EP1588034B1 - Cooling circuit of an internal combustion engine comprising a low-temperature radiator - Google Patents
Cooling circuit of an internal combustion engine comprising a low-temperature radiator Download PDFInfo
- Publication number
- EP1588034B1 EP1588034B1 EP04701951.8A EP04701951A EP1588034B1 EP 1588034 B1 EP1588034 B1 EP 1588034B1 EP 04701951 A EP04701951 A EP 04701951A EP 1588034 B1 EP1588034 B1 EP 1588034B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coolant
- thermostat
- radiator
- main
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims description 49
- 238000002485 combustion reaction Methods 0.000 title claims description 9
- 239000002826 coolant Substances 0.000 claims description 152
- 230000005540 biological transmission Effects 0.000 claims description 86
- 238000005192 partition Methods 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0234—Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/20—Cooling circuits not specific to a single part of engine or machine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P7/165—Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/18—Arrangements or mounting of liquid-to-air heat-exchangers
- F01P2003/185—Arrangements or mounting of liquid-to-air heat-exchangers arranged in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P7/00—Controlling of coolant flow
- F01P7/14—Controlling of coolant flow the coolant being liquid
- F01P7/16—Controlling of coolant flow the coolant being liquid by thermostatic control
- F01P2007/168—By varying the cooling capacity of a liquid-to-air heat-exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2050/00—Applications
- F01P2050/02—Marine engines
- F01P2050/06—Marine engines using liquid-to-liquid heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/04—Lubricant cooler
- F01P2060/045—Lubricant cooler for transmissions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P3/00—Liquid cooling
- F01P3/18—Arrangements or mounting of liquid-to-air heat-exchangers
Definitions
- the invention relates to a cooling circuit of an internal combustion engine of motor vehicles according to the preamble of claim 1.
- a cooling circuit of an internal combustion engine with a low-temperature radiator which is connected in series with a main radiator coolant side.
- a main coolant stream flows through the main cooler, from which a partial stream is branched off in an outlet-side collecting box and conveyed through the low-temperature cooler in the opposite direction to the main stream.
- the branch of the partial flow is effected by a arranged in an inlet box of the coolant radiator partition.
- the inlet box thus has two chambers, namely a main chamber for the main coolant flow and a secondary chamber for the exiting partial flow, which flows through the entire radiator two times and is thus cooled more.
- the partial flow exiting the secondary chamber is used for the cooling of transmission oil and, if necessary, mixed with coolant from an expansion tank.
- the mixture of the two partial flows takes place through a valve unit, from which the conditioned coolant is supplied to the transmission oil cooler for cooling or preheating.
- the cooling circuit further includes a main or engine thermostat, which is arranged in the radiator return, ie the coolant side behind the main radiator.
- the known cooling circuit or the known coolant radiator have various disadvantages: initially resulting from the series connection in a radiator block a reduced thermodynamic efficiency of the entire radiator.
- the average temperature difference between the coolant and the cooling air is lower in the low-temperature cooler than in the main cooler, and thus the average temperature difference between the coolant and the cooling air for the entire unit is lower.
- a further simplified form of transmission oil cooling is known by the arrangement of a transmission oil cooler in the outlet water box of a coolant radiator, z. B. by the DE-A 197 11 259 , Again, no control of the amount of coolant is possible, and during the warm-up phase of the engine, the transmission oil cooler is cut off from the coolant flow.
- the US Pat. No. 4,061,187 A discloses a refrigeration cycle for an internal combustion engine, in which the radiator is divided into two adjacent areas and is flowed through twice.
- the invention is applicable to refrigeration circuits in which the main thermostat is arranged either in the radiator feed or in the radiator return.
- the separation of the partial flow from the main flow takes place through a partition wall arranged in the outlet-side collecting box or a "leaky separating wall", ie a dividing wall which is provided with a throttle point.
- a valve may be arranged in the partition wall in order to influence the coolant quantity of the main and partial flow.
- the output of the low-temperature radiator is connected to the main thermostat, the bypass or the radiator feed, even in the warm-up phase of the engine, ie at closed main thermostat to supply the transmission oil cooler with a sufficient amount of coolant.
- a mixing thermostat is used in the return of the low-temperature radiator, which controls the mixing temperature from the return of the low-temperature radiator and from the engine-side inlet for the transmission oil cooler inlet.
- an opening or warm-up thermostat is arranged in the motor-side inlet for the mixing thermostat, which prevents a supply of cold coolant. This can prevent excessive transmission oil cooling and excessive transmission oil heating during engine warm-up. This reduces fuel consumption and emissions, improves the heating comfort and the service life of the transmission oil.
- the main region and the low-temperature region consist of a common tube / fin block, which is flowed through in parallel, d. H. there is no precooling of the partial flow instead.
- the mean temperature difference in the tubes of the main area and those of the low temperature area is lower, so that there are no harmful voltages for the radiator block.
- the low-temperature part is flowed through in the opposite direction for a second time by a so-called deflection in the depth. As a result, the outlet temperature of the partial flow can be lowered even further.
- Fig. 1 shows a cooling circuit of an internal combustion engine 1 of a motor vehicle, not shown. Heated coolant enters from an engine return line 1a into a main thermostat 2, to which a radiator feed 3 and a short circuit 4 are connected.
- the flow 3 opens into a cooler 5 with an inlet box 6 and an outlet-side collecting box 7.
- the cooler 5 has a main region 5a and a low-temperature region 5b, which are flowed through parallel to each other by a main coolant flow and a coolant secondary or partial flow.
- the outlet-side collection box 7 has two chambers 7a, 7b, which are separated from each other by a partition wall 7c.
- the inlet-side collection box 6, however, is continuous, ie without a partition.
- the low-temperature region 5b or, respectively, the outlet-side secondary chamber 7b is adjoined by a low-temperature radiator return 11, which is fed into the radiator return 8 at the junction 12.
- a transmission oil cooler 13 is turned on.
- a mixing thermostat 14 is turned on in the return 11, which is connected via a branch line 15, in which an opening or warm-up thermostat 16 is turned on, with the main thermostat 2.
- the function of the refrigerating cycle is as follows: in warm engine 1, the main thermostat is fully opened to the radiator feed 3 and closed to the bypass line 4, ie, the refrigerant flows into the radiator 5 where both regions, the main region 5a and the low temperature region 5b, are parallel flows through.
- the main flow passes through the radiator return 8 and the coolant pump 10 back into the internal combustion engine 1.
- cooled partial flow passes through the return line 11 in the mixing thermostat 9, where, if necessary, hot coolant from the engine outlet 1a via the branch line 15 is mixed to control the transmission oil cooling.
- the main thermostat 2 is closed to the radiator inlet 3 and fully open to the bypass line 4. Through the radiator 5 no coolant flows, but rather through the bypass line 4 to the engine inlet 1b.
- the mixing thermostat 14 and the downstream transmission oil cooler 13 thus receive no cold coolant. Rather, the mixing thermostat 14 receives only warm coolant from the engine outlet 1 a. Since the coolant at the engine outlet 1a has not yet reached the operating temperature in this operating state, the possibility for cooling the transmission oil is given sufficiently. At the beginning of the engine warm-up, the situation arises that the transmission oil is colder than the coolant. The transmission oil is then heated in the transmission oil cooler 13 by the coolant flow.
- the heating of the transmission oil is useful within certain limits, as this the transmission oil quickly reaches the operating temperature and the friction losses are reduced in the transmission.
- the inflow of warm coolant from the engine outlet 1a to the mixing thermostat 14 and to the downstream transmission oil cooler 13 can be prevented by the warm-up thermostat 16. This opens only when the coolant at the engine outlet 1a, has reached a certain temperature.
- the main thermostat operates in the control range, it is partially open to the radiator inlet 3 and to the bypass line 4.
- the mixing thermostat 14 is then supplied with cold coolant from the low-temperature region 5b and with warm coolant from the engine outlet 1a, from which the suitable for Gereteöltemper réelle coolant temperature is mixed together.
- Fig. 2 shows a variant of the first cooling circuit according to Fig. 1 , wherein like reference numerals are used for the same parts.
- the main thermostat 2 is arranged here in the return 8 of the coolant cooler 5.
- the coolant flows via the radiator inlet 3 to the radiator 5, through which it flows in parallel in a main flow and a partial flow.
- the partial flow enters via the auxiliary chamber 7b in the return line 11, in which the mixing thermostat 14 and the transmission oil cooler 13 are connected.
- the return 11 is fed at the junction 17 in the bypass power 4 and the flow of the coolant pump 10.
- the mixing thermostat 14 hot coolant from the engine outlet 1a and the radiator 3 is added if necessary, via a branch line 18, in which the opening or warm-up thermostat 16 is connected.
- the main thermostat 2 is closed to the radiator return 8 and opened to the engine outlet 1a, then no coolant flows through the main part 5a of the radiator 5. Instead, the main coolant flow via the short circuit 4 is led directly to the coolant pump 10. This condition occurs during engine warm-up or at least temporarily during winter operation. Depending on the position of the mixing thermostat 14, a coolant partial flow can also pass through the low-temperature part 5b in this case. At the mixing thermostat 14 is then cold coolant from the low-temperature part 5b and warm coolant from the engine outlet 1a and the radiator via the branch line 18, so that the temperature of the transmission oil cooler 13 flowing coolant can be controlled by the mixing thermostat 14.
- the transmission oil is colder than the coolant.
- the transmission oil is then heated in the transmission oil cooler 13 by the coolant flow.
- the inflow of the warm coolant from the engine outlet 1a or from the radiator forerunner 3 to the mixing thermostat 14 can be prevented by the warm-up thermostat 16.
- the warm-up thermostat 16 opens only when the coolant has reached a certain temperature at the engine outlet 1a or in the radiator feed 3.
- the flow through the low-temperature part 5b would also represent a heat loss for the coolant circuit. It is in this case prevented by the mixing thermostat 14 is closed to the low-temperature part 5b, because the coolant temperature at the outlet of the low-temperature part 5b is well below the target temperature for the outlet of the mixing thermostat 14.
- the mixed thermostat 14 is also supplied in this case with cold coolant from the low-temperature part 5b and with warm coolant from the engine outlet 1a and the radiator 3, whereupon the temperature suitable for Gereteöltemper réelle coolant temperature is mixed together.
- the mixing thermostat 14 may be an expansion thermostat, a map thermostat, or a foreign energy actuated control valve unit.
- the control variable for the mixing thermostat 14 may be the temperature of the hot coolant from the engine outlet 1a or from the radiator feed 3, the coolant temperature at the outlet of the mixing thermostat 14, or the coolant temperature at the outlet of the transmission oil cooler 13.
- the warm-up thermostat 16 can also be arranged between the mixed thermostat 14 and the transmission oil cooler 13 or the main thermostat 2 located between the engine outlet 1a and the radiator feed 3 in the cooler inlet side. In the latter case, the warm coolant is supplied from the radiator feed 3 to the mixing thermostat 14.
- the cooling circuits with transmission oil cooler 13 according to Fig. 1 and 2 can be simplified and thereby optimized in terms of cost by dispensing with the mixing thermostat 14 and only one warm-up thermostat 16 is used. Such non-inventive circuits are described below.
- Fig. 3 shows a simplified cooling circuit, in which the same reference numerals are used again for the same parts.
- the main thermostat 2 is arranged in the radiator feed 3.
- Via a branch line 19 from the bypass 4 is fed via the warm-up thermostat 16 coolant in the return 11.
- the coolant flows into the coolant radiator 5. From the outlet of the low temperature range 5b the cooled coolant partial flow enters the transmission oil cooler 13. Thereafter, the return 11 at the junction 12 in the radiator return 8 fed.
- the main thermostat 2 is closed to the radiator feed 3 and fully opened to the bypass line 4, no coolant flows through the radiator 5. Instead, the main coolant stream is led via the bypass line 4 directly to the coolant pump 10. This condition occurs during engine warm-up, or at least temporarily during winter operation. In this case, no cold coolant is supplied to the transmission oil cooler 13. Via the branch 19 of the bypass line 4 warm coolant from the engine outlet 1a to the warm-up thermostat 16 and from there to the entrance of the transmission oil cooler 13. Since the coolant at the engine outlet 1 a has not yet reached the operating temperature in this state, the possibility for cooling the transmission oil given sufficiently. At the beginning of the engine warm-up, the situation arises that the transmission oil is colder than the coolant.
- the transmission oil is then heated in the transmission oil cooler 13 by the coolant flow. It is advantageous to allow the heating of the transmission oil only after a certain period of time after the engine warm-up. This is achieved by the warm-up thermostat 16 opens only when the coolant at the engine outlet 1a and in the bypass line 4 has reached a certain temperature.
- the main thermostat 2 If the main thermostat 2 operates in the control range, it is partially open to the radiator inlet 3 and to the bypass line 4.
- the transmission oil cooler 13 is then supplied with a mixture of cold coolant from the low-temperature region 5b and warm coolant from the engine outlet 1 a.
- Fig. 4 shows a simplified refrigeration cycle, in which the same reference numerals are again used for the same parts.
- the main thermostat is 2 arranged here in the radiator return 8.
- the warm-up thermostat 16 and the transmission oil cooler 13 are arranged in the return 11 of the low-temperature region 5b or the low-temperature cooler 5b.
- the return 11 is brought together after its exit from the transmission oil cooler 13 at the junction 20 with the short-circuit line 4 and supplied from there to the coolant pump 10.
- the main thermostat 2 If the main thermostat 2 is closed to the radiator return 8 and fully opened towards the engine outlet 1a, no coolant flows through the main region 5a of the radiator 5. Instead, the main coolant flow is led directly to the coolant pump 10 via the short circuit 4. This condition occurs during warm-up or at least partially during winter operation. Depending on the position of the opening or warm-up thermostat 10, a coolant partial flow can also pass through the low-temperature cooler 5b in this case. From the opening thermostat 16 flows to the transmission oil cooler 13 to cold coolant. The opening thermostat 16 ensures that the coolant has a minimum temperature, so that excessive cooling of the transmission oil is prevented. At the beginning of the engine warm-up, the situation arises that the transmission oil is colder than the coolant.
- the transmission oil is then heated in the transmission oil cooler 13 by the coolant flow. It is advantageous to allow the heating of the transmission oil only after a certain period of time after the start of the engine warm-up. This is achieved by the warm-up thermostat 16 opens only when the coolant has reached a certain temperature at the outlet of the low-temperature radiator 5b.
- the transmission oil cooler 13 is also supplied in this case from the low-temperature part 5b with cold coolant, which, however, has a minimum temperature due to the warm-up thermostat 16.
- a transmission oil cooler has been selected by way of example only as an auxiliary heat exchanger. The latter can also be replaced by another consumer, ie another heat exchanger or an electronic component to be cooled.
- the opening thermostat 16 may be - like the mixing thermostat 9 - a Dehnstoffthermostat, a map thermostat or operated by external energy valve unit. This also applies to the main thermostat 2.
- the warm-up thermostat 16 can also be arranged between the transmission oil cooler 13 and the junction 12, 17, 20.
- the opening time of the warm-up thermostat 16 then also depends significantly on the transmission oil temperature. At low temperatures of the transmission oil and the coolant, the warm-up thermostat 16 is closed, and the transmission oil is neither heated nor cooled. At high temperature of the coolant and low temperature of the transmission oil, the warm-up thermostat 16 is opened, and the transmission oil is heated. At low or high temperature of the coolant and high temperature of the transmission oil, the warm-up thermostat 16 is opened, and the transmission oil is cooled.
- Fig. 5 shows a coolant cooler 50
- the in Fig. 1 represented coolant cooler 5 corresponds, wherein the transmission oil cooler 13 and the mixing thermostat 14 shown there are combined with the coolant radiator to form a structural unit 50.
- the coolant cooler 50 has a unitary tube / fin block consisting of a main area 50a and a minor area 50b.
- the unillustrated tubes of this tube / fin view 50a, 50b open on the one hand into a coolant inlet box 51 with a coolant inlet 52 and into an outlet-side header box 52 with a coolant outlet 53.
- the header box 52 is separated by a partition wall 54 into a main chamber 55 which into the outlet 53rd opens, and a secondary chamber 56 divided.
- the partition wall 54 is sealed in the illustrated embodiment, but it may also have a throttle point, not shown, or a valve, so that both chambers 55, 56 can communicate with each other.
- the main chamber 55 is through a Longitudinal partition 57 is divided so that a mixing chamber 58 results, but communicates in the region of the outlet opening 53 with the main chamber 55.
- a transmission oil cooler 59 is arranged with two outwardly leading transmission oil connections 59a, 59b.
- a mixing thermostat 60 is integrated in the mixing chamber 58, which is in fluid communication with an inlet 60a with the secondary chamber 56 and with an outlet 60b with the mixing chamber 58.
- a second input 60c of the mixing thermostat 60 can be connected to the coolant circulation described above.
- the thermostatic cartridge 60 is sealed with seals against the receptacle in the collection box.
- the longitudinal partition wall 57 may in one embodiment be an integral part of the header tank 52 or constitute an additional component.
- the longitudinal partition 57 is then designed so that it seals in the assembly of the transmission oil cooler 59 in the collecting box 52.
- corresponding sealing surfaces in the collecting box 52 and on the longitudinal partition wall 57 are provided.
- a seal or the design of the partition is possibly a seal or the design of the partition as a hard / soft part with molded sealing lip.
- the main area 50a and the low-temperature area 50b of the radiator 50 are flowed through in parallel, that is, in the direction of flow.
- the coolant which has entered the mixing chamber 58 flows through the transmission oil cooler 59 and is then admixed with the main flow in the region of the outlet opening 53.
- the dimensioning of the main flow and of the partial flow takes place in such a way that the coolant partial flow through the low-temperature part 50b accounts for approximately 4% to 15% of the total coolant flow which enters the cooler 50 through the coolant inlet 52.
- the size of the low temperature part 50b is advantageously dimensioned so that the end face of the low-temperature part 50b makes up between 10% and 40% of the end face of the cooler 50. In between, in the range of 20% to 30% surface area, there is a preferred range.
- the coolant cooler 50 is preferably installed as a cross-flow cooler, ie with horizontally extending tubes (not shown) in the motor vehicle. In this case, the low-temperature part 50b may be up or down, depending on the cooling air flow in the vehicle.
- the main area 50a and the low temperature area 50b can be made in a tube / fin block with common tube sheets and header boxes.
- the low-temperature part 50b can also be flowed through twice or more, for. B. by a deflection of the coolant in the depth, ie in the direction of the cooling air flow. As a result, a further lowering of the coolant temperature is achieved.
- the low-temperature part can also be formed from a portion of the radiator and additionally by a separate component.
- the two segments of the low-temperature part which result in this design, can be flowed through in parallel or successively by the coolant partial flow.
- the low-temperature part segment which represents a separate component, can be arranged in the cooling air flow in front of the unit cooler which contains the other low-temperature part segment. If the two segments are successively flowed through by the coolant partial flow, the result is a similarly high thermodynamic effectiveness of the low-temperature part as with a deflection of the coolant in the depth.
- An advantage of the design of the low-temperature part as a separate component or with a segment of the low-temperature part as a separate component is the reduced thermal cycling.
- the radiator main part can simply flow through or have a deflection.
- Fig. 6 shows a further embodiment of a coolant radiator 61, similar to the coolant radiator 50 according to Fig. 5 is constructed, namely with a main cooling portion 61 a and a low-temperature region 61 b, each communicating with an inlet box 62 having a coolant inlet opening 63 and an outlet box 64 with an outlet opening 65.
- a partition wall 66 is arranged, which divides this into a main chamber 67 and a secondary chamber 68.
- the main region 61 a and the portion 61 b are thus flowed through in parallel by the coolant.
- Adjoining the secondary chamber 68 is a mixing chamber 69 into which a mixing thermostat 70 is inserted, which communicates on the output side both with the secondary chamber 68 and with the mixing chamber 69 and on the input side with the cooling circuit not shown here.
- a mounting plate 71 is arranged, by means of which a transmission oil cooler 72 attached to the coolant radiator 61 and the coolant side connected to the mixing chamber 69 and the main chamber 67, via a coolant inlet channel 73 and a coolant outlet channel 74.
- the transmission oil circuit, not shown is connected via the nozzles 72a, 72b.
- this transmission oil cooler 72 has its own housing for guiding the coolant.
- the housing is flange-like on its attachment side, clamped to the mounting plate 71 and sealed by a sealing plate 73 relative to the mounting plate 71.
- Conventional coolant inlet and outlet nozzles can thus be omitted.
- the mounting plate 71 is advantageously formed on the collecting box 64 and contains the two coolant channels 73, 74. The re-feeding of the coolant partial flow through the outlet channel 74, however, is recommended only for an arrangement of the main thermostat in the radiator feed.
- the transmission oil cooler can be mounted with or without mounting plate on the water tank, on the fan cowl or on the module frame. Other mounting locations on the cooling module or away from the cooling module are possible.
- the transmission oil cooler can be designed with or without its own housing for guiding the coolant.
- inlet and outlet ports for coolant and transmission oil can be present.
- a mounting plate When used with a mounting plate can be omitted in whole or in part on the coolant side nozzle.
- the mixing thermostat can be integrated in the mounting plate or mounted directly on the transmission oil cooler. Further design options result from the arrangement of the mixing thermostat in the coolant guides, wherein the mixing thermostat can be additionally attached to the radiator, the fan cowl, the module frame or at another location.
- the opening thermostat can be integrated in the mounting plate or mounted directly on the transmission oil cooler. Further design possibilities result from the arrangement of the opening thermostat in the coolant guides, wherein the opening thermostat can be additionally attached to the radiator, the fan cowl, the module frame or at another location. Furthermore, it is possible to integrate the opening thermostat in the water box. The design options in this case correspond to those of the integration of the mixing thermostat in the water tank.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Details Of Gearings (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Description
Die Erfindung betrifft einen Kühlkreislauf einer Brennkraftmaschine von Kraftfahrzeugen nach dem Oberbegriff des Patentanspruches 1.The invention relates to a cooling circuit of an internal combustion engine of motor vehicles according to the preamble of
Durch die
Eine andere Bauform eines Kühlmittelkühlers in Verbindung mit einem Zusatzwärmeübertrager, insbesondere einem Getriebeölkühler wurde durch die
Eine weiter vereinfachte Form der Getriebeölkühlung ist durch die Anordnung eines Getriebeölkühlers im Austrittswasserkasten eines Kühlmittelkühlers bekannt, z. B. durch die
Die
Es ist Aufgabe der vorliegenden Erfindung, die Beheizung und/oder Kühlung eines zusätzlichen Fluids mit dem eingangs genannten Kühlkreislauf bzw. Kühlmittelkühler zu verbessern, indem eine ausreichende Kühlung auch in thermisch kritischen Betriebszuständen sowie eine ausreichende Kühlmittelversorgung auch im Motorwarmlauf gewährleistet ist und wobei der Kühlmittelkühler eine höhere thermodynamische Effektivität aufweist und eine hydraulische Einbindung mit geringen Druckverlusten erlaubt.It is an object of the present invention to improve the heating and / or cooling of an additional fluid with the aforementioned cooling circuit or coolant radiator by a sufficient cooling is guaranteed even in thermally critical operating conditions and a sufficient coolant supply in the engine warm-up and wherein the coolant radiator has higher thermodynamic efficiency and allows hydraulic integration with low pressure drops.
Die Lösung dieser Aufgabe ergibt sich aus den Merkmalen des Patentanspruches 1. Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den jeweiligen Unteransprüchen.The solution to this problem arises from the features of
Durch die erfindungsgemäße Parallelschaltung von Kühlmittelhauptstrom und Teilstrom im Niedertemperaturbereich wird eine starke Absenkung der Kühlmitteltemperatur ohne Vorkühlung erreicht, d. h. aufgrund einer niedrigeren Kühlmittelströmungsgeschwindigkeit. Die Erfindung ist auf Kühlkreisläufe anwendbar, bei denen der Hauptthermostat entweder im Kühlervorlauf oder im Kühlerrücklauf angeordnet ist. Vorteilhafterweise erfolgt die Abtrennung des Teilstroms vom Hauptstrom durch eine im austrittsseitigen Sammelkasten angeordnete Trennwand oder eine "undichte Trennwand", d. h. eine Trennwand, die mit einer Drosselstelle versehen ist. Ebenso kann in der Trennwand ein Ventil angeordnet sein, um die Kühlmittelmenge von Haupt-und Teilstrom zu beeinflussen. Vorteilhafterweise ist der Ausgang des Niedertemperaturkühlers mit dem Hauptthermostat, dem Bypass oder dem Kühlervorlauf verbunden, um auch in der Warmlaufphase des Motors, d. h. bei geschlossenem Hauptthermostat den Getriebeölkühler mit einer hinreichenden Kühlmittelmenge zu versorgen. Vorteilhafterweise wird dabei in den Rücklauf des Niedertemperaturkühlers ein Mischthermostat eingesetzt, der die Mischtemperatur aus dem Rücklauf des Niedertemperaturkühlers und aus dem motorseitigen Zulauf für den Getriebeölkühlereingang regelt. Vorteilhafterweise ist in dem motorseitigen Zulauf für den Mischthermostat ein Öffnungs- oder Warmlaufthermostat angeordnet, der eine Zufuhr von kaltem Kühlmittel unterbindet. Dadurch kann eine übertriebene Getriebeölkühlung und eine übertriebene Getriebeölerwärmung während des Motorwarmlaufs unterbunden werden. Dies senkt den Kraftstoffverbrauch und die Emissionen, verbessert den Heizungskomfort und die Lebensdauer des Getriebeöls.Due to the parallel connection of main coolant flow and partial flow according to the invention in the low-temperature range, a strong reduction of the coolant temperature is achieved without precooling, ie due to a lower coolant flow velocity. The invention is applicable to refrigeration circuits in which the main thermostat is arranged either in the radiator feed or in the radiator return. Advantageously, the separation of the partial flow from the main flow takes place through a partition wall arranged in the outlet-side collecting box or a "leaky separating wall", ie a dividing wall which is provided with a throttle point. Likewise, a valve may be arranged in the partition wall in order to influence the coolant quantity of the main and partial flow. Advantageously, the output of the low-temperature radiator is connected to the main thermostat, the bypass or the radiator feed, even in the warm-up phase of the engine, ie at closed main thermostat to supply the transmission oil cooler with a sufficient amount of coolant. Advantageously, a mixing thermostat is used in the return of the low-temperature radiator, which controls the mixing temperature from the return of the low-temperature radiator and from the engine-side inlet for the transmission oil cooler inlet. Advantageously, an opening or warm-up thermostat is arranged in the motor-side inlet for the mixing thermostat, which prevents a supply of cold coolant. This can prevent excessive transmission oil cooling and excessive transmission oil heating during engine warm-up. This reduces fuel consumption and emissions, improves the heating comfort and the service life of the transmission oil.
Bei dem erfindungsgemäßen Kühlmittelkühler bestehen der Hauptbereich und der Niedertemperaturbereich aus einem gemeinsamen Rohr/Rippenblock, der parallel durchströmt wird, d. h. es findet keine Vorkühlung des Teilstromes statt. Dies bedeutet für den gesamten Kühler eine höhere thermodynamische Effektivität, da sich die mittlere Temperaturdifferenz zwischen Kühlmittel und Kühlluft erhöht. Andererseits ist der mittlere Temperaturunterschied in den Rohren des Hauptbereiches und denen des Niedertemperaturbereiches geringer, sodass sich keine schädlichen Spannungen für den Kühlerblock ergeben. Dies gilt auch, wenn der Niedertemperaturteil ein zweites Mal in entgegengesetzter Richtung durch eine so genannte Umlenkung in der Tiefe durchströmt wird. Dadurch lässt sich die Austrittstemperatur des Teilstromes noch weiter absenken.In the coolant cooler according to the invention, the main region and the low-temperature region consist of a common tube / fin block, which is flowed through in parallel, d. H. there is no precooling of the partial flow instead. This means a higher thermodynamic effectiveness for the entire cooler, since the mean temperature difference between the coolant and the cooling air increases. On the other hand, the mean temperature difference in the tubes of the main area and those of the low temperature area is lower, so that there are no harmful voltages for the radiator block. This also applies if the low-temperature part is flowed through in the opposite direction for a second time by a so-called deflection in the depth. As a result, the outlet temperature of the partial flow can be lowered even further.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben. Es zeigen
- Fig. 1
- einen ersten Kühlkreislauf mit kühlereintrittsseitigen Hauptthermostat,
- Fig. 2
- einen zweiten Kreislauf mit kühleraustrittsseitigen Hauptthermostat,
- Fig. 3
- einen nicht erfindungsgemäßen vereinfachten Kreislauf mit kühlereintrittsseitigen Hauptthermostat,
- Fig. 4
- einen nicht erfindungsgemäßen vereinfachten Kreislauf mit kühleraustrittsseitigen Hauptthermostat,
- Fig. 5
- einen Kühlmittelkühler mit integriertem Getriebeölkühler und
- Fig. 6
- einen Kühlmittelkühler mit einem austrittsseitigen Sammelkasten, auf welchem ein Getriebeölkühler befestigt ist.
- Fig. 1
- a first cooling circuit with a cooling inlet-side main thermostat,
- Fig. 2
- a second circuit with radiator outlet side main thermostat,
- Fig. 3
- a simplified circuit not according to the invention with a cooling inlet-side main thermostat,
- Fig. 4
- a not according to the invention simplified circuit with radiator outlet side main thermostat,
- Fig. 5
- a coolant radiator with integrated transmission oil cooler and
- Fig. 6
- a coolant radiator having an exit-side header, on which a transmission oil cooler is mounted.
Die Funktion des Kühlkreislaufes ist die Folgende: bei warmer Brennkraftmaschine 1 ist der Hauptthermostat zum Kühlervorlauf 3 voll geöffnet und zu Bypassleitung 4 hin verschlossen, d. h. das Kühlmittel strömt in den Kühler 5, wo es beide Bereiche, den Hauptbereich 5a und den Niedertemperaturbereich 5b, parallel durchströmt. Der Hauptstrom gelangt über den Kühlerrücklauf 8 und die Kühlmittelpumpe 10 in die Brennkraftmaschine 1 zurück. Der im Niedertemperaturbereich 5b abgekühlte Teilstrom gelangt über den Rücklauf 11 in den Mischthermostat 9, wo bei Bedarf warmes Kühlmittel vom Motoraustritt 1a über die Abzweigleitung 15 zugemischt wird, um die Getriebeölkühlung zu regeln.The function of the refrigerating cycle is as follows: in
Bei kalter Brennkraftmaschine, d. h. zu Beginn der Warmlaufphase ist der Hauptthermostat 2 zum Kühlervorlauf 3 hin verschlossen und zur Bypassleitung 4 voll geöffnet. Durch den Kühler 5 strömt kein Kühlmittel, vielmehr durch die Bypassleitung 4 zum Motoreintritt 1b. Der Mischthermostat 14 und der nachgeschaltete Getriebeölkühler 13 erhalten somit kein kaltes Kühlmittel. Vielmehr erhält der Mischthermostat 14 nur warmes Kühlmittel vom Motoraustritt 1 a. Da bei diesem Betriebszustand das Kühlmittel am Motoraustritt 1a noch nicht die Betriebstemperatur erreicht hat, ist die Möglichkeit zur Kühlung des Getriebeöls in ausreichendem Maße gegeben. Zu Beginn des Motorwarmlaufs tritt die Situation auf, dass das Getriebeöl kälter ist als das Kühlmittel. Das Getriebeöl wird dann im Getriebeölkühler 13 durch den Kühlmittelstrom beheizt. Die Beheizung des Getriebeöls ist in bestimmten Grenzen sinnvoll, da hierdurch das Getriebeöl schnell die Betriebstemperatur erreicht und die Reibungsverluste im Getriebe reduziert werden. Allerdings ist es vorteilhaft, mit der Beheizung des Getriebeöls erst nach einer gewissen Zeitspanne nach Beginn des Motorwarmlaufs zu beginnen, um den Wärmeverlust des Motorkühlkreislaufes zu begrenzen. Der Zufluss warmen Kühlmittels vom Motoraustritt 1a zum Mischthermostat 14 und zum nachgeschalteten Getriebeölkühler 13 kann durch den Warmlaufthermostaten 16 unterbunden werden. Dieser öffnet erst, wenn das Kühlmittel am Motoraustritt 1a, eine bestimmte Temperatur erreicht hat.In a cold engine, d. H. At the beginning of the warm-up phase, the
Arbeitet der Hauptthermostat im Regelbereich, so ist er zum Kühlervorlauf 3 und zur Bypassleitung 4 hin teilweise geöffnet. Der Mischthermostat 14 wird dann mit kaltem Kühlmittel aus dem Niedertemperaturbereich 5b und mit warmen Kühlmittel vom Motoraustritt 1a versorgt, woraus die zur Getriebeöltemperierung geeignete Kühlmitteltemperatur zusammengemischt wird.If the main thermostat operates in the control range, it is partially open to the
Ist der Hauptthermostat 2 zum Kühlerrücklauf 8 hin verschlossen und zum Motoraustritt 1a geöffnet, so strömt kein Kühlmittel durch den Hauptteil 5a des Kühlers 5. Stattdessen wird der Kühlmittelhauptstrom über den Kurzschluss 4 direkt zur Kühlmittelpumpe 10 geführt. Dieser Zustand tritt während des Motorwarmlaufs bzw. zumindest zeitweise im Winterbetrieb auf. Je nach Stellung des Mischthermostaten 14 kann auch in diesem Fall ein Kühlmittelteilstrom durch den Niedertemperaturteil 5b gelangen. Am Mischthermostat 14 liegt dann kaltes Kühlmittel aus dem Niedertemperaturteil 5b und warmes Kühlmittel vom Motoraustritt 1a bzw. vom Kühlervorlauf über die Abzweigleitung 18 vor, sodass die Temperatur des dem Getriebeölkühler 13 zufließenden Kühlmittels durch den Mischthermostat 14 geregelt werden kann.If the
Zum Beginn des Motorwarmlaufs tritt die Situation auf, dass das Getriebeöl kälter ist als das Kühlmittel. Das Getriebeöl wird dann im Getriebeölkühler 13 durch den Kühlmittelstrom beheizt. Um die Beheizung des Getriebeöls erst nach einer gewissen Zeitspanne nach Beginn des Motorwarmlaufs zuzulassen, kann der Zufluss des warmen Kühlmittels vom Motoraustritt 1a bzw. vom Kühlervorlauf 3 zum Mischthermostat 14 durch den Warmlaufthermostaten 16 unterbunden werden. Der Warmlaufthermostat 16 öffnet erst, wenn das Kühlmittel am Motoraustritt 1a bzw. im Kühlervorlauf 3 eine bestimmte Temperatur erreicht hat. Die Durchströmung des Niedertemperaturteils 5b würde ebenfalls einen Wärmeverlust für den Kühlmittelkreislauf darstellen. Sie wird in diesem Falle dadurch unterbunden, dass der Mischthermostat 14 zum Niedertemperaturteil 5b verschlossen ist, weil die Kühlmitteltemperatur am Austritt des Niedertemperaturteils 5b deutlich unter der Zieltemperatur für den Austritt des Mischthermostaten 14 liegt.At the beginning of the engine warm-up, the situation occurs that the transmission oil is colder than the coolant. The transmission oil is then heated in the transmission oil cooler 13 by the coolant flow. In order to allow the heating of the transmission oil only after a certain period of time after the beginning of the engine warm-up, the inflow of the warm coolant from the
Arbeitet der Hauptthermostat 2 im Regelbereich, so ist er zum Kühlerrücklauf 8 und zum Motoraustritt 1a teilweise geöffnet. Der Mischthermostat 14 wird auch in diesem Fall mit kaltem Kühlmittel aus dem Niedertemperaturteil 5b und mit warmen Kühlmittel vom Motoraustritt 1a bzw. vom Kühlervorlauf 3 versorgt, worauf die zur Getriebeöltemperierung geeignete Kühlmitteltemperatur zusammen gemischt wird.If the
Bezüglich der Kühlkreisläufe gemäß
Die Kühlkreisläufe mit Getriebeölkühler 13 gemäß
Ist der Hauptthermostat 2 zum Kühlervorlauf 3 voll geöffnet und zur Bypassleitüng 4 hin verschlossen, strömt das Kühlmittel in den Kühlmittelkühler 5. Vom Austritt des Niedertemperaturbereiches 5b gelangt der abgekühlte Kühlmittelteilstrom in den Getriebeölkühler 13. Danach wird der Rücklauf 11 an der Vereinigungsstelle 12 in den Kühlerrücklauf 8 eingespeist.If the
Ist der Hauptthermostat 2 zum Kühlervorlauf 3 hin verschlossen und zur Bypassleitung 4 voll geöffnet, strömt kein Kühlmittel durch den Kühler 5. Stattdessen wird der Kühlmittelhauptstrom über die Bypassleitung 4 direkt zur Kühlmittelpumpe 10 geführt. Dieser Zustand tritt während des Motorwarmlaufes auf bzw. zumindest zeitweise bei Winterbetrieb. In diesem Fall wird dem Getriebeölkühler 13 kein kaltes Kühlmittel zugeführt. Über den Abzweig 19 von der Bypassleitung 4 gelangt warmes Kühlmittel vom Motoraustritt 1a zum Warmlaufthermostat 16 und von dort zum Eintritt des Getriebeölkühlers 13. Da bei diesem Zustand das Kühlmittel am Motoraustritt 1 a noch nicht die Betriebstemperatur erreicht hat, ist die Möglichkeit zur Kühlung des Getriebeöls in ausreichendem Maße gegeben. Zu Beginn des Motorwarmlaufs tritt die Situation auf, dass das Getriebeöl kälter ist als das Kühlmittel. Das Getriebeöl wird dann im Getriebeölkühler 13 durch den Kühlmittelstrom beheizt. Es ist dabei vorteilhaft, die Beheizung des Getriebeöls erst nach einer gewissen Zeitspanne nach dem Motorwarmlauf zuzulassen. Das wird erreicht, indem der Warmlaufthermostat 16 erst öffnet, wenn das Kühlmittel am Motoraustritt 1a bzw. in der Bypassleitung 4 eine bestimmte Temperatur erreicht hat.If the
Arbeitet der Hauptthermostat 2 im Regelbereich, so ist er zum Kühlervorlauf 3 und zur Bypassleitung 4 hin teilweise geöffnet. Der Getriebeölkühler 13 wird dann mit einer Mischung aus kaltem Kühlmittel aus dem Niedertemperaturbereich 5b und warmem Kühlmittel vom Motoraustritt 1 a versorgt.If the
Ist der Hauptthermostat 2 zum Kühlerrücklauf 8 hin verschlossen und zum Motoraustritt 1a hin voll geöffnet, strömt kein Kühlmittel durch den Hauptbereich 5a des Kühlers 5. Stattdessen wird der Kühlmittelhauptstrom direkt über den Kurzschluss 4 zur Kühlmittelpumpe 10 geführt. Dieser Zustand tritt während des Warmlaufs bzw. zumindest teilweise bei Winterbetrieb auf. Je nach Stellung des Öffnungs- bzw. Warmlaufthermostats 10 kann auch in diesem Fall ein Kühlmittelteilstrom durch den Niedertemperaturkühler 5b gelangen. Vom Öffnungsthermostaten 16 fließt dem Getriebeölkühler 13 kaltes Kühlmittel zu. Der Öffnungsthermostat 16 stellt dabei sicher, dass das Kühlmittel eine Mindesttemperatur aufweist, sodass eine übertriebene Abkühlung des Getriebeöls verhindert wird. Zu Beginn des Motorwarmlaufs tritt die Situation auf, dass das Getriebeöl kälter ist als das Kühlmittel. Das Getriebeöl wird dann im Getriebeölkühler 13 durch den Kühlmittelstrom beheizt. Es ist dabei vorteilhaft, die Beheizung des Getriebeöls erst nach einer gewissen Zeitspanne nach Beginn des Motorwarmlaufs zuzulassen. Das wird erreicht, indem der Warmlaufthermostat 16 erst öffnet, wenn das Kühlmittel am Austritt des Niedertemperaturkühlers 5b eine bestimmte Temperatur erreicht hat.If the
Arbeitet der Hauptthermostat 2 im Regelbereich, so ist er zum Kühlerrücklauf 8 und zum Motoraustritt 1a hin teilweise geöffnet. Der Getriebeölkühler 13 wird auch in diesem Falle aus dem Niedertemperaturteil 5b mit kaltem Kühlmittel versorgt, das jedoch aufgrund des Warmlaufthermostaten 16 eine Mindesttemperatur aufweist.If the
Zu den oben beschriebenen Kühlkreisläufen gemäß
Schließlich kann der Warmlaufthermostat 16 auch zwischen dem Getriebeölkühler 13 und der Vereinigungsstelle 12, 17, 20 angeordnet sein. Der Öffnungszeitpunkt des Warmlaufthermostaten 16 hängt dann auch wesentlich von der Getriebeöltemperatur ab. Bei niedrigen Temperaturen des Getriebeöls und des Kühlmittels ist der Warmlaufthermostat 16 geschlossen, und das Getriebeöl wird weder beheizt noch gekühlt. Bei hoher Temperatur des Kühlmittels und niedriger Temperatur des Getriebeöls ist der Warmlaufthermostat 16 geöffnet, und das Getriebeöl wird beheizt. Bei niedriger oder hoher Temperatur des Kühlmittels und hoher Temperatur des Getriebeöls ist der Warmlaufthermostat 16 geöffnet, und das Getriebeöl wird gekühlt.Finally, the warm-
Infolge der in dem austrittsseitigen Sammelkasten 52 angeordneten Trennwand 54 werden der Hauptbereich 50a und der Niedertemperaturbereich 50b des Kühlers 50 parallel durchströmt, d. h. es bilden sich ein Kühlmittelhauptstrom, der in die Hauptkammer 55 austritt und den Kühler 50 über den Auslass 53 verlässt, und ein Teilstrom, der in die Nebenkammer 56 austritt und über den Ausgang 60b des Mischthermostats 60 in die Mischkammer 58 eintritt. Diesem Kühlmittelteilstrom wird bedarfsweise Kühlmittel über den weiteren Eingang 60 c zugemischt. Das in die Mischkammer 58 gelangte Kühlmittel durchströmt den Getriebeölkühler 59 und wird dann dem Hauptstrom im Bereich der Auslassöffnung 53 zugemischt.As a result of the
Die Bemessung des Hauptstromes und des Teilstromes erfolgt in der Weise, dass der Kühlmittelteilstrom durch den Niedertemperaturteil 50b etwa 4 % bis 15 % des gesamten Kühlmittelstromes, der durch den Kühlmitteleinlass 52 in den Kühler 50 eintritt, ausmacht. Die Größe des Niedertemperaturteils 50b wird vorteilhaft so bemessen, dass die Stirnfläche des Niedertemperaturteils 50b zwischen 10% und 40% der Stirnfläche des Kühlers 50 ausmacht. Dazwischen, im Bereich von 20% bis 30% Flächenanteil, ergibt sich ein bevorzugter Bereich. Der Kühlmittelkühler 50 wird vorzugsweise als Querstromkühler, d. h. mit horizontal verlaufenden (nicht dargestellten) Rohren in das Kraftfahrzeug eingebaut. Dabei kann der Niedertemperaturteil 50b oben oder unten liegen, was von der Kühlluftströmung im Fahrzeug abhängt. Beispielsweise können im unteren Bereich des Kühlmittelkühlers weitere Wärmeübertrager, z. B. Ladeluftkühler vorgeschaltet sein, die die Kühlluft erwärmen. Zum Zwecke einer besseren Kühlung des Niedertemperaturbereiches 50b wäre dann eine Anordnung im oberen Bereich vorteilhaft. Wie bereits erwähnt, können aufgrund der relativ geringen Temperaturdifferenzen der Hauptbereich 50a und der Niedertemperaturbereich 50b in einem Rohr/Rippenblock mit gemeinsamen Rohrböden und Sammelkästen hergestellt werden. Es kann allerdings auch vorteilhaft sein, die Hauptkammer 55 und die Nebenkammer 56 als separate Kammern auszubilden oder beide Kühlbereiche 50a und 50b völlig zu trennen, d. h. in einen separaten Hauptkühler und einen separaten Niedertemperaturkühler, die beide kühlmittelseitig parallel beaufschlagt sind. Der Niedertemperaturteil 50b kann auch zweifach oder mehrfach durchströmt werden, z. B. durch eine Umlenkung des Kühlmittels in der Tiefe, d. h. in Richtung der Kühlluftströmung. Dadurch wird eine weitere Absenkung der Kühlmitteltemperatur erreicht. Der Niedertemperaturteil kann auch aus einem Teilbereich des Kühlers und zusätzlich durch ein getrenntes Bauteil gebildet werden. Die beiden Segmente des Niedertemperaturteils, die sich in dieser Gestaltung ergeben, können parallel oder nacheinander von dem Kühlmittel-Teilstrom durchströmt werden. Das Niedertemperaturteil-Segment, das ein eigenes Bauteil darstellt, kann im Kühlluftstrom vor der Baueinheit Kühler angeordnet werden, die das andere Niedertemperaturteil-Segment enthält. Werden die beiden Segmente nacheinander von dem Kühlmittel-Teilstrom durchströmt, so ergibt sich eine ähnlich hohe thermodynamische Wirksamkeit des Niedertemperaturteils wie mit einer Umlenkung des Kühlmittels in der Tiefe.The dimensioning of the main flow and of the partial flow takes place in such a way that the coolant partial flow through the low-
Ein Vorteil der Gestaltung des Niedertemperaturteils als getrenntes Bauteil oder mit einem Segment des Niedertemperaturteils als getrenntes Bauteil ist die verringerte Temperaturwechselbeanspruchung.An advantage of the design of the low-temperature part as a separate component or with a segment of the low-temperature part as a separate component is the reduced thermal cycling.
Der Kühler-Hauptteil kann einfach durchströmt sein oder eine Umlenkung aufweisen.The radiator main part can simply flow through or have a deflection.
Der Getriebeölkühler kann mit oder ohne Montageplatte am Wasserkasten, an der Lüfterzarge oder am Modulrahmen befestigt sein. Auch andere Montageorte am Kühlmodul oder abseits des Kühlmoduls sind möglich.
The transmission oil cooler can be mounted with or without mounting plate on the water tank, on the fan cowl or on the module frame. Other mounting locations on the cooling module or away from the cooling module are possible.
Der Getriebeölkühler kann mit oder ohne eigenes Gehäuse zur Führung des Kühlmittels ausgeführt sein. Bei der Ausführung mit Gehäuse zur Führung des Kühlmittels können jeweils Ein- und Austrittsstutzen für Kühlmittel und Getriebeöl vorhanden sein. Bei der Verwendung mit einer Montageplatte kann auf die kühlmittelseitigen Stutzen ganz oder teilweise verzichtet werden.The transmission oil cooler can be designed with or without its own housing for guiding the coolant. In the version with housing for guiding the coolant, inlet and outlet ports for coolant and transmission oil can be present. When used with a mounting plate can be omitted in whole or in part on the coolant side nozzle.
Der Mischthermostat kann in die Montageplatte integriert oder direkt an den Getriebeölkühler angebaut werden. Weitere Gestaltungsmöglichkeit ergeben sich durch die Anordnung des Mischthermostaten in den Kühlmittelführungen, wobei der Mischthermostat zusätzlich am Kühler, an der Lüfterzarge, am Modulrahmen oder an einer anderen Stelle befestigt werden kann.
Der Öffnungsthermostat kann in die Montageplatte integriert oder direkt an den Getriebeölkühler angebaut werden. Weitere Gestaltungsmöglichkeit ergeben sich durch die Anordnung des Öffnungsthermostaten in den Kühlmittelführungen, wobei der Öffnungsthermostat zusätzlich am Kühler, an der Lüfterzarge, am Modulrahmen oder an einer anderen Stelle befestigt werden kann. Des weiteren ist es möglich, den Öffnungsthermostaten in den Wasserkasten zu integrieren. Die Gestaltungsmöglichkeiten entsprechen in diesem Fall denen der Integration des Mischthermostaten in den Wasserkasten. The mixing thermostat can be integrated in the mounting plate or mounted directly on the transmission oil cooler. Further design options result from the arrangement of the mixing thermostat in the coolant guides, wherein the mixing thermostat can be additionally attached to the radiator, the fan cowl, the module frame or at another location.
The opening thermostat can be integrated in the mounting plate or mounted directly on the transmission oil cooler. Further design possibilities result from the arrangement of the opening thermostat in the coolant guides, wherein the opening thermostat can be additionally attached to the radiator, the fan cowl, the module frame or at another location. Furthermore, it is possible to integrate the opening thermostat in the water box. The design options in this case correspond to those of the integration of the mixing thermostat in the water tank.
Claims (5)
- A cooling circuit of an interval combustion engine of motor vehicles, comprising a main cooling circuit, consisting of a radiator flow pipe (3), a main radiator (5a), a radiator return pipe (8), a coolant pump (10), a main thermostat, (2), and a bypass or short circuit (4) between the main thermostat (2) and the coolant pump (10), and a low-temperature circuit, consisting of a low-temperature radiator (5b), a low-temperature radiator return pipe (11), a valve unit (14), and an additional heat exchanger (13, 59, 72), wherein the low-temperature radiator (5b) is connected in parallel to the main radiator (5a) and the main thermostat, (2) is arranged in the radiator flow pipe (3), characterized in that the valve unit (14) is designed as a mixing thermostat, (14) having two inlets and one outlet, the first inlet and the outlet are connected in the return pipe (11) of the low-temperature radiator (5b), and the second inlet is connected two the main thermostat (2).
- The cooling circuit according to claim 1, characterized in that the additional heat exchanger (13, 59, 72) is designed as a transmission oil cooler (13).
- The cooling circuit according to claim 1 or 2, characterized in that a warm-up thermostat (16) is connected between the second inlet and the main thermostat, (2).
- The cooling circuit according to claim 1, 2 or 3, characterized in that the valve unit (14) is designed as a mixing thermostat (14) having two inlets and one outlet, the first inlet and the outlet are connected in the return pipe (11) of the low-temperature radiator (5b), and the second inlet is connected to the radiator flow pipe (3).
- The cooling circuit according to claim 4, characterized in that a warm-up thermostat, (16) is connected between the radiator flow pipe (3) and the second inlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12194138A EP2573354A1 (en) | 2003-01-16 | 2004-01-14 | Cooling circuit of an internal cumbustion engine comprising a low-temperature radiator |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10301564A DE10301564A1 (en) | 2003-01-16 | 2003-01-16 | Cooling circuit of an internal combustion engine with low-temperature radiator |
DE10301564 | 2003-01-16 | ||
PCT/EP2004/000202 WO2004063543A2 (en) | 2003-01-16 | 2004-01-14 | Cooling circuit of an internal combustion engine comprising a low-temperature radiator |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12194138.9 Division-Into | 2012-11-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1588034A2 EP1588034A2 (en) | 2005-10-26 |
EP1588034B1 true EP1588034B1 (en) | 2013-05-22 |
Family
ID=32694898
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04701951.8A Expired - Lifetime EP1588034B1 (en) | 2003-01-16 | 2004-01-14 | Cooling circuit of an internal combustion engine comprising a low-temperature radiator |
EP12194138A Withdrawn EP2573354A1 (en) | 2003-01-16 | 2004-01-14 | Cooling circuit of an internal cumbustion engine comprising a low-temperature radiator |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12194138A Withdrawn EP2573354A1 (en) | 2003-01-16 | 2004-01-14 | Cooling circuit of an internal cumbustion engine comprising a low-temperature radiator |
Country Status (5)
Country | Link |
---|---|
US (1) | US7406929B2 (en) |
EP (2) | EP1588034B1 (en) |
JP (1) | JP4644182B2 (en) |
DE (1) | DE10301564A1 (en) |
WO (1) | WO2004063543A2 (en) |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1774148B1 (en) * | 2004-07-26 | 2013-02-27 | Behr GmbH & Co. KG | Coolant cooler with a gearbox-oil cooler integrated into one of the cooling water reservoirs |
FR2883806B1 (en) * | 2005-03-31 | 2008-08-08 | Valeo Systemes Thermiques | INSTALLATION AND METHOD FOR COOLING A MOTOR VEHICLE EQUIPMENT |
TWI355454B (en) * | 2005-09-30 | 2012-01-01 | Honda Motor Co Ltd | Vehicular cooling system |
US20090020079A1 (en) * | 2005-11-10 | 2009-01-22 | BEHRmbH & Co. KG | Circulation system, mixing element |
DE102005055323B4 (en) * | 2005-11-21 | 2010-01-14 | Audi Ag | Cooling device and method for operating a cooling device and cooling circuit |
JP4877057B2 (en) * | 2007-05-07 | 2012-02-15 | 日産自動車株式会社 | Internal combustion engine cooling system device |
US7669558B2 (en) * | 2007-07-16 | 2010-03-02 | Gm Global Technology Operations, Inc. | Integrated vehicle cooling system |
DE102007052927A1 (en) | 2007-11-07 | 2009-05-14 | Daimler Ag | Coolant circuit for an internal combustion engine |
DE102007052926A1 (en) * | 2007-11-07 | 2009-05-14 | Daimler Ag | Coolant circuit for an internal combustion engine |
US20090166022A1 (en) * | 2007-12-30 | 2009-07-02 | Sameer Desai | Vehicle heat exchanger and method for selectively controlling elements thereof |
JP2010065544A (en) * | 2008-09-08 | 2010-03-25 | Denso Corp | Hydraulic fluid temperature control system |
US20110073285A1 (en) * | 2009-09-30 | 2011-03-31 | Gm Global Technology Operations, Inc. | Multi-Zone Heat Exchanger for Use in a Vehicle Cooling System |
DE102010009508B4 (en) * | 2010-02-26 | 2023-01-12 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Motor vehicle with cooled front axle drive |
DE102011085961A1 (en) * | 2011-11-08 | 2013-05-08 | Behr Gmbh & Co. Kg | Cooling circuit |
CN104583567A (en) * | 2012-08-20 | 2015-04-29 | 博格华纳公司 | Thermal cold start system with multifunction valve |
CN103711561B (en) * | 2012-10-02 | 2018-11-02 | 马勒国际公司 | Heat exchanger |
JP5807660B2 (en) * | 2013-06-07 | 2015-11-10 | カルソニックカンセイ株式会社 | Combined heat exchanger |
WO2014196338A1 (en) * | 2013-06-07 | 2014-12-11 | カルソニックカンセイ株式会社 | Combined heat exchanger |
JP2014238233A (en) * | 2013-06-10 | 2014-12-18 | カルソニックカンセイ株式会社 | Combined heat exchanger |
DE102013114872B4 (en) * | 2013-06-07 | 2023-09-21 | Halla Visteon Climate Control Corp. | Radiator for vehicle |
GB2522703B (en) * | 2014-02-04 | 2017-01-25 | Jaguar Land Rover Ltd | System and method for liquid cooling of an engine of a vehicle |
DE102014204257A1 (en) * | 2014-03-07 | 2015-09-10 | Mahle International Gmbh | cooler |
GB2536656B (en) * | 2015-03-24 | 2019-05-22 | Jaguar Land Rover Ltd | Heat exchange system |
US10047707B2 (en) * | 2015-06-03 | 2018-08-14 | Cnh Industrial America Llc | System and method for cooling charge air and excess fuel for a turbocharged diesel engine |
US10378834B2 (en) | 2015-07-07 | 2019-08-13 | Mahle International Gmbh | Tube header for heat exchanger |
US20180274431A1 (en) * | 2015-10-02 | 2018-09-27 | Kendrion (Markdorf) Gmbh | Cooling circuit arrangement and method for cooling an engine |
FR3042221B1 (en) * | 2015-10-07 | 2019-09-27 | Psa Automobiles Sa. | POWERTRAIN COMPRISING A THERMAL MOTOR EQUIPPED WITH A COOLING CIRCUIT AND A HEAT EXCHANGER |
US10661650B2 (en) * | 2016-07-22 | 2020-05-26 | Nimer Ibrahim Shiheiber | Radiator system |
US10520075B2 (en) * | 2017-05-31 | 2019-12-31 | Mahle International Gmbh | Apparatus for controlling the temperature of an oil cooler in a motor vehicle |
DE102017219939A1 (en) * | 2017-11-09 | 2019-05-09 | Volkswagen Aktiengesellschaft | Cooling circuit for a drive unit of a motor vehicle |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2188172A (en) * | 1937-01-06 | 1940-01-23 | Gen Electric | Heat transfer system |
DE766237C (en) * | 1938-02-17 | 1952-04-21 | Sueddeutsche Kuehler Behr | Liquid-cooled oil cooler for internal combustion engines with hot cooling |
US2670933A (en) * | 1950-02-24 | 1954-03-02 | Thomas J Bay | Engine cooling apparatus |
JPS5858383B2 (en) | 1975-07-31 | 1983-12-24 | 松下電工株式会社 | Mushitsuketsugozai |
FR2341041A1 (en) * | 1976-02-10 | 1977-09-09 | Chausson Usines Sa | DEVICE FOR REGULATING THE TEMPERATURE OF A SUPERCHARGED DIESEL ENGINE |
US4061187A (en) | 1976-04-29 | 1977-12-06 | Cummins Engine Company, Inc. | Dual cooling system |
JPS6036745Y2 (en) * | 1978-10-30 | 1985-10-31 | 東洋ラジエ−タ−株式会社 | A radiator for internal combustion engines that obtains two types of cooling water with different temperatures. |
DD158415A1 (en) | 1981-04-16 | 1983-01-12 | Hans Berg | COOLING SYSTEM OF AN INTERNAL COMBUSTION ENGINE WITH EXHAUST LOADING AND CHARGE COOLING |
DE3517567A1 (en) | 1984-05-29 | 1985-12-05 | Volkswagenwerk Ag, 3180 Wolfsburg | Drive system for appliances and vehicles, especially motor vehicles |
US4620509A (en) * | 1985-08-05 | 1986-11-04 | Cummins Engine Company, Inc. | Twin-flow cooling system |
JPH0612389Y2 (en) * | 1988-02-19 | 1994-03-30 | 東洋ラジエーター株式会社 | Car radiator |
DE4032701A1 (en) | 1990-10-15 | 1992-06-25 | Schatz Oskar | Piston IC engine cooling system - has switchable coolant pump in cooling circuit, and second pump for selective temp. control |
FR2682160B1 (en) | 1991-10-07 | 1995-04-21 | Renault Vehicules Ind | COOLING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE HAVING TWO DISTINCT RADIATOR PARTS. |
US5415147A (en) * | 1993-12-23 | 1995-05-16 | General Electric Company | Split temperature regulating system and method for turbo charged internal combustion engine |
DE19513248A1 (en) | 1995-04-07 | 1996-10-10 | Behr Thomson Dehnstoffregler | Cooling circulation for vehicle combustion engine |
DE19540591C2 (en) * | 1995-10-31 | 1999-05-20 | Behr Gmbh & Co | Method for regulating the volume flow distribution in a coolant circuit for motor vehicles with an engine and device for carrying out the method |
GB9604727D0 (en) * | 1996-03-06 | 1996-05-08 | Rover Group | Motor vehicle engine and fuel cooling system |
DE19637817A1 (en) | 1996-09-17 | 1998-03-19 | Laengerer & Reich Gmbh & Co | Device and method for cooling and preheating |
JP3810875B2 (en) * | 1997-01-24 | 2006-08-16 | カルソニックカンセイ株式会社 | Integrated heat exchanger |
DE19711259A1 (en) | 1997-03-18 | 1998-10-15 | Behr Gmbh & Co | Transmission oil cooler |
JP3742723B2 (en) * | 1998-03-19 | 2006-02-08 | カルソニックカンセイ株式会社 | Transmission oil temperature regulator |
JPH11350957A (en) * | 1998-06-05 | 1999-12-21 | Calsonic Corp | Engine cooling device |
DE19926052B4 (en) | 1999-06-08 | 2005-09-15 | Daimlerchrysler Ag | heat exchanger unit |
JP2001271643A (en) * | 2000-03-27 | 2001-10-05 | Calsonic Kansei Corp | Engine-cooling system |
KR100389698B1 (en) | 2000-12-11 | 2003-06-27 | 삼성공조 주식회사 | High/Low Temperature Water Cooling System |
JP2002323117A (en) * | 2001-04-26 | 2002-11-08 | Mitsubishi Motors Corp | Oil temperature control device |
FR2838477B1 (en) | 2002-04-12 | 2005-12-02 | Renault Sa | COOLING CIRCUIT OF AN INTERNAL COMBUSTION ENGINE |
-
2003
- 2003-01-16 DE DE10301564A patent/DE10301564A1/en not_active Withdrawn
-
2004
- 2004-01-14 US US10/542,371 patent/US7406929B2/en not_active Expired - Lifetime
- 2004-01-14 EP EP04701951.8A patent/EP1588034B1/en not_active Expired - Lifetime
- 2004-01-14 WO PCT/EP2004/000202 patent/WO2004063543A2/en active Application Filing
- 2004-01-14 EP EP12194138A patent/EP2573354A1/en not_active Withdrawn
- 2004-01-14 JP JP2006500562A patent/JP4644182B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE10301564A1 (en) | 2004-08-12 |
US20060254538A1 (en) | 2006-11-16 |
EP1588034A2 (en) | 2005-10-26 |
JP4644182B2 (en) | 2011-03-02 |
WO2004063543A3 (en) | 2004-10-28 |
EP2573354A1 (en) | 2013-03-27 |
US7406929B2 (en) | 2008-08-05 |
JP2006515658A (en) | 2006-06-01 |
WO2004063543A2 (en) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1588034B1 (en) | Cooling circuit of an internal combustion engine comprising a low-temperature radiator | |
DE102012105644B4 (en) | HEAT EXCHANGER FOR A VEHICLE | |
DE3433370C2 (en) | ||
EP0861368B1 (en) | Internal combustion engine cooling system and method for operating said system | |
EP1454106B1 (en) | Heat exchanger | |
DE60220700T2 (en) | HEAT EXCHANGER MODULE WITH MAIN COOLER AND BOTTOM COOLER | |
DE102014219252A1 (en) | Internal combustion engine | |
DE102019104747B4 (en) | Heat recovery system with a special arrangement of the exhaust gas heat exchanger in the cooling circuit of an internal combustion engine | |
DE60224522T2 (en) | COOLER | |
EP1923549B1 (en) | Cooling system for a motor vehicle | |
EP1283334A1 (en) | Cooling system for a motor vehicle drive | |
EP0903482B1 (en) | Control device of the coolant circuit for an internal combustion engine | |
DE102005032295A1 (en) | Flow control valve for engine cooling water | |
WO1996006748A1 (en) | Motor vehicle heat exchanger | |
DE10319762A1 (en) | Charge air cooling circuit and method of operating such a circuit | |
EP1751411B1 (en) | Optimized oil cooling system for an internal combustion engine | |
DE69618084T2 (en) | Thermostat housing for an internal combustion engine | |
WO2003054468A1 (en) | Heat transfer device | |
DE10302170A1 (en) | Combustion engine coolant circuit has a link to a gearbox oil cooler circuit that is controlled by the position of a control unit actuator so that gearbox oil can be heated or cooled as necessary | |
DE102015201242A1 (en) | Control means for controlling the coolant flows of a split cooling system | |
EP2562378A1 (en) | Strategy to operate a split coolant circuit | |
DE10012197B4 (en) | Thermal management for a motor vehicle with a coolant circuit and an air conditioning system | |
DE102008060224B4 (en) | Oil exhaust cooling module for an internal combustion engine | |
EP1600314B1 (en) | Arrangement and operating method in a refrigerant circuit | |
DE202015100577U1 (en) | Control means for controlling the coolant flows of a split cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050816 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HASSDENTEUFEL, KLAUS Inventor name: ROGG, STEFAN |
|
17Q | First examination report despatched |
Effective date: 20101123 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 613360 Country of ref document: AT Kind code of ref document: T Effective date: 20130615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014186 Country of ref document: DE Effective date: 20130718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130923 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130902 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130823 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20140225 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014186 Country of ref document: DE Effective date: 20140225 |
|
BERE | Be: lapsed |
Owner name: BEHR G.M.B.H. & CO. KG Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004014186 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140114 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004014186 Country of ref document: DE Effective date: 20140801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140801 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140114 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 613360 Country of ref document: AT Kind code of ref document: T Effective date: 20140114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040114 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130522 |