plus en détails ici.The gas injection at the bottom of a riser-type bottom-surface connection creates bubbles in the upwardly rising effluent, which reduces its density and thus promotes the rise of said effluent. This technology called "gas lift", ie elevation by gas injection, is well known to those skilled in the art and will not be described in more detail here.
Dans un mode de réalisation particulier, ladite chambre interne comprend des moyens de circulation d'un fluide caloporteur comprenant au moins une conduite interne d'amenée d'un fluide caloporteur s'étendant à l'intérieur de ladite chambre interne depuis un premier orifice situé au niveau d'une première extrémité de la chambre interne, de préférence jusqu'à proximité de la deuxième extrémité de ladite chambre interne dans la direction longitudinale, et un deuxième orifice de sortie dudit fluide caloporteur, de préférence au niveau de ladite première extrémité de la chambre interne, ladite conduite interne d'amenée d'un fluide caloporteur étant située à côté de ladite conduite principale, entre cette dernière et ledit matériau isolant externe..In a particular embodiment, said internal chamber comprises means for circulating a coolant comprising at least one inner conduit for supplying a heat transfer fluid extending inside said internal chamber from a first orifice located at a first end of the inner chamber, preferably to near the second end of said inner chamber in the longitudinal direction, and a second outlet of said heat transfer fluid, preferably at said first end of the inner chamber, said inner conduit for supplying a coolant being located next to said main pipe, between the latter and said external insulating material.
Du fait que la conduite d'amenée du fluide caloporteur parcourt la chambre interne sur la quasi-totalité de sa longueur, elle peut ainsi contribuer aussi au chauffage de l'intérieur de la chambre interne. Avantageusement, on peut disposer sur ladite conduite d'amenée du fluide caloporteur, des orifices situés à des niveaux intermédiaires, de manière à ce qu'une partie du fluide caloporteur chaud soit transférée directement vers la chambre interne audit niveau intermédiaire.Since the supply line of the heat transfer fluid travels the internal chamber over almost all of its length, it can also contribute to the heating of the interior of the inner chamber. Advantageously, there may be disposed on said supply line of the heat transfer fluid, orifices located at intermediate levels, so that a portion of the hot heat transfer fluid is transferred directly to the inner chamber at said intermediate level.
Dans ce cas, avantageusement, ladite conduite interne d'injection de gaz est une conduite enroulée en spirale autour de ladite conduite interne d'amenée dudit fluide caloporteur à l'intérieur de ladite chambre interne, de préférence une conduite rigide formée en spirale.In this case, advantageously, said internal gas injection pipe is a spirally wound pipe around said inner pipe for supplying said heat transfer fluid inside said inner chamber, preferably a rigid pipe formed in a spiral.
Ce mode de réalisation est particulièrement avantageux car il permet de constituer une réserve d'élongation possible de ladite conduite interne d'injection de gaz lorsque ladite conduite principale connaît des variations de longueur suite aux variations de températures de l'effluent chaud circulant à l'intérieur.This embodiment is particularly advantageous because it makes it possible to constitute a possible reserve of elongation of said internal gas injection pipe when said main pipe undergoes length variations as a result of the temperature variations of the hot effluent circulating at the same time. inside.
En outre, cette configuration de la conduite interne d'injection de gaz enroulée en spirale autour de la conduite interne d'amenée du fluide caloporteur, permet aussi de réchauffer le gaz avant de l'injecter dans la conduite principale et d'améliorer ainsi les performances du "gas-lift".In addition, this configuration of the internal gas injection pipe wound spirally around the inner conduit for supplying the heat transfer fluid also makes it possible to heat the gas before injecting it into the main pipe and thus to improve the performance of "gas-lift".
Dans une première variante de réalisation, ladite conduite interne d'amenée du fluide caloporteur est prolongée par une conduite externe flexible d'alimentation en dit fluide caloporteur depuis ledit premier orifice jusqu'à un support flottant, et ledit second orifice de sortie du fluide caloporteur est raccordé à une deuxième conduite externe flexible de retour dudit fluide caloporteur vers ledit support flottant.In a first variant embodiment, said inner conduit for supplying the coolant is extended by a flexible external supply line for said heat transfer fluid from said first orifice to a floating support, and said second heat transfer fluid outlet orifice. is connected to a second flexible outer conduit for returning said heat transfer fluid to said floating support.
Dans cette première variante de réalisation, ledit fluide caloporteur peut être réchauffé en le faisant passer dans des chaudières ou des échangeurs de chaleur à bord dudit support flottant, notamment en récupérant des calories en provenance, par exemple, de turbines à gaz.In this first embodiment, said heat transfer fluid can be heated by passing it into boilers or heat exchangers on board said floating support, in particular by recovering calories from, for example, gas turbines.
Dans une seconde variante de réalisation, ladite conduite interne d'amenée du fluide caloporteur est reliée à des moyens de circulation et de réchauffage du fluide caloporteur comprenant une pompe coopérant avec ledit premier orifice d'amenée du fluide caloporteur et avec ledit deuxième orifice de sortie du fluide caloporteur au niveau d'une dite première extrémité de la chambre interne, ladite pompe permettant de faire circuler le fluide caloporteur successivement à l'intérieur de ladite conduite interne d'amenée du fluide caloporteur, puis à l'intérieur de la chambre interne et de le faire ressortir dé ladite chambre interne par ledit deuxième orifice, puis de le faire recirculer en boucle dans ladite chambre interne à travers ledit premier orifice, une conduite externe de circulation du fluide caloporteur entre ledit support flottant et le corps de la pompe ou ledit premier orifice, permettant d'ajuster la quantité de fluide caloporteur en circulation dans la chambre et dans les diverses conduitesIn a second variant embodiment, said internal conduit for supplying heat transfer fluid is connected to means for circulating and reheating the heat transfer fluid comprising a pump cooperating with said first heat transfer fluid supply orifice and with said second outlet orifice. heat transfer fluid at a said first end of the inner chamber, said pump for circulating the heat transfer fluid successively inside said inner pipe for supplying the coolant, and then inside the internal chamber and to make it come out of said internal chamber by said second orifice, then to recirculate it in a loop in said internal chamber through said first orifice, an external pipe for circulating the coolant between said floating support and the body of the pump or said first orifice, for adjusting the amount of coolant circulating in the cha in the various pipes
De préférence, dans cette seconde variante de réalisation le dispositif selon l'invention comprend un moyen de chauffage du fluide caloporteur à l'intérieur de ladite conduite interne d'amenée du fluide caloporteur, de préférence sous forme d'une résistance électrique.Preferably, in this second alternative embodiment the device according to the invention comprises a means for heating the heat transfer fluid inside said inner conduit for supplying the coolant, preferably in the form of an electrical resistance.
Ce moyen de chauffage permet de réchauffer le fluide caloporteur de manière très efficace, car la résistance électrique constitue un élément très simple et facile à alimenter depuis le support flottant par un câble de faibles dimensions, dans la mesure où l'on utilise un voltage élevé. De plus, la quantité d'énergie transférée au fluide caloporteur peut être simplement ajustée en faisant varier la tension ou l'intensité, ou les deux.This heating means makes it possible to heat the heat transfer fluid in a very efficient manner, since the electrical resistance constitutes a very simple element that is easy to feed from the floating support by a small cable, as long as a high voltage is used. . In addition, the amount of energy transferred to the coolant can be simply adjusted by varying the voltage or intensity, or both.
Dans un mode préféré de réalisation, le dispositif selon l'invention comprend au moins une cloison d'extrémité transversale à au moins une dite première extrémité, ladite cloison transversale d'extrémité supportant ladite conduite principale ainsi que lesdits moyens de circulation et étant traversée par ladite conduite principale et, le cas échéant, des premier et second orifices permettant la circulation dudit fluide caloporteur à l'intérieur et à l'extérieur de ladite chambre interne à travers lesdits orifices.In a preferred embodiment, the device according to the invention comprises at least one end wall transverse to at least one said first end, said transverse end partition supporting said main pipe and said circulation means and being traversed by said main pipe and, if appropriate, first and second ports allowing the circulation of said heat transfer fluid inside and outside said inner chamber through said orifices.
Dans un mode plus particulier de réalisation, le dispositif selon l'invention comprend une première et deuxième cloisons transversales d'extrémité, respectivement à chacune des deux extrémités de la chambre interne, ladite première cloison d'extrémité comprenant, le cas échéant, lesdits premier et second orifices, et les deux dites cloisons transversales d'extrémité supportant ladite enveloppe externe et ladite chambre interne et assurant leur liaison étanche, tout en assurant, au moins au niveau de ladite première extrémité, le confinement du fluide caloporteur à l'intérieur de la chambre interne.In a more particular embodiment, the device according to the invention comprises first and second end transverse partitions, respectively at each of the two ends of the internal chamber, said first end wall including, where appropriate, said first end walls. and second orifices, and the two said transverse end partitions supporting said outer envelope and said internal chamber and ensuring their tight connection, while ensuring, at least at said first end, the confinement of the heat transfer fluid inside the the internal chamber.
De préférence, le dispositif selon l'invention comprend une deuxième cloison d'extrémité comprenant un grand orifice de diamètre supérieur à celui de la conduite principale, à travers lequel orifice passe ladite conduite principale, de sorte que le fluide caloporteur est en contact avec l'eau de mer à l'extrémité inférieure de la chambre interne. Ce mode de réalisation convient, plus particulièrement, lorsque le fluide caloporteur est un fluide non polluant tel que de l'eau douce comme explicité dans la description détaillée ci-après. Ce mode de réalisation permet en effet d'éviter des difficultés pouvant résultant des dilatations différentielles de la conduite principale et de la chambre interne.Preferably, the device according to the invention comprises a second end wall comprising a large orifice of diameter greater than that of the main pipe, through which orifice passes said main pipe, so that the coolant is in contact with the sea water at the lower end of the inner chamber. This embodiment is more particularly suitable when the coolant is a non-polluting fluid such as fresh water as explained in the detailed description below. This embodiment makes it possible to avoid difficulties that may result from differential expansions of the main pipe and the inner chamber.
Dans un autre mode de réalisation, ladite deuxième cloison d'extrémité comprend un orifice entourant de façon solidaire un manchon tubulaire à l'intérieur duquel ladite conduite principale peut coulisser à jeu réduit, de préférence de manière étanche. Ce mode de réalisation convient plus particulièrement si le fluide caloporteur est un fluide polluant.In another embodiment, said second end wall comprises an orifice integrally surrounding a tubular sleeve within which said main duct can slide with reduced clearance, preferably sealingly. This embodiment is more particularly suitable if the coolant is a polluting fluid.
Dans tous les cas, il est avantageux que ladite conduite principale soit revêtue d'un second revêtement isolant au moins au niveau de ladite deuxième extrémité de la chambre interne, ledit fluide caloporteur circulant dans ladite chambre interne à l'extérieur dudit second revêtement.In all cases, it is advantageous that said main pipe is coated with a second insulating coating at least at said second end of the inner chamber, said coolant flowing in said inner chamber outside said second coating.
Plus particulièrement, ledit second revêtement est constitué par un matériau isolant thermique, de préférence un matériau isolant solide, de préférence encore de la mousse syntactique, ledit matériau solide entourant directement ladite conduite principale, de préférence encore ledit second matériau isolant remplissant entièrement l'espace entre ladite conduite principale et une seconde conduite coaxiale, jouant le rôle de manchon, et à l'intérieur de laquelle est insérée ladite conduite principale.More particularly, said second coating is constituted by a thermal insulating material, preferably a solid insulating material, more preferably foam syntactically, said solid material directly surrounding said main duct, more preferably said second insulating material completely filling the space between said main duct and a second coaxial duct, acting as a sleeve, and inside which said duct is inserted main.
Dans un mode particulièrement avantageux de réalisation de la présente invention, ledit revêtement isolant autour de la chambre interne est un matériau isolant sujet à migration et au moins ladite enveloppe externe et/ou ladite chambre interne est ou sont constituées d'un matériau solide souple ou semi-rigide apte à suivre les déformations dudit matériau isolant et apte à rester en contact avec celui-ci lorsqu'il se déforme.In a particularly advantageous embodiment of the present invention, said insulating coating around the inner chamber is an insulating material subject to migration and at least said outer shell and / or said inner chamber is or consist of a flexible solid material or semi-rigid adapted to follow the deformation of said insulating material and able to stay in contact with it when deformed.
Comme mentionné précédemment, ledit revêtement isolant comprend un matériau isolant à changement de phase présentant une température de fusion liquide/solide (T0) de préférence compris entre 20 et 80°C, supérieure à celle (T2) du milieu environnant marin de ladite conduite en opération et inférieure à celle (T1) à partir de laquelle les effluents circulant à l'intérieur de la conduite présentent une augmentation de viscosité dommageable pour leur circulation dans ladite conduite.As mentioned above, said insulating coating comprises a phase change insulating material having a liquid / solid melting temperature (T0) preferably between 20 and 80 ° C, higher than that (T2) of the marine environment of said conduct operation and less than that (T1) from which the effluents circulating inside the pipe have an increase in viscosity damaging to their circulation in said pipe.
On :entend ici par « matériau isolant » un matériau présentant de préférence une conductivité thermique inférieure à 0.5 W x m-1 x K-1, de préférence encore entre 0.05 et 0.2 W x m-1 x K-1 (Watt/mètre/Kelvin).Here, the term "insulating material" is intended to mean a material preferably having a thermal conductivity of less than 0.5 W × m -1 × K -1 , more preferably between 0.05 and 0.2 W × m -1 × K -1 (Watt / meter / Kelvin). ).
Ledit matériau isolant PCM est choisi notamment parmi les matériaux constitués d'au moins 90 % de composés chimiques choisis parmi les alcanes, notamment comprenant une chaîne hydrocarbonée d'au moins 10 atomes de carbone, ou encore les sels hydratés ou pas, les glycols, les bitumes, les goudrons, les cires, et autres corps gras solides à température ambiante, tels que le suif, la margarine ou les alcools gras et acides gras, de préférence, le matériau incompressible est constitué de paraffine comprenant une chaîne hydrocarbonée d'au moins 14 atomes de carbone.Said PCM insulating material is chosen in particular from materials consisting of at least 90% of chemical compounds chosen from alkanes, in particular comprising a hydrocarbon chain of at least 10 carbon atoms, or salts that are hydrated or not, glycols, bitumens, tars, waxes and other fatty substances which are solid at ambient temperature, such as tallow, margarine or fatty alcohols and fatty acids, preferably the incompressible material consists of paraffin comprising a hydrocarbon chain of from minus 14 carbon atoms.
Plus particulièrement, ledit matériau isolant à changement de phase comprend des composés chimiques de la famille des alcanes, de préférence une paraffine comprenant une chaîne hydrocarbonée d'au moins quatorze atomes de carbone.More particularly, said phase change insulating material comprises chemical compounds of the alkane family, preferably a paraffin comprising a hydrocarbon chain of at least fourteen carbon atoms.
Plus particulièrement encore, ladite paraffine est de l'heptacosane de formule C17H36 ou, de préférence, du tétracosane de formule C24H50 présentant une température de fusion d'environ 50°C. On peut aussi utiliser une coupe paraffinique industrielle centrée sur l'heptacosane ou le tétracosane.More particularly, said paraffin is heptacosane of formula C 17 H 36 or, preferably, tetracosane of formula C 24 H 50 having a melting temperature about 50 ° C. It is also possible to use an industrial paraffinic cut centered on heptacosane or tetracosane.
Dans un mode de réalisation; ledit matériau isolant est constitué d'un complexe isolant comprenant un premier composé consistant en un composé hydrocarboné comme la paraffine ou le gazole, en mélange avec un second composé consistant en un composé gélifiant et/ou à effet structurant, notamment par réticulation, tel qu'un second composé du type polyuréthane, polypropylène réticulé, polyéthylène réticulé ou silicone, de préférence ledit premier composé se présentant sous forme de particule ou micro-capsule dispersée au sein d'une matrice dudit second composé et on peut citer plus particulièrement comme premiers composés les composés chimiques de la famille des alcanes, tels que des paraffines ou des cires, des bitumes, des goudrons, des alcools gras, des glycols, plus particulièrement encore des composés dont la température de fusion des matériaux est comprise entre la température T1 des effluents chauds circulant dans une des conduites et la température T2 du milieu environnant de la conduite en opération, soit en fait en général une température de fusion comprise entre 20 et 80°C.In one embodiment; said insulating material consists of an insulating complex comprising a first compound consisting of a hydrocarbon compound such as paraffin or gas oil, mixed with a second compound consisting of a gelling and / or structuring compound, in particular by crosslinking, such as a second compound of the polyurethane, crosslinked polypropylene, crosslinked polyethylene or silicone type, preferably said first compound being in the form of a particle or microcapsule dispersed within a matrix of said second compound and, more particularly, as first compounds; chemical compounds of the family of alkanes, such as paraffins or waxes, bitumens, tars, fatty alcohols, glycols, more particularly compounds whose melting temperature of the materials is between the temperature T 1 of the hot effluents circulating in one of the pipes and the temperature T 2 of the surrounding environment of the pipe in operation, or in fact in general a melting temperature of between 20 and 80 ° C.
Ces différents matériaux isolants sont des matériaux "sujets à migration", c'est à dire, des matériaux liquides, pâteux ou de consistance solide, telle que la consistance d'une graisse, d'une paraffine ou d'un gel, qui sont susceptibles d'être déformés par les contraintes résultant de pressions différentielles entre deux points distincts de l'enveloppe et/ou de variations de température au sein dudit matériau isolant.These different insulating materials are materials "subject to migration", that is to say, liquid materials, pasty or solid consistency, such as the consistency of a fat, a paraffin or a gel, which are capable of being deformed by the stresses resulting from differential pressures between two distinct points of the envelope and / or of temperature variations within said insulating material.
C'est pourquoi, selon un mode préféré de réalisation, le dispositif selon la présente invention comprend un dit revêtement isolant qui est constitué d'un matériau solide visqueux sujet à migration ainsi qu'au moins deux cloisons transversales intermédiaires étanches, chacune desdites cloisons transversales intermédiaires étant constituée d'une structure rigide fermée traversée par ladite chambre interne et solidaire des parois de ladite chambre et de ladite enveloppe externe, de préférence lesdites cloisons transversales intermédiaires étant espacées à intervalles réguliers le long de l'axe longitudinal des chambre interne et enveloppe externe coaxiales, de préférence encore d'une distance de 50 à 200 mètres.Therefore, according to a preferred embodiment, the device according to the present invention comprises an insulating coating which consists of a viscous solid material subject to migration and at least two transverse transverse bulkheads, each of said transverse partitions. intermediates consisting of a closed rigid structure traversed by said inner chamber and secured to the walls of said chamber and said outer casing, preferably said intermediate transverse partitions being spaced at regular intervals along the longitudinal axis of the inner chamber and casing outer coaxial, preferably from a distance of 50 to 200 meters.
Cette structure rigide solidaire de l'enveloppe empêche le déplacement de ladite enveloppe en regard de ladite cloison et par rapport à celle-ci et fige donc la géométrie de la section transversale de l'enveloppe au niveau de ladite cloison. On entend ici par « étanche » et « fermé » que ladite cloison ne permet pas le passage de la matière constituant ledit revêtement isolant à travers ladite cloison, et qu'en particulier, la jonction entre ladite conduite et les orifices à travers lesquels ladite conduite traverse ladite cloison transversale intermédiaire ne permet pas le passage de ladite matière du revêtement isolant.This rigid structure integral with the envelope prevents the displacement of said envelope facing said partition and with respect thereto and thus freezes the geometry of the cross section of the envelope at said partition. Here "sealed" and "closed" mean that said partition does not allow the passage of the material constituting said an insulating coating through said partition, and that in particular, the junction between said conduit and the orifices through which said conduit passes through said intermediate transverse partition does not allow the passage of said material of the insulating coating.
Lesdites cloisons transversales intermédiaires étanches assurent le confinement du ou desdits matériau(x) isolant(s) sujet(s) à migration constituant ledit revêtement isolant entre ladite enveloppe et lesdites cloisons.The said intermediate transverse transverse bulkheads ensure the confinement of the at least one insulating material (s) subject to migration constituting said insulating coating between said envelope and said partitions.
Dans le cas d'une liaison fond-surface, par exemple la portion verticale d'une tour ou encore la section en chaînette reliant le sommet de la tour au support de surface, ou encore des conduites reposant sur une forte déclivité du fond de la mer, la pression extérieure varie le long de la conduite et décroît au fur et à mesure que l'on remonte vers la surface. Dans le cas de matériaux isolants pâteux ou fluides, ce dernier présentant une densité inférieure à celle de l'eau de mer, en général une densité de 0.8 à 0.85, la pression différentielle entre l'extérieur et l'intérieur variera le long de la dite conduite, augmentant au fur et mesure que l'on monte vers la surface. Ainsi, il s'ensuit des déformations accentuées dans les parties présentant le maximum de pression différentielle, induisant ainsi d'importants transferts de fluide parallèlement à l'axe longitudinal de ladite conduite. En outre, les transferts sont amplifiés par les phénomènes de « respiration » dus aux variations de température tels que décrits ci-dessus.In the case of a bottom-surface connection, for example the vertical portion of a tower or the chain section connecting the top of the tower to the surface support, or pipes based on a steep slope of the bottom of the At sea, the external pressure varies along the pipe and decreases as one goes up to the surface. In the case of pasty or fluid insulating materials, the latter having a density lower than that of seawater, generally a density of 0.8 to 0.85, the differential pressure between the outside and the inside will vary along the said driving, increasing as one ascends to the surface. Thus, it follows accentuated deformations in the parts having the maximum differential pressure, thus inducing large fluid transfers parallel to the longitudinal axis of said pipe. In addition, the transfers are amplified by the phenomena of "breathing" due to temperature variations as described above.
Un « bundle plat » est sensible aux variations de pression dues aux déclivités : surpression en bas, dépression en haut, et la phase de remorquage est critique, car la longueur pouvant atteindre plusieurs kilomètres, le « bundle » n'est en fait jamais parfaitement à l'horizontal et il en résulte des variations de pression différentielle importantes lors dudit remorquage et surtout lors de l'opération de cabanage.A "flat bundle" is sensitive to variations in pressure due to declivities: overpressure at the bottom, depression at the top, and the towing phase is critical, because the length can reach several kilometers, the "bundle" is in fact never perfectly horizontally and this results in significant differential pressure variations during said towing and especially during the cabanage operation.
Quand le « bundle » est en position verticale ou au fond de la mer sur une déclivité importante, le différentiel de pression créé par la faible densité du matériau isolant, associé à la variation de volume créée par l'expansion thermique du matériau isolant, engendre des mouvements du matériau isolant que doit pouvoir supporter l'enveloppe extérieure. On cherche à éviter les mouvements de particules parallèlement à l'axe du bundle, c'est à dire les migrations de matériau isolant entre deux zones distantes du « bundle », car ils risquent de détruire la structure proprement dite du matériau isolant.When the "bundle" is in a vertical position or at the bottom of the sea on a steep slope, the pressure differential created by the low density of the insulating material, associated with the volume variation created by the thermal expansion of the insulating material, generates movements of the insulating material that must be able to support the outer shell. It seeks to avoid particle movements parallel to the axis of the bundle, ie migrations of insulating material between two remote areas of the "bundle", as they may destroy the actual structure of the insulating material.
Ce dispositif à cloisons transversales intermédiaires étanches permet de pouvoir fabriquer au meilleur coût un « bundle » à terre, de pouvoir mettre en place un revêtement en matériau isolant de type semi-fluide ou pâteux, de le remorquer en subsurface, de le cabaner en position verticale pour l'installer, tout en respectant l'intégrité de l'ensemble jusqu'à sa mise en production et pendant toute sa durée de vie, qui dépasse en général 30 années.This device with transverse transverse bulkheads sealed can be manufactured at the best cost a "bundle" on the ground, to be able to set up a coating of insulating material of semi-fluid or pasty type, to tow in subsurface, cabaner in position vertical to install it, while respecting the integrity of the whole until it goes into production and throughout its lifetime, which generally exceeds 30 years.
Ce dispositif à cloisons transversales intermédiaires étanches permet aussi de réaliser une isolation d'au moins une conduite sous-marine destinée à être posée sur le fond, en particulier à grande profondeur, en particulier dans des zones à forte déclivité, à partir d'une enveloppe de type « bundle plat » étanche, capable de fournir une souplesse transversale importante pour absorber les variations de volume, tout en conservant une rigidité longitudinale suffisante pour autoriser les manutentions, telles la préfabrication à terre, le remorquage vers le site, et la conservation de l'intégrité mécanique de ladite enveloppe pendant toute la durée de vie du produit, laquelle atteint et dépasse 30 ans.This device with transverse intermediate transverse bulkheads also makes it possible to insulate at least one submarine pipe intended to be placed on the bottom, in particular at great depth, particularly in steep declining areas, starting from watertight "flat bundle" type casing, capable of providing substantial transverse flexibility to absorb volume variations, while maintaining sufficient longitudinal rigidity to allow handling, such as on-site prefabrication, site towing, and conservation the mechanical integrity of said envelope throughout the life of the product, which reaches and exceeds 30 years.
Dans un mode de réalisation particulier, ladite structure fermée de ladite cloison transversale intermédiaire étanche comprend une pièce cylindrique qui présente une section transversale, dont le périmètre présente la même forme fixe que celui de ladite section transversale de l'enveloppe.In a particular embodiment, said closed structure of said intermediate transverse sealed partition comprises a cylindrical piece which has a cross section whose perimeter has the same fixed shape as that of said cross section of the envelope.
On entend par « section transversale » la section dans un plan XX', YY' perpendiculaire à l'axe longitudinal ZZ' de ladite enveloppe, ladite enveloppe étant de forme tubulaire et présentant un axe longitudinal central ZZ', et de préférence, la section transversale de ladite enveloppe définissant un périmètre présentant deux axes de symétrie XX' et YY' perpendiculaires entre eux, et audit axe longitudinal ZZ'.The term "cross-section" is understood to mean the section in a plane XX ', YY' perpendicular to the longitudinal axis ZZ 'of said envelope, said envelope being of tubular shape and having a central longitudinal axis ZZ', and preferably, the section cross-section of said envelope defining a perimeter having two axes of symmetry XX 'and YY' perpendicular to each other, and to said longitudinal axis ZZ '.
On entend dans la présente description par « périmètre de la section transversale », la ligne en forme de courbe fermée qui délimite la surface plane définie par ladite section transversale.In the present description, the term "perimeter of the cross-section" is understood to mean the closed-curve line defining the plane surface defined by said transverse section.
Le périmètre de la section transversale de l'enveloppe externe au niveau des cloisons étanches est de forme fixe et ne peut donc pas se déformer par contraction ou par expansion de ladite enveloppe à ce niveau.The perimeter of the transverse section of the outer envelope at the level of the watertight bulkheads is of fixed shape and can not therefore be deformed by contraction or by expansion of said envelope at this level.
Selon différentes variantes de réalisation, ladite section transversale de l'enveloppe externe est de forme circulaire, ou de forme ovale, ou encore de forme rectangulaire, de préférence avec des angles arrondis.According to different embodiments, said cross section of the outer envelope is circular in shape, or oval, or rectangular in shape, preferably with rounded corners.
Lesdites cloisons transversales intermédiaires étanches créent des ponts thermiques. On recherche donc à les espacer le plus possible pour réduire les ponts diermiques.Said intermediate transverse bulkheads create thermal bridges. It is therefore sought to space them as far as possible to reduce the diermic bridges.
Dans un mode particulier de réalisation, l'espacement entre deux dites cloisons transversales intermédiaires étanches successives selon ledit axe longitudinal ZZ' de ladite enveloppe est de 50 à 200 mètres, notamment de 100 à 150 mètres.In a particular embodiment, the spacing between two said successive transverse transverse bulkheads along said longitudinal axis ZZ 'of said envelope is from 50 to 200 meters, in particular from 100 to 150 meters.
Pour réduire le nombre de cloisons transversales intermédiaires étanches, selon une caractéristique préférentielle, le dispositif comprend au moins un, de préférence une pluralité de gabarit(s) conformateur(s), constitué(s) d'une structure rigide solidaire de ladite chambre interne et traversée par celle-ci et solidaire de ladite enveloppe externe à sa périphérie, disposé(s) entre deux dites cloisons transversales intermédiaires étanches successives, ledit gabarit conformateur présentant des ouvertures permettant le passage de la matière constitutive dudit matériau isolant sujet à migration à travers ledit gabarit conformateur.To reduce the number of intermediate transverse bulkheads, according to a preferred characteristic, the device comprises at least one, preferably a plurality of jig (s) shaping (s), consisting (s) of a rigid structure integral with said internal chamber and traversed by it and secured to said outer shell at its periphery, disposed (s) between two said successive transverse transverse bulkheads, said shaping jig having openings allowing the passage of the constituent material of said insulating material subject to migration through said shaping jig.
Comme ladite cloison transversale intermédiaire étanche, ledit gabarit conformateur fige la forme de la section transversale de l'enveloppe externe et de la chambre interne au niveau dudit gabarit conformateur, tout en minimisant les ponts thermiques.As said intermediate transverse wall sealed, said shaping jig freezes the shape of the cross section of the outer casing and the inner chamber at said shaping jig, while minimizing thermal bridges.
Plus particulièrement ladite structure ouverte dudit gabarit conformateur comprend une pièce cylindrique qui présente une section transversale dont le périmètre s'inscrit dans une figure géométrique identique à la figure géométrique définie par la forme du périmètre de la section transversale de ladite cloison étanche.More particularly, said open structure of said shaping jig comprises a cylindrical piece which has a cross section whose perimeter is in a geometrical figure identical to the geometrical figure defined by the shape of the perimeter of the cross section of said watertight partition.
De préférence, un dispositif selon l'invention comporte une pluralité de gabarits conformateurs disposés le long dudit axe longitudinal ZZ' de l'enveloppe de préférence à intervalles réguliers, deux gabarits conformateurs successifs étant espacés de préférence encore de 5 à 50 mètres, de préférence 5 à 20 mètres.Preferably, a device according to the invention comprises a plurality of shaping jigs arranged along said longitudinal axis ZZ 'of the envelope, preferably at regular intervals, two successive shaping jigs being preferably spaced 5 to 50 meters apart, preferably 5 to 20 meters.
Dans un mode préféré de réalisation, le dispositif selon l'invention comprend en outre au moins un gabarit centraliseur, de préférence une pluralité de gabarits centraliseurs, disposé(s) de préférence à intervalles réguliers, entre deux dites cloisons transversales intermédiaires étanches successives le long dudit axe longitudinal, chaque gabarit centraliseur étant constitué d'une pièce rigide solidaire de la paroi de la chambre interne ou de ladite enveloppe externe, présentant une forme qui autorise un déplacement limité de ladite enveloppe externe ou respectivement de ladite chambre interne, en contraction et en expansion, en regard dudit gabarit centraliseur, au moins ladite enveloppe externe ou respectivement ladite chambre interne étant constituée d'un matériau souple ou semi-rigide apte, le cas échéant, à rester en contact du revêtement isolant lorsque celle-ci se déforme.In a preferred embodiment, the device according to the invention further comprises at least one centralizing template, preferably a plurality of centralizing templates, arranged preferably at regular intervals, between two said successive intermediate transverse bulkheads along of said longitudinal axis, each centralizing template being constituted by a rigid part integral with the wall of the internal chamber or of said outer casing, having a shape which allows a limited displacement of said outer casing or said inner chamber, in contraction and expansion, opposite said jig centralizer, at least said outer envelope or said inner chamber respectively being made of a flexible or semi-rigid material adapted, if necessary, to remain in contact with the insulating coating when it is deformed.
Plus particulièrement, ledit gabarit centraliseur est de préférence constitué d'une pièce rigide à surface libre externe ou respectivement interne cylindrique dont le périmètre de la section,transversale est en retrait par rapport à ladite enveloppe externe ou respectivement ladite chambre interne et limite les déformations de ladite enveloppe externe ou respectivement ladite chambre interne par butée mécanique de celle-ci sur ladite pièce rigide en au moins deux points opposés du périmètre de la section transversale de ladite enveloppe externe ou respectivement ladite chambre interne. Ledit déplacement de l'enveloppe externe ou respectivement ladite chambre interne, en regard d'un dit gabarit centraliseur peut représenter une variation de 0,1 à 10 %, de préférence de 0,1 à 5 %, de la distance entre les deux points opposés du périmètre de la section transversale de ladite enveloppe externe ou respectivement ladite chambre interne. Ainsi, ladite pièce rigide constituant ledit gabarit centraliseur présentant une partie de la surface libre externe ou respectivement interne suffisamment en retrait par rapport à la surface de l'enveloppe externe ou respectivement de la chambre interne, et/ou présentant des perforations le traversant, de manière à créer un espace qui permette le transfert de matière constitutive dudit revêtement isolant à travers ledit gabarit centraliseur.More particularly, said centralizing template is preferably constituted by a rigid piece with an external free surface or a cylindrical internal surface whose perimeter of the transversal section is set back relative to said outer envelope or said internal chamber respectively and limits the deformations of said outer casing or said internal chamber by mechanical abutment thereof on said rigid part in at least two opposite points of the perimeter of the cross section of said outer casing or said internal chamber respectively. Said displacement of the outer envelope or said internal chamber respectively, facing a said centralizing template can represent a variation of 0.1 to 10%, preferably 0.1 to 5%, of the distance between the two points opposite the perimeter of the cross section of said outer envelope or said inner chamber respectively. Thus, said rigid piece constituting said centralizing template having a part of the external or internal free surface sufficiently recessed with respect to the surface of the outer envelope or respectively of the internal chamber, and / or having perforations therethrough, of so as to create a space that allows the transfer of constituent material of said insulating coating through said centralizer template.
Ce gabarit centraliseur vise à assurer un enrobage minimum en revêtement isolant autour de ladite chambre interne en cas de déformation par contraction de l'enveloppe et transfert de ladite matière fluable entre les deux dites cloisons étanches.This centralizing template aims to ensure a minimum coating insulating coating around said inner chamber in case of deformation by contraction of the casing and transfer of said flowable material between the two said bulkheads.
Plus particulièrement, ledit gabarit centraliseur présente une section transversale dont le périmètre s'inscrit à l'intérieur d'une figure géométrique qui est sensiblement homothétique par rapport à la figure géométrique définie par le périmètre de la section transversale de ladite cloison transversale intermédiaire étanche.More particularly, said centralizing template has a cross section whose perimeter is inscribed within a geometrical figure which is substantially homothetic with respect to the geometrical figure defined by the perimeter of the cross section of said intermediate transverse sealed partition.
La distance entre deux gabarits centraliseurs le long dudit axe longitudinal ZZ' est telle qu'elle permet d'assurer de maintenir une quantité de matière constituant ledit revêtement isolant, suffisante pour assurer l'enrobage minimum nécessaire à l'isolation thermique de ladite chambre interne, compte tenu des déformations en contraction supportées par ladite enveloppe externe et/ou de ladite chambre interne.The distance between two centralizing jigs along said longitudinal axis ZZ 'is such as to ensure that a quantity of material constituting said insulating coating, sufficient to ensure the minimum coating required for the insulation, is maintained. thermal of said inner chamber, given contraction deformations supported by said outer casing and / or said internal chamber.
Avantageusement, le dispositif selon l'invention comporte une pluralité de gabarits centraliseurs, et deux gabarits centraliseurs successifs sont espacés le long dudit axe longitudinal ZZ' de l'enveloppe d'une distance de 2 à 5 mètres.Advantageously, the device according to the invention comprises a plurality of centralizing templates, and two successive centralizing templates are spaced along said longitudinal axis ZZ 'of the envelope by a distance of 2 to 5 meters.
Ces différentes cloisons transversales intermédiaires étanches, gabarit centraliseur et gabarit conformateur, ont été décrites dans FR 2 821 915 selon une configuration différente car directement solidaire de la conduite sous-marine véhiculant les effluents.These various transverse transverse bulkheads sealed, centralizing template and shaping jig, have been described in
Comme mentionné précédemment, avantageusement, ladite enveloppe externe et ladite chambre interne sont co-axiales le long d'un axe longitudinal ZZ' et définissent un périmètre présentant au repos deux axes de symétrie XX' et YY' perpendiculaires entre eux et audit axe longitudinal ZZ', et au moins l'une des parois constitutives desdites enveloppe externe et/ou chambre interne est constituée d'un matériau souple ou semi-rigide (c'est-à-dire apte à suivre les déformations du matériau isolant et apte à rester en contact avec celui-ci lorsqu'il se déforme), de préférence, l'autre enveloppe étant rigide et de préférence encore à section transversale de forme circulaire.As previously mentioned, advantageously, said outer envelope and said internal chamber are co-axial along a longitudinal axis ZZ 'and define a perimeter having at rest two symmetry axes XX' and YY 'perpendicular to each other and to said longitudinal axis ZZ ', and at least one of the constituent walls of said outer casing and / or inner chamber is made of a flexible or semi-rigid material (that is to say capable of following the deformations of the insulating material and able to remain in contact with the latter when deformed), preferably, the other envelope being rigid and preferably still circular cross section.
Selon une première variante de réalisation, ladite chambre interne est réalisée en matériau rigide et ladite enveloppe externe en matériau souple ou semi-rigide.According to a first embodiment, said inner chamber is made of rigid material and said outer shell of flexible or semi-rigid material.
Selon différentes variantes de réalisation, la section transversale de l'enveloppe externe et/ou de la chambre interne est ou sont de forme circulaire ou de forme ovale, ou encore de forme rectangulaire, de préférence avec des angles arrondis.According to different embodiments, the cross section of the outer casing and / or the inner chamber is or are of circular or oval shape, or of rectangular shape, preferably with rounded corners.
Dans le cas où le dispositif comporte au moins deux conduites disposées suivant un même plan, la section transversale de ladite enveloppe externe ou de ladite chambre interne est de préférence de forme allongée dans la même direction que ce plan.In the case where the device comprises at least two pipes arranged in the same plane, the cross section of said outer envelope or said inner chamber is preferably elongate in the same direction as this plane.
Plus particulièrement, le périmètre externe de la section transversale de ladite enveloppe externe de protection ou de ladite chambre interne est une courbe fermée dont le rapport du carré et de la longueur sur la surface qu'elle délimite est au moins égal à 13, comme décrit dans WO 00/40886.More particularly, the outer perimeter of the cross section of said outer protective envelope or of said inner chamber is a closed curve whose ratio of the square and the length on the surface it delimits is at least 13, as described. in WO 00/40886.
Lors des variations de volume interne, l'enveloppe externe ou ladite chambre interne aura alors tendance à se déformer vers une forme circulaire, laquelle constitue mathématiquement la forme présentant, à périmètre constant, la surface la plus importante.During variations in internal volume, the outer envelope or said internal chamber will then tend to deform to a circular shape, which mathematically constitutes the shape having, at constant perimeter, the largest surface.
Dans le cas d'un profil circulaire, une augmentation de volume engendre des contraintes dans la paroi, lesquelles sont liées à l'augmentation de pression résultante de cette augmentation de volume.In the case of a circular profile, an increase in volume generates stresses in the wall, which are related to the pressure increase resulting from this increase in volume.
En revanche, si on aplatit la forme de la section transversale, meilleure est la capacité de l'enveloppe ou de ladite chambre interne à absorber les expansions dues à la dilatation des différents composants sous l'effet de la température, sans créer de surpression significative, car l'enveloppe a la possibilité de se remettre au rond.On the other hand, if the shape of the cross-section is flattened, the capacity of the envelope or of said internal chamber to absorb the expansions due to the expansion of the various components under the effect of the temperature is increased, without creating any significant overpressure. because the envelope has the opportunity to go back to the round.
Dans le cas de profil de forme ovale, une variation de pression interne impliquera une combinaison de contraintes de flexion et de contraintes de traction pure, car la courbure variable de l'ovale se comporte alors comme une voûte architecturale avec cependant la différence que dans le cas de notre enveloppe, les contraintes sont des contraintes de traction et non des contraintes de compression. Ainsi, une forme ovale ou approchée d'une ovale sera envisageable pour de faibles capacités d'expansion et il conviendra de considérer alors des ovales avec un rapport de longueur du grand axe ρmax sur celle du petit axe ρmin aussi élevé que possible par exemple au moins 2/1 ou 3/1.In the case of an oval shaped profile, a variation in internal pressure will involve a combination of bending stresses and pure tensile stresses, since the variable curvature of the oval then behaves like an architectural vault with however the difference that in the case of our envelope, the constraints are tensile stresses and not compressive stresses. Thus, an oval or approximate shape of an oval will be possible for low expansion capacities and it will be appropriate to consider then ovals with a major axis length ratio ρmax on that of the small axis ρmin as high as possible for example at less 2/1 or 3/1.
On sélectionnera alors la forme de l'enveloppe en fonction de l'expansion globale du volume du revêtement extérieur isolant, sous l'effet de variations de température. Ainsi, pour un système d'isolation utilisant principalement des matériaux sujets à expansion, une forme rectangulaire, une forme polygonale ou encore une forme ovale permet une expansion par flexion de la paroi tout en induisant un minimum de contraintes de traction dans l'enveloppe extérieure.The shape of the envelope will then be selected as a function of the overall expansion of the volume of the insulating outer coating, under the effect of temperature variations. Thus, for an insulation system mainly using materials subject to expansion, a rectangular shape, a polygonal shape or an oval shape allows an expansion by bending of the wall while inducing a minimum of tensile stresses in the outer casing .
Dans un premier mode de réalisation, la section transversale de la chambre interne, de préférence constituée d'un matériau rigide, est de forme circulaire et la section transversale de l'enveloppe externe, de préférence constituée d'un matériau souple ou semi-rigide, est de forme ovale ou de forme rectangulaire avec des angles arrondis.In a first embodiment, the cross section of the inner chamber, preferably made of a rigid material, is of circular shape and the cross section of the outer envelope, preferably made of a flexible or semi-rigid material , is oval or rectangular in shape with rounded corners.
Dans un autre mode de réalisation, la section transversale de l'enveloppe externe, de préférence constituée d'un matériau rigide, est de forme circulaire et la section transversale de ladite chambre interne, de préférence constituée d'un matériau souple ou semi-rigide, est de forme ovale ou de forme rectangulaire avec des angles arrondis.In another embodiment, the transverse section of the outer envelope, preferably made of a rigid material, is circular in shape and the cross section of said inner chamber, preferably made of a flexible or semi-rigid material, is oval or rectangular in shape with rounded corners.
Avantageusement encore, ladite conduite principale et, le cas échéant, ladite conduite interne d'amenée de fluide caloporteur coopèrent à l'intérieur de ladite chambre interne avec des éléments centraliseurs qui maintiennent le ou lesdites conduites sensiblement parallèles à l'axe ZZ' de ladite chambre interne tout en autorisant le mouvement desdites conduites dû aux dilatations différentielles de celles-ci selon ledit axe ZZ'.Advantageously, said main pipe and, if appropriate, said inner pipe for supplying heat transfer fluid cooperate inside said inner chamber with centralizing elements which maintain said pipe or pipes substantially parallel to the axis ZZ 'of said internal chamber while allowing the movement of said pipes due to the differential expansions thereof along said axis ZZ '.
La présente invention a également pour objet un dispositif de réchauffage et d'isolation thermique d'un faisceau de conduites principales sous-marines, caractérisé en ce qu'il comprend un dispositif d'isolation thermique et réchauffage selon l'invention comprenant au moins deux dites conduites principales disposées en parallèle et à l'intérieur de ladite chambre interne.The present invention also relates to a device for heating and thermal insulation of a bundle of subsea main pipes, characterized in that it comprises a thermal insulation and heating device according to the invention comprising at least two said main pipes arranged in parallel and inside said internal chamber.
La présente invention a également pour objet une installation de liaison fond-surface entre une conduite sous-marine reposant au fond de la mer, notamment à grande profondeur, et un support flottant 10, comprenant :
- a) au moins un riser vertical relié à son extrémité inférieure à au moins une dite conduite sous-marine reposant au fond de la mer, et à son extrémité supérieure à au moins un flotteur, ledit riser vertical étant inclus dans un dispositif d'isolation thermique et réchauffage selon l'invention, ledit riser vertical correspondant à ladite conduite principale, et ladite chambre interne s'étendant sur une hauteur d'au moins 1000 mètres, et
- b) au moins une conduite de liaison, de préférence une conduite flexible, assurant la liaison entre un support flottant et l'extrémité supérieure dudit riser vertical, et
- c) le cas échéant, desdites conduites flexibles externes de circulation du fluide caloporteur entre le support flottant et lesdits premier et second orifices de la première extrémité de la chambre interne et, le cas échéant, au moins une dite conduite externe flexible d'injection de gaz.
- a) at least one vertical riser connected at its lower end to at least one said underwater pipe resting at the bottom of the sea, and at its upper end to at least one float, said vertical riser being included in an isolation device thermal and heating according to the invention, said vertical riser corresponding to said main pipe, and said inner chamber extending over a height of at least 1000 meters, and
- b) at least one connecting pipe, preferably a flexible pipe, providing the connection between a floating support and the upper end of said vertical riser, and
- c) if applicable, said external flexible pipes for circulating the heat-transfer fluid between the floating support and said first and second orifices of the first end of the internal chamber and, where appropriate, at least one said flexible outer line of injection of gas.
De préférence, la liaison entre l'extrémité inférieure du riser vertical et une dite conduite sous-marine reposant au fond de la mer, se fait par l'intermédiaire d'un système d'ancrage comprenant une embase posée sur le fond, ladite embase assurant le maintien et le guidage des éléments de jonction entre l'extrémité inférieure du riser vertical et l'extrémité de ladite conduite reposant au fond de la mer, et lesdits éléments de jonction comprenant un élément de conduite courbe et un élément de raccordement de conduite, de préférence un unique élément de raccordement, de préférence encore, un unique connecteur automatique, et ledit riser vertical comprenant dans sa partie terminale inférieure un joint flexible permettant des mouvements angulaires de la partie du riser vertical située au dessus dudit joint flexible, et lesdits éléments de jonction comprenant ledit joint flexible ou une portion de riser vertical située au dessous dudit joint flexible.Preferably, the connection between the lower end of the vertical riser and said underwater pipe resting at the bottom of the sea, is via an anchoring system comprising a base resting on the bottom, said base ensuring the maintenance and guidance of the connecting elements between the lower end of the vertical riser and the end of said pipe resting at the bottom of the sea, and said connecting elements comprising a curved pipe element and a pipe connection element , preferably a single connecting element, more preferably a single automatic connector, and said vertical riser comprising in its lower end portion a flexible joint allowing angular movements of the portion of the vertical riser located above said flexible joint, and said connecting elements comprising said flexible seal or vertical riser portion located below said flexible seal.
On utilise ici le terme "riser vertical" pour rendre compte de la position théorique du riser lorsque celui-ci est au repos étant entendu que l'axe du riser peut connaître des mouvements angulaires par rapport à la verticale et se mouvoir dans un cône d'angle α dont le sommet correspond au point de fixation de l'extrémité inférieure du riser sur ladite embase.The term "vertical riser" is used here to account for the theoretical position of the riser when the riser is at rest, provided that the riser axis can know angular movements with respect to the vertical and move in a cone. angle α whose apex corresponds to the point of attachment of the lower end of the riser on said base.
Lesdits éléments de raccordement, notamment du type connecteurs automatiques, sont connus de l'homme de l'art et comprennent le verrouillage entre une partie mâle et une partie femelle complémentaire, ce verrouillage étant conçu pour se faire très simplement au fond de la mer à l'aide d'un ROV, robot commandé depuis la surface, sans nécessiter une intervention directe manuelle de personnel.Said connection elements, in particular of the automatic connector type, are known to those skilled in the art and comprise the locking between a male part and a complementary female part, this locking being designed to be done very simply at the bottom of the sea. using a ROV, robot controlled from the surface, without requiring direct manual intervention of personnel.
L'installation selon la présente invention est avantageuse car elle présente une géométrie relativement statique desdits éléments de jonction par rapport à ladite embase, et plus particulièrement par rapport audit support mobile, lesdits éléments de jonction étant maintenus de façon rigide sur ledit support mobile. La partie basse de la tour se trouve ainsi parfaitement stabilisée et ne supporte plus aucun effort, notamment au niveau du raccordement entre le riser vertical et la conduite reposant au fond de la mer, puisque les mouvements de translation longitudinale du support mobile crée une flexibilité à l'extrémité de la conduite sous-marine reposant au fond de la mer, ladite flexibilité étant capable d'absorber par déformation l'allongement ou la rétractation de la conduite sous-marine sous l'effet de la température et de la pression, évitant ainsi de créer des efforts de poussée considérables au sein de la conduite sous-marine, ces efforts pouvant atteindre 100, voire 200 tonnes ou plus, et de les transmettre à la structure fondation de la tour riser.The installation according to the present invention is advantageous because it has a relatively static geometry of said connecting elements relative to said base, and more particularly with respect to said movable support, said connecting elements being held rigidly on said movable support. The lower part of the tower is thus perfectly stabilized and no longer supports any effort, especially at the connection between the vertical riser and the pipe resting at the bottom of the sea, since the longitudinal translation movements of the mobile support creates flexibility to the end of the submarine pipe resting at the bottom of the sea, said flexibility being able to absorb by deformation the elongation or retraction of the underwater pipe under the effect of temperature and pressure, avoiding thus to create considerable pushing forces within the underwater pipe, these efforts being able to reach 100, even 200 tons or more, and to transmit them to the foundation structure of the riser tower.
Dans un mode préféré de réalisation, ledit riser vertical comprend dans sa partie terminale inférieure un joint flexible, de préférence renforcé, lequel permet des mouvements angulaires α de la partie dudit riser vertical située au dessus dudit joint flexible, et lesdits éléments de jonction comprennent ledit joint flexible ou une portion de riser vertical située au-dessous dudit joint flexible.In a preferred embodiment, said vertical riser comprises in its lower end portion a flexible seal, preferably reinforced, which allows angular movements α of the portion of said vertical riser located above said flexible seal, and said joining elements comprise said flexible seal or vertical riser portion below said flexible seal.
Un joint flexible autorise une variation importante de l'angle α entre l'axe du riser et sa position théorique verticale au repos, sans engendrer de contrainte significative dans les portions de conduite situées de part et d'autre dudit joint flexible : ces joints flexibles sont connus de l'homme de l'art et peuvent être constitués par une rotule sphérique avec joint d'étanchéité, ou une rotule lamifiée constituée de sandwichs de feuilles d'élastomère et de tôle adhérisée, capable d'absorber des mouvements angulaires importants par déformation des élastomères, tout en conservant une étanchéité parfaite en raison de l'absence de joint de frottement. Ledit angle α est en général compris entre 10 et 15 degrés.A flexible seal allows a large variation of the angle α between the axis of the riser and its theoretical vertical position at rest, without creating significant stress in the pipe portions located on either side of said flexible seal: these flexible joints are known to those skilled in the art and may be constituted by a spherical ball joint with seal, or a laminated ball joint consisting of sandwiches of elastomer sheets and adhered sheet metal, capable of absorbing significant angular movements by deformation of the elastomers, while maintaining a perfect seal due to the absence of friction seal. Said angle α is in general between 10 and 15 degrees.
Dans tous les cas, ledit joint flexible est creux pour laisser passer le fluide, et son diamètre intérieur est, de préférence sensiblement de même diamètre que les conduites adjacentes qui y sont raccordées, notamment celle du riser vertical.In all cases, said flexible seal is hollow to let the fluid, and its inner diameter is preferably of substantially the same diameter as the adjacent pipes connected thereto, in particular that of the vertical riser.
On entend ici par "joint flexible renforcé", un joint capable de transférer au support mobile les efforts verticaux créés par la tension engendrée par le flotteur de sub-surface, et les efforts horizontaux créés par la houle, et le courant agissant sur la portion verticale du riser, du flotteur et de la liaison flexible vers le support flottant, ainsi que par les déplacements dudit support flottant.The term "reinforced flexible joint" here means a seal capable of transferring to the mobile support the vertical forces created by the tension generated by the sub-surface float, and the horizontal forces created by the swell, and the current acting on the portion vertical riser, float and the flexible connection to the floating support, as well as by the movements of said floating support.
Lorsque lesdits éléments de jonction comprennent le dit joint flexible, ledit joint flexible est donc maintenu fixement par rapport audit support mobile. Ledit joint flexible correspond alors à un élément terminal des éléments de jonction assurant la jonction avec ledit riser vertical.When said connecting elements comprise said flexible seal, said flexible seal is thus fixedly fixed relative to said movable support. Said flexible seal then corresponds to an end element of the connecting elements ensuring the junction with said vertical riser.
De par la présence dudit joint flexible, et de la liaison flexible vers le support flottant située en tête de riser vertical, le déplacement horizontal de la base du riser vertical qui se trouve à un point sensiblement fixe en altitude, n'engendre pas d'effort significatif dans l'ensemble articulé constitué dudit support mobile, dudit joint flexible, dudit riser et de ladite liaison vers le support de surface, sous l'effet des déplacements dudit support mobile au sein de ladite plate-forme embase, déplacement qui n'excèdent en général pas 5 m.By the presence of said flexible seal, and the flexible connection to the floating support located at the vertical riser head, the horizontal displacement of the base of the vertical riser which is at a substantially fixed point at altitude, does not generate significant effort in the articulated assembly consisting of said movable support, said flexible seal, said riser and said connection to the surface support, under the effect of the displacements of said movable support within said base platform, displacement which n ' exceed in general not 5 m.
On connaît la méthode d'intervention à l'intérieur des canalisations, dite "coiled-tubing", consistant à pousser un tube rigide de petit diamètre, en général 20 à 50mm, à travers la conduite. Ledit tube rigide est stocké enroulé par simple cintrage sur un tambour, puis détordu lorsqu'on le débobine. Ledit tube peut mesurer plusieurs milliers de mètres en une seule longueur. L'extrémité du tube située au fût du tambour de stockage est reliée par l'intermédiaire d'un joint tournant à un dispositif de pompage capable d'injecter un liquide à haute pression et à haute température. Ainsi, en poussant le tube fin à travers la conduite, en maintenant le pompage et la contre-pression, cette conduite est nettoyée grâce à l'injection d'un produit chaud capable de dissoudre les bouchons. Cette méthode d'intervention est couramment utilisée lors des interventions sur puits verticaux ou sur des conduites obstruées par des formations de paraffine ou d'hydrates, phénomènes courants et redoutés dans toutes les installations de production de pétrole brut Le procédé de "coiled-tubing" est dénommé ci-après par "nettoyage par tubage continu" ou NTC.The method of intervention inside the pipes, known as "coiled-tubing", consists of pushing a rigid tube of small diameter, generally 20 to 50 mm, through the pipe. Said rigid tube is stored wound by simple bending on a drum, then unstripped when uncoiling it. Said tube can measure several thousand meters in a single length. The end of the tube located at the drum of the storage drum is connected by via a rotating joint to a pumping device capable of injecting a liquid at high pressure and at high temperature. Thus, by pushing the fine tube through the pipe, maintaining pumping and back pressure, this pipe is cleaned by injecting a hot product capable of dissolving the plugs. This method of intervention is commonly used during interventions on vertical wells or on pipes obstructed by paraffin or hydrate formations, common and feared phenomena in all crude oil production facilities. The "coiled-tubing" process is hereinafter referred to as "continuous casing cleaning" or CNT.
L'installation selon l'invention .comprend donc avantageusement un dispositif en forme de col de cygne assurant la liaison entre l'extrémité supérieure dudit riser et une conduite de liaison avec le support flottant, de sorte que l'on peut intervenir à l'intérieur dudit riser vertical à partir de la partie supérieure du flotteur à travers ledit dispositif en forme de col de cygne, de façon à accéder à l'intérieur du riser et le nettoyer par injection de liquide et/ou par raclage de la paroi interne dudit riser, puis, le cas échéant, de ladite conduite sous-marine reposant au fond de la mer.The installation according to the invention therefore advantageously comprises a device in the shape of a gooseneck ensuring the connection between the upper end of said riser and a connecting pipe with the floating support, so that one can intervene with the inside said vertical riser from the upper part of the float through said gooseneck-shaped device, so as to access the interior of the riser and clean it by liquid injection and / or by scraping the inner wall of said riser, then, if necessary, of the underwater pipe resting at the bottom of the sea.
Avantageusement encore, l'installation selon l'invention comprend une seconde enveloppe externe à section transversale circulaire contenant au moins un dispositif d'isolation et de réchauffage selon l'invention, ladite enveloppe externe dudit dispositif d'isolation thermique et de réchauffage étant rendue solidaire de ladite seconde enveloppe externe, de préférence par des liens élastiques et de préférence encore ladite seconde enveloppe externe comprend des moyens en forme de spirale sur sa périphérie extérieure aptes à empêcher la formation de vortex ou de décrochement tubulaire sous l'effet de courant marin.Advantageously, the installation according to the invention comprises a second outer envelope with a circular cross section containing at least one insulation and heating device according to the invention, said outer envelope of said thermal insulation and heating device being made integral. said second outer envelope, preferably by elastic links and more preferably said second outer envelope comprises spiral means on its outer periphery capable of preventing the formation of vortex or tubular recess under the effect of marine current.
Ce mode de réalisation est particulièrement avantageux lorsque le dispositif d'isolation et de réchauffage selon l'invention comprend une dite enveloppe externe à section transversale non circulaire ou lorsque l'installation comprend au moins deux dits dispositifs d'isolation et de réchauffage avec deux dites enveloppes externes côte à côte à section transversale circulaire ou non circulaire.This embodiment is particularly advantageous when the insulation and reheating device according to the invention comprises an outer envelope of non-circular cross section or when the installation comprises at least two so-called insulation and heating devices with two said external envelopes side by side with circular or non-circular cross section.
La présente invention a également pour objet un procédé de réchauffage et d'isolation thermique d'au moins une conduite principale sous-marine de liaison fond-surface destinée à assurer la circulation d'un effluent chaud au fond de la mer ou depuis le fond de la mer jusqu'à la surface, caractérisé en ce qu'on utilise un dispositif de réchauffage et d'isolation thermique selon l'invention, de préférence dans une installation selon l'invention, et on fait circuler un dit fluide caloporteur à l'intérieur de ladite chambre interne.The subject of the present invention is also a process for reheating and thermal insulation of at least one bottom-surface underwater main pipe intended to ensure the circulation of a hot effluent at the bottom of the sea or from the bottom of the sea to the surface, characterized in that a heating and thermal insulation device according to the invention is used, preferably in an installation according to the invention, and a heat transfer fluid is circulated inside. of said internal chamber.
Dans un mode particulier de réalisation, ledit fluide caloporteur est choisi parmi de l'eau de mer, de l'eau douce, du gazole, de l'huile.In a particular embodiment, said coolant is selected from seawater, fresh water, diesel, oil.
De préférence, on choisit un fluide caloporteur de densité inférieure à celle de l'eau de manière à ce que celui-ci contribue à apporter de la flottabilité au dispositif d'isolation et de réchauffage selon la présente invention. Il peut s'agir, notamment de gazole de densité de l'ordre de 0,85.Preferably, a heat transfer fluid with a density lower than that of the water is chosen so that it contributes to providing buoyancy to the insulation and reheating device according to the present invention. It may be, in particular gas oil density of the order of 0.85.
Il est avantageux de mettre en oeuvre un fluide caloporteur de forte chaleur massique telle que l'eau de mer ou l'eau douce, mais on préférera cette dernière, car elle reste moins agressive vis à vis des parois métalliques de la chambre interne et lorsque l'on rajoute des additifs pour éviter la prolifération des algues et autres organismes, du simple fait de la différence de densité avec l'eau de mer, l'interface entre les deux fluides existant au bas de la colonne montante ne sera que peu perturbée et lesdits additifs resteront pour une longue durée au sein de l'eau douce en circulation.It is advantageous to use a heat transfer fluid of high specific heat such as seawater or fresh water, but it will be preferred because it remains less aggressive with respect to the metal walls of the internal chamber and when we add additives to prevent the proliferation of algae and other organisms, simply because of the difference in density with seawater, the interface between the two fluids existing at the bottom of the riser will be only slightly disturbed and said additives will remain for a long time in the circulating fresh water.
Le procédé de réchauffage et isolation thermique selon l'invention est particulièrement avantageux lorsque l'on réchauffe ladite conduite principale par dite circulation dudit fluide caloporteur lors d'une phase de redémarrage de la production après un arrêt prolongé.The method of heating and thermal insulation according to the invention is particularly advantageous when heating said main pipe by said circulation of said heat transfer fluid during a production restart phase after a prolonged shutdown.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels :
- La figure 1 est une vue de côté d'une liaison fond-surface de type tour riser reliant une conduite sous-marine 13 reposant sur le fond de la
mer 30 etun support flottant 10 ensurface 31. - La figure 1a est une vue en coupe d'une double conduite de circulation du fluide caloporteur.
- La figure 1b est une vue de l'extrémité inférieure du dispositif selon l'invention coopérant avec une embase d'ancrage 19 au fond de la
mer 30. - Les figures 2, 3
et 4 sont des sections transversales d'un dispositif d'isolation thermique et réchauffage selon l'inventiondont l'enveloppe externe 3 est respectivement en configuration circulaire (fig. 2), de type rectangulaire (fig. 3) et de type ovale (fig. 4), la chambreinterne 4 comportant deux conduites 1a, 1b de production, une conduite 7, d'injection de gaz et une conduite 6, de réchauffage, - Les figures 5 et 6 représentent des sections d'un dispositif d'isolation thermique et réchauffage selon l'invention, de type inversé c'est-à-dire avec une enveloppe externe 3 en configuration circulaire et une chambre interne 4 en configuration de type ovale (fig. 5) et rectangulaire (fig. 6).
- La figure 7 est une coupe en vue de côté d'un dispositif d'isolation thermique et réchauffage 1 selon l'invention, comportant une conduite la de production, une conduite 61 de réchauffage par amenée du fluide caloporteur, traversant une chambre interne de réchauffage 4, celle-ci étant entourée d'une isolation périphérique avec un revêtement isolant thermique 2, la partie basse du dispositif.étant en communication directe avec l'eau de mer.
- La figure 8 est une variante de la figure 7, dans laquelle on a représenté des dispositifs 161 de maintien des conduites 1a et 61 à l'intérieur de la chambre interne de réchauffage 4 et des dispositifs 15, 16 et 17 permettant le contrôle des déformations de l'enveloppe externe 3, et dont la partie basse du dispositif comporte un système d'isolation supplémentaire 21 directement autour de la conduite, l'extrémité inférieure du dispositif étant complètement cloisonnée 112.
- Les figures 8A à C représentent une vue en section transversale, de la figure 8, au niveau des cloisons étanches, gabarits centraliseurs et gabarits conformateurs.
- La figure 9 est une coupe en vue de côté de la partie haute d'un dispositif selon l'invention, selon les figures 7 ou 8 et comportant un dispositif de pompage 9 et de réchauffage 64 du fluide caloporteur que l'on fait circuler en boucle à l'intérieur de la chambre 4 par l'intermédiaire de la conduite d'amenée 61 du fluide caloporteur.
- La figure 10 est une coupe en section transversale horizontale d'un double dispositif d'isolation et de réchauffage selon l'invention, équipé à sa périphérie d'une seconde enveloppe externe circulaire 31.
- La figure 11 est une vue de côté d'un dispositif selon la figure 10 dont ladite seconde enveloppe circulaire 31 est équipée d'une hélice visant à réduire les phénomènes de turbulence sous l'effet du courant.
- FIG. 1 is a side view of a tower-riser type bottom-surface connection connecting an
underwater pipe 13 resting on the bottom of thesea 30 and a floatingsupport 10 on thesurface 31. - Figure 1a is a sectional view of a double heat transfer fluid circulation duct.
- FIG. 1b is a view of the lower end of the device according to the invention cooperating with an anchoring
base 19 at the bottom of thesea 30. - Figures 2, 3 and 4 are cross-sections of a thermal insulation device and heating according to the invention, the
outer casing 3 is respectively in a circular configuration (Figure 2), rectangular type (Figure 3) and oval type (FIG 4), theinner chamber 4 having two 1a, 1b, a pipe 7, gas injection and a pipe 6, reheating,production lines - FIGS. 5 and 6 represent sections of a thermal insulation and heating device according to the invention, of inverted type, that is to say with an
outer envelope 3 in circular configuration and aninternal chamber 4 in type configuration. oval (fig 5) and rectangular (fig 6). - FIG. 7 is a cross-sectional view of a heat-insulating and heat-insulating device 1 according to the invention, comprising a
production line 1a, a line 6 1 for heating by supplying the heat-transfer fluid, passing through an internal chamber ofheating 4, the latter being surrounded by a peripheral insulation with a thermal insulatingcoating 2, the lower part of the device being in direct communication with the seawater. - FIG. 8 is a variant of FIG. 7, in which there are shown
devices 16 1 for holding thepipes 1a and 6 1 inside theinternal reheating chamber 4 and 15, 16 and 17 allowing the control deformations of thedevices outer casing 3 and whose lower part of the device comprises an additional insulation system January 2 directly around the pipe, the lower end of the device being completely partitioned February 11. - FIGS. 8A to C show a cross-sectional view of FIG. 8, at the level of the watertight bulkheads, centralizing jigs and conforming jigs.
- FIG. 9 is a sectional view from the side of the upper part of a device according to the invention, according to FIGS. 7 or 8, and comprising a device for pumping 9 and heating 6 4 of the heat transfer fluid which is circulated in loop inside the
chamber 4 via the supply line 6 1 of the heat transfer fluid. - Figure 10 is a horizontal cross-section in section of a double insulation and heating device according to the invention, equipped at its periphery with a circular second
outer casing 3 1. - Figure 11 is a side view of a device according to Figure 10 in which said second
circular casing 3 1 is equipped with a helix to reduce turbulence phenomena under the effect of the current.
Sur la figure 1, on a représenté une installation de liaison fond-surface entre une conduite sous-marine 13 reposant au fond de la mer, notamment à grande profondeur, et un support flottant 10 de type FPSO, comprenant :
- a) un riser vertical 1a, 1b relié à son extrémité inférieure à au moins une dite conduite sous-marine 13 reposant au fond de la mer, et à son extrémité supérieure à au moins
un flotteur 14, ledit riser vertical étant inclus dans un dispositif d'isolation thermique et de réchauffage 1 selon l'invention, ledit riser vertical correspondant à ladite conduite principale, et ladite chambre interne 4 s'étendant sur une hauteur d'au moins 1000 mètres, et - b) une conduite de
liaison 12 flexible, assurant la liaison entreun support flottant 10 et l'extrémité supérieure dudit riser vertical 1, et - c) une double conduite flexible externe 62, 63 de circulation respectivement d'amenée et de retour du fluide caloporteur 5 entre le
support flottant 10 et lesdits premier et second orifices 81, 82 de la première extrémité 41 de la chambreinterne 4 et une dite conduite externe flexible d'injection de gaz 72, et - d) la liaison entre l'extrémité inférieure du riser vertical 1a, 1b et une dite conduite sous-marine 13 reposant au fond de la mer, se fait par l'intermédiaire d'un système d'ancrage comprenant une embase 19 posée sur le fond, ladite embase 19 assurant le maintien et le guidage des éléments de jonction entre l'extrémité inférieure du riser vertical 1a, 1b et l'extrémité de ladite conduite reposant au fond de la
mer 13, et lesdits éléments de jonction comprenant un élément de conduite courbe 20 et un élément de raccordement de conduite 21, consistant en un unique connecteur automatique, et ledit riser vertical 1a, 1b comprenant dans sa partie terminale inférieure un joint flexible 22 permettant des mouvements angulaires de la partie du riser vertical 1a, 1b située au dessus dudit joint flexible 22, et lesdits éléments de jonction comprenant ledit joint flexible 22 ou une portion de riser vertical située au dessous dudit joint flexible 22.
- a) a
1a, 1b connected at its lower end to at least one saidvertical riser submarine pipe 13 resting at the bottom of the sea, and at its upper end to at least onefloat 14, said vertical riser being included in a device heat insulation and heating 1 according to the invention, said vertical riser corresponding to said main pipe, and saidinner chamber 4 extending over a height of at least 1000 meters, and - b) a flexible connecting
pipe 12, providing the connection between a floatingsupport 10 and the upper end of said vertical riser 1, and - c) a double external flexible pipe 6 2 , 6 3 of circulation respectively of supply and return of the
coolant 5 between the floatingsupport 10 and said first and second orifices 8 1 , 8 2 of thefirst end 4 1 of the chamber internal 4 and a said flexible external gas injection pipe 7 2 , and - d) the connection between the lower end of the
1a, 1b and a saidvertical riser underwater pipe 13 resting at the bottom of the sea, is done via an anchoring system comprising a base 19 placed on the bottom, saidbase 19 ensuring the maintenance and guiding of the connecting elements between the lower end of the 1a, 1b and the end of said pipe resting at the bottom of thevertical riser sea 13, and said connecting elements comprising an element ofcurved pipe 20 and apipe connection element 21, consisting of a single automatic connector, and said 1a, 1b comprising in its lower end portion a flexible seal 22 allowing angular movements of the portion of thevertical riser 1a, 1b located above said flexible seal 22, and said connecting elements comprising said flexible seal 22 or a vertical riser portion located below said flexible seal 22.vertical riser
Les différentes conduites flexibles 62, 63, 72 et 12 sont suspendues sur le bordé du FPSO et sont connectées au sommet de l'installation, celle-ci étant appelée ci-après tour, soit au niveau d'une table supérieure 111, soit au niveau d'un dispositif de col de cygne 24. Toutes ces conduites flexibles adoptent une configuration de chaînette. L'installation comprend en effet un dispositif en forme de col de cygne 24 assurant la liaison entre l'extrémité supérieure dudit riser vertical 1a, 1b et une dite conduite de liaison 12 avec le support flottant 10, de sorte que l'on peut intervenir à l'intérieur dudit riser vertical à partir de la partie supérieure dudit flotteur 14 à travers ledit dispositif en forme de col de cygne 24, de façon à accéder à l'intérieur dudit riser vertical 5 et le nettoyer par injection de liquide et/ou par raclage de la paroi interne dudit riser vertical 5, puis, le cas échéant, de ladite conduite sous-marine 13 reposant au fond de la mer.The various
Ladite conduite flexible 12 de production est donc reliée au col de cygne 24 au sommet duquel est installé un flotteur 14 de forte capacité. Le col de cygne 24 est relié au flotteur 14 par l'intermédiaire d'une conduite flexible, ce qui permet d'effectuer, depuis la surface, des interventions de nettoyage de la conduite verticale 1a à l'aide d'un navire 101 équipé d'un dispositif de "coiled-tubing" connu de l'homme de l'art La conduite de production 1a traverse l'intégralité du dispositif d'isolation et de réchauffage 1 selon l'invention et se termine dans sa partie basse par un joint flexible 22 étanche dont le diamètre interne correspond sensiblement au diamètre de la conduite principale 1a. L'embase 19 est ancré sur le fond de la mer 31 et connectée par l'intermédiaire d'une conduite en forme de coude 20 et d'un connecteur automatique 21, la conduite sous-marine 13 reposant sur le fond de la mer 30. Comme explicité précédemment, ledit joint flexible 22 autorise les mouvements angulaires du dispositif d'isolation et de réchauffage 1 sous l'effet de la houle et du courant et, de plus, est capable de reprendre les efforts verticaux de tensionnement crées par le flotteur 14, ainsi que par l'éventuelle flottabilité propre des composants isolants intégrés au dispositif d'isolation et de réchauffage 1.Said
La double conduite de circulation du fluide caloporteur 62, 63 et la conduite d'amenée du gaz 72, entre le support flottant 10 et le sommet du dispositif d'isolation 1, coopèrent avec des orifices 81, 82 et respectivement 83 prévus dans la cloison transversale d'extrémité supérieure 111, encore appelée ci-après table supérieure 111,, au sommet 41 du dispositif d'isolation et de réchauffage 1 selon l'invention. Comme représenté sur les figures 7 à 9, la table supérieure 111 est solidaire de la conduite verticale de production 1a et traversée 85 par celle-ci, tout en supportant l'enveloppe externe 31 et la paroi périphérique tubulaire de la chambre interne 4. Ainsi la conduite de production 1a supporte l'intégralité de la tension créée par le flotteur 14 et, de plus, supporte la table supérieure 111 ainsi que les éléments constitutifs du dispositif d'isolation et de réchauffage 1 consistant dans l'enveloppe externe 3 et la chambre interne 4.The double circulation duct of the coolant 6 2 , 6 3 and the gas supply pipe 7 2 , between the floating
Sur les figures 7 à 9, on a représenté le dispositif de réchauffage et d'isolation thermique 1 selon l'invention, comprenant :
- la conduite principale sous-
marine 1a ou riser vertical 1a destiné à la circulation de pétrole chaud, - une chambre
interne 4 de forme cylindrique à section circulaire à l'intérieur de laquelle est contenu ledit riser vertical 1a, - une dite enveloppe externe 3, également de forme cylindrique et coaxiale à ladite chambre
interne 4.
- the underwater
main pipe 1a orvertical riser 1a intended for the circulation of hot oil, - an
internal chamber 4 of cylindrical shape with a circular section inside which is contained saidvertical riser 1a, - an
outer casing 3, also of cylindrical shape and coaxial with saidinternal chamber 4.
Les moyens d'isolation thermique et de réchauffage sont constitués par :
- un revêtement isolant thermique 2 remplissant l'espace entre la chambre
interne 4 et l'enveloppe externe 3, et - un fluide caloporteur 5 circulant à l'intérieur de la chambre
interne 4 depuis son extrémité inférieure 42 jusqu'à son extrémité supérieure 4, au niveau dudit deuxième orifice 82 traversant la table supérieure 111.
- a thermal insulating
coating 2 filling the space between theinner chamber 4 and theouter shell 3, and - a
heat transfer fluid 5 flowing within theinternal chamber 4 from itslower end 4 2 until itsupper end 4, at said second orifice 8 2 through the upper table 11 January.
Le fluide caloporteur est amené au sommet du dispositif d'isolation et de réchauffage 1 selon l'invention par la conduite externe flexible 62, laquelle est connectée à une conduite interne 61 de circulation du fluide caloporteur à l'intérieur de la chambre 4, au niveau du premier orifice 81 traversant la table supérieure 111.The heat transfer fluid is supplied at the top of the isolation device and reheating 1 according to the invention by the flexible outer pipe 6 2, which is connected to an inner pipe 6 1 of circulation of the coolant within the
La conduite interne 6, s'étend parallèlement à la conduite principale 1a dans la direction longitudinale ZZ' de la chambre interne 4, de sorte que le fluide caloporteur débouche dans la chambre interne 4 à l'extrémité 65 de ladite conduite d'amenée 61 à proximité de l'extrémité inférieure 42 du dispositif d'isolation et de réchauffage 1. La circulation du fluide caloporteur 5 à l'intérieur de la chambre 4 se fait par aspiration au niveau de l'orifice de sortie 82 au sommet 41 du dispositif d'isolation et de réchauffage 1 selon deux variantes de réalisation.The inner pipe 6 extends parallel to the
Selon une première variante représentée sur les figures 7 et 8, le second orifice de sortie 82 du fluide caloporteur est raccordé à une deuxième conduite externe flexible 63 de retour dudit fluide caloporteur vers le support flottant 10, et c'est au niveau du support flottant 10 que se trouve un système de pompage et chauffage du fluide.According to a first variant shown in FIGS. 7 and 8, the second outlet orifice 8 2 of the heat-transfer fluid is connected to a second flexible external duct 6 3 for returning said heat-transfer fluid to the floating
Selon une deuxième variante de réalisation représentée sur la figure 9, un dispositif de pompage 9 est installé sur la table supérieure 111 de manière à coopérer avec lesdits premier orifice 81 du fluide caloporteur 5 et deuxième orifice 82 de sortie du fluide caloporteur qui permet de faire circuler en boucle le fluide caloporteur à l'intérieur de la chambre 4.According to a second alternative embodiment shown in Figure 9, a pump device 9 is installed on the upper Board 11 1 so as to cooperate with said first orifice 8 1 of
Comme représenté sur la figure 9, la pompe 9 qui peut être électrique, hydraulique ou pneumatique est contenue à l'intérieur d'un conteneur 91 reposant sur la table supérieure 111. L'orifice d'aspiration de la pompe est relié à l'orifice de sortie 82 du fluide caloporteur au niveau de la table 111 et l'orifice de sortie de la pompe est relié à l'orifice d'alimentation 81 du fluide à l'intérieur de la chambre 4 au niveau de la table supérieure 111. La résistance électrique 64 plonge à l'intérieur de la conduite 61 sur une longueur suffisante pour que le fluide caloporteur 5 puisse être réchauffé à la température convenable avant de poursuivre sa course vers le bas de la chambre 4. Pour la clarté du dessin, l'orifice 83 de la conduite d'injection de gaz 71 a été déporté sur la gauche par rapport à la représentation des figures 7 et 8. La résistance électrique 64 ainsi que le moteur de la pompe 9 sont alimentés par un câble électrique 66 en configuration de chaînette reliant le bordé du FPSO (non représenté). La conduite flexible externe 62 d'alimentation en fluide caloporteur coopère avec l'orifice 67 et permet d'effectuer le remplissage en fluide caloporteur de la chambre 5. La pompe 9 et le dispositif de résistance électrique 64 au sein du conteneur 91 peuvent être entretenus car le conteneur 91 est indépendant et vient se connecter par des moyens non représentés au niveau de la table supérieure 111. On peut donc effectuer la déconnexion du conteneur 91 et son levage jusqu'à un navire d'intervention 101 positionné à la verticale de la table 111. Après réparation ou remplacement, le conteneur 91 est redescendu, les câbles électriques sont reconnectés, les vannes d'isolation, non représentées, sont ouvertes et le fluide caloporteur 5 peut être, de nouveau, remis en circulation et réchauffé selon les besoins.As shown in FIG. 9, the pump 9 which can be electrical, hydraulic or pneumatic is contained inside a container 9 1 resting on the upper table 11 1 . The suction port of the pump is connected to outlet 8 of the orifice 2 of the heat transfer fluid at the table 11 1 and the pump outlet is connected to the power 8 of the 1-hole fluid inside the
Cette seconde variante de réalisation avec une pompe 9 installée au sommet du dispositif d'isolation 1 est avantageux dans le cas où les calories nécessaires au réchauffage du fluide caloporteur 5 sont produites par des génératrices électriques. Au contraire, la première variante représentée sur les figures 7 et 8 est avantageuse dans le cas où les calories sont récupérées dans diverses installations existantes à bord du support flottant et, en particulier, au niveau des turbines à gaz, des groupes diesels ou des fours d'élimination de produits polluants.This second embodiment with a pump 9 installed at the top of the insulating device 1 is advantageous in the case where the heat necessary for heating the
Sur les figures 7 et 8, on montre que la table supérieure 111 est solidarisée à la conduite principale 1a au niveau de renfort 114 et supportée par cette dernière. La paroi de la chambre interne 4 ainsi que l'enveloppe externe 3 sont solidaires de manière étanche de la table supérieure 111. La conduite d'amenée interne 61 du fluide caloporteur est supportée de manière étanche par la table supérieure 111 à l'aide de renfort 115, ladite conduite d'amenée 61 traverse toute la hauteur de la chambre interne 4 pour déboucher en un point 65 proche du fond 42. Ainsi le fluide caloporteur 5 remplit tout l'espace compris entre les diverses conduites 1a, 6, à l'intérieur de la chambre interne 4, espace délimité à son sommet par la table supérieure 111. Puis le fluide ressort par le second orifice 82 pour rejoindre, via une liaison externe flexible 63, le support flottant 10 où le fluide caloporteur est réchauffé puis pompé à nouveau vers l'orifice d'alimentation 81 à travers la conduite externe flexible d'alimentation 62, de manière à assurer une circulation continue et maintenir l'ensemble des composants à une température empêchant les blocages des conduites par formation de paraffine ou d'hydrate. La conduite d'injection de gaz interne 71 est solidarisée de manière étanche à la table supérieure 111 à l'aide de renfort 116 où elle est maintenue en suspension. La conduite interne d'injection de gaz 7, est avantageusement enroulée en spirale autour de la conduite d'amenée 61 du fluide caloporteur chaud, pour enfin être raccordée directement en 74 à la conduite principale 1a de production pour effectuer le "gas-lift" (élévation par injection de gaz).In Figures 7 and 8, it is shown that the upper table 11 1 is secured to the
En configuration de production, le gaz est injecté sous une pression légèrement supérieure à la pression interne régnant dans la conduite principale 1a au niveau de l'orifice 74, par exemple 0.5 à 2 bars de plus, ce qui produit des bulles 73 au sein du pétrole brut, qui ont pour effet d'en modifier la densité et ainsi de créer un effet accélérateur sur la veine fluide. Au fur et à mesure que les bulles 73 s'élèvent, la pression hydrostatique au sein du pétrole brut diminue, ce qui engendre une augmentation du volume des bulles, réduisant ainsi la densité apparente du pétrole et accélérant le processus de transfert du pétrole brut du fond de la mer vers le FPSO.In the production configuration, the gas is injected under a pressure slightly greater than the internal pressure prevailing in the
La disposition en spirale de la conduite interne d'injection de gaz 71 présente trois avantages particuliers :
- d'une part, la conduite d'injection de gaz 71 se trouve au plus près de la conduite externe d'amenée 61 du fluide caloporteur chaud et maintient donc le gaz à une température optimale jusqu'à ce qu'il soit injecté à la base de la conduite principale la de production,
- d'autre part, ladite conduite 71 étant fixée rigidement 115, dans sa partie supérieure, au niveau de la table supérieure 111, et dans sa partie inférieure, au niveau de l'orifice 74 d'injection, les dilatations différentielles entre la conduite principale 1a de production et la conduite d'injection de gaz 71, sont absorbées sans dommages par déformation élastique de la spirale que forme ladite conduite 71 enroulée en spirale autour de la conduite 61 de fluide caloporteur, ce qui autorise l'emploi de simples conduites en acier.
- enfin, en cas d'arrêt de l'installation,
le riser 1a est rempli de pétrole brut, lequel envahit aussi la conduite d'injection de gaz 71 sur une certaine hauteur, en raison de l'absence de clapet anti-retour au niveau de l'orifice d'injection 74; en effet, on évite d'installer de tels clapets anti-retour car ils nécessitent de l'entretient et risquent de causer des pannes intempestives au cas où ils ne rempliraient plus leur tâche, par exemple en fuyant ou en se bloquant en position ouverte ou fermée. Ainsi, lors de redémarrages, on fait avantageusement circuler du fluide caloporteur 5 dansla chambre 4, ce qui a pour effet immédiat de fluidifier le brut contenu dans la conduite d'injection 71 de gaz enroulée en spirale et en contact direct avec la conduite d'amenée de fluide chaud 61, et de le maintenir à une température élevée, tout en réchauffant petit à petit le pétrole brut contenu dans la conduite principale 1a de production. En maintenant une pression de gaz suffisamment élevée, dès que le pétrole dans leriser 1a est suffisamment fluide, la conduite d'injection 71 de gaz se purge rapidement et le "gas-lift" entre en action sans délai, permettant ainsi un redémarrage optimal de l'installation.
- on the one hand, the gas injection pipe 7 1 is located as close as possible to the external feed pipe 6 1 of the hot heat transfer fluid and thus keeps the gas at an optimum temperature until it is injected at the base of the main production line,
- on the other hand, said pipe 7 1 being rigidly fixed 11 5 , in its upper part, at the level of the upper table 11 1 , and in its lower part, at the orifice 7 4 injection, the differential expansions between the
main pipe 1a of production and the gas injection pipe 7 1 , are absorbed without damage by elastic deformation of the spiral formed by said pipe 7 1 wound in a spiral around the pipe 6 1 heat transfer fluid, which allows the use of simple steel pipes. - finally, in case of shutdown of the installation, the
riser 1a is filled with crude oil, which also invades the gas injection pipe 7 1 to a certain height, because of the absence of nonreturn valve at level of the injection port 7 4 ; indeed, it avoids installing such check valves because they require maintenance and may cause untimely breakdowns in case they no longer fulfill their task, for example by fleeing or by blocking in the open position or closed. Thus, during restarts,heat transfer fluid 5 is advantageously circulated in thechamber 4, which has the immediate effect of fluidifying the crude contained in the gas injection pipe 7 1 wound spirally and in direct contact with the pipe. supply of hot fluid 6 1 , and maintain it at a high temperature, while warming little by little the crude oil contained in themain pipe 1a production. By maintaining a sufficiently high gas pressure, as soon as the oil in theriser 1a is sufficiently fluid, the injection pipe 7 1 of gas is purged quickly and the "gas-lift" comes into action without delay, allowing a restart optimal installation.
Sur la figure 7, le revêtement isolant 2 est confiné dans l'espace compris entre la table supérieure 111 , la chambre interne 4, l'enveloppe externe 3, et la cloison transversale 112 située à l'extrémité inférieure 42 du dispositif d'isolation et de réchauffement 1. Cette cloison d'extrémité transversale 112 à l'extrémité inférieure 42 du dispositif est ouverte en son centre par un orifice 84 de sorte que, dans le bas du dispositif 1, l'intérieur de la chambre 4 est en contact direct avec l'eau de mer. Dans la mesure où le fluide caloporteur est suffisamment non miscible avec l'eau de mer et de densité inférieure, il se crée une zone d'interface entre le fluide caloporteur chaud et l'eau de mer. Le fluide caloporteur peut être de l'eau douce chaude et le mélange éventuel des eaux ne présente pas d'inconvénient majeur si ce n'est de perdre localement une faible partie des calories du fluide caloporteur. En outre, pour améliorer l'isolation du riser 1, on dispose avantageusement une isolation supplémentaire 21, par exemple de la mousse syntactique ou encore une section de pipe in pipe s'étendant, par exemple, sur une hauteur de 30 à 40 mètres, centrée sur la zone interface entre fluide caloporteur et eau de mer, dans la direction longitudinale ZZ'. Ainsi, en disposant l'extrémité inférieure 65 de la conduite d'amenée 61 du fluide caloporteur à, par exemple, 20 mètres du point bas 42 de la chambre interne 4 et en équipant avantageusement encore l'extrémité 65 de la conduite d'amenée 61 du fluide caloporteur , d'un déflecteur 66, on maintient l'interface eau chaude-eau froide largement au dessus du point bas 42 de la chambre interne 4 et on minimise les déperditions calorifiques inutiles. De plus l'isolation complémentaire 21 s'étendant bien au-dessus du déflecteur 68, on garantit, en plus d'un excellent niveau d'isolation, un réchauffage pleinement efficace à la conduite 1a dans sa portion basse. Ce mode de réalisation, dans lequel l'extrémité inférieure 42 de la chambre interne 4 est ouverte par un orifice 84 de diamètre supérieur à celui de la conduite principale 1a équipée de son revêtement isolant complémentaire 21, est avantageux car il autorise les élongation et rétractation du riser 1a suite aux variations de température sans avoir à gérer les difficultés mécaniques d'interface pour la liaison de l'extrémité inférieure de la conduite principale 1a avec la cloison transversale d'extrémité inférieure 112 du dispositif d'isolation 1 selon l'invention.In Figure 7, the insulating
Sur la figure 8, on a représenté une variante de réalisation, dans laquelle la cloison transversale d'extrémité inférieure 112 coopère avec un manchon tubulaire 113 entourant l'extrémité inférieure de la conduite principale la équipée de son revêtement isolant complémentaire 21 de manière à confiner, de préférence de manière étanche, l'intérieur de la chambre 4. Ainsi on minimise les échanges avec l'extérieur, ce qui est préférable lorsque le fluide caloporteur est un fluide polluant comme le gazole. En outre, le gazole est intéressant car, de par sa faible densité (d=0,85), le gazole peut contribuer à apporter de la flottabilité au dispositif d'isolation et de réchauffage 1 dans son ensemble. La surface externe des moyens d'isolation 21 entourant la conduite principale 1a à son extrémité inférieure coulisse à jeu réduit à l'intérieur du manchon tubulaire 113, et, pour éliminer les risque de fuite, on installe avantageusement des joints d'étanchéité, non représentés, à au moins l'une des deux extrémités de ce manchon tubulaire 113, celui-ci étant solidaire de la cloison d'extrémité inférieure 112 FIG. 8 shows an alternative embodiment, in which the lower end transverse partition 11 2 cooperates with a tubular sleeve 11 3 surrounding the lower end of the
Sur la figure 8, sont représentés à l'intérieur de la chambre interne 4, des éléments centraliseurs 161, qui permettent de maintenir les conduites 1a et 61 sensiblement parallèlement dans la direction longitudinale ZZ' de la chambre, tout en autorisant les mouvements dus aux dilatations différentielles selon ledit axe ZZ'.In FIG. 8, centralizing
D'autre part, sur la figure 8, on a également représenté une variante de réalisation avec des cloisons étanches intermédiaires 15, des gabarits centraliseurs 16 et des gabarits conformateurs 17 dans l'espace entre la chambre interne 4 et l'enveloppe externe 3 dans le cas où le .revêtement isolant 2 est un matériau sujet à migration. Des cloisons étanches intermédiaires 15, des gabarits centraliseurs 16 et des gabarits conformateurs 17 limitent l'expansion et la contraction du matériau isolant sujet à migration, donc les déformations de l'enveloppe externe 3 comme explicité précédemment. Les cloisons transversales intermédiaires étanches 15 ainsi que les cloisons d'extrémité 111, 112 sont constituées d'une structure rigide fermée solidaire, traversée par la paroi de ladite chambre interne 4 et solidaire de la paroi de l'enveloppe externe 3; elles sont espacées de préférence à intervalles réguliers d'au moins 200 mètres dans la direction ZZ'. Dans l'espace entre deux cloisons transversales étanches 111,112, on dispose au moins un gabarit centraliseur 16. Chaque gabarit centraliseur 16 est constitué d'une pièce rigide solidaire de la paroi de la chambre interne 4 et présente une forme qui autorise un déplacement limité de l'enveloppe externe 3 aussi bien en contraction qu'en expansion. Ce mode de réalisation convient pour une chambre interne dont la paroi est rigide, notamment de forme circulaire, et l'enveloppe externe 3 est constituée d'un matériau souple ou semi-rigide apte à rester en contact avec la surface extérieur du revêtement isolant 2 lorsque celle-ci se déforme. Sur la figure 8A, on a représenté un mode de réalisation où le périmètre de la section transversale de la surface libre externe cylindrique de la pièce rigide constituant le gabarit centraliseur 16, est en retrait par rapport à celui de la cloison étanche intermédiaire 15 et limite les déformations de l'enveloppe externe 3 par butée mécanique de celle-ci sur la pièce rigide 16 en au moins deux points opposés du périmètre de la section transversale de ladite enveloppe externe 3. Comme décrit dans FR 2 821 915, la pièce rigide 16 présente une partie de sa surface libre externe cylindrique suffisamment en retrait par rapport à la surface de l'enveloppe externe 3 et/ou présente des perforations la traversant de manière à créer un espace qui permette le transfert de matière isolante 2 à travers le gabarit centraliseur ou autour du gabarit centraliseur 16.On the other hand, in Figure 8, there is also shown an alternative embodiment with
Dans une variante de réalisation non représentée, lorsque l'enveloppe externe 3 est réalisé en matériau rigide et présente un profil de section transversale horizontale circulaire et que c'est la chambre interne 4 qui est réalisée en matériau souple ou semi-rigide, de préférence à profil de section horizontale transversale ovale ou allongée de type rectangulaire, la pièce rigide constitutive des gabarits centraliseurs 16 est solidaire de l'enveloppe externe 3 et c'est la surface libre interne cylindrique de la pièce rigide 16 qui est alors en retrait par rapport à la paroi de la chambre interne 4, de manière à permettre l'expansion ou la contraction de la paroi de la chambre interne 4 en regard du gabarit centraliseur 16.In an alternative embodiment not shown, when the
Il est également avantageux de prévoir des gabarits conformateurs 17 entre deux gabarits centraliseurs 16 comme représenté dans le compartiment inférieur entre la cloison d'extrémité inférieure 112 et la première cloison transversale intermédiaire étanche 15 dans la figure 8. Ce gabarit conformateur 17 est constitué d'une structure rigide solidaire des parois de l'enveloppe externe 3 et de la chambre interne 4. Sur la figure 8C, le gabarit conformateur 17 présente des ouvertures 171 permettant le passage de la matière sujette à migration dudit matériau isolant 2 à travers le gabarit conformateur 17 puis d'obtenir l'effet technique exposé précédemment décrit dans FR 2 821 915.It is also advantageous to provide shaping
Sur les figures 2 à 6, on a représenté différents types de configuration géométrique la section transversale horizontale des chambres internes 4 et enveloppe externe 3, tout d'abord les chambres internes 4 et enveloppes externes 3 peuvent être constituées toutes les deux d'un matériau rigide et présenter une section transversale horizontale de configuration circulaire. Ce type de configuration peut convenir lorsque le matériau isolant thermique 2 est un matériau rigide tel que de la mousse syntactique.FIGS. 2 to 6 show different types of geometrical configuration of the horizontal cross-section of the
Toutefois, lorsque le matériau isolant thermique 2 est un matériau sujet à migration, notamment du type gel, et plus particulièrement encore un composé à changement de phases tel que une paraffine ou encore une combinaison de ces divers systèmes d'isolation et d'accumulation d'énergie, il est préférable que l'enveloppe externe 3 et/ou la chambre interne 4 soient constituées d'un matériau souple ou semi-rigide apte à suivre les déformations dudit matériau isolant Différentes configurations peuvent être envisagées.However, when the thermal insulating
On notera que sur les figures 2 à 6, on a représenté un dispositif d'isolation et de réchauffage qui comprend un faisceau de conduites 1a, 1b disposées parallèlement à l'intérieur de la chambre interne 4 le long de sa direction longitudinale ZZ'.Note that in Figures 2 to 6, there is shown an insulation and heating device which comprises a bundle of
Sur les figures 3 et 4, on a représenté un dispositif d'isolation 1 plus particulièrement adapté au revêtement isolant 2 de type gel ou matériau à changement de phase sujet à de fortes variations de volume dues à la température et/ou aux phénomènes de changement de phases. Ces dispositifs ont la capacité d'absorber les variations de volume importantes par "remise au rond" de la forme de l'enveloppe externe représentée sur la figure 3 avec une section transversale horizontale de type rectangulaire à angles arrondis et sur la figure 4 avec une section transversale horizontale en configuration ovale. L'enveloppe externe 3 se déforme en expansion vers une forme circulaire sans engendrer de contrainte significative dans l'enveloppe externe 3 lors des augmentations de volume interne. Dans cette version, l'enveloppe externe peut être réalisée en matériau semi-rigide, en acier ou tout autre métal ou encore en matériau composite. Dans ces réalisations de la figure 3, la paroi de la chambre interne 4 peut, elle-aussi, être réalisée en matériau semi-rigide mais on la réalise de préférence en matériau rigide de type.In FIGS. 3 and 4, there is shown an isolation device 1 more particularly adapted to the insulating
Sur les figures 5 et 6, on a représenté une configuration inversée de la section transversale horizontale des chambres internes 4 et enveloppes externes 3. La forme déformable sous l'effet de l'expansion/contraction du matériau isolant 2 est constituée par la paroi de la chambre interne 4 dont la section transversale horizontale présente une forme allongée de type rectangulaire à bord arrondi (figure 6) ou ovale (figure 5) et l'enveloppe externe 3 étant alors de configuration circulaire et pouvant être constituée d'un matériau rigide. Ainsi, lors de la rétractation du matériau isolant 2, la paroi de la chambre 4 a tendance à se remettre au rond, tandis qu'elle s'aplatit lorsque le matériau isolant 2 s'expanse.FIGS. 5 and 6 show an inverted configuration of the horizontal cross-section of the
Sur la figure 10, on a représenté en coupe horizontale une installation comprenant deux dispositifs d'isolation et de réchauffage 1 selon l'invention, présentant chacun une enveloppe externe 3 dont la section transversale horizontale présente un profil rectangulaire à angle arrondi. Ces deux dispositifs 1 sont installés au centre d'une seconde enveloppe externe circulaire 31 jouant le rôle d'écran. Des secondes enveloppes circulaires écrans ont également été décrites dans l'état de la technique. Ladite seconde enveloppe circulaire 31 minimise les coefficients hydrodynamiques propres de l'ensemble et donc les efforts dus au courant marin. Cette seconde enveloppe circulaire 31 est rendue solidaire des dispositifs 1 par des plots élastiques 35, en élastomère ou en matériau thermoplastique, ou encore par de simples ressorts. Sur la figure 11, on a représenté des ailerons 32 en forme de spirale rapportées à l'extérieur de la seconde enveloppe circulaire 31 et dont la fonction est d'empêcher la formation de vortex ou décrochement tourbillonnaire sous l'effet de courants marins. Ces dispositions sont également connues de l'homme de l'art et d'autres dispositions équivalentes peuvent être envisagées.In Figure 10, there is shown in horizontal section an installation comprising two insulating and reheating devices 1 according to the invention, each having an
L'invention a été décrite dans ses détails pour le cas d'une colonne montante, mais on reste dans l'esprit de l'invention dès lors que l'on applique les diverses dispositions de l'invention à des conduites sous-marines reposant sur le fond de la mer.The invention has been described in detail for the case of a riser, but it remains in the spirit of the invention since the various provisions of the invention are applied to submarine lines resting on the bottom of the sea.
Claims (30)
- Apparatus (1) for heating and lagging at least one undersea main bottom-to-surface connection pipe (1a, 1b) for carrying a flow of hot effluent, the apparatus comprising:- a covering of one thermally insulating material (2) surrounding said main pipe(s) (1a, 1b);- said insulating covering (2) being covered by a leaktight outer protective casing (3) that is preferably cylindrical in shape;the apparatus being characterised in that it comprises:a) an internal chamber (4) preferably of cylindrical shape and coaxial (ZZ') inside said outer casing (3), such that:- said insulating covering surrounds said internal chamber and preferably fills the annular space between said outer casing (3) and said internal chamber (4); and- said main pipe (1a, 1b) is contained inside said internal chamber (4), that is preferably cylindrical in shape; andb) means (61, 9) suitable for maintaining the temperature of a heat-transfer fluid (5) and for causing it to circulate inside said internal chamber, said heat-transfer fluid (5) surrounding the main pipe (1a, 1b) contained inside a said internal chamber (4).
- Apparatus according to claim 1, characterised in that said internal chamber (4) conveys at least one internal gas-injection pipe (71) suitable for enabling gas to be injected into said main pipe (1a, 1b), said internal gas-injection pipe (71) being connected (74) to said main pipe (1a, 1b) at one end (42) in the longitudinal direction (ZZ') of said main pipe (1a, 1b) inside said internal chamber (4), and preferably said gas-injection pipe (71) extending outside said internal chamber (4) in the form of an external gas-injection pipe (72) connecting said internal gas-injection pipe (71) to a floating support (10).
- Apparatus according to claim 1 or claim 2, characterised in that it comprises fluid-circulation means for circulating a heat-transfer fluid (5), said fluid-circulation means comprising at least one internal heat-transfer fluid feed pipe (61) extending in the longitudinal direction (ZZ') inside said internal chamber (4) from a first orifice (81) situated at a first end (41) of the internal chamber (4), preferably as far as the vicinity of the second end (42) of said internal chamber (4), and a second orifice (82) for outlet of said heat-transfer fluid, preferably level with said first end (41) of the internal chamber (4), said internal heat-transfer fluid feed pipe (61) being situated beside said main pipe, between it and said outer insulating material.
- Apparatus according to claim 2 or claim 3, characterised in that said internal gas-injection pipe (71) is a pipe that is spiral-wound around said internal heat-transfer fluid feed pipe (61) inside said internal chamber (4).
- Apparatus according to claim 3 or claim 4, characterised in that said internal heat-transfer fluid feed pipe (61) is extended from said first orifice (81) to a floating support (10) by an external flexible pipe (62) for feeding said heat-transfer fluid, and said second orifice (82) for outlet of heat-transfer fluid is connected to a second external flexible pipe (63) for returning said heat-transfer fluid to said floating support (10).
- Apparatus according to claim 3 or claim 4, characterised in that said internal heat-transfer fluid feed pipe (61) is connected to heat-transfer fluid circulation means comprising a pump (9) co-operating at said first end (41) of the internal chamber (4) with said first orifice (81) for feeding heat-transfer fluid and with said second orifice (82) for outlet of heat-transfer fluid, said pump (9) enabling the heat-transfer fluid to be circulated successively inside said internal heat-transfer fluid feed pipe (61), then inside the internal chamber (4), then out from said internal chamber (4) via said second orifice (82), and finally recirculating in a loop back into said internal chamber (4) via said first orifice (81), an external flexible pipe (62) for circulating heat-transfer fluid providing a connection between said floating support and the body of the pump (9) or said first orifice (81).
- Apparatus according to claim 6, characterised in that it includes heater means (64) for heating the heat-transfer fluid inside said internal heat-transfer fluid feed pipe (61), the heater means preferably being in the form of an electrical resistance element.
- Apparatus according to one of claims 1 to 7, characterised in that it includes at least one transverse end partition (111) at at least a said first end (41), said end transverse partition (111) supporting said main pipe (1a, 1b) and also said fluid-circulation means (61, 9), and having said main pipe (1a, 1b) passing therethrough and, where appropriate, having first and second orifices (81, 82) enabling said heat-transfer fluid (5) to be caused to circulate inside and outside said internal chamber (4) via said orifices (81, 82).
- Apparatus according to claim 8, characterised in that it has first and second transverse end partitions (111, 112) each at a respective one of the two ends (41, 42) of the internal chamber (4), said first end partition (111) including, where appropriate, said first and second orifices (81, 82), and said two transverse end partitions (111, 112) supporting said outer casing (3) and said internal chamber (4) and connecting them together in leaktight manner, while also ensuring, at least at a first end (41), that the heat-transfer fluid (5) is confined inside the internal chamber (4).
- Apparatus according to claim 9, characterised in that said second end partition (112) includes a large orifice (84) of diameter greater than that of the main pipe, through which orifice said main pipe (1a) passes, so that the heat-transfer fluid (5) is in contact with sea water at the bottom end (42) of the internal chamber (4).
- Apparatus according to claim 9, characterised in that said second end partition (112) includes an orifice (84) surrounding and secured to a tubular sleeve (113) inside which said main pipe (1a) can slide with little clearance, preferably in leaktight manner.
- Apparatus according to one of claims 1 to 11, characterised in that said main pipe (1a) is covered in a second insulating covering (21), at least at said second end (42) of the internal chamber (4), said heat-transfer fluid circulating in said internal chamber (4) outside said second covering (22).
- Apparatus according to claim 12, characterised in that said second covering (21) is constituted by a thermally insulating material, preferably a solid thermally insulating material, more preferably syntactic foam, said solid material directly surrounding said main pipe (1a), more preferably said second insulating material completely filling the space between said main pipe (1a) and a second pipe that is coaxial therewith, having said main pipe inserted therein.
- Apparatus according to one of claims 1 to 13, characterised in that said insulating covering (2) comprises an insulating material that is subject to migration, and at least said outer casing (3) and/or said internal chamber (4) is/are constituted by a solid material that is flexible or semi-rigid and suitable for tracking deformations of the insulating material (2) and for remaining in contact therewith when it deforms.
- Apparatus according to one of claims 1 to 14, characterised in that said insulating material (2) is a phase-change material presenting a liquid/solid melting temperature (T0) that preferably lies in the range 20°C to 80°C, said temperature being greater than the temperature (T2) of the sea water environment surrounding the pipe in operation and less than the temperature (T1) above which the effluent flowing inside the pipe presents an increase in viscosity that is damaging for flow thereof in said main pipe (1a, 1b).
- Apparatus according to claim 15, characterised in that said phase-change insulating material (2) comprises chemical compounds of the alkane family, preferably a paraffin having a hydrocarbon chain of at least 14 carbon atoms, more preferably tetracosane of formula C24H50 presenting a melting temperature of about 50°C.
- Apparatus according to one of claims 1 to 16, characterised in that said insulating material (2) comprises an insulating mixture comprising a first compound consisting in a hydrocarbon compound such as paraffin or gas oil, mixed with a second compound consisting in a gelling compound and/or a compound having a structuring effect, in particular by cross-linking, such as a second compound of the polyurethane type, cross-linked polypropylene, cross-linked polyethylene, or silicone, preferably said first compound is in the form of particles or microcapsules dispersed within a matrix of said second compound, and said first compound preferably being selected from alkanes such as paraffins, waxes, bitumens, tar, fatty alcohols, or glycols, more preferably said first compound being a phase-change compound.
- Apparatus according to one of claims 1 to 17, characterised in that it includes a said insulating covering (2) comprising one said viscous solid material that is subject to migration and at least two intermediate transverse partitions (15) that are leaktight, each of said intermediate transverse partitions (15) being constituted by a closed rigid structure having said internal chamber (4) passing therethrough and secured to the walls of said internal chamber (4) and to said outer casing (3), said intermediate transverse partitions (15) preferably being spaced apart from one another at regular intervals along the longitudinal axis (ZZ') of said internal chamber (4) and outer casing (3) coaxial therewith, more preferably at a distance of 50 m to 200 m.
- Apparatus according to claim 18, characterised in that it includes at least one centralizing template (16) and preferably a plurality of centralizing templates (16) preferably disposed at regular intervals between two of said leaktight intermediate transverse partitions (15) in succession along said longitudinal axis (ZZ'), each centralizing template (16) being constituted by a rigid piece secured to the wall of the internal chamber (4) or of said outer casing (3), and presenting a shape which allows limited displacement of said outer casing (3) or respectively of said internal chamber (4) in contraction and in expansion facing said centralizing template (16), at least said outer casing (3) or respectively said internal chamber (4) being made of a material that is flexible or semi-rigid and suitable, where appropriate, for remaining in contact with the insulating covering when it deforms.
- Apparatus according to claim 18 or claim 19, characterised in that it comprises at least one and preferably a plurality of shaping templates (17) each constituted by a rigid structure secured to said internal chamber which passes therethrough and secured to said outer casing (3) at its periphery, being disposed between two of said leaktight intermediate transverse partitions (5) that are disposed in succession, each shaping template presenting openings allowing the material constituting said insulating material (2) that is subject to migration to pass through said shaping template (17).
- Apparatus according to one of claims 1 to 17, characterised in that said outer casing (3) and said internal chamber (4) are coaxial along a longitudinal axis (ZZ') and define a perimeter presenting, at rest, two axes of symmetry (XX' and YY') that are mutually perpendicular and perpendicular to said longitudinal axis (ZZ'), and at least one of the walls constituting said outer casing (3) and/or said internal chamber (4) is made of a material that is flexible or semi-rigid, while preferably the other wall is constituted by a material that is rigid, and more preferably of cross-section that is circular in shape.
- Apparatus according to claim 21, characterised in that the cross-section of the outer casing (3), which is preferably made of a material that is rigid, is circular in shape, while the cross-section of said internal chamber (4), which is preferably made of a material that is flexible or semi-rigid, is oval in shape or rectangular in shape with rounded corners.
- Apparatus according to claim 21, characterised in that the cross-section of the internal chamber (4), which is preferably made of a material that is rigid, is circular in shape, while the cross-section of the outer casing (3), which is preferably made of a material that is flexible or semi-rigid, is oval in shape or rectangular in shape with rounded corners.
- Apparatus according to one of claims 1 to 23, characterised in that said main pipe (1a) and, where appropriate, said internal heat-transfer fluid feed pipe (61), co-operate(s) inside said internal chamber (4) with centralizing elements (161) which hold said pipe(s) (1a, 61) substantially parallel to the axis (ZZ') of said internal chamber (4) while allowing said pipes (1a, 61) to move due to differential expansion thereof.
- Apparatus (1) for heating and lagging a bundle of undersea main pipes (1a, 1b), the apparatus being characterised in that it comprises apparatus according to one of claims 1 to 24 containing at least two of said main pipes (1a, 1b) disposed in parallel inside said internal chamber (4).
- A bottom-to-surface connection installation between an undersea pipe (13) resting on the sea bottom, in particular at great depth, and a supporting float (10), the installation comprising:a) at least one vertical riser (1a, 1b) connected at its bottom end to at least one said undersea pipe (13) resting on the sea bottom, and at its top end to at least one float (14) said vertical riser being included in apparatus (1) according to one of claims 1 to 25, said vertical riser corresponding to said main pipe, and said internal chamber (4) extending over a depth of at least 1000 meters;b) at least one connection pipe (12) preferably a flexible pipe, connecting a floating support (10) with the top end of said vertical riser (4); andc) where appropriate, said external flexible pipes (62, 63) for circulating the heat-transfer fluid (5) between the floating support (10) and said first and second orifices (81, 82) at the first end (41) of the internal chamber (4), and, where appropriate, at least one said flexible external pipe (72) for injecting gas.
- An installation according to claim 26, characterised in that it includes a second outer casing (31) of circular cross-section containing at least one lagging and heating apparatus (1) according to one of claims 1 to 25, said outer casing (3) of said lagging and heating apparatus (1) being secured to said outer second casing (31), preferably via resilient links (35), and more preferably said outer second casing (31) having spiral-shaped means (32) on its outside periphery suitable for preventing vortices forming or turbulence separating under the effect of sea currents.
- A method of heating and thermally insulating at least one main undersea pipe (1a, 1b) providing a bottom-to-surface connection for delivering a flow of hot effluent to or from the bottom of the sea and the surface, the method being characterised in that a heating and lagging apparatus (1) according to one of claims 1 to 25 is used, preferably in an installation according to claim 26 or claim 27, and a said heat-transfer fluid (5) is caused to flow inside a said internal chamber (4).
- A method according to claim 28, characterised in that said heat-transfer fluid is selected from sea water, fresh water, gas oil, and oil.
- A method according to claim 28 or claim 29, characterised in that said main pipe is heated by said flow of said heat-transfer fluid during a stage of restarting production after a prolonged stoppage.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0303274A FR2852677B1 (en) | 2003-03-18 | 2003-03-18 | DEVICE FOR HEATING AND THERMALLY INSULATING AT LEAST ONE UNDERWATER DRIVING |
FR0303274 | 2003-03-18 | ||
PCT/FR2004/000619 WO2004085794A1 (en) | 2003-03-18 | 2004-03-12 | Device for heating and thermally insulating at least one undersea pipeline |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1606490A1 EP1606490A1 (en) | 2005-12-21 |
EP1606490B1 true EP1606490B1 (en) | 2006-07-19 |
Family
ID=32922240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04720038A Expired - Lifetime EP1606490B1 (en) | 2003-03-18 | 2004-03-12 | Device for heating and thermally insulating at least one undersea pipeline |
Country Status (7)
Country | Link |
---|---|
US (1) | US7367398B2 (en) |
EP (1) | EP1606490B1 (en) |
AT (1) | ATE333567T1 (en) |
BR (1) | BRPI0408419B1 (en) |
DE (1) | DE602004001582D1 (en) |
FR (1) | FR2852677B1 (en) |
WO (1) | WO2004085794A1 (en) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2841632B1 (en) * | 2002-07-01 | 2004-09-17 | Bouygues Offshore | "DEVICE FOR THERMAL INSULATION OF AT LEAST ONE SUBSEA PIPE COMPRISING AN INSULATING MATERIAL WITH CONFINED PHASE CHANGE IN POCKETS" |
GB0409361D0 (en) * | 2004-04-27 | 2004-06-02 | Stolt Offshore Sa | Marine riser tower |
GB0704670D0 (en) * | 2006-11-08 | 2007-04-18 | Acergy France Sa | Hybrid tower and methods of installing same |
PL2101990T3 (en) * | 2006-11-29 | 2015-06-30 | 3M Innovative Properties Co | Microsphere-containing insulation |
US8714206B2 (en) * | 2007-12-21 | 2014-05-06 | Shawcor Ltd. | Styrenic insulation for pipe |
US7669659B1 (en) * | 2008-01-29 | 2010-03-02 | Lugo Mario R | System for preventing hydrate formation in chemical injection piping for subsea hydrocarbon production |
FR2930587A1 (en) * | 2008-04-24 | 2009-10-30 | Saipem S A Sa | BACKFLY-SURFACE LINK INSTALLATION OF A RIGID CONDUIT WITH A POSITIVE FLOATABLE FLEXIBLE DRIVE AND A TRANSITIONAL PART OF INERTIA |
GB0810355D0 (en) | 2008-06-06 | 2008-07-09 | Acergy France Sa | Methods and apparatus for hydrocarbon recovery |
US8397765B2 (en) * | 2008-07-25 | 2013-03-19 | Shawcor Ltd. | High temperature resistant insulation for pipe |
US20100051279A1 (en) * | 2008-09-02 | 2010-03-04 | Baugh Paula B | Method of prevention of hydrates |
BRPI0924891B1 (en) * | 2008-12-22 | 2020-01-28 | Shawcor Ltd | rollable styrenic insulation for pipes |
PT2248648E (en) * | 2009-05-05 | 2016-06-03 | Brugg Rohr Ag Holding | Method and device for producing a heat-insulated conduit |
FR2948144B1 (en) * | 2009-07-16 | 2011-06-24 | Technip France | PETROLEUM CONDUIT SUSPENSION DEVICE AND METHOD OF INSTALLATION |
GB0920640D0 (en) * | 2009-11-25 | 2010-01-13 | Subsea 7 Ltd | Riser configuration |
FR2960208B1 (en) * | 2010-05-20 | 2012-08-10 | Saipem Sa | SURFACE BONDING SYSTEM COMPRISING A FLEXIBLE DRIVING GUIDE STRUCTURE |
FR2960279B1 (en) * | 2010-05-20 | 2013-04-05 | Inst Francais Du Petrole | PETROL CONDUIT BEAM WITH IMPROVED THERMAL PERFORMANCE |
WO2011161472A1 (en) * | 2010-06-26 | 2011-12-29 | Trellborg Offshore Uk Limited | Passive thermal management system for liquid pipelines |
US8960302B2 (en) * | 2010-10-12 | 2015-02-24 | Bp Corporation North America, Inc. | Marine subsea free-standing riser systems and methods |
BRPI1101090B1 (en) * | 2011-03-21 | 2021-02-23 | Ipb-gr Indústria Mecânica Ltda | thermal insulation of tubes of a column of subsea oil production tubes, tubular segment and system for thermal isolation of joints of joints of subsea oil production tubes |
US9334695B2 (en) | 2011-04-18 | 2016-05-10 | Magma Global Limited | Hybrid riser system |
WO2012143672A2 (en) * | 2011-04-18 | 2012-10-26 | Magma Global Limited | Hybrid riser system |
GB201110569D0 (en) * | 2011-06-22 | 2011-08-03 | Wellstream Int Ltd | Method and apparatus for maintaining a minimum temperature in a fluid |
DE102011052868A1 (en) * | 2011-08-19 | 2013-02-21 | Rehau Ag + Co. | Latent heat storage device for temperature regulation in residential and office spaces, has latent heat storage section which fully surrounds flow channel and double line composed of inner line and outer line |
FR2988424B1 (en) * | 2012-03-21 | 2014-04-25 | Saipem Sa | INSTALLATION OF MULTI-RISERS HYBRID TILT TYPE FOUNDATION SURFACE CONNECTIONS COMPRISING POSITIVE FLOATABLE FLEXIBLE DUCTS |
NO335610B1 (en) * | 2013-03-27 | 2015-01-12 | Vetco Gray Scandinavia As | Device for thermal insulation of one or more elements in a subsea installation from surrounding cold sea water |
CN103291227A (en) * | 2013-06-04 | 2013-09-11 | 无锡金顶石油管材配件制造有限公司 | High-temperature-resistant and antioxidative heat-insulating petroleum pipe |
CN103291226A (en) * | 2013-06-04 | 2013-09-11 | 无锡金顶石油管材配件制造有限公司 | Multi-trunking petroleum pipe structure |
US8833440B1 (en) * | 2013-11-14 | 2014-09-16 | Douglas Ray Dicksinson | High-temperature heat, steam and hot-fluid viscous hydrocarbon production and pumping tool |
GB2525609B (en) * | 2014-04-28 | 2017-04-19 | Acergy France SAS | Riser system with gas-lift facility |
FI127880B (en) * | 2015-09-08 | 2019-04-30 | Uponor Innovation Ab | An elongated pre-insulated pipe assembly and a local heat distribution system |
US10982508B2 (en) | 2016-10-25 | 2021-04-20 | Stress Engineering Services, Inc. | Pipeline insulated remediation system and installation method |
CN106703813A (en) * | 2016-12-20 | 2017-05-24 | 武汉理工大学 | Bubble-drag-reduction-type marine mining riser |
AU2018296421B9 (en) * | 2017-07-03 | 2024-08-01 | Subsea 7 Norway As | Offloading hydrocarbons from subsea fields |
CN109812640A (en) * | 2019-03-14 | 2019-05-28 | 江苏宏博机械制造有限公司 | Avoid severe cold bursting by freezing type petroleum pipeline device |
CN111287706B (en) * | 2020-02-14 | 2022-03-01 | 中国海洋石油集团有限公司 | Deepwater oil and gas field underwater facility and hydrate blockage removing method thereof |
AR125520A1 (en) * | 2021-03-10 | 2023-07-26 | Adonis Costin Ichim | SYSTEM AND METHOD OF MONITORING TUBULAR INSTALLATIONS |
GB2615544B (en) * | 2022-02-10 | 2024-06-12 | Baker Hughes Energy Technology UK Ltd | Subsea heat bank with PCM heat storing member |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2707095A (en) * | 1950-05-08 | 1955-04-26 | R W Mfg Co | Underground heat exchanger |
DE2019081A1 (en) * | 1970-04-21 | 1971-11-11 | Kabel Metallwerke Ghh | Thermally insulated conduit |
US3768547A (en) * | 1971-02-04 | 1973-10-30 | Dow Chemical Co | Arrangement to control heat flow between a member and its environment |
US3765489A (en) * | 1972-02-14 | 1973-10-16 | Union Oil Co | Method and apparatus for continuously injecting a fluid into a producing well |
FR2228188B1 (en) * | 1973-02-06 | 1975-08-22 | Commissariat Energie Atomique | |
US4076476A (en) * | 1976-11-22 | 1978-02-28 | Ideal Toy Corporation | Dough mold press |
US4408657A (en) * | 1981-01-19 | 1983-10-11 | Pugh Paul F | Method for transporting low temperature heat long distances |
US6058979A (en) * | 1997-07-23 | 2000-05-09 | Cuming Corporation | Subsea pipeline insulation |
US6000438A (en) * | 1998-02-13 | 1999-12-14 | Mcdermott Technology, Inc. | Phase change insulation for subsea flowlines |
FR2788831B1 (en) * | 1999-01-26 | 2001-04-13 | Bouygues Offshore | THERMAL INSULATION DEVICE FOR AT LEAST ONE LARGE DEEP SUBMARINE PIPE |
WO2000040886A1 (en) * | 1998-12-31 | 2000-07-13 | Bouygues Offshore | Heat insulating device and method for insulating at least a submarine pipeline at great depth |
FR2790054B1 (en) * | 1999-02-19 | 2001-05-25 | Bouygues Offshore | METHOD AND DEVICE FOR LOW-SURFACE LINKAGE BY SUBMARINE PIPELINE INSTALLED WITH LARGE DEPTH |
US6419018B1 (en) * | 2000-03-17 | 2002-07-16 | Halliburton Energy Services, Inc. | Subterranean well completion apparatus with flow assurance system and associated methods |
BR0206197A (en) * | 2001-01-08 | 2004-02-03 | Stolt Offshore Sa | Maritime Ascending Tower |
FR2821143B1 (en) * | 2001-02-19 | 2003-05-02 | Bouygues Offshore | LOW-SURFACE LINK INSTALLATION OF A LARGE-DEPTH, SUB-SUBMARINE PIPELINE OF THE TOUR-HYBRID TYPE |
FR2821917B1 (en) * | 2001-03-09 | 2004-04-02 | Bouygues Offshore | THERMAL INSULATION DEVICE FOR AT LEAST ONE SUBSEA PIPE COMPRISING SEALED PARTITIONS |
FR2826051B1 (en) * | 2001-06-15 | 2003-09-19 | Bouygues Offshore | GROUND-SURFACE CONNECTION INSTALLATION OF A SUBSEA PIPE CONNECTED TO A RISER BY AT LEAST ONE FLEXIBLE PIPE ELEMENT HOLDED BY A BASE |
-
2003
- 2003-03-18 FR FR0303274A patent/FR2852677B1/en not_active Expired - Fee Related
-
2004
- 2004-03-12 DE DE602004001582T patent/DE602004001582D1/en not_active Expired - Lifetime
- 2004-03-12 WO PCT/FR2004/000619 patent/WO2004085794A1/en active IP Right Grant
- 2004-03-12 AT AT04720038T patent/ATE333567T1/en not_active IP Right Cessation
- 2004-03-12 BR BRPI0408419-5A patent/BRPI0408419B1/en not_active IP Right Cessation
- 2004-03-12 EP EP04720038A patent/EP1606490B1/en not_active Expired - Lifetime
- 2004-03-12 US US10/548,856 patent/US7367398B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
BRPI0408419A (en) | 2006-03-21 |
ATE333567T1 (en) | 2006-08-15 |
BRPI0408419B1 (en) | 2015-07-28 |
FR2852677B1 (en) | 2006-01-06 |
WO2004085794A1 (en) | 2004-10-07 |
US20060131027A1 (en) | 2006-06-22 |
EP1606490A1 (en) | 2005-12-21 |
US7367398B2 (en) | 2008-05-06 |
FR2852677A1 (en) | 2004-09-24 |
DE602004001582D1 (en) | 2006-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1606490B1 (en) | Device for heating and thermally insulating at least one undersea pipeline | |
EP1518071B1 (en) | Device for thermal insulation of at least a submarine pipeline comprising a phase-change material confined in jackets | |
EP1395731B1 (en) | Underwater pipeline connection joined to a riser | |
EP1362161B1 (en) | Seafloor-surface connecting installation of a submarine pipeline installed at great depth | |
EP1058800B1 (en) | Heat insulating device and method for insulating at least a submarine pipeline at great depth | |
EP1917416B1 (en) | Installation comprising at least two seafloor-surface connectors for at least two submarine pipelines resting on the seafloor | |
EP2844820B1 (en) | Installation comprising seabed-to-surface connections of the multi-riser hybrid tower type, including positive-buoyancy flexible pipes | |
EP1501999A1 (en) | Seafloor/surface connecting installation for a submarine pipeline which is connected to a riser by means of at least one elbow pipe element that is supported by a base | |
EP2340388A1 (en) | Set of coaxial pipes comprising a thermal insulation sleeve | |
EP1366320B1 (en) | Thermal insulation device for at least one underwater pipe comprising sealed partitions | |
EP3140492A1 (en) | Joint assembly for forming a duct | |
EP2352946A1 (en) | Underwater elbow connection pipe including heat insulation | |
FR3056628B1 (en) | METHOD FOR INSTALLATION IN THE SEA OF A DUAL ENVELOPE PRECHAUFFED SUBMARINE CONDUIT FOR TRANSPORTING FLUIDS | |
EP3265642B1 (en) | Facility comprising at least two bottom-surface links comprising vertical risers connected by bars | |
OA17101A (en) | Installation de liaisons fond-surface de type tour hybride multi-risers comprenant des conduites flexibles à flottabilité positive. | |
OA18412A (en) | Installation comprising at least two bottom-surface connections comprising vertical risers connected by bars | |
FR2931188A1 (en) | Sub-marine pipe heating device for petroleum field, has heating tube surrounded with high temperature insulator and embedded in low temperature insulating envelope for being placed close to and in contact with envelope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050825 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
DAX | Request for extension of the european patent (deleted) | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060719 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602004001582 Country of ref document: DE Date of ref document: 20060831 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061019 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061019 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061020 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061219 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070420 |
|
BERE | Be: lapsed |
Owner name: SAIPEM S.A. Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20080601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070312 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070120 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200323 Year of fee payment: 17 Ref country code: IT Payment date: 20200312 Year of fee payment: 17 Ref country code: NL Payment date: 20200227 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200313 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210401 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210312 |