EP1604760A1 - A method of manufacturing a component with a cellular structure by consolidating a coated metal powder - Google Patents
A method of manufacturing a component with a cellular structure by consolidating a coated metal powder Download PDFInfo
- Publication number
- EP1604760A1 EP1604760A1 EP05252858A EP05252858A EP1604760A1 EP 1604760 A1 EP1604760 A1 EP 1604760A1 EP 05252858 A EP05252858 A EP 05252858A EP 05252858 A EP05252858 A EP 05252858A EP 1604760 A1 EP1604760 A1 EP 1604760A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal particles
- metal
- particles
- component
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
Definitions
- the present invention relates to a method of manufacturing a component by consolidating a metal powder.
- Near net shape components are manufactured by consolidating metal powder, for example by hot isostatic pressing.
- a vacuum purge system is used so as to maintain the composition of the metal powder constant throughout the consolidation process.
- the resulting component thus has a homogeneous composition.
- the present invention seeks to provide a novel method of manufacturing a component by consolidating a metal powder in which the microstructure of the metal of the component is modified and the component has improved physical and mechanical properties.
- the present invention provides a method of manufacturing a component by consolidating a metal powder comprising the steps of:-
- step (b) comprises oxidising the surfaces of the metal particles.
- step (b) comprises nitriding the surfaces of the metal particles.
- step (b) comprises vapour depositing a solid solution strengthening element on the surfaces of the metal particles.
- step (b) comprises coating the surfaces of the metal particles with a second metal having lower melting point than the metal particles.
- step (b) comprises coating the surfaces of the metal particles with particles of a second metal powder having a lower yield strength than the metal particles.
- the metal particles have an average size of 100 micrometers.
- the metal particles have a maximum size of 250 micrometers.
- the size of the metal particles may be varied to vary the properties of the component.
- the metal particles may be alloy particles.
- the second metal may be an alloy.
- the second metal particles may be alloy particles.
- the metal particles are titanium alloy particles. More preferably the titanium alloy particles comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
- step a) comprises supplying the titanium alloy particles into a container
- step b) comprises oxidising the titanium alloy particles
- step c) comprises sealing the container and applying heat and pressure.
- step b) comprises heating to a temperature of 450°C and maintaining at 450°C for 8 hours under a partial pressure of 10 -1 torr to oxidise the titanium alloy particles and step c) comprises hot isostatic pressing the container at a temperature of 925°C for 2 hours at a pressure of 150MPa.
- the container is removed by machining or dissolving in a suitable acid.
- the container comprises mild steel.
- the present invention also provides a component comprising consolidated metal powder, the metal powder comprising metal particles diffusion bonded together, the surfaces of the metal particles having a coating having at least one element which has partially diffused into the metal particles to form a cellular structure, the cellular structure comprising a framework of more highly alloyed material located at the boundaries of the diffusion bonded metal particles and the centres of the consolidated metal particles retain their original composition.
- the coating comprising an oxide or a nitride and the at least one element is oxygen or nitrogen respectively.
- the coating comprises a solid solution strengthening element on the surfaces of the metal particles.
- the coating comprises a second metal having lower melting point than the metal particles.
- the coating comprises a second metal powder having a lower yield strength than the metal particles.
- the metal particles are titanium alloy particles. More preferably the titanium alloy particles comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
- the component is a gas turbine engine component.
- the component is a fan blade, a part of a fan blade, a compressor blade or a casing.
- the present invention uses a metal powder consolidation process to produce a cellular structure into a component 10 or 20 in which the normal alloy composition is held within a framework of interstitial alloy or solid solution strengthened alloy.
- the method of manufacturing a component 10, or 20, by consolidating a metal powder comprises preparing a metal powder, the metal powder comprising metal particles 30.
- the metal particles ideally should have a narrow particle size, diameter, range, although this is not essential.
- the metal particles 30 have an average size of 100 micrometers and the metal particles 30 have a maximum size of 250 micrometers.
- a coating 32 containing at least one element is deposited on the surfaces 34 of the metal particles 30 of the metal powder. Heat and pressure is then applied to consolidate the metal particles 30 such that the at least one element of the coating 32 on the surfaces 34 of the metal particles 30 partially diffuses into the metal particles 30 and the coated metal particles 30 are diffusion bonded together to form a cellular structure 36.
- the roughly spherical metal particles 30 are deformed to a polyhedral shape. This results in a framework of more highly alloyed material 38 located at the boundaries of the diffusion bonded metal particles 30, or adjacent the original surfaces 34 of the metal particles 30. Because there is only limited diffusion of the at least one element from the coating 32 into the metal particles 30, the centres 40 of the consolidated metal particles 30 retain their original composition and thus a cellular structure 36 is created.
- the properties of the cellular structure 36 are dependent on the size, diameter, of the metal particles 30 of the metal powder, e.g. the dimensions of the resulting centres 40, and the at least one element in the coating 32.
- the size, diameter, of the metal particles 30 may be varied to vary the properties of the cellular structure 36 and hence the physical and mechanical properties of the component 10 or 20.
- the coating 32 for the metal particles 30 may be varied to vary the properties of the cellular structure 36 and hence the physical and mechanical properties of the component 10 or 20.
- the coating 32 may comprise an oxide, which is produced by oxidising the surfaces 34 the metal particles 30 in oxygen or air.
- the coating 32 may comprise a nitride, which is produced by nitriding the surfaces 34 of the metal particles 30.
- the coating 32 may comprise a solid solution strengthening element, which is produced by vapour depositing on the surfaces 34 of the metal particles 30.
- the coating 32 may comprise a second metal, having lower melting point than the metal particles 30.
- the coating 32 comprises a second metal powder having a lower yield strength than the metal particles 30.
- the metal particles 30 may be alloy particles.
- the second metal may be an alloy.
- the second metal particles may be alloy particles.
- the metal particles may be titanium alloy particles. More preferably the titanium alloy particles comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
- the present invention permits modification of the material structure to enhance physical and mechanical properties according to the laws of cellular structures.
- the present invention produces a cellular structure within a solid metallic component, the cellular structure improves the impact absorption properties, the ductility and the strength of a conventional alloy. In addition physical properties such as the elastic modulus, Poisson's Ratio, friction and damping characteristics are improved.
- Titanium alloy particles comprising 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities were prepared.
- the titanium alloy particles were then filtered to the required titanium alloy particle size, 100 micrometers average size and 250 micrometers maximum size.
- the titanium alloy particles were poured through an inlet tube into and filled a mild steel container, which defines the shape of the component being produced.
- the container was heated to a temperature of 450°C and maintained at 450°C for 8 hours under a partial air pressure of 10 -1 torr to oxidise the titanium alloy particles.
- the container was then sealed by welding shut an inlet tube.
- the container was placed in a HIP vessel and hot isostatically pressed at a temperature of 925°C for 2 hours at a pressure of 150MPa. Then the container was removed from the consolidated metal powder component by machining or dissolving in a suitable acid.
- a second metal, or second alloy which has a lower melting point the metal particles will result in melting or evaporation of the second metal to produce a coating on the metal particles.
- the use of a second metal powder having a lower yield strength than the metal particles will result in the second metal powder deforming around the metal particles during consolidation to produce the cellular structure.
- the present invention may also be used to infill metal powder particles into an existing hollow metal structure, for example a hollow fan blade or hollow compressor blade, and then to produce the cellular structure within the existing hollow metal structure.
- an existing hollow metal structure for example a hollow fan blade or hollow compressor blade
- the present invention may also be used to produce a hollow fan blade of a hollow compressor blade.
- the mild steel container was provided with one or more removable cores in the mild steel container to define one or more chambers in the hollow fan blade, or hollow compressor blade.
- the titanium alloy particles were poured into the mild steel container to fill the space in the mild steel container around the one or more removable cores.
- the container was heated to 450°C and maintained at 450°C for 8 hours under a partial air pressure of 10 -1 torr to oxidise the titanium alloy particles.
- the container was then sealed by welding shut the inlet tube.
- the container was placed in a HIP vessel and hot isostatically pressed at a temperature of 925°C for 2 hours at a pressure of 150 MPa.
- the removable cores may comprise an inert metal, for example lead or other metal with large atoms which are too large to diffuse into the titanium particles, having a lower melting point than the titanium alloy particles such that the hollow fan blade, or hollow compressor blade, is heated to a temperature at which the inert metal melts and is run out of the hollow fan blade, or hollow compressor blade. Remnants of the metal, may be removed from the hollow fan blade or hollow compressor blade, using a suitable solvent or a suitable acid.
- the removable cores may comprise mild steel which may be removed with a suitable acid.
- the hollow fan blade, or hollow compressor blade may be produced by ensuring that the container defines one or more chambers in the hollow fan blade or hollow compressor blade.
- the chambers are arranged to be pressurised during the hot isostatic pressing.
- the present invention may also entail machining a consolidated metal powder solid fan blade or solid compressor blade to final shape.
- the present invention is also applicable to titanium alloy particles comprising 6wt% aluminium, 2wt% tin, 4wt% zirconium, 2wt% molybdenum and the balance titanium, minor additions or incidental impurities.
- the oxygen or nitrogen partially diffuses into the metal particles, or alloy particles, to form interstitials in the metal, or alloy and the normal, or original, alloy composition at the centres of the consolidated metal particles, or alloy particles, is arranged within a framework of more highly alloyed, interstitial alloy, material located at the boundaries of the diffusion bonded metal particles, or alloy particles.
- the present invention has been described with reference to titanium alloys, the invention is equally applicable to aluminium alloys, iron alloys, nickel alloys, cobalt alloys and to intermetallics, for example nickel aluminides, titanium aluminides.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims (27)
- A method of manufacturing a component (10,20) by consolidating a metal powder comprising the steps of:-(d) preparing a metal powder, the metal powder comprising metal particles (30),(e) depositing a coating (32) containing at least one element on the surfaces (34) of the metal particles (30) of the metal powder,(f) applying heat and pressure to consolidate the metal particles (30) such that the at least one element of the coating (32) on the surfaces (34) of the metal particles (30) partially diffuses into the metal particles (30) and the coated metal particles (30) are diffusion bonded together to form a cellular structure (36), the cellular structure (36) comprising a framework of more highly alloyed material (38) located at the boundaries of the diffusion bonded metal particles (30) and the centres (40) of the consolidated metal particles (30) retain their original composition.
- A method as claimed in claim 1 wherein step (b) comprises oxidising the surfaces (34) of the metal particles (30).
- A method as claimed in claim 1 wherein step (b) comprises nitriding the surfaces (34) of the metal particles (30).
- A method as claimed in claim 1 wherein step (b) comprises vapour depositing a solid solution strengthening element on the surfaces (34) of the metal particles (30).
- A method as claimed in claim 1 wherein step (b) comprises coating the surfaces (34) of the metal particles (30) with a second metal having lower melting point than the metal particles (30).
- A method as claimed in claim 1 wherein step (b) comprises coating the surfaces (34) of the metal particles (30) with particles of a second metal powder having a lower yield strength than the metal particles (30).
- A method as claimed in any of claims 1 to 6 wherein the metal particles (30) are alloy particles.
- A method as claimed in claim 5 wherein the second metal is an alloy.
- A method as claimed in claim 6 wherein the second metal particles are alloy particles.
- A method as claimed in claim 7 wherein the metal particles (30) are titanium alloy particles.
- A method as claimed in claim 10 wherein the titanium alloy particles (30) comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
- A method as claimed in claim 11 wherein step a) comprises supplying the titanium alloy particles (30) into a container, step b) comprises oxidising the titanium alloy particles (30), step c) comprises sealing the container and applying heat and pressure.
- A method as claimed in claim 12 wherein step b) comprises heating to a temperature of 450°C and maintaining at 450°C for 8 hours under a partial pressure of 10-1 torr to oxidise the titanium alloy particles (30) and step c) comprises hot isostatic pressing the container at a temperature of 925°C for 2 hours at a pressure of 150MPa.
- A method as claimed in claim 12 or claim 13 wherein the container is removed by machining or dissolving in a suitable acid.
- A method as claimed in claim 12, claim 13 or claim 14 wherein the container comprises mild steel.
- A method as claimed in any of claims 1 to 15 wherein the metal particles (30) have an average size of 100 micrometers.
- A method as claimed in any of claims 1 to 16 wherein the metal particles (30) have a maximum size of 250 micrometers.
- A method as claimed in any of claims 1 to 15 wherein the size of the metal particles (30) is varied to vary the properties of the component (10,20).
- A component (10,20) comprising consolidated metal powder, the metal powder comprising metal particles (30) diffusion bonded together, the surfaces (34) of the metal particles (30) having a coating having at least one element, which has partially diffused into the metal particles (30) to form a cellular structure (36), the cellular structure (36) comprising a framework of more highly alloyed material (38) located at the boundaries of the diffusion bonded metal particles (30) and the centres (40) of the consolidated metal particles (30) retain their original composition.
- A component as claimed in claim 19 wherein the coating (34) comprising an oxide or a nitride and the at least one element is oxygen or nitrogen respectively.
- A component as claimed in claim 19 wherein the coating comprises a solid solution strengthening element on the surfaces of the metal particles (30).
- A component as claimed in claim 19 wherein the coating (34) comprises a second metal having lower melting point than the metal particles (30).
- A component as claimed in claim 19 wherein the coating (34) comprises a second metal powder having a lower yield strength than the metal particles (30).
- A component as claimed in any of claims 19 to 23 wherein the metal particles (30) are titanium alloy particles.
- A component as claimed in claim 24 wherein the titanium alloy particles (30) comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
- A component as claimed in any of claims 19 to 25 wherein the component (10,20) is a gas turbine engine component.
- A component as claimed in claim 26 wherein the component is a fan blade (20), a part of a fan blade, a compressor blade or a casing (10).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0413135.5A GB0413135D0 (en) | 2004-06-12 | 2004-06-12 | A method of manufacturing a component by consolidating a metal powder |
GB0413135 | 2004-06-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1604760A1 true EP1604760A1 (en) | 2005-12-14 |
EP1604760B1 EP1604760B1 (en) | 2007-02-21 |
Family
ID=32732386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05252858A Not-in-force EP1604760B1 (en) | 2004-06-12 | 2005-05-10 | A method of manufacturing a component with a cellular structure by consolidating a coated metal powder |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050276715A1 (en) |
EP (1) | EP1604760B1 (en) |
DE (1) | DE602005000580T2 (en) |
GB (1) | GB0413135D0 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109759594A (en) * | 2019-01-08 | 2019-05-17 | 钢铁研究总院 | A kind of combined material hot isostatic pressing high throughput micro manufacturing method and its thin wall wrap model |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10343217B2 (en) | 2014-01-24 | 2019-07-09 | United Technologies Corporation | Nanoparticle enhancement for additive manufacturing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0024984A1 (en) * | 1979-08-27 | 1981-03-11 | COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel | Process of making titanium alloy articles by powder metallurgy |
GB2157711A (en) * | 1984-04-04 | 1985-10-30 | Krebsoege Gmbh Sintermetall | Improvements relating to tough material for tools and/or wearing parts |
JPH04187704A (en) * | 1990-11-20 | 1992-07-06 | Daido Sanso Kk | Manufacture of aluminum powder compression compact |
US6024915A (en) * | 1993-08-12 | 2000-02-15 | Agency Of Industrial Science & Technology | Coated metal particles, a metal-base sinter and a process for producing same |
US6162497A (en) * | 1991-07-17 | 2000-12-19 | Materials Innovation, Inc. | Manufacturing particles and articles having engineered properties |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2273589A (en) * | 1940-03-07 | 1942-02-17 | Gen Motors Corp | Method of making porous metal bodies |
US3963485A (en) * | 1972-05-01 | 1976-06-15 | Gould Inc. | Method of producing sintered titanium base articles |
US4880460A (en) * | 1986-02-25 | 1989-11-14 | Crucible Materials Corporation | Powder metallurgy high speed tool steel article and method of manufacture |
US4981512A (en) * | 1990-07-27 | 1991-01-01 | The United States Of America As Represented By The Secretary Of The Army | Methods are producing composite materials of metal matrix containing tungsten grain |
US6017488A (en) * | 1998-05-11 | 2000-01-25 | Sandvik Ab | Method for nitriding a titanium-based carbonitride alloy |
-
2004
- 2004-06-12 GB GBGB0413135.5A patent/GB0413135D0/en not_active Ceased
-
2005
- 2005-05-10 EP EP05252858A patent/EP1604760B1/en not_active Not-in-force
- 2005-05-10 DE DE602005000580T patent/DE602005000580T2/en active Active
- 2005-05-11 US US11/126,230 patent/US20050276715A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0024984A1 (en) * | 1979-08-27 | 1981-03-11 | COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel | Process of making titanium alloy articles by powder metallurgy |
GB2157711A (en) * | 1984-04-04 | 1985-10-30 | Krebsoege Gmbh Sintermetall | Improvements relating to tough material for tools and/or wearing parts |
JPH04187704A (en) * | 1990-11-20 | 1992-07-06 | Daido Sanso Kk | Manufacture of aluminum powder compression compact |
US6162497A (en) * | 1991-07-17 | 2000-12-19 | Materials Innovation, Inc. | Manufacturing particles and articles having engineered properties |
US6024915A (en) * | 1993-08-12 | 2000-02-15 | Agency Of Industrial Science & Technology | Coated metal particles, a metal-base sinter and a process for producing same |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 016, no. 507 (M - 1327) 20 October 1992 (1992-10-20) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109759594A (en) * | 2019-01-08 | 2019-05-17 | 钢铁研究总院 | A kind of combined material hot isostatic pressing high throughput micro manufacturing method and its thin wall wrap model |
US11040397B2 (en) | 2019-01-08 | 2021-06-22 | Central Iron And Steel Research Institute | Method of high-throughput hot isostatic pressing micro-synthesis for the combinatorial materials and sleeve mould thereof |
Also Published As
Publication number | Publication date |
---|---|
DE602005000580D1 (en) | 2007-04-05 |
US20050276715A1 (en) | 2005-12-15 |
DE602005000580T2 (en) | 2007-06-21 |
GB0413135D0 (en) | 2004-07-14 |
EP1604760B1 (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5395699A (en) | Component, in particular turbine blade which can be exposed to high temperatures, and method of producing said component | |
US6599466B1 (en) | Manufacture of lightweight metal matrix composites with controlled structure | |
US10458001B2 (en) | Method for producing a component from a composite material comprising a metal matrix and incorporated intermetallic phases | |
EP0297001B1 (en) | Process for decreasing the range of values of the mechanical characteristics of tungsten-nickel-iron alloys | |
EP1411136B1 (en) | METHOD OF PREPARING A Ni-BASE SINTERED ALLOY | |
US10029309B2 (en) | Production process for TiAl components | |
US5409781A (en) | High-temperature component, especially a turbine blade, and process for producing this component | |
JP2007031836A (en) | Powder metal rotating components for turbine engines and process therefor | |
JP5548578B2 (en) | High strength magnesium alloy wire and manufacturing method thereof, high strength magnesium alloy component, and high strength magnesium alloy spring | |
JP5772731B2 (en) | Aluminum alloy powder forming method and aluminum alloy member | |
JPH11247614A (en) | Blade and method for manufacturing blade | |
EP1779946B1 (en) | Supersolvus hot isostatic pressing and ring rolling of hollow powder forms | |
EP1527842A1 (en) | A method of manufacturing a fibre reinforced metal matrix composite article | |
US6939508B2 (en) | Method of manufacturing net-shaped bimetallic parts | |
US11638956B2 (en) | Hot isostatic pressing consolidation of powder derived parts | |
EP1604760B1 (en) | A method of manufacturing a component with a cellular structure by consolidating a coated metal powder | |
JP4133078B2 (en) | Method for producing fiber reinforced metal | |
JP2737498B2 (en) | Titanium alloy for high density powder sintering | |
US5333667A (en) | Superstrength metal composite material and process for making the same | |
JP2007131886A (en) | Method for producing fiber reinforced metal with excellent wear resistance | |
JPH05148568A (en) | High density powder titanium alloy for sintering | |
US20030223903A1 (en) | Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys | |
JPH09287038A (en) | Method for producing composite product of TiAl alloy and metal fiber | |
JP7188576B2 (en) | TiAl alloy material, manufacturing method thereof, and hot forging method for TiAl alloy material | |
EP3639954B1 (en) | Powder metallurgy method for producing non-molybdenum-segregated article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20051028 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602005000580 Country of ref document: DE Date of ref document: 20070405 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20071122 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120523 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20120601 Year of fee payment: 8 Ref country code: GB Payment date: 20120522 Year of fee payment: 8 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602005000580 Country of ref document: DE Effective date: 20131203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130510 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |