EP1605546A1 - Dispositif rayonnant à alimentation orthogonale - Google Patents
Dispositif rayonnant à alimentation orthogonale Download PDFInfo
- Publication number
- EP1605546A1 EP1605546A1 EP05290270A EP05290270A EP1605546A1 EP 1605546 A1 EP1605546 A1 EP 1605546A1 EP 05290270 A EP05290270 A EP 05290270A EP 05290270 A EP05290270 A EP 05290270A EP 1605546 A1 EP1605546 A1 EP 1605546A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ground plane
- main
- coupling
- line
- supply line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000008878 coupling Effects 0.000 claims abstract description 118
- 238000010168 coupling process Methods 0.000 claims abstract description 118
- 238000005859 coupling reaction Methods 0.000 claims abstract description 118
- 230000005684 electric field Effects 0.000 claims abstract description 18
- 230000010287 polarization Effects 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 20
- 230000006978 adaptation Effects 0.000 claims description 12
- 230000005284 excitation Effects 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 6
- 230000000644 propagated effect Effects 0.000 claims description 2
- 230000007704 transition Effects 0.000 description 17
- 239000004020 conductor Substances 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0485—Dielectric resonator antennas
Definitions
- the invention relates to the field of transmitting antennas and / or reception, and more particularly the radiating devices (or elements) equip such antennas.
- the term "radiating device” means a combination of minus one main power line, a radiant ground plane, and of a resonant structure charged with radiating energy according to a wavelength ⁇ chosen when excited by the power line principal, possibly via coupling means belonging to the plan radiant mass.
- antenna is understood to mean both antennas traditional than focal network antennas, such as multibeam antennas with reflectors (FAFR or passive type), or active direct radiation network antennas.
- FAFR multibeam antennas with reflectors
- the feeding of devices or radiating elements is usually done by coupling electromagnetic structure resonant to the power line that is parallel to the radiant mass plane and realized in a so-called technology Planar.
- the supply line may be, for example, microstrip type, coplanar or triplate, and it can be coupled to the resonant structure either by proximity coupling, or by electromagnetic coupling through a coupling slot made in the radiating mass plane.
- This planar technology poses a number of problems techniques.
- the supply circuit being placed on the ground plane radiating or beneath it, the resonant structure may be disturbed by unwanted radiation or parasitic couplings.
- the supply circuit being placed parallel to the plane mass, it is difficult to insert into the network mesh equipment such as low-noise amplifiers (LNAs) or power amplifiers (or HPAs), and / or phase-shifting cells whose the dimensions are typically about 0.6 ⁇ .
- LNAs low-noise amplifiers
- HPAs power amplifiers
- phase-shifting cells whose the dimensions are typically about 0.6 ⁇ .
- An alternative power supply has been proposed in the IST project Multikara antenna focal network at 30 GHz. It consists of using a transition from microstrip type to guide access, then to flush guide access so as to constitute a cornet. Such a transition can not be used when compactness is a determining factor. In addition, it does not allow to consider a double polarization in the radiating mass plane.
- a device radiating comprising i) a first ground plane having at least one line surface electric field main power supply, (ii) a second plane of mass substantially perpendicular to the first plane of mass, preferably electrically connected to the latter at least near the line main power supply, and comprising coupling means electromagnetic power supplied orthogonally by a first end of the main supply line, and iii) a resonant structure charged with radiate energy according to a chosen wavelength ⁇ when it is excited by electromagnetic coupling at the first end of the line main supply, via the coupling means of the second plane of mass.
- electrical field power supply line is surface "is a coplanar line or a slit (or microfent) line.
- the resonant structure is chosen from the pavers, dielectric resonators and air resonators ( ⁇ / 4 thickness).
- the coupling means comprise at least one coplanar auxiliary supply line, substantially perpendicular to the main supply line and having a first end coupled to the first end of the main power line and a second end coupled by proximity to the resonant structure.
- the coupling means comprise a coupling slot of chosen shape and arranged to provide coupling between the first end of the main supply line and the resonant structure.
- the device comprises a third substantially perpendicular ground plane to the first and second mass planes and comprising in two selected places two substantially parallel main power lines and of type coplanar.
- the first ground plane then has two selected locations two substantially parallel main power lines and of type coplanar
- the coupling means comprise a coupling slot having a general cross shape at first and second branches substantially perpendicular; the first branch presenting two opposite ends coupled respectively to the two feed lines principal of the first mass plane and the second leg presenting two opposite ends coupled respectively to the two feed lines principal of the third ground plane, so as to allow a double linear polarization.
- the first branch may include an extended longitudinal side, in both ends, by two microfentes adaptation of dimensions and shapes selected, and having substantially perpendicular connecting portions at the longitudinal side and spaced by a selected distance; the first end of each main supply line of the first ground plane opening then substantially at the level of the connection between one of the ends of the longitudinal side of the first branch and the connecting parts microfentes of adaptation.
- the second branch then comprises one side Longitudinal extension, at both ends, by two microfentes of adaptation of selected dimensions and shapes, and having parts of substantially perpendicular to the longitudinal side and spaced apart by chosen distance; the first end of each feed line principal of the third plane of mass, opening substantially at the level of the connection between one end of the longitudinal side of the second branch and the connecting parts of the fitting microfentes.
- each microfence of adaptation can comprise a terminal part extending, at a chosen angle, its connecting portion.
- the device in a fourth embodiment also dedicated to the multipolarization, includes a feed structure having four walls, physically connected two by two in defining a recessed cylinder of square section.
- the first wall is consisting of the first ground plane that includes a power line main slot.
- the second wall consists of a third plane of mass substantially perpendicular to the first and second ground planes and has a main slit feed line.
- the third wall is consisting of a fourth plane of mass substantially perpendicular to second and third ground planes and has a power line main slot.
- the fourth wall consists of a fifth plane of mass substantially perpendicular to the first, second and fourth planes of mass and has a main slot feed line.
- the coupling means comprise a coupling slot having a general cross shape at first and second branches substantially perpendiculars; the first branch having two opposite ends coupled respectively to the main supply lines of the first and fourth mass planes and the second branch with two extremities opposed respectively to the main supply lines of the third and fifth ground planes, so as to allow a double linear polarization.
- the device in a fifth embodiment also dedicated to the multipolarization, includes a third ground plane substantially perpendicular to the first and second ground planes and consisting of two main supply lines in two selected locations slit substantially parallel.
- the first plane of mass comprises in two selected locations two main power lines with substantially slit parallel.
- the coupling means comprise a slot of coupling having a general shape in first, second, sharp third and fourth branches substantially perpendicular two by two; the first and third branches being respectively coupled by a middle portion at the main feed lines of the first ground plane, and the second and fourth branches being respectively coupled by a middle part at the main feed lines of the third plane of mass, so as to allow a linear double polarization.
- the first and third ground planes can each include a coplanar connection line having a split end in two parts defining the two main slot feed lines.
- the coupling between the resonant structure and the slot of The coupling may be either inductive or capacitive, or electric dipole type.
- the second plane of mass (PM2) is preferentially formed on a buffer substrate of thickness chosen so as to adapt impedance.
- the device may optionally comprise a coupled horn (by proximity effect) to the resonant structure, in order to be excited by it to radiate energy according to a chosen template.
- the invention also proposes an antenna, possibly of a network, equipped with at least one radiating device of the type presented above.
- the invention is particularly well adapted, although in a non exclusive to focal network antennas, such as antennas multibeam reflectors, and active radiation network antennas direct.
- the object of the invention is to allow, optionally, a radiation in monopolarization or multipolarization mode using a device (or element) radiating orthogonal supply.
- Such a radiating device is intended to be integrated into a antenna, and preferably in a network antenna, for example a focal network antenna, such as a multibeam reflector antenna (of FAFR or passive type), or an active direct radiation network antenna. he can also be integrated in a primary source of reflector, especially when the source is of the dual-band type (in this case, as as will be seen later, the invention makes it possible to free up space to excite a same horn in a lower band).
- a focal network antenna such as a multibeam reflector antenna (of FAFR or passive type), or an active direct radiation network antenna.
- he can also be integrated in a primary source of reflector, especially when the source is of the dual-band type (in this case, as as will be seen later, the invention makes it possible to free up space to excite a same horn in a lower band).
- a radiating device D comprises first of all a first ground plane PM1, placed in an XZ plane, and comprising at least a main power supply line LP1 surface electric field, intended to be connected to antenna equipment, for example an amplifying chip, such as a MMIC (possibly including a low noise amplifier (or LNA) or power amplifier (or HPA), or a phase-shifter cell.
- an amplifying chip such as a MMIC (possibly including a low noise amplifier (or LNA) or power amplifier (or HPA), or a phase-shifter cell.
- the line LP1 surface electric field power supply is a coplanar line, but as we will see later, it could be a slit line (or Microslot).
- Device D also comprises a second ground plane PM2, placed in an XY plane, substantially perpendicular to the first plane of mass PM1, preferably electrically connected to the latter at least close to the main LP1 power line, and including electromagnetic coupling powered orthogonally by a first end of the LP1 main power line.
- a second ground plane PM2 placed in an XY plane, substantially perpendicular to the first plane of mass PM1, preferably electrically connected to the latter at least close to the main LP1 power line, and including electromagnetic coupling powered orthogonally by a first end of the LP1 main power line.
- the second plane of mass PM2 is preferably formed by metallization of the "lower" face of a substrate called “buffer” SBT (assimilated in some figures to its ground plane PM2).
- first plane of mass PM1 is preferentially formed by metallization of the "front" face of a buffer substrate (not shown in the figures and assimilated to his mass plan PM1).
- the coupling means electromagnetic are made in the form of a power line coplanar auxiliary LA formed on the "upper" side of the second plane of mass PM2, or else, as illustrated, in particular, in FIG. its underside when it is metallized, and extending (continuously) the main supply line LP1 at a connection zone Z.
- the device D comprises a resonant structure SR placed on the upper face of the second ground plane LP2, above the line auxiliary power supply LA and at the end thereof.
- This structure resonant SR is responsible for radiating energy, according to a length operating wave angle ⁇ chosen, when excited by coupling electromagnetic at the first (upper) end of the line main supply LP1, via the coupling means LA of the second plane PM2 mass.
- the resonant structure SR can be either a block (or "patch"), of rectangular or circular shape, ie a massive dielectric resonator, by example realized, as illustrated, in the form of a rectangular parallelepiped of selected dimensions, that is to say an air resonator, for example realized in the form of a rectangular parallelepiped of thickness ⁇ / 4 according to the direction.
- an air resonator or cavity
- PM2 ground plane
- a top wall of dielectric material and lateral walls (according to Z) of dielectric material of thickness ⁇ / 4 thus allowing to contain the fields in a non dissipative medium.
- the Thickness constraint results from the coefficients opposite to the interfaces air / dielectric and dielectric / air which are made coherent by a thickness equal to ⁇ / 4.
- the resonant structure SR is coupled to Auxiliary power line LA by proximity effect.
- the first PM1 and second ground plane PM2 are produced on alumina substrates having a thickness equal to approximately 0.635 mm and a permittivity ⁇ r equal to approximately 9, 9, a second part, the central conductors of the main supply lines LP1 and auxiliary LA have a width W c equal to about 0.5 mm, thirdly, the slots placed on either side of the main supply lines LP1 and auxiliary LA, have a width G s equal to about 0.23 mm, and fourthly, the thickness e of ground plane eliminated at the end of the central conductors is equal about 0.23 mm.
- Such an embodiment provides a characteristic impedance of approximately 50 ⁇ and makes it possible to obtain at the transition between the orthogonal lines (LP1 and LA) a bandwidth greater than 50% at 12.25 GHz for the S 11 mode. . It is recalled that in the presence of an auxiliary line LA formed on the upper face of the radiating ground plane PM2, a slot must be formed in the line coupling zone Z, which generates a radiating discontinuity and limits the bandwidth of the transition.
- auxiliary supply line LA over a selected distance beyond the connection zone Z, in order to constitute a coplanar impedance adapter (or coplanar stub).
- the extension is preferentially done over a length equal to ⁇ / 4. For example, if we take the above dimensions and we choose a stub length equal to about 2.2 mm, we can obtain a bandwidth of about 68% to 12.25 GHz for S mode 11 .
- FIGS. 4 to 9 describe a second exemplary embodiment of a radiating device D, according to the invention, also suitable for monopolarization.
- the coupling means are made in the form of a coupling slot.
- This coupling slot is preferably positioned in the center of the resonant structure SR, in order to obtain maximum coupling and to minimize the higher modes in said radiating structure SR, and therefore the radiation in cross polarization.
- the coupling slot FR has a shape general rectangular, but interrupted in its central part by a portion of the second ground plane.
- the coupling slot FR has two parts FRa and FRb.
- the long sides of the FR coupling slot extend in the (longitudinal) direction X, while its small sides, called transverse sides, extend in the direction (transverse) Y.
- the first ground plane being installed in the XZ plane, the upper end of its LP1 main supply line opens therefore parallel to one of the longitudinal sides.
- This embodiment corresponds to an inductive coupling between the top end of the LP1 main power line and the structure resonant SR.
- each part FRa and FRb of the coupling slot is extended by an adapter impedance ST (or stub).
- These two stubs ST are slots rectangles that extend perpendicularly to one of the sides longitudinal portions FRa and FRb parts of the coupling slot.
- the extension is done on a length equal to ⁇ / 4.
- the first ground plane PM1 is positioned so that that the upper end of its main LP1 power line is placed below the stubs ST, at their parts ensuring the connection with the longitudinal side of the coupling slot FR.
- the spacing between the two portions FRa and FRb of the coupling slot which is the same as that W c between the two stubs ST, which is itself equal to the width of the central conductor of the main supply line LP1 , for example is chosen equal to about 0.5 mm.
- the width G s of the stubs ST which is substantially equal to the width of the slots of the main supply line LP1 is for example chosen to be equal to about 0.23 mm.
- the length L s of ST stubstubstubstubstubstubstubs in the transverse direction (Y) is for example chosen to be equal to about 2.2 mm.
- the length L (in the longitudinal direction X) and the width l (in the transverse direction Y) of the coupling slot FR are for example respectively equal to about 5.2 mm and 0.4 mm. With such values, it is possible to obtain a bandwidth of about 8% at 12.25 GHz for the S 11 mode, in the case of inductive coupling. Higher bandwidths can be obtained by capacitive or electrical dipole coupling.
- the bandwidth can be increased by slightly increasing the length L s of the ST stubs, due to a resonance effect at the coupling slot FR.
- FIGS. 7 and 8 show a first variant of embodiment of the second embodiment described above, with reference FIGS. 4 to 6.
- the coupling between the end top of the LP1 main power line and the resonant structure SR is no longer an inductive type. It is indeed of the capacitive type because the coupling slot FR is no longer interrupted in its central part by a portion of the second ground plane PM2.
- FIG. 9 shows a second alternative embodiment of the second embodiment described above, with reference to FIGS. 4 to 6.
- the coupling between the upper end of the main supply line LP1 and the resonant structure SR is no longer of the inductive type. It is in effect of electric dipole type (or "T match") because the conductive portion of the second ground plane remains present in most of the coupling slot (FR).
- a flared type dipole can be used.
- FIG. 10 also shows a third exemplary embodiment of a radiating device D according to the invention.
- this third example which constitutes a variant of the first capacitively coupled variant of FIG. 8
- the distance G P separating the resonant structure SR from the terminal portion of the central conductor of the main supply line LP1
- the central conductor of the main supply line LP1 is interrupted at a selected distance from the second ground plane PM2. This produces a capacitive coupling that compensates for the inductive coupling of the coupling slot FR. This makes it possible to adapt the impedance and therefore significantly increase the bandwidth, while avoiding resorting to a stub.
- a buffer substrate SBT Duroid TM 5880 having a permittivity ⁇ r equal to about 2.2.
- the first ground plane PM1 always has a main LP1 power line type coplanar.
- the coupling slot FR ' has a shape general rectangular defined by a longitudinal direction Y (large side) and a transverse direction X (small side), and on the other hand, the upper end (ES) main supply line LP1 is bent substantially at 90 ° to be placed under the coupling slot FR 'parallel to the direction transverse X.
- the coupling slot FR has long sides (longitudinal) parallel to the longitudinal direction Y and short sides (transverse) parallel to the (transversal) direction X. Furthermore, the upper end of LP1 main power line is placed under the FR coupling slot " parallel to the transverse direction X, and preferably in the middle of this slot FR "(as shown).
- FIG. 13 The surface field ⁇ I in the main supply line LP1 and the field ⁇ R radiated by the coupling slot FR are shown in FIG. 13. This figure shows the very good connection of the fields ⁇ I , and ⁇ R offered by this embodiment.
- the first PM1 and second PM2 mass planes can be made on alumina substrates of thickness equal to about 0.635 mm and permittivity ⁇ r equal to about 9.9
- the microfine of the main supply line LP1 may have a width W s equal to about 0.96 mm
- the coupling slot FR may have a length L and a width l respectively equal to about 13 mm and about 0.96 mm
- the resonant structure can be a square base dielectric resonator whose side is equal to about 16 mm and height d / 2 equal to about 7.62 mm , made in an Eccostock TM HIK500 type ceramic having a permittivity ⁇ r equal to about 9.7 to 5 GHz
- Such an embodiment provides a characteristic impedance of about 147 ⁇ .
- the two ST 'stubs are slots (or microfentes) communicate with the slot (or microfence) of the LP1 main supply line, on either side of it, to the same chosen distance from the terminal part of its upper end.
- These ST 'stubs are preferentially rectangular, their large sides being, for example, parallel, at least in part, to the X direction and their small sides parallel to the Z direction (here vertical).
- stubs ST ' having a length Ls equal to about 17 mm and distant from the coupling slot FR "by a distance d s equal to about 2.1 mm.
- d s equal to about 2.1 mm.
- ST stubs can be bent or folded parallel to the slot of the slit line LP1.
- Such a transition TR is illustrated in FIG. connect the LP1 slot feed line to a connection line LC, preferably coplanar type.
- a coplanar connection line is preferable because it is performed in a single-ply technology such as slit main power line, and it facilitates connection to some equipment is just MMICs.
- This transition TR is intended to convert one of the two fields of antiparallel surface ⁇ 1 (even mode) and ⁇ 2 (odd mode), which propagate in the microfentes located on both sides of the central conductor of the LC coplanar connection line, in a surface field ⁇ 2 '(even mode) identical to the other surface field ⁇ 1 and therefore to the one that propagates in the slit of the LP1 main slot feed line.
- a phase shift of 180 ° is thus carried out on one of the two slots of the coplanar connection line LC in order to phase their fields ⁇ 1 and ⁇ 2, thus making it possible to combine the two slots to constitute the slot of the power supply line.
- the transition comprises three meanders of length L m , in the X direction, for example equal to about 3.2 mm.
- L c of the conductor at the output of the transition TR must be optimized.
- L c is chosen to be about 0.25 mm.
- air bridges are introduced along the line of coplanar connection LC so as to block the evolution of the reflection of the mode1 even mode, not out of phase, so that its value is substantially independent of the length of the coplanar LC connection line.
- FIG. 17 shows a variant of the radiating device D of FIG. 14 incorporating a transition TR of the type of that described above with reference to FIG. 16. Thanks to such an arrangement, and in the presence of the values presented in FIG. before, one can obtain a bandwidth of about 14% at 5 GHz for mode S 11 .
- FIG. 18 Reference is now made to Figures 18 to 20 to describe a sixth exemplary embodiment of a radiating device D, according to the invention, adapted to multipolarization, and more precisely to a linear double polarization.
- the coupling means are made in the form of a cross-shaped FC coupling slot.
- a first branch B1 of the FC cross is placed in the Y direction, while a second branch B2, perpendicular to B1, is placed next the X direction.
- Each linear polarization is excited by one of the two branches B1 and B2 of the FC coupling slot, which are respectively coupled by their two opposite ends to two main supply lines LP1 and LP3 on the one hand, and LP2 and LP4 on the other hand.
- the four main supply lines LP1 to LP4 are respectively formed on four ground planes PM1, PM3, PM4 and PM5, perpendicular two by two and secured to form a SA cylindrical feed structure of square section.
- the "front" end of the first branch B1 is coupled to the upper end of the line LP1 main power supply located on the first ground plane PM1
- the "rear” end of the first branch B1 is coupled to the end top of the LP3 main power line located on the fourth PM4 ground plane
- the "right” end of the second B2 branch is coupled to the upper end of the main LP2 power line located on the third ground plane PM3
- the "left" end of the second branch B2 is coupled to the upper end of the line LP4 main power supply located on the fifth PM5 ground plane.
- each line is placed parallel to the transverse sides of the branch B1 or B2 to which it is coupled.
- FIG. 21 a seventh exemplary embodiment of a radiating device D, according to the invention, also suitable for multipolarization, and more specifically for a double linear polarization.
- the coupling means are made in the form of a sharpening slot FD (#).
- first B1 and third B3 sharp branches are placed parallel to the X direction, so shifted, while second B2 and fourth B4 branches, perpendicular to B1 and B3, are placed parallel to the Y direction, from staggered way.
- the slot can also have a shape square, which is a particular form of a sharp.
- each branch B1 to B4 is coupled by a median part to the top end of a main power line LP11, LP12, LP21 or LP22.
- the four main power lines LP11, LP12, LP21 and LP22 are formed in pairs on two ground planes PM1 and PM3, perpendicular to each other.
- the center of the first branch B1 is coupled to the upper end of the line LP11 main power supply located on the first ground plane PM1
- the center of the third branch B3 is coupled to the upper end of the LP12 main power line located on the first ground plane PM1 at a distance of LP11 equal to the distance separating B1 from B3
- the center of the second branch B2 is coupled to the upper end of the line LP22 main power supply located on the third ground plane PM3
- the center of the fourth branch B4 is coupled to the upper end of the LP21 main power line located on the third ground plane PM3, at a distance of LP22 equal to the distance separating B2 from B4.
- the first PM1 and third PM3 mass plans realize as well a feed structure SA 'crosswise.
- the four feed lines main LP11, LP12, LP21 and LP22 are slit type. Therefore, each line is placed parallel to the transverse sides of the branch B1, B2, B3 or B4 to which it is coupled.
- FIG. 23 shows a particularly advantageous example of embodiment of the two main supply lines of the ground planes PM1 and PM3.
- a coplanar-type LC connection line is used to define the two main supply lines of a ground plane.
- each slot (or microfence) placed on one side of the central conductor of the coplanar connection line LC has a first linear portion of width G s and a second transition portion disoriented with respect to the first part and having a increasing width of G s to a value W s , equal to the width of a slot of a main supply line LP11.
- the second parts extend over a chosen height L t .
- the distance separating the two slots of the coplanar connection line LC is thus constant and equal to W c at the level of the first parts, while it increases to a value d f equal to the distance separating the branches B1 and B3 or B2 and B4 of the coupling slot in FD sharp, at the second parts.
- the two main supply lines LP11 and LP12 or LP21 and LP22 of the first PM1 or third PM3 ground plane therefore start at the output of the second portions of the slots of the coplanar connection line LC, where the width of the central conductor is equal to d f .
- the two main supply lines LP11 and LP12 or LP21 and LP22 which extend the second transition portions are parallel to the first portions and have a constant width W s .
- G s equal to approximately 0.23 mm
- W s equal to approximately 0.96 mm
- W c equal to approximately 0.5 mm
- d f equal to approximately 12 mm
- L t equal to approximately 8 mm. mm.
- FIG. 24-27 to describe an eighth exemplary embodiment of a radiating device D, according to the invention, also suitable for multipolarization, and more specifically for a double linear polarization.
- the coupling means are again made in the form of an FC 'shaped coupling slot cross.
- a first branch B1 of the cross FC ' is placed according to the direction Y, while a second branch B2, perpendicular to B1, is placed in direction X.
- each linear polarization is excited by one of the two branches B1 and B2 of the coupling slot FC ', which are respectively coupled by their two ends opposite to two main supply lines LP11 and LP12 on the one hand, and LP21 and LP22 on the other hand.
- the four main power lines LP11, LP12, LP21 and LP22 are formed in pairs on two ground planes PM1 and PM3, perpendicular to each other, as in the seventh embodiment ( Figures 21 to 23).
- the first PM1 and third PM3 mass plans realize as well a feed structure SA "crosswise.
- each line is placed parallel to one of the longitudinal sides of the branch B1 or B2 to which it is coupled.
- each branch B1, B2 are provided on one of their longitudinal sides with a pair of ST "impedance matching slots (or stubs).
- These stubs ST “have the same function as that described above with reference to FIGS. 5, 7 and 9. However, they differ from those previously described by their shape which is bent for reasons of space.
- the coupling provided by the cross slot FC 'of FIG. 25 is of the type capacitive.
- FC cross slots can be envisaged adapted respectively to inductive and dipole type couplings as shown in Figures 26 and 27. This last variant of realization is particularly described in the document by D. Llorens Del Rio and al, "The T match: an integrated match for CPW-fed slot antennas", JINA 2002, Vol. No. 2, pp. 347-350, under the name T-match.
- the two ends of the first branch B1 are coupled, via the pairs of stubs ST ", to the upper ends of the main power lines LP11 and LP12 located on the first ground plane PM1, and both ends of the second branch B2 are coupled, via the pairs of stubs ST ", to the upper ends of the main power lines LP21 and LP22 located on the third ground plane PM3.
- FIGS. 28 and 29 it is possible to perform double-polarization excitation using a single SB substrate orthogonal (containing two ground planes PM1 and PM1 ').
- a FC cross coupling slot featuring both ends of its branch B1 stubs ST.
- the excitement is done using, a two LP1a and LP1b coplanar main power lines made in a first ground plane PM1 formed on the front face of a substrate SB, for one of the polarizations, and on the other hand, using a line main power slot LP1 'made in another foreground of mass PM1 'formed on the rear face of the substrate SB, for the other polarization orthogonal.
- the orthogonal slots can have a coplanar line excitation and a slot line excitation, as illustrated in FIGS. 30 and 31. More specifically, here a Double polarization excitation always using a single substrate orthogonal SB (containing two ground planes PM1 and PM1 '). To do this, two rectangular coupling slots F1 and F2 can be used.
- the F1 slot preferably includes stubs ST at its central portion.
- Excitement is obtained using a main power line LP1 coplanar made in a first mass plane PM1 formed on the front face of a substrate SB, for one of the polarizations, while the other excitation (perpendicular) is performed using a power line main slot LP1 'made in another first ground plane PM1' formed on the rear face of the substrate SB, for the other orthogonal polarization.
- a circular polarization in using only one access.
- a structure is for example described in the patent document FR 2829300 from the National Research Center Scientific (CNRS).
- resonant structures SR of dielectric resonator type or air may be to use a "washer” an indented dielectric RE, placed at the bottom of a CT horn and realizing the "Negative" of a air resonator SR (without side wall thickness ⁇ / 4) with only one dielectric medium.
- the main LP1 power line can be of type coplanar or slit.
- this last may have a reduced section in its portion housing the washer RE-dielectric, thereby freeing up room for excitation at several access to the periphery of the horn, when it is of type dual band.
- the lateral metal walls of the CT horn have a mirror effect and may be placed at a distance from the air resonator equal to ⁇ / 8 (or 3 ⁇ / 8 or 5 ⁇ / 8, etc.).
- the CT horn is of semi-conical type and comprises, in a lower part, two coupling irises IC, and in an intermediate part and central one SBT substrate on the underside of which is realized the second ground plane PM2 and the rectangular coupling slot FR, and secured by its upper face to coils or "chokes" of decoupling CC which house the cylindrical RE dielectric washer delimiting the SR air resonator.
- the main LP1 power line can be of type coplanar or slit.
- an SR air resonator can also another variant of radiating device, of the type illustrated in the figures 35 and 36.
- the main supply line LP1 is of coplanar type.
- the SB substrate on which it is formed has a narrow extension passing through the second ground plane PM2 at a slot FR and serving of support to a PS extension of the central conductor of the line LP1 main power supply.
- the coupling slot FR is preferentially offset from the SR air resonator and presents small dimensions so as not to radiate.
- each radiating device D can be possibly coupled with a horn to control the energy in front of be radiated to conform to a chosen template.
- the resonant structure SR is used as a compact exciter of the horn.
- radiating devices D can be combined to form part of an antenna, possibly network type.
- the radiating devices D can be connected using ALCATEL 3D technology developed for Microwave circuits with high integration. This 3D technology consists of to drown in a low-loss standard resin the circuits on which are implanted the electronic components defining the power system SA, and to etch the second ground plane PM2 (orthogonal to the first PM1) on the upper side of the resin.
- the invention is not limited to the modes of embodiment of radiating device (or element) and antenna described above, only as an example, but it encompasses all the variants that consider those skilled in the art within the scope of the claims below.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
- la fente de couplage peut présenter une forme générale rectangulaire définie par une direction longitudinale et une direction transversale, et la ligne d'alimentation principale est du type à fente et présente une première extrémité sensiblement parallèle à la direction transversale et placée sensiblement au milieu de la fente de couplage. Dans ce cas, la ligne d'alimentation principale peut comprendre un adaptateur d'impédance (ou « stub ») de type microfente à une distance choisie de sa première extrémité. Par ailleurs, le premier plan de masse peut comprendre une ligne de connexion de type coplanaire, présentant une première extrémité de forme choisie et une seconde extrémité dans laquelle se propagent des premier et second champs électriques de surface antiparallèles, et la ligne d'alimentation principale peut comprendre une seconde extrémité de forme choisie de manière à coopérer avec la première extrémité de la ligne de connexion afin de transformer le second champ électrique de surface en premier champ électrique de surface destiné à exciter la structure résonnante,
- la fente de couplage peut également présenter une forme générale rectangulaire définie par une direction longitudinale et une direction transversale, et une ligne d'alimentation principale coplanaire et sensiblement parallèle à la direction longitudinale. Dans ce cas, la première extrémité de la ligne d'alimentation principale peut déboucher au niveau du milieu d'un côté longitudinal de la fente de couplage. En variante, la fente de couplage peut comprendre un côté longitudinal prolongé perpendiculairement, au milieu, par deux microfentes d'adaptation (ou stubs) de dimensions choisies, parallèles entre elles et espacées d'une distance choisie ; la première extrémité de la ligne d'alimentation principale débouchant alors sensiblement au niveau de la liaison entre le côté longitudinal de la fente de couplage et les microfentes d'adaptation,
- la fente de couplage peut également présenter une forme générale rectangulaire définie par une direction longitudinale et une direction transversale, et une ligne d'alimentation principale coplanaire et présentant, au niveau d'une partie médiane de la fente de couplage, une première extrémité coudée sensiblement parallèle à sa direction transversale.
- la figure 1 illustre de façon schématique un premier exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 2 est une vue du dessus, dans le plan XY, d'une partie du dispositif rayonnant de la figure 1,
- la figure 3 est une vue de face, dans le plan XZ, d'une partie du dispositif rayonnant de la figure 1,
- la figure 4 illustre de façon schématique un deuxième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 5 est une vue du dessus, dans le plan XY, d'une partie du dispositif rayonnant de la figure 4,
- la figure 6 est une vue de face, dans le plan XZ, d'une partie du dispositif rayonnant de la figure 4,
- la figure 7 est une vue du dessus, dans le plan XY, d'une première variante du dispositif rayonnant de la figure 4,
- la figure 8 est une vue de face, dans le plan XZ, d'une partie du dispositif rayonnant de la figure 7,
- la figure 9 est une vue du dessus, dans le plan XY, d'une seconde variante du dispositif rayonnant de la figure 4,
- la figure 10 illustre de façon schématique, dans une vue de face dans le plan XZ, un troisième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 11 illustre de façon schématique un quatrième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 12 illustre de façon schématique un cinquième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 13 illustre la propagation des champs électriques au sein du dispositif rayonnant de la figure 12,
- la figure 14 illustre de façon schématique, dans une vue de face dans le plan XZ, un sixième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 14 illustre de façon schématique, dans une vue de face dans le plan XZ, une variante de réalisation du dispositif rayonnant de la figure 14,
- la figure 16 illustre de façon schématique une transition entre une ligne coplanaire de connexion et une ligne d'alimentation à fente, adaptée au dispositif de la figure 14,
- la figure 17 illustre de façon schématique une variante du dispositif rayonnant de la figure 14 intégrant une transition du type de celle illustrée sur la figure 16,
- la figure 18 illustre de façon schématique un septième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 19 est une vue du dessus, dans le plan XY, de la fente en croix du dispositif rayonnant de la figure 18,
- la figure 20 est une vue du dessus, dans le plan XY, de la fente en croix du dispositif rayonnant de la figure 18, matérialisant le champ électrique,
- la figure 21 illustre de façon schématique un huitième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 22 est une vue du dessus, dans le plan XY, de la fente en dièse (#) du dispositif rayonnant de la figure 21,
- la figure 23 illustre de façon schématique, dans une vue de face dans le plan XZ, une variante d'alimentation pour le dispositif rayonnant de la figure 21,
- la figure 24 illustre de façon schématique un neuvième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 25 est une vue du dessus, dans le plan XY, de la fente en croix du dispositif rayonnant de la figure 24,
- la figure 26 est une vue du dessus, dans le plan XY, d'une première variante de la fente en croix du dispositif rayonnant de la figure 24,
- la figure 27 est une vue du dessus, dans le plan XY, d'une seconde variante de la fente en croix du dispositif rayonnant de la figure 24,
- la figure 28 est une vue en perspective d'un substrat, d'une variante d'un dispositif rayonnant selon l'invention, portant deux premiers plans de masse,
- la figure 29 est une vue du dessus, dans le plan XY, d'une variante de fente de couplage en croix adaptée au substrat de la figure 28,
- la figure 30 est une vue en perspective d'un substrat, d'une autre variante d'un dispositif rayonnant selon l'invention, portant deux premiers plans de masse,
- la figure 31 est une vue du dessus, dans le plan XY, d'une combinaison de deux fentes de couplage rectangulaires, adaptée au substrat de la figure 30,
- la figure 32 illustre de façon schématique, dans une vue en coupe dans le plan XZ, un neuvième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 33 illustre de façon schématique, dans une vue en coupe dans le plan XZ, un dixième exemple de réalisation d'un dispositif rayonnant selon l'invention,
- la figure 34 est une vue du dessus, dans le plan XY, du dispositif rayonnant de la figure 33,
- la figure 35 illustre de façon schématique, dans une vue en coupe dans le plan XZ, un onzième exemple de réalisation d'un dispositif rayonnant selon l'invention, et
- la figure 36 est une vue du dessus, dans le plan XY, du dispositif rayonnant de la figure 35.
Ces stubs ST" ont la même fonction que celle décrite précédemment en référence aux figures 5, 7 et 9. Ils diffèrent cependant de ceux précédemment décrits par leur forme qui est coudée pour des raisons d'encombrement. Plus précisément, chaque stub ST" présente une partie de liaison perpendiculaire au côté longitudinal de la branche concernée, prolongée de façon oblique par une partie terminale.
Claims (23)
- Dispositif rayonnant (D) pour une antenne, caractérisé en ce qu'il comprend un premier plan de masse (PM1) comportant au moins une ligne d'alimentation principale à champ électrique de surface (LP1), un second plan de masse (PM2) sensiblement perpendiculaire au premier plan de masse (PM1) et comportant des moyens de couplage électromagnétique (LA, FR, FR', FR", FC, FD) alimentés orthogonalement par une première extrémité de ladite ligne d'alimentation principale (LP1), et une structure résonnante (SR) agencée pour rayonner de l'énergie selon une longueur d'onde choisie en cas d'excitation par couplage électromagnétique à la première extrémité de la ligne d'alimentation principale (LP1), via lesdits moyens de couplage.
- Dispositif la revendication 1, caractérisé en ce que ladite ligne d'alimentation principale (LP1) est choisie dans un groupe comprenant une ligne coplanaire et une ligne à fente.
- Dispositif selon l'une des revendications 1 et 2, caractérisé en ce que ladite structure résonnante (SR) est choisie dans un groupe comprenant un pavé, un résonateur diélectrique et un résonateur à air d'épaisseur égale au quart de ladite longueur d'onde choisie.
- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que lesdits moyens de couplage comportent au moins une ligne d'alimentation auxiliaire (LA) de type coplanaire, sensiblement perpendiculaire à ladite ligne d'alimentation principale (LP1) et comprenant une première extrémité couplée à ladite première extrémité de la ligne d'alimentation principale (LP1) et une seconde extrémité couplée par effet de proximité à ladite structure résonnante (SR).
- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que lesdits moyens de couplage comportent une fente de couplage (FR, FR', FR") de forme choisie et agencée de manière à assurer le couplage entre ladite première extrémité de la ligne d'alimentation principale (LP1) et ladite structure résonnante (SR).
- Dispositif selon la revendication 5, caractérisé en ce que ladite fente de couplage (FR") présente une forme générale rectangulaire définie par une direction longitudinale et une direction transversale, et en ce que ladite ligne d'alimentation principale (LP1) est du type à fente(s) et présente une première extrémité sensiblement parallèle à ladite direction transversale et placée sensiblement au milieu de ladite fente de couplage (FR").
- Dispositif selon la revendication 6, caractérisé en ce que ladite ligne d'alimentation principale (LP1) comprend un adaptateur d'impédance de type microfente (ST') à une distance choisie de sa première extrémité.
- Dispositif selon l'une des revendications 6 et 7, caractérisé en ce que ledit premier plan de masse (PM1) comprend une ligne de connexion (LC) de type coplanaire, présentant une première extrémité de forme choisie et une seconde extrémité dans laquelle se propagent des premier et second champs électriques de surface antiparallèles, et en ce que ladite ligne d'alimentation principale (LP1) comprend une seconde extrémité de forme choisie de manière à coopérer avec ladite première extrémité de la ligne de connexion (LC) pour transformer ledit second champ électrique de surface en ledit premier champ électrique de surface destiné à exciter ladite structure résonnante (SR).
- Dispositif selon la revendication 5, caractérisé en ce que ladite fente de couplage (FR) présente une forme générale rectangulaire définie par une direction longitudinale et une direction transversale, et en ce que ladite ligne d'alimentation principale (LP1) est du type coplanaire et est sensiblement parallèle à ladite direction longitudinale.
- Dispositif selon la revendication 9, caractérisé en ce que ladite première extrémité de la ligne d'alimentation principale (LP1) débouche au niveau du milieu d'un côté longitudinal de ladite fente de couplage (FR).
- Dispositif selon la revendication 9, caractérisé en ce que ladite fente de couplage (FR) comprend un côté longitudinal prolongé perpendiculairement, au milieu, par deux microfentes d'adaptation (ST) de dimensions choisies, parallèles entre elles et espacées d'une distance choisie, ladite première extrémité de la ligne d'alimentation principale (LP1) débouchant sensiblement à la liaison entre ledit côté longitudinal de la fente de couplage (FR) et lesdites microfentes d'adaptation (ST).
- Dispositif selon la revendication 5, caractérisé en ce que ladite fente de couplage (FR') présente une forme générale rectangulaire définie par une direction longitudinale et une direction transversale, et en ce que ladite ligne d'alimentation principale (LP1) est du type coplanaire et présente, au niveau d'une partie médiane de ladite fente de couplage, une première extrémité coudée (ES) sensiblement parallèle à sa direction transversale.
- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend un troisième plan de masse (PM3) sensiblement perpendiculaire aux premier (PM1) et second (PM2) plans de masse et comportant en deux endroits choisis deux lignes d'alimentation principale (LP21, LP22) sensiblement parallèles et de type coplanaire, en ce que ledit premier plan de masse (PM1) comporte en deux endroits choisis deux lignes d'alimentation principale (LP11, LP12) sensiblement parallèles et de type coplanaire, et en ce que lesdits moyens de couplage comportent une fente de couplage (FC) présentant une forme générale en croix à première (B1) et seconde (B2) branches sensiblement perpendiculaires, ladite première branche (B1) présentant deux extrémités opposées couplées respectivement aux deux lignes d'alimentation principale (LP11, LP12) du premier plan de masse (PM1) et ladite seconde branche (B2) présentant deux extrémités opposées couplées respectivement aux deux lignes d'alimentation principale (LP21, LP22) du troisième plan de masse (PM3), de manière à permettre une double polarisation linéaire.
- Dispositif selon la revendication 13, caractérisé en ce que ladite première branche (B1) comprend un côté longitudinal prolongé, en ses deux extrémités, par deux microfentes d'adaptation (ST") de dimensions et formes choisies, et présentant des parties de liaison sensiblement perpendiculaires audit côté longitudinal et espacées d'une distance choisie, ladite première extrémité de chaque ligne d'alimentation principale (LP11, LP12) du premier plan de masse (PM1) débouchant sensiblement à la liaison entre l'une des extrémités du côté longitudinal de la première branche (B1) et lesdites parties de liaison des microfentes d'adaptation (ST"), et en ce que ladite seconde branche (B2) comprend un côté longitudinal prolongé, en ses deux extrémités, par deux microfentes d'adaptation (ST") de dimensions et formes choisies, et présentant des parties de liaison sensiblement perpendiculaires audit côté longitudinal et espacées d'une distance choisie, ladite première extrémité de chaque ligne d'alimentation principale (LP21, LP22) du troisième plan de masse (PM3) débouchant sensiblement à la liaison entre l'une des extrémités du côté longitudinal de la seconde branche (B2) et lesdites parties de liaison des microfentes d'adaptation (ST").
- Dispositif selon la revendication 14, caractérisé en ce que chaque microfente d'adaptation (ST") comprend une partie terminale prolongeant, selon un angle choisi, sa partie de liaison.
- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend une structure d'alimentation (SA) comportant quatre parois, raccordées physiquement deux à deux en définissant un cylindre évidé de section carrée, une première paroi étant constituée dudit premier plan de masse (PM1) comportant une ligne d'alimentation principale à fente (LP1), une deuxième paroi étant constituée d'un troisième plan de masse (PM3) sensiblement perpendiculaire aux premier (PM1) et second (PM2) plans de masse et comportant une ligne d'alimentation principale à fente (LP2), une troisième paroi étant constituée d'un quatrième plan de masse (PM4) sensiblement perpendiculaire aux second (PM2) et troisième (PM3) plans de masse et comportant une ligne d'alimentation principale à fente (LP3), une quatrième paroi étant constituée d'un cinquième plan de masse (PM5) sensiblement perpendiculaire aux premier (PM1), second (PM2) et quatrième (PM4) plans de masse et comportant une ligne d'alimentation principale à fente (LP4), en ce que lesdits moyens de couplage comportent une fente de couplage (FC') présentant une forme générale en croix à première (B1) et seconde (B2) branches sensiblement perpendiculaires, ladite première branche (B1) présentant deux extrémités opposées couplées respectivement aux lignes d'alimentation principale (LP1, LP3) des premier (PM1) et quatrième (PM4) plans de masse et ladite seconde branche (B2) présentant deux extrémités opposées couplées respectivement aux lignes d'alimentation principale (LP2, LP4) des troisième (PM3) et cinquième (PM5) plans de masse, de manière à permettre une double polarisation linéaire.
- Dispositif selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend un troisième plan de masse (PM3) sensiblement perpendiculaire aux premier (PM1) et second (PM2) plans de masse et comportant en deux endroits choisis deux lignes d'alimentation principale à fente (LP21, LP22) sensiblement parallèles, en ce que ledit premier plan de masse (PM1) comporte en deux endroits choisis deux lignes d'alimentation principale à fente (LP11, LP12) sensiblement parallèles, et en ce que lesdits moyens de couplage comportent une fente de couplage (FD) présentant une forme générale en dièse à première (B1), deuxième (B2), troisième (B3) et quatrième (B4) branches sensiblement perpendiculaires deux à deux, lesdites première (B1) et troisième (B3) branches étant respectivement couplées par une partie médiane aux lignes d'alimentation principale (LP11, LP12) du premier plan de masse (PM1), et lesdites deuxième (B2) et quatrième (B4) branches étant respectivement couplées par une partie médiane aux lignes d'alimentation principale (LP22, LP21) du troisième plan de masse (PM3), de manière à permettre une double polarisation linéaire.
- Dispositif selon la revendication 17, caractérisé en ce que lesdits premier (PM1) et troisième (PM3) plans de masse comprennent chacun une ligne de connexion (LC) de type coplanaire présentant une extrémité se séparant en deux parties définissant les deux lignes d'alimentation principale à fente (LP11, LP12 ; LP22, LP21).
- Dispositif l'une des revendications 5 à 18, caractérisé en ce que ledit couplage entre la structure résonnante et ladite fente de couplage est choisi dans un groupe comprenant un couplage inductif, un couplage capacitif et un couplage dipolaire électrique.
- Dispositif selon l'une des revendications 1 à 19, caractérisé en ce que
ledit second plan de masse (PM2) est formé sur un substrat tampon (SBT) d'épaisseur choisie de manière à adapter l'impédance. - Dispositif selon l'une des revendications 1 à 20, caractérisé en ce qu'il comprend un cornet couplé à ladite structure résonnante (SR) de manière à être excité par celle-ci en vue de rayonner ladite énergie selon un gabarit choisi.
- Antenne, caractérisée en ce qu'elle comprend au moins un dispositif rayonnant (D) selon l'une des revendications précédentes.
- Antenne selon la revendication 22, caractérisée en ce qu'elle est agencée sous la forme d'une antenne réseau.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0450284A FR2866480B1 (fr) | 2004-02-17 | 2004-02-17 | Dispositif rayonnant compact multipolarisation a alimentation orthogonale par ligne(s) a champ de surface |
FR0450284 | 2004-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1605546A1 true EP1605546A1 (fr) | 2005-12-14 |
Family
ID=34803492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05290270A Withdrawn EP1605546A1 (fr) | 2004-02-17 | 2005-02-07 | Dispositif rayonnant à alimentation orthogonale |
Country Status (3)
Country | Link |
---|---|
US (1) | US7362284B2 (fr) |
EP (1) | EP1605546A1 (fr) |
FR (1) | FR2866480B1 (fr) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0302818D0 (en) * | 2003-02-07 | 2003-03-12 | Antenova Ltd | Multiple antenna diversity on mobile telephone handsets, PDAs and other electrically small radio platforms |
US7292204B1 (en) * | 2006-10-21 | 2007-11-06 | National Taiwan University | Dielectric resonator antenna with a caved well |
GB2460233B (en) * | 2008-05-20 | 2010-06-23 | Roke Manor Research | Ground plane |
FR2936906B1 (fr) * | 2008-10-07 | 2011-11-25 | Thales Sa | Reseau reflecteur a arrangement optimise et antenne comportant un tel reseau reflecteur |
FR2954829B1 (fr) | 2009-12-31 | 2012-03-02 | Art Fi | Systeme pour mesurer un champ electromagnetique |
JP6070484B2 (ja) * | 2013-08-30 | 2017-02-01 | 日立金属株式会社 | アンテナ装置 |
US10374315B2 (en) | 2015-10-28 | 2019-08-06 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
US10601137B2 (en) | 2015-10-28 | 2020-03-24 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
US11367959B2 (en) | 2015-10-28 | 2022-06-21 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
US10355361B2 (en) | 2015-10-28 | 2019-07-16 | Rogers Corporation | Dielectric resonator antenna and method of making the same |
US10476164B2 (en) | 2015-10-28 | 2019-11-12 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
US11876295B2 (en) | 2017-05-02 | 2024-01-16 | Rogers Corporation | Electromagnetic reflector for use in a dielectric resonator antenna system |
US11283189B2 (en) | 2017-05-02 | 2022-03-22 | Rogers Corporation | Connected dielectric resonator antenna array and method of making the same |
DE112018002940T5 (de) | 2017-06-07 | 2020-02-20 | Rogers Corporation | Dielektrisches Resonator-Antennensystem |
US11616302B2 (en) | 2018-01-15 | 2023-03-28 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
US10892544B2 (en) | 2018-01-15 | 2021-01-12 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
US10910722B2 (en) | 2018-01-15 | 2021-02-02 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
CN108511907B (zh) * | 2018-05-11 | 2021-10-19 | 瑞声科技(新加坡)有限公司 | 天线系统及通讯终端 |
US11552390B2 (en) | 2018-09-11 | 2023-01-10 | Rogers Corporation | Dielectric resonator antenna system |
US11031697B2 (en) | 2018-11-29 | 2021-06-08 | Rogers Corporation | Electromagnetic device |
WO2020117489A1 (fr) | 2018-12-04 | 2020-06-11 | Rogers Corporation | Structure électromagnétique diélectrique et son procédé de fabrication |
US11482790B2 (en) | 2020-04-08 | 2022-10-25 | Rogers Corporation | Dielectric lens and electromagnetic device with same |
US12155134B2 (en) | 2020-04-17 | 2024-11-26 | Apple Inc. | Electronic devices having dielectric resonator antennas with parasitic patches |
CN114336003B (zh) * | 2020-09-30 | 2024-01-30 | 华为技术有限公司 | 一种天线及其制备方法、毫米波传感器和终端 |
CN113193370B (zh) * | 2021-04-28 | 2022-10-14 | 电子科技大学 | 一种基于模式正交的自双工介质谐振器天线 |
CN113206377B (zh) * | 2021-05-06 | 2022-09-13 | 安徽大学 | 一种共面波导馈电的四陷波柔性可穿戴超宽带天线 |
WO2023115474A1 (fr) * | 2021-12-23 | 2023-06-29 | 京东方科技集团股份有限公司 | Antenne de plafond |
CN116683202B (zh) * | 2023-07-21 | 2024-05-14 | 广东博纬通信科技有限公司 | 一种多波束阵列天线 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6642890B1 (en) * | 2002-07-19 | 2003-11-04 | Paratek Microwave Inc. | Apparatus for coupling electromagnetic signals |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4686536A (en) * | 1985-08-15 | 1987-08-11 | Canadian Marconi Company | Crossed-drooping dipole antenna |
US6992627B1 (en) * | 1999-02-27 | 2006-01-31 | Rangestar Wireless, Inc. | Single and multiband quarter wave resonator |
US6344833B1 (en) * | 1999-04-02 | 2002-02-05 | Qualcomm Inc. | Adjusted directivity dielectric resonator antenna |
US6188371B1 (en) * | 1999-07-21 | 2001-02-13 | Quake Wireless, Inc. | Low-profile adjustable-band antenna |
US6404394B1 (en) * | 1999-12-23 | 2002-06-11 | Tyco Electronics Logistics Ag | Dual polarization slot antenna assembly |
US6765537B1 (en) * | 2001-04-09 | 2004-07-20 | Bae Systems Information And Electronic Systems Integration Inc. | Dual uncoupled mode box antenna |
TW579077U (en) * | 2001-04-11 | 2004-03-01 | Wistron Neweb Corp | Tunable antenna for radio transceiver device |
US6801164B2 (en) * | 2001-08-27 | 2004-10-05 | Motorola, Inc. | Broad band and multi-band antennas |
US7436360B2 (en) * | 2002-04-19 | 2008-10-14 | Skycross, Inc. | Ultra-wide band monopole antenna |
WO2003103087A2 (fr) * | 2002-06-04 | 2003-12-11 | Skycross, Inc. | Antenne unipolaire imprimee a bande large |
US6714162B1 (en) * | 2002-10-10 | 2004-03-30 | Centurion Wireless Technologies, Inc. | Narrow width dual/tri ISM band PIFA for wireless applications |
JP2004228984A (ja) * | 2003-01-23 | 2004-08-12 | Alps Electric Co Ltd | アンテナ装置 |
JP2004254148A (ja) * | 2003-02-21 | 2004-09-09 | Internatl Business Mach Corp <Ibm> | アンテナ装置及び送受信装置 |
TW583784B (en) * | 2003-04-25 | 2004-04-11 | Ind Tech Res Inst | A radiation apparatus with L-shaped ground plane |
US7227502B2 (en) * | 2003-12-18 | 2007-06-05 | Matsushita Electric Industrial Co., Ltd. | Patch antenna whose directivity is shifted to a particular direction, and a module integrated with the patch antenna |
-
2004
- 2004-02-17 FR FR0450284A patent/FR2866480B1/fr not_active Expired - Fee Related
-
2005
- 2005-02-07 EP EP05290270A patent/EP1605546A1/fr not_active Withdrawn
- 2005-02-16 US US11/058,285 patent/US7362284B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6642890B1 (en) * | 2002-07-19 | 2003-11-04 | Paratek Microwave Inc. | Apparatus for coupling electromagnetic signals |
Non-Patent Citations (4)
Title |
---|
DAS N K: "RIGOROUS ANALYSIS OF AN APERTURE-COUPLED MICROSTRIP ANTENNA FED BY A MICROSTRIP LINE ON A PERPENDICULAR SUBSTRATE", IEEE MICROWAVE AND GUIDED WAVE LETTERS, IEEE INC, NEW YORK, US, vol. 4, no. 6, 1 June 1994 (1994-06-01), pages 202 - 204, XP000454558, ISSN: 1051-8207 * |
HERSCOVICIO N I ET AL: "FULL-WAVE SOLUTION FOR AN APERTURE-COUPLED PATCH FED BY PERPENDICULAR COPLANAR STRIPS", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE INC. NEW YORK, US, vol. 42, no. 4, 1 April 1994 (1994-04-01), pages 544 - 547, XP000450169, ISSN: 0018-926X * |
LEUNG K W ET AL: "Slot-coupled dielectric resonator antenna using a proximity feed on a perpendicular substrate", ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 33, no. 20, 25 September 1997 (1997-09-25), pages 1665 - 1666, XP006008015, ISSN: 0013-5194 * |
LEUNG K W: "ANALYSIS OF APERTURE-COUPLED HEMISPHERICAL DIELECTRIC RESONATOR ANTENNA WITH A PERPENDICULAR FEED", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE INC. NEW YORK, US, vol. 48, no. 6, June 2000 (2000-06-01), pages 1005 - 1007, XP000959058, ISSN: 0018-926X * |
Also Published As
Publication number | Publication date |
---|---|
US20050179598A1 (en) | 2005-08-18 |
FR2866480B1 (fr) | 2006-07-28 |
US7362284B2 (en) | 2008-04-22 |
FR2866480A1 (fr) | 2005-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1605546A1 (fr) | Dispositif rayonnant à alimentation orthogonale | |
EP0481417B1 (fr) | Dispositif d'alimentation d'un élément rayonnant fonctionnant en double polarisation | |
EP1428294B1 (fr) | Antenne a couplage reactif comportant deux elements rayonnants | |
CA2869648C (fr) | Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur | |
EP0924797B1 (fr) | Antenne multifréquence réalisée selon la technique des microrubans, et dispositif incluant cette antenne | |
EP2656438B1 (fr) | Cellule rayonnante a deux etats de phase pour reseau transmetteur | |
EP0825673A1 (fr) | Antenne imprimée plane à éléments superposés court-circuités | |
FR2810164A1 (fr) | Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite | |
FR3012918A1 (fr) | Coupleur en te dans le plan e, repartiteur de puissance, reseau rayonnant et antenne comportant un tel coupleur | |
EP2564466A1 (fr) | Element rayonnant compact a cavites resonantes | |
EP3669422A1 (fr) | Antenne plaquée présentant deux modes de rayonnement différents à deux fréquences de travail distinctes, dispositif utilisant une telle antenne | |
FR2709833A1 (fr) | Instrument d'écoute large bande et bande basse pour applications spatiales. | |
EP1172885A1 (fr) | Antenne à couche conductrice et dispositif de transmission bi-bande incluant cette antenne. | |
FR2810163A1 (fr) | Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques | |
WO2008012369A1 (fr) | Dispositif de transduction orthomode à compacité optimisée dans le plan de maille, pour une antenne | |
FR2623020A1 (fr) | Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane | |
FR2853996A1 (fr) | Systeme d'antennes | |
EP1188202B1 (fr) | Dispositif d'emission et/ou de reception de signaux | |
FR2901062A1 (fr) | Dispositif rayonnant a cavite(s) resonnante(s) a air a fort rendement de surface, pour une antenne reseau | |
EP1949496B1 (fr) | Systeme d'antenne plate a acces direct en guide d'ondes | |
EP2316149B1 (fr) | Element rayonnant compact a faibles pertes | |
FR2685130A1 (fr) | Antenne pastille carree a deux polarisations croisees excitee par deux fentes orthogonales. | |
EP2291923B1 (fr) | Bloc frontal avec antenne intégrée | |
EP1152483B1 (fr) | Elément rayonnant hyperfréquence bi-bande | |
FR2822594A1 (fr) | Antenne plane multicouche comportant un element de connectique orthogonale et son procede de fabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20051202 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL LUCENT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL LUCENT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL LUCENT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALCATEL LUCENT |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 21/00 20060101AFI20050827BHEP Ipc: H01Q 9/04 20060101ALI20050827BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 9/04 20060101AFI20190326BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 9/04 20060101AFI20190404BHEP Ipc: H01Q 21/00 20060101ALI20190404BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20190606 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20191017 |