EP1586138B1 - Busbar assembly - Google Patents
Busbar assembly Download PDFInfo
- Publication number
- EP1586138B1 EP1586138B1 EP03808437A EP03808437A EP1586138B1 EP 1586138 B1 EP1586138 B1 EP 1586138B1 EP 03808437 A EP03808437 A EP 03808437A EP 03808437 A EP03808437 A EP 03808437A EP 1586138 B1 EP1586138 B1 EP 1586138B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- busbar assembly
- sealant
- conductor
- busbar
- passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000565 sealant Substances 0.000 claims abstract description 96
- 239000004020 conductor Substances 0.000 claims abstract description 94
- 238000003780 insertion Methods 0.000 claims abstract description 11
- 230000037431 insertion Effects 0.000 claims abstract description 11
- 238000007789 sealing Methods 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 3
- 239000012528 membrane Substances 0.000 claims description 3
- 239000000499 gel Substances 0.000 description 86
- 239000000463 material Substances 0.000 description 12
- 230000000712 assembly Effects 0.000 description 11
- 238000000429 assembly Methods 0.000 description 11
- -1 polypropylene Polymers 0.000 description 11
- 239000000523 sample Substances 0.000 description 9
- 230000035515 penetration Effects 0.000 description 8
- 229920001296 polysiloxane Polymers 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004606 Fillers/Extenders Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000013256 coordination polymer Substances 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003063 flame retardant Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical group C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002742 polystyrene-block-poly(ethylene/propylene) -block-polystyrene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VMAWODUEPLAHOE-UHFFFAOYSA-N 2,4,6,8-tetrakis(ethenyl)-2,4,6,8-tetramethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C=C[Si]1(C)O[Si](C)(C=C)O[Si](C)(C=C)O[Si](C)(C=C)O1 VMAWODUEPLAHOE-UHFFFAOYSA-N 0.000 description 1
- RYUJRXVZSJCHDZ-UHFFFAOYSA-N 8-methylnonyl diphenyl phosphate Chemical compound C=1C=CC=CC=1OP(=O)(OCCCCCCCC(C)C)OC1=CC=CC=C1 RYUJRXVZSJCHDZ-UHFFFAOYSA-N 0.000 description 1
- GHKOFFNLGXMVNJ-UHFFFAOYSA-N Didodecyl thiobispropanoate Chemical compound CCCCCCCCCCCCOC(=O)CCSCCC(=O)OCCCCCCCCCCCC GHKOFFNLGXMVNJ-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- ISIPQAHMLLFSFR-GDNBJRDFSA-N [(z)-3-acetylsulfanyl-4-[(4-amino-2-methylpyrimidin-5-yl)methyl-formylamino]pent-3-enyl] acetate Chemical compound CC(=O)OCC\C(SC(C)=O)=C(/C)N(C=O)CC1=CN=C(C)N=C1N ISIPQAHMLLFSFR-GDNBJRDFSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- DSVRVHYFPPQFTI-UHFFFAOYSA-N bis(ethenyl)-methyl-trimethylsilyloxysilane;platinum Chemical compound [Pt].C[Si](C)(C)O[Si](C)(C=C)C=C DSVRVHYFPPQFTI-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- UOUILILVWRHZSH-UHFFFAOYSA-N dimethyl-tris[(dimethyl-$l^{3}-silanyl)oxy]silyloxysilicon Chemical compound C[Si](C)O[Si](O[Si](C)C)(O[Si](C)C)O[Si](C)C UOUILILVWRHZSH-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002683 reaction inhibitor Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- KVMPUXDNESXNOH-UHFFFAOYSA-N tris(1-chloropropan-2-yl) phosphate Chemical compound ClCC(C)OP(=O)(OC(C)CCl)OC(C)CCl KVMPUXDNESXNOH-UHFFFAOYSA-N 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/46—Bases; Cases
- H01R13/52—Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
- H01R13/5216—Dustproof, splashproof, drip-proof, waterproof, or flameproof cases characterised by the sealing material, e.g. gels or resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/46—Bases; Cases
- H01R13/52—Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
- H01R13/5205—Sealing means between cable and housing, e.g. grommet
- H01R13/5208—Sealing means between cable and housing, e.g. grommet having at least two cable receiving openings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R9/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
- H01R9/22—Bases, e.g. strip, block, panel
- H01R9/24—Terminal blocks
- H01R9/2458—Electrical interconnections between terminal blocks
Definitions
- the present invention relates to electrical connectors and methods for using the same and, more particularly, to environmentally protected electrical connectors and methods for forming environmentally protected connections.
- Busbar connectors are commonly used to distribute electrical power, for example, to multiple residential or commercial structures from a common power supply feed.
- Busbar connectors typically include a conductor member formed of copper or aluminum housed in a polymeric cover.
- the conductor member includes a plurality of cable bores.
- the cover includes a plurality of ports, each adapted to receive a respective cable and to direct the cable into a respective one of the cable bores.
- a set screw is associated with each cable bore for securing the cables in the respective bores and, thereby, in electrical contact with the conductor member.
- busbar assemblies as described above can be used to electrically connect two or more cables.
- a feed cable may be secured to the busbar connector through one of the ports and one or more branch or tap circuit cables may be connected to the busbar connector through the other ports, to distribute power from the feed cable.
- Busbar connectors of this type provide significant convenience in that cables can be added and removed from the connection as needed.
- Power distribution connections as discussed above are typically housed in an above-ground cabinet or a below-grade box.
- the several cables are usually fed up through the ground and the connection (including the busbar connector) may remain unattached to the cabinet or box (i.e., floating within the cabinet).
- the connections may be subjected to moisture, and may even become submerged in water. If the conductor member and the conductors are left exposed, water and environmental contaminants may cause corrosion thereon.
- the conductor member is often formed of aluminum, so that water may cause oxidation of the conductor member. Such oxidation may be significantly accelerated by the relatively high voltages (typically 120 volts to 1000 volts) employed.
- some known busbar designs include elastomeric boots or caps. These caps or boots may be difficult or inconvenient to install properly, particularly in the field, and may not provide reliable seals.
- US-A-5 848 913 discloses a busbar assembly according to the preamble of claim 1.
- the first and second ports each include a conductor passage and communicate with the interior cavity.
- the conductor passages are each adapted to receive a conductor therethrough.
- An electrically conductive busbar conductor member is disposed in the interior cavity.
- At least one holding mechanism is provided to selectively secure each of the conductors to the busbar conductor member for electrical contact therewith.
- Sealant is disposed in the conductor passages of each of the first and second ports.
- the sealant is adapted for insertion of the conductors therethrough such that the sealant provides a seal about the inserted conductors.
- the sealant may be a gel.
- the busbar assembly 100 may be used to electrically connect a plurality of electrical connectors, such as conductors 5A and 7A of cables 5 and 7 (which further include electrically insulative sheaths or covers 5B , 7B), as shown in Figures 1 and 4.
- the busbar assembly 100 may provide an environmentally protected and, preferably, watertight connector and connection.
- the busbar assembly 100 may be used to electrically connect the conductors of a power feed cable and one or more branch or tap cables, while preventing the conductive portions of the cables and the busbar assembly 100 from being exposed to surrounding moisture or the like.
- the busbar assembly 100 includes a busbar conductor member 110, a cover assembly 120, a plurality of set screws 102 (only two shown in Figure 2), and a mass of sealant 160.
- the cover assembly 120 includes a rear cover member 130 and a front cover member 140.
- the cover assembly 120 defines an interior cavity 122 within which the conductor member 110 is disposed.
- the interior cavity 122 is environmentally protected.
- the conductor member 110 includes four cable or conductor bores 112, each having a front opening 114.
- the conductor bores 112 are sized and shaped to receive the conductors 5A, 7A.
- Four threaded bores 116 extend orthogonally to and intersect respective ones of the conductor bores 112.
- the conductor member 110 may be formed of any suitable electrically conductive material. In some embodiments, the conductor member 110 is formed of copper or aluminum. In certain preferred embodiments, the conductor member 110 is formed of aluminum.
- the conductor member 110 may be formed by molding, stamping, extrusion and/or machining, or by any other suitable process(es).
- the rear cover member 130 includes a body portion 132.
- a plurality of transversely extending ribs 133 project into the interior cavity 122 from the body portion 132.
- Four access ports 134 are provided on the body portion 132.
- Each access port 134 includes an access tube 134A defining an access passage 134B.
- the access passage 134B communicates with an access opening 134C and the interior cavity 122.
- a perimeter flange 136 extends about the body portion 132 and defines a perimeter channel 136A.
- a plurality of latch slots 138 are formed in the flange 136.
- the front cover member 140 includes a body portion 142.
- a pair of transversely extending spacer ribs 143 ( Figure 3) extend transversely to the body portion 142.
- Four conductor or cable ports 144 are provided on the body portion 142.
- Each port 144 includes a cable tube 144A defining a cable passage 144B .
- the cable passage 144B communicates with an entrance opening 144C and an exit opening 144D .
- a frangible closure wall 150 extends across the passage 144B between the openings 144C and 144D.
- a perimeter flange 146 surrounds and projects rearwardly from the body portion 142.
- a plurality of barbed latch projections 148 extend rearwardly from the flange 146.
- caps 152 are joined to the body portion 142 by a flexible connecting portion 154.
- the caps 152 are sized and shaped to fit in respective ones of the access passageways 134B and access openings 134C.
- An O-ring e.g., formed of an elastomer or the like is provided on each cap 152 to provide a seal between the caps 152 and the access ports 134.
- the front cover member 140 is integrally formed and the rear cover member 130 is integrally formed.
- the cover members 130,140 may be formed of any suitable electrically insulative material.
- the cover members 130, 140 are formed of a molded polymeric material. More preferably, the cover members 130, 140 are formed of polypropylene, polyethylene or a thermoplastic elastomer.
- the cover members 130, 140 may be formed of a flame retardant material, and may include a suitable additive to make the cover members flame retardant.
- Each of four set screws 102 (only two shown in Figure 2) is threadedly installed in a respective one of the threaded bores 116.
- Each of the screws 102 includes a socket 102A which may be adapted to receive a driver 9 ( Figure 4), for example.
- the sealant 160 is disposed in the cover assembly 120. More particularly, a body sealant portion 164 of the sealant 160 is disposed in a front portion of the interior cavity 122. A plurality of port sealant portions 162 are disposed in respective ones of the ports 144. In some embodiments and as illustrated, each port sealant portion 162 extends from the inner side of the closure wall 150 to the exit opening 144D of the associated port 144 and is contiguous with the body sealant portion 164.
- the sealant portion 164 includes a perimeter portion 166 that is disposed in the channel 136A to form a surrounding seal between the cover members 130, 140.
- the sealant 160 is a gel.
- gel has been used in the prior art to cover a vast array of materials from greases to thixotropic compositions to fluid-extended polymeric systems.
- gel refers to the category of materials which are solids extended by a fluid extender.
- the gel may be a substantially dilute system that exhibits no steady state flow.
- a polymer gel may be a cross-linked solution whether linked by chemical bonds or crystallites or some other kind of junction.
- the absence of the steady state flow may be considered to be the key definition of the solid-like properties while the substantial dilution may be necessary to give the relatively low modulus of gels.
- the solid nature may be achieved by a continuous network structure formed in the material generally through crosslinking the polymer chains through some kind of junction or the creation of domains of associated substituents of various branch chains of the polymer.
- the crosslinking can be either physical or chemical as long as the crosslink sites may be sustained at the use conditions of the gel.
- Preferred gels for use in this invention are silicone (organopolysiloxane) gels, such as the fluid-extended systems taught in U.S. Pat. No. 4,634,207 to Debbaut (hereinafter "Debbaut '207”); U.S. Pat. No. 4,680,233 to Camin et al.; U.S. Pat. No. 4,777,063 to Dubrow et al.; and U.S. Pat No. 5,079,300 to Dubrow et al. (hereinafter "Dubrow '300”).
- These fluid-extended silicone gels may be created with nonreactive fluid extenders as in the previously recited patents or with an excess of a reactive liquid, e.g.
- thermosetting gels a vinyl-rich silicone fluid, such that it acts like an extender, as exemplified by the Sylgard® 527 product commercially available from Dow-Corning of Midland, Michigan or as disclosed in U.S. Pat. No. 3,020,260 to Nelson. Because curing is involved in the preparation of these gels, they are sometimes referred to as thermosetting gels.
- An especially preferred gel is a silicone gel produced from a mixture of divinyl terminated polydimethylsiloxane, tetrakis(dimethylsiloxy)silane, a platinum divinyltetramethyldisiloxane complex, commercially available from United Chemical Technologies, Inc. of Bristol, Pennsylvania, polydimethylsiloxane, and 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane (reaction inhibitor for providing adequate pot life).
- Gels may be used, for example, polyurethane gels as taught in the aforementioned Debbaut '261 and U.S. Pat. No. 5,140,476 Debbaut (hereinafter "Debbaut '476") and gels based on styrene-ethylene butylenestyrene (SEBS) or styrene-ethylene propylene-styrene (SEPSS) extended with an extender oil of naphthenic or nonaromatic or low aramatic content hydrocarbon oil, as described in U.S. Pat. No. 4,369,284 to Chen; U.S. Pat. No. 4,716,183 to Gamarra et al.; and U.S. Pat. No.
- SEBS styrene-ethylene butylenestyrene
- SEPSS styrene-ethylene propylene-styrene
- the SEBS and SEPS gels comprise glassy styrenic microphases interconnected by a fluid-extended elastomeric phase.
- the microphase-separated styrenic domains serve as the junction points in the systems.
- the SEBS and SEPS gels are examples of thermoplastic systems.
- EPDM rubber based gels Another class of gels which may be considered are EPDM rubber based gels, as described in U.S. Pat. No. 5,177,143 to Chang et al.
- Yet another class of gels which may be suitable are based on anhydride-containing polymers, as disclosed in WO 96/23007. These gels reportedly have good thermal resistance.
- the gel may include a variety of additives, including stabilizers and antioxidants such as hindered phenols (e.g. , Irganox TM 1076, commercially available from Ciba-Geigy Corp. of Tarrytown, New York), phosphites ( e.g. , Irgafos TM 168, commercially available from Ciba-Geigy Corp. of Tarrytown, New York), metal deactivators (e.g. , Irganox TM D1024 from Ciba-Geigy Corp. of Tarrytown, New York), and sulfides (e.g. , Cyanox LTDP, commercially available from American Cyanamid Co.
- stabilizers and antioxidants such as hindered phenols (e.g. , Irganox TM 1076, commercially available from Ciba-Geigy Corp. of Tarrytown, New York), phosphites (e.g. , Ir
- halogenated paraffins e.g. , Bromoklor 50, commercially available from Ferro Corp. of Hammond, Indiana
- phosphorous containing organic compounds e.g. , Fyrol PCF and Phosflex 390, both commercially available from Akzo Nobel Chemicals Inc. of Dobbs Ferry, New York
- acid scavengers e.g. , DHT-4A, commercially available from Kyowa Chemical Industry Co. Ltd through Mitsui & Co. of Cleveland, Ohio, and hydrotalcite.
- suitable additives include colorants, biocides, tackifiers and the like described in "Additives for Plastics, Edition 1" published by D.A.T.A., Inc. and The International Plastics Selector, Inc., San Diego, Calif.
- the hardness, stress relaxation, and tack may be measured using a Texture Technologies Texture Analyzer TA-XT2 commercially available from Texture Technologies Corp. of Scarsdale, New York, or like machines, having a five kilogram load cell to measure force, a 5 gram trigger, and 1 ⁇ 4 inch (6.35 mm) stainless steel ball probe as described in Dubrow '300, the disclosure of which is incorporated herein by reference in its entirety.
- TA-XT2 commercially available from Texture Technologies Corp. of Scarsdale, New York, or like machines, having a five kilogram load cell to measure force, a 5 gram trigger, and 1 ⁇ 4 inch (6.35 mm) stainless steel ball probe as described in Dubrow '300, the disclosure of which is incorporated herein by reference in its entirety.
- a 60mL glass vial with about 20 grams of gel, or alternately a stack of nine 2 inch x 2 inch x 1/8" thick slabs of gel is placed in the Texture Technologies Texture Analyzer and the probe is forced into the gel at the speed of 0.2 mm per sec to a penetration distance of 4.0 mm.
- the hardness of the gel is the force in grams, as recorded by a computer, required to force the probe at that speed to penetrate or deform the surface of the gel specified for 4.0 mm. Higher numbers signify harder gels.
- the data from the Texture Analyzer TA-XT2 may be analyzed on an IBM PC or like computer, running Microsystems Ltd, XT.RA Dimension Version 2.3 software.
- the tack and stress relaxation are read from the stress curve generated when the XT.RA Dimension version 2.3 software automatically traces the force versus time curve experienced by the load cell when the penetration speed is 2.0 mm/second and the probe is forced into the gel a penetration distance of about 4.0 mm. The probe is held at 4.0 mm penetration for 1 minute and withdrawn at a speed of 2.00 mm/second.
- the stress relaxation is the ratio of the initial force (F i ) resisting the probe at the pre-set penetration depth minus the force resisting the probe (F f ) after 1 min divided by the initial force F i , expressed as a percentage.
- percent stress relaxation is equal to ( F i ⁇ F f ) F i ⁇ 100 % where F i and F f are in grams.
- the stress relaxation is the ratio of the initial force minus the force after 1 minute over the initial force. It may be considered to be a measure of the ability of the gel to relax any induced compression placed on the gel.
- the tack may be considered to be the amount of force in grams resistance on the probe as it is pulled out of the gel when the probe is withdrawn at a speed of 2.0 mm/second from the preset penetration depth.
- Cone penetration (“CP") values may range from about 70 (10 -1 mm) to about 400 (10 -1 mm).
- Harder gels may generally have CP values from about 70 (10 -1 mm) to about 120 (10 -1 mm).
- Softer gels may generally have CP values from about 200 (10 -1 mm) to about 400 (10 -1 mm), with particularly preferred range of from about 250 (10 -1 mm) to about 375 (10 -1 mm).
- CP Cone penetration
- the gel has a Voland hardness, as measured by a texture analyzer, of between about 5 and 100 grams force, more preferably of between about 5 and 30 grams force, and, most preferably, of between about 10 and 20 grams force.
- the gel has an elongation, as measured by ASTM D-638, of at least 55%, more preferably of at least 100%, and most preferably of at least 1,000%.
- the gel has a stress relaxation of less than 80%, more preferably of less than 50%, and most preferably of less than 35%.
- the gel has a tack preferably greater than about 1 gram, more preferably greater than about 6 grams, and most preferably between about 10 and 50 grams.
- Suitable gel materials include POWERGEL sealant gel available from Tyco Electronics Energy Division of Fuquay-Varina, NC under the RAYCHEM brand.
- the sealant 160 may be silicone grease or a hydrocarbon-based grease.
- the busbar assembly 100 may be used in the following manner to form an electrical connection assembly 101 as shown therein.
- the connection assembly 101 includes the busbar assembly 100 and the cable 5, and may include additional cables secured to the busbar assembly 100 in the manner described immediately hereinafter.
- the cable 5 is inserted into the selected port 144. More particularly, the terminal end of the cable 5 (which has an exposed portion of the conductor 5A) is inserted through the entrance opening 144C, the passage 144A, and the exit opening 144D, and into the conductor bore 112. In doing so, the closure wall 150 is ruptured by the cable end and the sealant 160 is displaced as shown in Figure 4.
- the busbar assembly 100 is configured such that the interior cavity 122 includes a volume of a compressible gas (e.g., air) to allow insertion of the cable 5 without a proportionate displacement of the sealant 160 out of the interior cavity 122.
- a compressible gas e.g., air
- the set screw 102 is then rotatively driven (for example, using the driver 9 ) into the threaded bore 116 to force the exposed portion of the conductor 5A against the opposing wall of the bore 112.
- the cap 152 is then replaced over the access opening 134C.
- the cable 5 is mechanically secured to or captured within the busbar assembly 100 and electrically connected to the conductor member 110.
- One or more additional cables may be inserted through the other ports 144 and secured using the other set screws 102. In this manner, such other cables are thereby electrically connected to the cable 5 and to one another through the conductor member 110.
- the sealant 160 is a gel
- the cable 5 and the tube 144A apply a compressive force to the sealant 160 as the cable 5 is inserted into the busbar assembly 100.
- the gel is thereby elongated and is generally deformed and substantially conforms to the outer surface of the cable 5 and to the inner surface of the tube 144A.
- the elongated gel may extend into and through the conductor bore 112.
- the elongated gel may extend beyond the conductor member 110 into an expansion chamber 135 created by the ribs 133. Some shearing of the gel may occur as well.
- at least some of the gel deformation is elastic. The restoring force in the gel resulting from this elastic deformation causes the gel to operate as a spring exerting an outward force between the tube 144 and the cable 5.
- the ruptured closure wall 150 may serve to prevent or limit displacement of the gel sealant 160 out of the port 144 toward the entrance opening 144C, thereby promoting displacement of the gel into the interior cavity 122.
- the busbar assembly is adapted such that, when the cable 5 is installed, the gel has an elongation at the interface between the gel 160 and the inner surface of the tube 144A of at least 20%.
- Each of the closure walls 150 serves as a dam for the gel or other sealant 160 in use. Additionally, the closure walls 150 serve as mechanical covers (for example, to prevent or reduce the entry of dust and the like). Moreover, the closure walls 150 may serve as dams for the gel or other sealant 160 during manufacture, as described below. It will be appreciated that, in some embodiments of the present invention, the closure walls 150 can be omitted.
- the busbar assembly 100 may provide a reliable (and, in at least some embodiments, moisture-tight) seal between the busbar assembly 100 and the cable 5 , as well as any additional cables secured in the ports 144 .
- the sealant 160 particularly gel sealant, may accommodate cables of different sizes within a prescribed range.
- the ports 144 which do not have cables installed therein are likewise sealed by the sealant 160. Upon removal of a cable, the associated port 144 may be resealed by the re-formation of the gel sealant 160.
- the gel sealant 160 may ensure that the gel sealant 160 maintains a reliable and long lasting hermetic seal between the tube 144A and the cable 5.
- the elastic memory of and the retained or restoring force in the elongated, elastically deformed gel generally cause the gel to bear against the mating surfaces of the cable 5 and the interior surface of the tube 144A.
- the tack of the gel may provide adhesion between the gel and these surfaces.
- the gel even though it is cold-applied, is generally able to flow about the cable 5 and the connector 100 to accommodate their irregular geometries.
- the sealant 160 is a self-healing or self-amalgamating gel. This characteristic, combined with the aforementioned compressive force between the cable 5 and the tube 144A, may allow the sealant 160 to re-form into a continuous body if the gel is sheared by the insertion of the cable 5 into the connector 100. The gel may also re-form if the cable 5 is withdrawn from the gel.
- the sealant 160 may provide a reliable moisture barrier for the cable 5 and the conductor member 110, even when the connection 101 is submerged or subjected to extreme temperatures and temperature changes.
- the cover members 130, 140 are made from an abrasion resistant material that resists being punctured by the abrasive forces.
- the gel may also serve to reduce or prevent fire.
- the gel is typically a more efficient thermal conductor than air and, thereby, may conduct more heat from the connection. In this manner, the gel may reduce the tendency for overheating of the connection 101 that might otherwise tend to deteriorate the cable insulation and cause thermal runaway and ensuing electrical arcing at the connection 101.
- the gel may be flame retardant.
- the busbar assembly 100 may be formed in the following manner. If the sealant 160 requires curing, such as a curable gel, the sealant may be cured in situ .
- the front cover member 140 is oriented vertically with the body portion 142 over the ports 144. Liquid, uncured sealant is dispensed into the front cover member 140, such that it fills the cable passages 144B above the closure walls 150 and also fills a portion of the body member 142 (the flange 146 serving as a surrounding side dam). The sealant is then cured in situ.
- the cover members 130, 140 are then joined and interlocked by means of the latch slots 138 and the latch projections 148 about the conductor member 110.
- the set screws 102 are installed in the threaded bores 116 through the access ports 134.
- the O-rings 156 are installed on the caps 152.
- the length L1 ( Figure 3) of the cable passages 144B is at least 1.0 inch and, more preferably, between about 1.0 and 2.5 inch.
- the length L2 ( Figure 3) of the sealant 160 is at least 0.75 inch and, more preferably, between about 0.75 and 2.25 inch.
- the nominal diameter D1 ( Figure 3) of the cable passages 144B is at least 1.0 inch. More preferably, the diameter D1 is between about 1.0 and 2.0 inches.
- the diameter D1 is between about 15 and 30% greater than the diameter of the largest cable (including insulative cover) the port 144 is intended to accommodate.
- the busbar assembly 100 is adapted to accommodate cables having a full diameter (including insulative cover) of between about 0.125 and 0.875 inch.
- the expansion chamber 135 has a volume of at least 1.0 in 3 .
- each closure wall 150 has a maximum thickness T1 ( Figure 3) of no more than 0.25 inch, and more preferably between about 0.005 and 0.125 inch.
- each closure wall 150 has an insertion force (i . e ., force required to penetrate the plane of the closure wall 150 with the intended cable) of between about 1 lb. and 40 lbs and, more preferably, of between about 1 lb and 10 lbs.
- Each closure wall 150 may be molded with lines of reduced thickness or pre-cut or slotted after molding to create tear lines 150A ( Figure 1) that reduce the required assembly force to the desired level.
- Each closure wall 150 may be constructed as a membrane that substantially entirely seals the conductor passage 144B prior to being ruptured.
- the busbar assembly 200 includes a busbar conductor member 210, a cover member 220, four set screws 202, four caps 252, and four insert assemblies 270.
- Figure 9 shows an electrical connection assembly 201 including a cable 5 connected to the busbar assembly 200.
- the conductor member 210 includes conductor bores 212, front openings 214 and threaded bores 218 corresponding to elements 112, 114, 118 as discussed above, except that the conductor bores 212 do not extend all the way through the conductor member 210. However, it will be appreciated that the conductor bores 212 may be formed in the same fashion as the conductor bores 112.
- the cover member 220 is a one piece design and includes four access ports 234 corresponding to the access ports 134.
- the cover member 220 also includes four cable ports 244 corresponding to the cable ports 144 except the cable passages 244B preferably have a slightly larger interior diameter.
- the caps 252 are separately formed and adapted to removably seal the access ports 234.
- Each insert assembly 270 is positioned in a respective one of the cable ports 244.
- Each insert assembly 270 has a sleeve member 272.
- Each sleeve member 272 defines a passage 272A, an entrance opening 272B, and an exit opening 272C.
- Each sleeve member 272 has an outwardly extending flange 272D surrounding its entrance opening 272B .
- a closure wall 274 extends across the passage 272A of each sleeve member 272.
- Each insert assembly 270 includes a mass of sealant 276 disposed in the passage 272A thereof.
- the sleeve members 272 may be formed of any suitable material. According to some embodiments, the sleeve members 272 are formed of a polymeric material such as polypropylene, polyethylene, or polyurethane.
- the sealant 276 is a gel as described above.
- Each insert assembly 270 is positioned in the cable passage 244B of the associated port 244 such that the sealant 276 is positioned between the entrance opening 244C and the exit opening 244D in the passage 244B of the cable tube 244A.
- the insert assembly 270 is maintained in position by the flange 272D, which limits insertion depth, and a frictional fit, welding, adhesive or other suitable securement between the outer wall of the sleeve member 272 and the inner wall of the cable tube 244A .
- Ribs 272E extend lengthwise along and project into the passage 272A. The ribs 272E provide additional surface area for holding the sealant 276.
- sleeve member passages 272A and the masses of sealant 276 have dimensions corresponding to those discussed above with regard to the cable passages 144A and the sealant 160, respectively.
- the wall thickness of the sleeve member 272 is no greater than 0.125 inch.
- the busbar assembly 200 may be used in the same manner as described above for the busbar assembly 100.
- the busbar assembly 200 may be preferred for ease of assembly, particularly where a one-piece cover member 220 is desired.
- the insert assemblies 270 may be separately molded or otherwise formed.
- the sealant 276, such as a gel may be installed in the sleeve members 272 by curing in situ in the manner described above for the cover member 240 and the gel sealant 160.
- the cover member 220 may be molded about the conductor member 210 in conventional manner.
- the insert assemblies 270 may then be inserted into the respective cable ports 244 and suitably secured in place.
- the insert assemblies 270 may also be used to retrofit conventional busbar connectors.
- a busbar assembly 300 according to further embodiments of the present invention is shown therein.
- the busbar assembly 300 corresponds to the busbar assembly 100, except as follows.
- the access tubes 334A of the access ports 334 are shortened and a cap assembly 380 is installed over each.
- Each cap assembly 380 includes a cap body 382 defining a passage 382A.
- Each cap body 382 includes a flange 384 and a closure wall 386.
- Each cap body 382 is secured, for example, by friction fit, welding, adhesive, snap latch and/or other suitable means, to a respective one of the access tubes 334A.
- a mass of sealant 388 preferably a gel as described above, is disposed in each passage 382A and in an upper portion of the associated access tube 334A .
- the masses of sealant 388 and the closure walls 386 serve to protect the busbar assembly 300 from the infiltration of moisture and/or contaminants.
- the busbar assembly 300 may be used in the same manner as the busbar assembly 100 except that, in order to rotate each set screw 302 to secure or release a cable, the driver 9 is inserted through the closure wall 386 and the sealant 388 . After the screw 302 is positioned as desired, the driver 9 is withdrawn from the sealant 388 .
- the sealant 388 is a gel as described above, the gel 388 re-forms to again form a barrier to prevent or reduce infiltration of moisture and contaminants.
- the cap bodies 382 are preferably formed of the same material as the sleeve members 272 as described above.
- the sealant for example, a gel
- the cap bodies 382 may be integrally formed with the access tubes 334A.
- the busbar assembly 400 corresponds to the busbar assembly 100, except as follows.
- the busbar assembly 400 includes a conductor member 410, a cover assembly 420, cover members 430, 440, and sealant 460 generally corresponding to the elements 110,120,130,140 and 160 discussed above, respectively.
- Each port 444 includes a cable tube 444A defining a cable passage 444B.
- the cable passage 444B communicates with an entrance opening 444C and an exit opening 444D.
- a penetrable closure wall 451 extends across the passage 444B between the openings 444C and 444D.
- the closure wall 451 may be integrally molded with the tube 444A.
- the closure wall 451 includes a plurality of discrete fingers or flaps 452 separated by gaps 452A.
- the flaps 452 are flexible. According to some embodiments, the flaps 452 are also resilient.
- the flaps 452 are concentrically arranged and taper inwardly in a direction A from the entrance opening 444C to the exit opening 444D to form a generally conical or frusto-conical shape. According to some embodiments, the angle of taper is between about 10 and 60 degrees.
- the closure wall 451 defines a hole 452B that may be centrally located. According to some embodiments, the inner diameter D2 of the hole 452B is less than the outer diameter of the cable or cables (e.g., the cables 5, 7) with which the assembly 400 is intended to be used.
- the thickness of the flaps 452 may taper in a radially inward direction. According to some embodiments, the thickness of the flaps 452 tapers in the radially inward direction at a rate of between about zero and 50 percent/inch.
- An insert member 490 is positioned in the passage 444B adjacent the exit opening 444D .
- the insert member 490 is seated in a recess 444E in the tube 444A and positively captured between a ledge 444F and the front face of the conductor member 410 .
- the insert member 490 may be otherwise secured within the passage 444B , for example, by welding, adhesive, friction fit, a mechanical latch or latches, one or more fasteners or the like.
- the insert member 490 includes a tubular body defining a passage 490A.
- the insert member 490 further includes a penetrable closure wall 491 extending across the passage 490A.
- the closure wall 491 may be integrally formed with the body 493.
- the closure wall 491 may be constructed in the same manner as discussed above with regard to the closure wall 451, and includes a plurality of flaps 492 separated by gaps 492A and defining a hole 492B.
- the closure walls 451 and 491 define a sealing chamber or region 499 therebetween ( Figure 13).
- a portion 462 of the sealant 460 is disposed in the sealing region 499. According to some embodiments, the sealant 462 substantially fills the sealing region 499.
- a further portion 464 of the sealant 460 is disposed between the closure wall 491 and the conductor member 410.
- a further portion 466 of the sealant 460 is disposed in the channel 436A.
- the assembly 400 may be used in the same manner as the assembly 100 to provided an environmentally protected connection between conductors (e.g. , of the cables 5, 7).
- conductors e.g. , of the cables 5, 7
- the cable Upon insertion of a cable through one of the ports 444, the cable penetrates and displaces the closure wall 451.
- the cable may elastically deflect the flaps 452 as the cable passes through the hole 452B.
- the cable passes through and displaces the sealant portion 462.
- the cable thereafter penetrates and displaces the closure wall 491 and passes into the interior cavity 422 of the housing 420.
- the cable is inserted into the conductor member 410 and secured using the set screw as described above.
- the closure walls 451 and 491 may serve to retain the sealant 462 in the sealing region 499 to improve the sealing performance of the connector assembly 400.
- a suitable amount of compressive force can be maintained between the sealant and the surfaces to be sealed.
- a sufficient amount of the sealant may be retained in the sealing passage to re-form into a sealing plug upon removal of the cable from the port 444.
- there may be a tendency for the cable to displace the sealant 462 into the interior cavity 422 so that there is insufficient sealant 462 remaining in the passage 444B (and, more particularly, in the passage 499 ) to effectively seal about the cable or to seal upon removal of the cable.
- the closure wall 451 may likewise serve to retain the sealant 462 in the sealing region 499 as the cable is withdrawn from the port 444.
- the closure walls 451, 491 may wipe the sealant 462 from the cable as the cable is inserted therethrough.
- the closure walls 451, 491 may reduce the amount of sealant needed to provide the desired sealing performance, particularly in the case of multiple insertions and removals of the cable or cables.
- a chamber 435 be provided beyond the set screw 402 to allow an additional length of the conductor of the cable to be inserted into the conductor block 410.
- This additional length may serve to provide a greater margin for error in installing the cable and to improve the integrity of the securement (e.g ., to reduce the risk of extruding the cable out from beneath the set screw 402).
- the chamber 435 may allow an undesirably great amount of the sealant 462 to be displaced from the passage 444B.
- the closure wall 49 by preventing or limiting the displacement of the sealant 462 into the chamber 435, allows for the provision of the chamber 435 without an undue loss of sealing performance.
- the busbar assembly 400 may be formed in the same manner as the assembly 100 as discussed above. However, in the case of the assembly 400, the insert member 490 may be placed in the recess 444E before curing the sealant 460 (and typically before dispensing the uncured sealant into the front cover member 440). In this manner, the sealant 460 may help to secure the insert member 490 in place in the front cover member 440.
- busbar assembly 500 corresponds to the busbar assembly 200, except as follows.
- the busbar assembly 500 includes an insert assembly 570 in one or more ports 544 (one shown in Figure 14).
- the insert assembly 570 corresponds to the insert member 270, except as follows.
- the insert assembly 570 has a penetrable closure wall 551 constructed as described above for the closure wall 451 in place of the frangible closure wall 274.
- the insert member 570 additionally includes an insert member 590 corresponding to the insert member 490 and secured ( e . g ., by holding, adhesive, friction fit, or other suitable means) in the passage 544A of the sleeve 572.
- the insert member 590 includes a further penetrable closure wall 591 constructed as described above for the closure wall 491.
- the closure walls 551 and 591 defme a sealing chamber or region 599 therebetween.
- Sealant 562 is disposed in the sealing region 599. According to some embodiments, the sealant 562 substantially fills the sealing region 599. According to some embodiments, and as shown, the sealant 562 extends to
- the assembly 500 may be used in the same manner as the assembly 200 as described above. However, by provision of the additional closure wall 591, the assembly 500, and more particularly, the insert assembly 570, can provide the advantages discussed above with regard to the busbar assembly 400.
- closure walls 150, 274, 386, 451, 491, 551 and 591 are elastically resilient, they will be spring biased against the outer surface of the inserted cable when displaced by the cable.
- This biased engagement may serve to enhance the engagement of the closure wall against the cable to thereby retain the pressure on the sealant.
- the biased engagement may also serve to improve the wiping effect as the cable is inserted or withdrawn.
- the geometry of the closure wall may further assist in improving the seal and wiping effect.
- busbar assemblies 100, 200, 300, 400, 500 in accordance with the present invention.
- the body sealant portion 164 may be omitted.
- the closure walls 150, 274, 386 may be omitted.
- the closure walls 150, 274, 386 may be otherwise constructed so as to be penetrable and displaceable.
- the closure walls 150, 274, 386 may be constructed in the manner described above for the closure walls 451, 491, 551, 591.
- the closure walls 451, 491, 551, 591 may be constructed so as to be fully or partly frangible.
- Closure walls of different designs and constructions may be used in the same connector as well as in the same port.
- the outer closure wall may be frangible and formed as described for the closure wall 150 while the inner closure wall is formed as described for the closure wall 451.
- closure walls may be frangible with a pre-formed hole corresponding to the hole 452B formed therein and/or with a tapered shape.
- the closure walls including a plurality of flaps may be formed such that they do not form a pre-defined hole ( e . g ., the hole 452B) .
- each closure wall may be constructed as a resilient, elastic membrane or panel having a preformed hole therein, the closure wall being adapted to stretch about the hole to accommodate the penetrating cable without rupturing.
- the hole is preferably smaller in diameter than the outer diameter of the intended cable.
- the insert assembly 570 may be of a one piece construction wherein the closure wall 591 is integrally molded with the sleeve 572 of the insert member 570.
- the closure wall 491 may be integrally molded with or otherwise secured to the tube 444A without using a separate insert member 490, for example.
- the inner closure walls may be used without the outer closure walls (e.g ., closure walls 451, 551). More than two closure walls may be employed.
- a third closure wall may extend across the cable passage 444B in the sealing region 499.
- busbar assemblies 100, 200, 300, 400, 500 busbar assemblies according to the present invention may include more or fewer cable ports and/or access ports and corresponding or associated components as needed to allow for the connection of more or fewer cables.
- cap assemblies 380 may be used in the connector 200 as well.
- sealants 160, 276, 388 , 460, 562 are gels as described above, other types of sealants may be employed.
- Connectors according to the present invention may be adapted for various ranges of voltage. It is particularly contemplated that multi-tap connectors of the present invention employing aspects as described above may be adapted to effectively handle voltages in the range of 120 to 1000 volts.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Connector Housings Or Holding Contact Members (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
- The present invention relates to electrical connectors and methods for using the same and, more particularly, to environmentally protected electrical connectors and methods for forming environmentally protected connections.
- Multi-tap or busbar connectors are commonly used to distribute electrical power, for example, to multiple residential or commercial structures from a common power supply feed. Busbar connectors typically include a conductor member formed of copper or aluminum housed in a polymeric cover. The conductor member includes a plurality of cable bores. The cover includes a plurality of ports, each adapted to receive a respective cable and to direct the cable into a respective one of the cable bores. A set screw is associated with each cable bore for securing the cables in the respective bores and, thereby, in electrical contact with the conductor member.
- The busbar assemblies as described above can be used to electrically connect two or more cables. For example, a feed cable may be secured to the busbar connector through one of the ports and one or more branch or tap circuit cables may be connected to the busbar connector through the other ports, to distribute power from the feed cable. Busbar connectors of this type provide significant convenience in that cables can be added and removed from the connection as needed.
- Power distribution connections as discussed above are typically housed in an above-ground cabinet or a below-grade box. The several cables are usually fed up through the ground and the connection (including the busbar connector) may remain unattached to the cabinet or box (i.e., floating within the cabinet). The connections may be subjected to moisture, and may even become submerged in water. If the conductor member and the conductors are left exposed, water and environmental contaminants may cause corrosion thereon. Moreover, the conductor member is often formed of aluminum, so that water may cause oxidation of the conductor member. Such oxidation may be significantly accelerated by the relatively high voltages (typically 120 volts to 1000 volts) employed. In order to reduce or eliminate exposure of the conductor member and the conductor portions of the cables to water, some known busbar designs include elastomeric boots or caps. These caps or boots may be difficult or inconvenient to install properly, particularly in the field, and may not provide reliable seals.
- US-A-5 848 913 discloses a busbar assembly according to the preamble of claim 1.
- According to embodiments of the present invention, a busbar assembly for electrically connecting a plurality of conductors includes a housing defining an interior cavity and first and second ports. The first and second ports each include a conductor passage and communicate with the interior cavity. The conductor passages are each adapted to receive a conductor therethrough. An electrically conductive busbar conductor member is disposed in the interior cavity. At least one holding mechanism is provided to selectively secure each of the conductors to the busbar conductor member for electrical contact therewith. Sealant is disposed in the conductor passages of each of the first and second ports. The sealant is adapted for insertion of the conductors therethrough such that the sealant provides a seal about the inserted conductors. The sealant may be a gel.
- Objects of the present invention will be appreciated by those of ordinary skill in the art from a reading of the figures and the detailed description of the preferred embodiments which follow, such description being merely illustrative of the present invention.
-
- Figure 1 is a perspective view of an electrical connection assembly including a busbar assembly according to embodiments of the present invention and a pair of cables, wherein the cables are exploded from the busbar assembly;
- Figure 2 is an exploded, perspective view of the busbar assembly of Figure 1;
- Figure 3 is a cross-sectional view of the busbar assembly of Figure 1 taken along the line 3-3 of Figure 1;
- Figure 4 is a cross-sectional view of the busbar assembly of Figure 1 taken along the same line as the view of Figure 3, and wherein a cable is installed in the busbar assembly;
- Figure 5 is an exploded, perspective view of a busbar assembly according to further embodiments of the present invention;
- Figure 6 is a cross-sectional view of the busbar assembly of Figure 5 taken along the line 6-6 of Figure 5;
- Figure 7 is a rear, perspective view of a sleeve member forming a part of the busbar assembly of Figure 5;
- Figure 8 is a cross-sectional view of the busbar assembly of Figure 5 taken along the line 8-8 of Figure 5;
- Figure 9 is a cross-sectional view of the busbar assembly of Figure 5 taken along the same line as the view of Figure 8, and wherein a cable is installed in the busbar assembly;
- Figure 10 is an exploded, perspective view of a busbar assembly according to further embodiments of the present invention;
- Figure 11 is a cross-sectional view of the busbar assembly of Figure 10 taken along the line 11-11 of Figure 10;
- Figure 12 is an exploded, perspective view of a busbar assembly according to further embodiments of the present invention;
- Figure 13 is a cross-sectional view of the busbar assembly of Figure 12 taken along the line 13-13 of Figure 12; and
- Figure 14 is a cross-sectional view of a busbar assembly according to further embodiments of the present invention.
- The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, like numbers refer to like elements throughout.
- With reference to Figures 1-4, a connector or
busbar assembly 100 according to embodiments of the present invention is shown therein. Thebusbar assembly 100 may be used to electrically connect a plurality of electrical connectors, such asconductors cables 5 and 7 (which further include electrically insulative sheaths or covers 5B, 7B), as shown in Figures 1 and 4. Thebusbar assembly 100 may provide an environmentally protected and, preferably, watertight connector and connection. For example, thebusbar assembly 100 may be used to electrically connect the conductors of a power feed cable and one or more branch or tap cables, while preventing the conductive portions of the cables and thebusbar assembly 100 from being exposed to surrounding moisture or the like. - Turning to the
busbar assembly 100 in more detail, thebusbar assembly 100 includes abusbar conductor member 110, acover assembly 120, a plurality of set screws 102 (only two shown in Figure 2), and a mass ofsealant 160. Thecover assembly 120 includes arear cover member 130 and afront cover member 140. Thecover assembly 120 defines aninterior cavity 122 within which theconductor member 110 is disposed. Theinterior cavity 122 is environmentally protected. - The
conductor member 110 includes four cable orconductor bores 112, each having a front opening 114. Theconductor bores 112 are sized and shaped to receive theconductors bores 116 extend orthogonally to and intersect respective ones of theconductor bores 112. Theconductor member 110 may be formed of any suitable electrically conductive material. In some embodiments, theconductor member 110 is formed of copper or aluminum. In certain preferred embodiments, theconductor member 110 is formed of aluminum. Theconductor member 110 may be formed by molding, stamping, extrusion and/or machining, or by any other suitable process(es). - The
rear cover member 130 includes abody portion 132. A plurality of transversely extendingribs 133 project into theinterior cavity 122 from thebody portion 132. Fouraccess ports 134 are provided on thebody portion 132. Eachaccess port 134 includes anaccess tube 134A defining anaccess passage 134B. Theaccess passage 134B communicates with anaccess opening 134C and theinterior cavity 122. Aperimeter flange 136 extends about thebody portion 132 and defines aperimeter channel 136A. A plurality oflatch slots 138 are formed in theflange 136. - The
front cover member 140 includes abody portion 142. A pair of transversely extending spacer ribs 143 (Figure 3) extend transversely to thebody portion 142. Four conductor orcable ports 144 are provided on thebody portion 142. Eachport 144 includes acable tube 144A defining a cable passage 144B. The cable passage 144B communicates with anentrance opening 144C and anexit opening 144D. Afrangible closure wall 150 extends across the passage 144B between theopenings - A
perimeter flange 146 surrounds and projects rearwardly from thebody portion 142. A plurality ofbarbed latch projections 148 extend rearwardly from theflange 146. - Four plugs or caps 152 are joined to the
body portion 142 by a flexible connectingportion 154. Thecaps 152 are sized and shaped to fit in respective ones of theaccess passageways 134B andaccess openings 134C. An O-ring (e.g., formed of an elastomer or the like) is provided on eachcap 152 to provide a seal between thecaps 152 and theaccess ports 134. - Preferably, the
front cover member 140 is integrally formed and therear cover member 130 is integrally formed. The cover members 130,140 may be formed of any suitable electrically insulative material. Preferably, thecover members cover members cover members - Each of four set screws 102 (only two shown in Figure 2) is threadedly installed in a respective one of the threaded bores 116. Each of the
screws 102 includes asocket 102A which may be adapted to receive a driver 9 (Figure 4), for example. - As best seen in Figures 2 and 3, the
sealant 160 is disposed in thecover assembly 120. More particularly, abody sealant portion 164 of thesealant 160 is disposed in a front portion of theinterior cavity 122. A plurality ofport sealant portions 162 are disposed in respective ones of theports 144. In some embodiments and as illustrated, eachport sealant portion 162 extends from the inner side of theclosure wall 150 to theexit opening 144D of the associatedport 144 and is contiguous with thebody sealant portion 164. Thesealant portion 164 includes aperimeter portion 166 that is disposed in thechannel 136A to form a surrounding seal between thecover members - According to some embodiments of the invention, the
sealant 160 is a gel. The term "gel" has been used in the prior art to cover a vast array of materials from greases to thixotropic compositions to fluid-extended polymeric systems. As used herein, "gel" refers to the category of materials which are solids extended by a fluid extender. The gel may be a substantially dilute system that exhibits no steady state flow. As discussed in Ferry, "Viscoelastic Properties of Polymers," 3rd ed. P. 529 (J. Wiley & Sons, New York 1980), a polymer gel may be a cross-linked solution whether linked by chemical bonds or crystallites or some other kind of junction. The absence of the steady state flow may be considered to be the key definition of the solid-like properties while the substantial dilution may be necessary to give the relatively low modulus of gels. The solid nature may be achieved by a continuous network structure formed in the material generally through crosslinking the polymer chains through some kind of junction or the creation of domains of associated substituents of various branch chains of the polymer. The crosslinking can be either physical or chemical as long as the crosslink sites may be sustained at the use conditions of the gel. - Preferred gels for use in this invention are silicone (organopolysiloxane) gels, such as the fluid-extended systems taught in U.S. Pat. No. 4,634,207 to Debbaut (hereinafter "Debbaut '207"); U.S. Pat. No. 4,680,233 to Camin et al.; U.S. Pat. No. 4,777,063 to Dubrow et al.; and U.S. Pat No. 5,079,300 to Dubrow et al. (hereinafter "Dubrow '300"). These fluid-extended silicone gels may be created with nonreactive fluid extenders as in the previously recited patents or with an excess of a reactive liquid, e.g., a vinyl-rich silicone fluid, such that it acts like an extender, as exemplified by the Sylgard® 527 product commercially available from Dow-Corning of Midland, Michigan or as disclosed in U.S. Pat. No. 3,020,260 to Nelson. Because curing is involved in the preparation of these gels, they are sometimes referred to as thermosetting gels. An especially preferred gel is a silicone gel produced from a mixture of divinyl terminated polydimethylsiloxane, tetrakis(dimethylsiloxy)silane, a platinum divinyltetramethyldisiloxane complex, commercially available from United Chemical Technologies, Inc. of Bristol, Pennsylvania, polydimethylsiloxane, and 1,3,5,7-tetravinyltetramethylcyclotetrasiloxane (reaction inhibitor for providing adequate pot life).
- Other types of gels may be used, for example, polyurethane gels as taught in the aforementioned Debbaut '261 and U.S. Pat. No. 5,140,476 Debbaut (hereinafter "Debbaut '476") and gels based on styrene-ethylene butylenestyrene (SEBS) or styrene-ethylene propylene-styrene (SEPSS) extended with an extender oil of naphthenic or nonaromatic or low aramatic content hydrocarbon oil, as described in U.S. Pat. No. 4,369,284 to Chen; U.S. Pat. No. 4,716,183 to Gamarra et al.; and U.S. Pat. No. 4,942,270 to Gamarra. The SEBS and SEPS gels comprise glassy styrenic microphases interconnected by a fluid-extended elastomeric phase. The microphase-separated styrenic domains serve as the junction points in the systems. The SEBS and SEPS gels are examples of thermoplastic systems.
- Another class of gels which may be considered are EPDM rubber based gels, as described in U.S. Pat. No. 5,177,143 to Chang et al.
- Yet another class of gels which may be suitable are based on anhydride-containing polymers, as disclosed in WO 96/23007. These gels reportedly have good thermal resistance.
- The gel may include a variety of additives, including stabilizers and antioxidants such as hindered phenols (e.g., Irganox™ 1076, commercially available from Ciba-Geigy Corp. of Tarrytown, New York), phosphites (e.g., Irgafos™ 168, commercially available from Ciba-Geigy Corp. of Tarrytown, New York), metal deactivators (e.g., Irganox™ D1024 from Ciba-Geigy Corp. of Tarrytown, New York), and sulfides (e.g., Cyanox LTDP, commercially available from American Cyanamid Co. of Wayne, New Jersey), light stabilizers (i.e., Cyasorb UV-531, commercially available from American Cyanamid Co. of Wayne, New Jersey), and flame retardants such as halogenated paraffins (e.g., Bromoklor 50, commercially available from Ferro Corp. of Hammond, Indiana) and/or phosphorous containing organic compounds (e.g., Fyrol PCF and Phosflex 390, both commercially available from Akzo Nobel Chemicals Inc. of Dobbs Ferry, New York) and acid scavengers (e.g., DHT-4A, commercially available from Kyowa Chemical Industry Co. Ltd through Mitsui & Co. of Cleveland, Ohio, and hydrotalcite). Other suitable additives include colorants, biocides, tackifiers and the like described in "Additives for Plastics, Edition 1" published by D.A.T.A., Inc. and The International Plastics Selector, Inc., San Diego, Calif.
- The hardness, stress relaxation, and tack may be measured using a Texture Technologies Texture Analyzer TA-XT2 commercially available from Texture Technologies Corp. of Scarsdale, New York, or like machines, having a five kilogram load cell to measure force, a 5 gram trigger, and ¼ inch (6.35 mm) stainless steel ball probe as described in Dubrow '300, the disclosure of which is incorporated herein by reference in its entirety. For example, for measuring the hardness of a gel a 60mL glass vial with about 20 grams of gel, or alternately a stack of nine 2 inch x 2 inch x 1/8" thick slabs of gel, is placed in the Texture Technologies Texture Analyzer and the probe is forced into the gel at the speed of 0.2 mm per sec to a penetration distance of 4.0 mm. The hardness of the gel is the force in grams, as recorded by a computer, required to force the probe at that speed to penetrate or deform the surface of the gel specified for 4.0 mm. Higher numbers signify harder gels. The data from the Texture Analyzer TA-XT2 may be analyzed on an IBM PC or like computer, running Microsystems Ltd, XT.RA Dimension Version 2.3 software.
- The tack and stress relaxation are read from the stress curve generated when the XT.RA Dimension version 2.3 software automatically traces the force versus time curve experienced by the load cell when the penetration speed is 2.0 mm/second and the probe is forced into the gel a penetration distance of about 4.0 mm. The probe is held at 4.0 mm penetration for 1 minute and withdrawn at a speed of 2.00 mm/second. The stress relaxation is the ratio of the initial force (F i ) resisting the probe at the pre-set penetration depth minus the force resisting the probe (F f ) after 1 min divided by the initial force F i , expressed as a percentage. That is, percent stress relaxation is equal to
where F i and F f are in grams. In other words the stress relaxation is the ratio of the initial force minus the force after 1 minute over the initial force. It may be considered to be a measure of the ability of the gel to relax any induced compression placed on the gel. The tack may be considered to be the amount of force in grams resistance on the probe as it is pulled out of the gel when the probe is withdrawn at a speed of 2.0 mm/second from the preset penetration depth. - An alternative way to characterize the gels is by cone penetration parameters according to ASTM D-217 as proposed in Debbaut '261; Debbaut '207; Debbaut '746; and U.S. Pat. No. 5,357,057 to Debbaut et al.. Cone penetration ("CP") values may range from about 70 (10-1 mm) to about 400 (10-1 mm). Harder gels may generally have CP values from about 70 (10-1 mm) to about 120 (10-1 mm). Softer gels may generally have CP values from about 200 (10-1 mm) to about 400 (10-1 mm), with particularly preferred range of from about 250 (10-1 mm) to about 375 (10-1 mm). For a particular materials system, a relationship between CP and Voland gram hardness can be developed as proposed in U.S. Pat. No. 4,852,646 to Dittmer et al.
- Preferably, the gel has a Voland hardness, as measured by a texture analyzer, of between about 5 and 100 grams force, more preferably of between about 5 and 30 grams force, and, most preferably, of between about 10 and 20 grams force. Preferably, the gel has an elongation, as measured by ASTM D-638, of at least 55%, more preferably of at least 100%, and most preferably of at least 1,000%. Preferably, the gel has a stress relaxation of less than 80%, more preferably of less than 50%, and most preferably of less than 35%. The gel has a tack preferably greater than about 1 gram, more preferably greater than about 6 grams, and most preferably between about 10 and 50 grams. Suitable gel materials include POWERGEL sealant gel available from Tyco Electronics Energy Division of Fuquay-Varina, NC under the RAYCHEM brand.
- Alternatively, the
sealant 160 may be silicone grease or a hydrocarbon-based grease. - Referring to Figure 4, the
busbar assembly 100 may be used in the following manner to form anelectrical connection assembly 101 as shown therein. Theconnection assembly 101 includes thebusbar assembly 100 and thecable 5, and may include additional cables secured to thebusbar assembly 100 in the manner described immediately hereinafter. - With the
set screw 102 in a raised position as shown in Figure 3, thecable 5 is inserted into the selectedport 144. More particularly, the terminal end of the cable 5 (which has an exposed portion of theconductor 5A) is inserted through theentrance opening 144C, thepassage 144A, and theexit opening 144D, and into the conductor bore 112. In doing so, theclosure wall 150 is ruptured by the cable end and thesealant 160 is displaced as shown in Figure 4. Preferably and as shown, thebusbar assembly 100 is configured such that theinterior cavity 122 includes a volume of a compressible gas (e.g., air) to allow insertion of thecable 5 without a proportionate displacement of thesealant 160 out of theinterior cavity 122. - The
set screw 102 is then rotatively driven (for example, using the driver 9) into the threaded bore 116 to force the exposed portion of theconductor 5A against the opposing wall of thebore 112. Thecap 152 is then replaced over the access opening 134C. - In this manner, the
cable 5 is mechanically secured to or captured within thebusbar assembly 100 and electrically connected to theconductor member 110. One or more additional cables may be inserted through theother ports 144 and secured using theother set screws 102. In this manner, such other cables are thereby electrically connected to thecable 5 and to one another through theconductor member 110. - When, as preferred, the
sealant 160 is a gel, thecable 5 and thetube 144A apply a compressive force to thesealant 160 as thecable 5 is inserted into thebusbar assembly 100. The gel is thereby elongated and is generally deformed and substantially conforms to the outer surface of thecable 5 and to the inner surface of thetube 144A. The elongated gel may extend into and through the conductor bore 112. Moreover, the elongated gel may extend beyond theconductor member 110 into anexpansion chamber 135 created by theribs 133. Some shearing of the gel may occur as well. Preferably, at least some of the gel deformation is elastic. The restoring force in the gel resulting from this elastic deformation causes the gel to operate as a spring exerting an outward force between thetube 144 and thecable 5. - The ruptured
closure wall 150 may serve to prevent or limit displacement of thegel sealant 160 out of theport 144 toward theentrance opening 144C, thereby promoting displacement of the gel into theinterior cavity 122. Preferably, the busbar assembly is adapted such that, when thecable 5 is installed, the gel has an elongation at the interface between thegel 160 and the inner surface of thetube 144A of at least 20%. - Each of the
closure walls 150 serves as a dam for the gel orother sealant 160 in use. Additionally, theclosure walls 150 serve as mechanical covers (for example, to prevent or reduce the entry of dust and the like). Moreover, theclosure walls 150 may serve as dams for the gel orother sealant 160 during manufacture, as described below. It will be appreciated that, in some embodiments of the present invention, theclosure walls 150 can be omitted. - The
busbar assembly 100 may provide a reliable (and, in at least some embodiments, moisture-tight) seal between thebusbar assembly 100 and thecable 5, as well as any additional cables secured in theports 144. Thesealant 160, particularly gel sealant, may accommodate cables of different sizes within a prescribed range. Theports 144 which do not have cables installed therein are likewise sealed by thesealant 160. Upon removal of a cable, the associatedport 144 may be resealed by the re-formation of thegel sealant 160. - Various properties of the gel, as described above may ensure that the
gel sealant 160 maintains a reliable and long lasting hermetic seal between thetube 144A and thecable 5. The elastic memory of and the retained or restoring force in the elongated, elastically deformed gel generally cause the gel to bear against the mating surfaces of thecable 5 and the interior surface of thetube 144A. Also, the tack of the gel may provide adhesion between the gel and these surfaces. The gel, even though it is cold-applied, is generally able to flow about thecable 5 and theconnector 100 to accommodate their irregular geometries. - Preferably, the
sealant 160 is a self-healing or self-amalgamating gel. This characteristic, combined with the aforementioned compressive force between thecable 5 and thetube 144A, may allow thesealant 160 to re-form into a continuous body if the gel is sheared by the insertion of thecable 5 into theconnector 100. The gel may also re-form if thecable 5 is withdrawn from the gel. - The
sealant 160, particularly when formed of a gel as described herein, may provide a reliable moisture barrier for thecable 5 and theconductor member 110, even when theconnection 101 is submerged or subjected to extreme temperatures and temperature changes. Preferably, thecover members - The gel may also serve to reduce or prevent fire. The gel is typically a more efficient thermal conductor than air and, thereby, may conduct more heat from the connection. In this manner, the gel may reduce the tendency for overheating of the
connection 101 that might otherwise tend to deteriorate the cable insulation and cause thermal runaway and ensuing electrical arcing at theconnection 101. Moreover, the gel may be flame retardant. - The
busbar assembly 100 may be formed in the following manner. If thesealant 160 requires curing, such as a curable gel, the sealant may be cured in situ. Thefront cover member 140 is oriented vertically with thebody portion 142 over theports 144. Liquid, uncured sealant is dispensed into thefront cover member 140, such that it fills the cable passages 144B above theclosure walls 150 and also fills a portion of the body member 142 (theflange 146 serving as a surrounding side dam). The sealant is then cured in situ. - The
cover members latch slots 138 and thelatch projections 148 about theconductor member 110. Theset screws 102 are installed in the threaded bores 116 through theaccess ports 134. The O-rings 156 are installed on thecaps 152. - According to some embodiments, the following dimensions may be preferred. Preferably, the length L1 (Figure 3) of the cable passages 144B is at least 1.0 inch and, more preferably, between about 1.0 and 2.5 inch. Preferably, the length L2 (Figure 3) of the
sealant 160 is at least 0.75 inch and, more preferably, between about 0.75 and 2.25 inch. Preferably, the nominal diameter D1 (Figure 3) of the cable passages 144B is at least 1.0 inch. More preferably, the diameter D1 is between about 1.0 and 2.0 inches. Preferably, the diameter D1 is between about 15 and 30% greater than the diameter of the largest cable (including insulative cover) theport 144 is intended to accommodate. Preferably, thebusbar assembly 100 is adapted to accommodate cables having a full diameter (including insulative cover) of between about 0.125 and 0.875 inch. Preferably, theexpansion chamber 135 has a volume of at least 1.0 in3. - Preferably, each
closure wall 150 has a maximum thickness T1 (Figure 3) of no more than 0.25 inch, and more preferably between about 0.005 and 0.125 inch. Preferably, eachclosure wall 150 has an insertion force (i.e., force required to penetrate the plane of theclosure wall 150 with the intended cable) of between about 1 lb. and 40 lbs and, more preferably, of between about 1 lb and 10 lbs. Eachclosure wall 150 may be molded with lines of reduced thickness or pre-cut or slotted after molding to createtear lines 150A (Figure 1) that reduce the required assembly force to the desired level. Eachclosure wall 150 may be constructed as a membrane that substantially entirely seals the conductor passage 144B prior to being ruptured. - With reference to Figures 5-9, a
busbar assembly 200 according to further embodiments of the present invention is shown therein. Thebusbar assembly 200 includes abusbar conductor member 210, acover member 220, four setscrews 202, fourcaps 252, and fourinsert assemblies 270. Figure 9 shows anelectrical connection assembly 201 including acable 5 connected to thebusbar assembly 200. - The
conductor member 210 includes conductor bores 212, front openings 214 and threadedbores 218 corresponding toelements conductor member 210. However, it will be appreciated that the conductor bores 212 may be formed in the same fashion as the conductor bores 112. - The
cover member 220 is a one piece design and includes fouraccess ports 234 corresponding to theaccess ports 134. Thecover member 220 also includes fourcable ports 244 corresponding to thecable ports 144 except thecable passages 244B preferably have a slightly larger interior diameter. Thecaps 252 are separately formed and adapted to removably seal theaccess ports 234. - Each
insert assembly 270 is positioned in a respective one of thecable ports 244. Eachinsert assembly 270 has asleeve member 272. Eachsleeve member 272 defines apassage 272A, anentrance opening 272B, and anexit opening 272C. Eachsleeve member 272 has an outwardly extendingflange 272D surrounding itsentrance opening 272B. Aclosure wall 274 extends across thepassage 272A of eachsleeve member 272. Eachinsert assembly 270 includes a mass ofsealant 276 disposed in thepassage 272A thereof. - The
sleeve members 272 may be formed of any suitable material. According to some embodiments, thesleeve members 272 are formed of a polymeric material such as polypropylene, polyethylene, or polyurethane. - According to some embodiments, the
sealant 276 is a gel as described above. Eachinsert assembly 270 is positioned in thecable passage 244B of the associatedport 244 such that thesealant 276 is positioned between the entrance opening 244C and theexit opening 244D in thepassage 244B of thecable tube 244A. Theinsert assembly 270 is maintained in position by theflange 272D, which limits insertion depth, and a frictional fit, welding, adhesive or other suitable securement between the outer wall of thesleeve member 272 and the inner wall of thecable tube 244A.Ribs 272E extend lengthwise along and project into thepassage 272A. Theribs 272E provide additional surface area for holding thesealant 276. - Preferably,
sleeve member passages 272A and the masses ofsealant 276 have dimensions corresponding to those discussed above with regard to thecable passages 144A and thesealant 160, respectively. According to some embodiments, the wall thickness of thesleeve member 272 is no greater than 0.125 inch. - The
busbar assembly 200 may be used in the same manner as described above for thebusbar assembly 100. Thebusbar assembly 200 may be preferred for ease of assembly, particularly where a one-piece cover member 220 is desired. Theinsert assemblies 270 may be separately molded or otherwise formed. Thesealant 276, such as a gel, may be installed in thesleeve members 272 by curing in situ in the manner described above for the cover member 240 and thegel sealant 160. Thecover member 220 may be molded about theconductor member 210 in conventional manner. Theinsert assemblies 270 may then be inserted into therespective cable ports 244 and suitably secured in place. Theinsert assemblies 270 may also be used to retrofit conventional busbar connectors. - With reference to Figures 10 and 11, a
busbar assembly 300 according to further embodiments of the present invention is shown therein. Thebusbar assembly 300 corresponds to thebusbar assembly 100, except as follows. Theaccess tubes 334A of theaccess ports 334 are shortened and acap assembly 380 is installed over each. Eachcap assembly 380 includes acap body 382 defining apassage 382A. Eachcap body 382 includes aflange 384 and aclosure wall 386. Eachcap body 382 is secured, for example, by friction fit, welding, adhesive, snap latch and/or other suitable means, to a respective one of theaccess tubes 334A. A mass ofsealant 388, preferably a gel as described above, is disposed in eachpassage 382A and in an upper portion of the associatedaccess tube 334A. The masses ofsealant 388 and theclosure walls 386 serve to protect thebusbar assembly 300 from the infiltration of moisture and/or contaminants. - The
busbar assembly 300 may be used in the same manner as thebusbar assembly 100 except that, in order to rotate eachset screw 302 to secure or release a cable, thedriver 9 is inserted through theclosure wall 386 and thesealant 388. After thescrew 302 is positioned as desired, thedriver 9 is withdrawn from thesealant 388. Where, as preferred, thesealant 388 is a gel as described above, thegel 388 re-forms to again form a barrier to prevent or reduce infiltration of moisture and contaminants. - The
cap bodies 382 are preferably formed of the same material as thesleeve members 272 as described above. The sealant (for example, a gel) may be installed in the same manner as thesealant 276. According to alternative embodiments, thecap bodies 382 may be integrally formed with theaccess tubes 334A. - With reference to Figures 12 and 13, a
busbar assembly 400 according to further embodiments of the present invention is shown therein. Thebusbar assembly 400 corresponds to thebusbar assembly 100, except as follows. Thebusbar assembly 400 includes aconductor member 410, acover assembly 420,cover members sealant 460 generally corresponding to the elements 110,120,130,140 and 160 discussed above, respectively. Eachport 444 includes acable tube 444A defining acable passage 444B. Thecable passage 444B communicates with anentrance opening 444C and anexit opening 444D. - A
penetrable closure wall 451 extends across thepassage 444B between theopenings closure wall 451 may be integrally molded with thetube 444A. With reference to Figure 13, theclosure wall 451 includes a plurality of discrete fingers or flaps 452 separated bygaps 452A. The flaps 452 are flexible. According to some embodiments, the flaps 452 are also resilient. - According to some embodiments, the flaps 452 are concentrically arranged and taper inwardly in a direction A from the entrance opening 444C to the
exit opening 444D to form a generally conical or frusto-conical shape. According to some embodiments, the angle of taper is between about 10 and 60 degrees. Theclosure wall 451 defines ahole 452B that may be centrally located. According to some embodiments, the inner diameter D2 of thehole 452B is less than the outer diameter of the cable or cables (e.g., thecables 5, 7) with which theassembly 400 is intended to be used. The thickness of the flaps 452 may taper in a radially inward direction. According to some embodiments, the thickness of the flaps 452 tapers in the radially inward direction at a rate of between about zero and 50 percent/inch. - An
insert member 490 is positioned in thepassage 444B adjacent theexit opening 444D. Theinsert member 490 is seated in a recess 444E in thetube 444A and positively captured between aledge 444F and the front face of theconductor member 410. Additionally or alternatively, theinsert member 490 may be otherwise secured within thepassage 444B, for example, by welding, adhesive, friction fit, a mechanical latch or latches, one or more fasteners or the like. - The
insert member 490 includes a tubular body defining apassage 490A. Theinsert member 490 further includes apenetrable closure wall 491 extending across thepassage 490A. Theclosure wall 491 may be integrally formed with thebody 493. Theclosure wall 491 may be constructed in the same manner as discussed above with regard to theclosure wall 451, and includes a plurality offlaps 492 separated bygaps 492A and defining ahole 492B. - The
closure walls region 499 therebetween (Figure 13). Aportion 462 of thesealant 460 is disposed in the sealingregion 499. According to some embodiments, thesealant 462 substantially fills the sealingregion 499. Afurther portion 464 of thesealant 460 is disposed between theclosure wall 491 and theconductor member 410. Afurther portion 466 of thesealant 460 is disposed in thechannel 436A. - The
assembly 400 may be used in the same manner as theassembly 100 to provided an environmentally protected connection between conductors (e.g., of thecables 5, 7). Upon insertion of a cable through one of theports 444, the cable penetrates and displaces theclosure wall 451. The cable may elastically deflect the flaps 452 as the cable passes through thehole 452B. As the cable is further inserted, the cable passes through and displaces thesealant portion 462. The cable thereafter penetrates and displaces theclosure wall 491 and passes into theinterior cavity 422 of thehousing 420. The cable is inserted into theconductor member 410 and secured using the set screw as described above. - The
closure walls sealant 462 in the sealingregion 499 to improve the sealing performance of theconnector assembly 400. By retaining thesealant 462 in the sealingregion 499, a suitable amount of compressive force can be maintained between the sealant and the surfaces to be sealed. Moreover, a sufficient amount of the sealant may be retained in the sealing passage to re-form into a sealing plug upon removal of the cable from theport 444. In the absence of theclosure wall 491, there may be a tendency for the cable to displace thesealant 462 into theinterior cavity 422 so that there isinsufficient sealant 462 remaining in thepassage 444B (and, more particularly, in the passage 499) to effectively seal about the cable or to seal upon removal of the cable. Theclosure wall 451 may likewise serve to retain thesealant 462 in the sealingregion 499 as the cable is withdrawn from theport 444. Theclosure walls sealant 462 from the cable as the cable is inserted therethrough. Thus, theclosure walls - Features directed to addressing other concerns may exacerbate the foregoing problems. For example, it may be desirable or even required that a
chamber 435 be provided beyond theset screw 402 to allow an additional length of the conductor of the cable to be inserted into theconductor block 410. This additional length may serve to provide a greater margin for error in installing the cable and to improve the integrity of the securement (e.g., to reduce the risk of extruding the cable out from beneath the set screw 402). However, thechamber 435 may allow an undesirably great amount of thesealant 462 to be displaced from thepassage 444B. Theclosure wall 491, by preventing or limiting the displacement of thesealant 462 into thechamber 435, allows for the provision of thechamber 435 without an undue loss of sealing performance. - The
busbar assembly 400 may be formed in the same manner as theassembly 100 as discussed above. However, in the case of theassembly 400, theinsert member 490 may be placed in the recess 444E before curing the sealant 460 (and typically before dispensing the uncured sealant into the front cover member 440). In this manner, thesealant 460 may help to secure theinsert member 490 in place in thefront cover member 440. - With reference to Figure 14, a
busbar assembly 500 according to further embodiments of the present invention is shown therein. Thebusbar assembly 500 corresponds to thebusbar assembly 200, except as follows. - The
busbar assembly 500 includes aninsert assembly 570 in one or more ports 544 (one shown in Figure 14). Theinsert assembly 570 corresponds to theinsert member 270, except as follows. Theinsert assembly 570 has apenetrable closure wall 551 constructed as described above for theclosure wall 451 in place of thefrangible closure wall 274. Theinsert member 570 additionally includes aninsert member 590 corresponding to theinsert member 490 and secured (e.g., by holding, adhesive, friction fit, or other suitable means) in the passage 544A of thesleeve 572. Theinsert member 590 includes a furtherpenetrable closure wall 591 constructed as described above for theclosure wall 491. Theclosure walls region 599 therebetween.Sealant 562 is disposed in the sealingregion 599. According to some embodiments, thesealant 562 substantially fills the sealingregion 599. According to some embodiments, and as shown, thesealant 562 extends to theexit opening 572C. - The
assembly 500 may be used in the same manner as theassembly 200 as described above. However, by provision of theadditional closure wall 591, theassembly 500, and more particularly, theinsert assembly 570, can provide the advantages discussed above with regard to thebusbar assembly 400. - Where the
closure walls - Various modifications may be made to the foregoing
busbar assemblies body sealant portion 164 may be omitted. According to some embodiments, theclosure walls - The
closure walls closure walls closure walls closure walls closure wall 150 while the inner closure wall is formed as described for theclosure wall 451. - Moreover, various features of the above-described closure walls may be combined. For example, one or more of the closure walls may be frangible with a pre-formed hole corresponding to the
hole 452B formed therein and/or with a tapered shape. The closure walls including a plurality of flaps may be formed such that they do not form a pre-defined hole (e.g., thehole 452B). As a further alternative, each closure wall may be constructed as a resilient, elastic membrane or panel having a preformed hole therein, the closure wall being adapted to stretch about the hole to accommodate the penetrating cable without rupturing. In such case, the hole is preferably smaller in diameter than the outer diameter of the intended cable. - The
insert assembly 570 may be of a one piece construction wherein theclosure wall 591 is integrally molded with thesleeve 572 of theinsert member 570. Theclosure wall 491 may be integrally molded with or otherwise secured to thetube 444A without using aseparate insert member 490, for example. - The inner closure walls (e.g.,
closure walls 491, 591) may be used without the outer closure walls (e.g.,closure walls 451, 551). More than two closure walls may be employed. For example, a third closure wall may extend across thecable passage 444B in the sealingregion 499. - While three or four cable ports and conductor bores and three or four access ports, screw bores and set screws are shown in each of the
busbar assemblies - Various of the features and inventions discussed herein may be combined differently than in the embodiments illustrated. For example, the
cap assemblies 380 may be used in theconnector 200 as well. - While the present invention has been described herein with reference to busbar assemblies, various of the features and inventions discussed herein may be provided in other types of connectors. For example, the penetrable closure walls and insert assemblies may be employed in connectors for securing a single cable or the like.
- While, in accordance with some embodiments, the
sealants - Connectors according to the present invention may be adapted for various ranges of voltage. It is particularly contemplated that multi-tap connectors of the present invention employing aspects as described above may be adapted to effectively handle voltages in the range of 120 to 1000 volts.
- The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the scope of the claims.
Claims (28)
- A busbar assembly (100) for electrically connecting a plurality of conductors (5A, 7A), the busbar assembly comprising:a) a housing (120) defining:an interior cavity (122); andfirst and second ports (144) each including a conductor passage (144B) and communicating with the interior cavity, the conductor passages each being adapted to receive a conductor therethrough;b) an electrically conductive busbar conductor member (110) disposed in the interior cavity;c) at least one holding mechanism (102, 134) to selectively secure each of the conductors to the busbar conductor member for electrical contact therewith; characterised in thatd) sealant (160) is disposed in the conductor passages of each of the first and second ports, the sealant being adapted for insertion of the conductors therethrough such that the sealant provides a seal about the inserted conductors.
- The busbar assembly of Claim 1 wherein the sealant is a gel.
- The busbar assembly of Claim 2 wherein the gel is adapted to be elongated and elastically deformed by insertion of the conductors into the conductor passages.
- The busbar assembly of Claim 1 wherein:each of the first and second ports includes a penetrable closure wall extending across the respective conductor passage; andat least portions of the sealant are disposed in the conductor passages between the closure walls and the interior cavity.
- The busbar assembly of Claim 4 wherein the closure wall is integrally molded with the housing.
- The busbar assembly of Claim 4 including an insert member separately formed from the housing and positioned in the conductor passage, wherein the closure wall forms a part of the insert member.
- The busbar assembly of Claim 6 wherein the housing includes a ledge adapted to locate the insert member in the conductor passage.
- The busbar assembly of Claim 7 further including a conductor member positioned in the housing such that the insert member is cooperatively secured in the conductor passage by the connector block and the ledge.
- The busbar assembly of Claim 4 including a second penetrable closure wall extending across the conductor passage such that the first and second closure walls define a sealing region therebetween, wherein at least a portion of the sealant is disposed in the sealing region.
- The busbar assembly of Claim 9 wherein the first and second closure walls are operative to retain the sealant in the sealing region.
- The busbar assembly Claim 9 including an insert member separately formed from the housing and positioned in the conductor passage, wherein at least one of the first and second closure walls forms a part of the insert member.
- The busbar assembly of Claim 11 wherein the first closure wall is integrally formed with the housing and the second closure wall forms a part of the insert member.
- The bushar assembly of Claim 11 wherein:each of the first and second closure walls forms a part of the insert member; andthe insert member defines an insert passage including the sealing region.
- The busbar assembly according to one of Claims 4 to 13 wherein at least one closure wall is frangible.
- The busbar assembly of Claim 14 wherein the closure wall includes a membrane substantially entirely sealing the passage.
- The busbar assembly according to one of claims 4 to 13 wherein the closure wall includes a plurality of discrete flaps.
- The busbar assembly according to one of claims 4 to 16 wherein the closure wall defines a hole adapted to receive the conductor.
- The busbar assembly of Claim 17 wherein the hole has an inner diameter smaller than an outer diameter of the conductor.
- The busbar assembly according to one of claims 4 to 18 wherein the closure walls have a thickness of no more than 6.35 mm (0.25 inch).
- The busbar assembly according to one of Claims 4 to 19 wherein the closure wall tapers inwardly along a direction to the interior cavity.
- The busbar assembly according to one of claims 1 to 20 wherein the housing includes a projection extending into at least one of the conductor passages to increase surface contact between the housing and the sealant in the conductor passage.
- The busbar assembly according to one of claims 1 to 21 wherein:the housing includes first and second housing parts mated to one another; andthe busbar assembly further includes a joinder sealant along an interface between the first and second housing parts.
- The busbar assembly of Claim 22 wherein the joinder sealant is a gel.
- The busbar assembly of Claim 1 including a sleeve member disposed in at least one of the conductor passages, wherein the sealant is disposed in the sleeve member.
- The busbar assembly of Claim 24 wherein the sleeve member includes a projection extending into the sleeve passage to increase surface contact between the sleeve member and the sealant in the sleeve passage.
- The busbar assembly of Claim 1 wherein the at least one holding mechanism includes first and second set screws, and the housing includes first and second access openings adapted to receive a tool therethrough for rotating the first and second set screws.
- The busbar assembly of Claim 26 including:first and second access passages communicating with the first and second access openings and adapted to receive a tool therethrough for rotating the first and second set screws; andaccess sealant disposed in each of the first and second access passages, the access sealant being adapted to seal the first and second access passages and to allow insertion of the tool therethrough to rotate the first and second set screws.
- The busbar assembly according to one of claims 1 to 27 wherein the interior cavity includes a volume filled with a compressible fluid to receive the sealant when the sealant is displaced by the conductors.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US324817 | 1994-10-17 | ||
US10/324,817 US6854996B2 (en) | 2002-12-20 | 2002-12-20 | Electrical connectors and methods for using the same |
US722351 | 2003-11-25 | ||
US10/722,351 US7037128B2 (en) | 2002-12-20 | 2003-11-25 | Electrical connectors and methods for using the same |
PCT/US2003/038594 WO2004075358A1 (en) | 2002-12-20 | 2003-12-01 | Electrical connectors and methods for using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1586138A1 EP1586138A1 (en) | 2005-10-19 |
EP1586138B1 true EP1586138B1 (en) | 2006-07-19 |
Family
ID=32911889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03808437A Expired - Lifetime EP1586138B1 (en) | 2002-12-20 | 2003-12-01 | Busbar assembly |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP1586138B1 (en) |
JP (1) | JP2006511924A (en) |
AT (1) | ATE333715T1 (en) |
AU (1) | AU2003303936B2 (en) |
BR (1) | BR0317580A (en) |
CA (1) | CA2511007C (en) |
DE (1) | DE60306963T2 (en) |
ES (1) | ES2268484T3 (en) |
MX (1) | MXPA05006773A (en) |
NZ (1) | NZ540890A (en) |
WO (1) | WO2004075358A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2006200091B2 (en) * | 2005-01-18 | 2009-03-12 | Tyco Electronics Uk Limited | Electrical link box |
GB2439113A (en) * | 2006-06-16 | 2007-12-19 | Greenwood Air Man Ltd | Seal for electrical terminal block |
US7736187B2 (en) | 2007-03-20 | 2010-06-15 | Tyco Electronics Corporation | Electrical connector assemblies and joint assemblies and methods for using the same |
US7736165B2 (en) * | 2007-07-16 | 2010-06-15 | Tyco Electronics Corporation | Electrical connector assemblies and methods for forming and using the same |
JP4959544B2 (en) * | 2007-12-28 | 2012-06-27 | 中国電力株式会社 | Low voltage line branching device |
JP4974937B2 (en) * | 2008-03-12 | 2012-07-11 | 中国電力株式会社 | Low voltage line branching device |
DE102010021736A1 (en) * | 2010-05-21 | 2011-11-24 | Pfisterer Kontaktsysteme Gmbh | Device for electrically insulating covering a connecting device for connecting electrical lines and connecting device with such a device |
JP5880437B2 (en) * | 2010-10-12 | 2016-03-09 | 日本電気株式会社 | Housing for electronic equipment |
KR200457157Y1 (en) | 2010-11-05 | 2011-12-07 | 주식회사 현다이엔지 | Elbow Type SCN Connector |
DE102011016556B4 (en) * | 2011-04-08 | 2020-02-06 | Kromberg & Schubert Kg | Electrical contact device |
CN102354851B (en) * | 2011-08-05 | 2014-01-29 | 中航光电科技股份有限公司 | Connector sealing accessory |
DE102012112353A1 (en) * | 2012-12-17 | 2014-06-18 | Harting Electric Gmbh & Co. Kg | Car charger plug |
CN105450042B (en) * | 2014-09-26 | 2018-04-17 | 台达电子工业股份有限公司 | Three-level power converter and its power unit |
EP3024094B1 (en) * | 2014-11-21 | 2019-03-06 | Samsung SDI Co., Ltd. | Current take-off device with protective body |
CN105703143B (en) * | 2015-07-31 | 2018-04-27 | 中航光电科技股份有限公司 | Screening accessory and the water-proof connector using the screening accessory |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5529508A (en) * | 1994-04-01 | 1996-06-25 | Raychem Corporation | Sealing member |
US5727314A (en) * | 1996-02-15 | 1998-03-17 | Erico International Corporation | Method of making an insulated set screw electrical connector |
US6025559A (en) * | 1997-05-21 | 2000-02-15 | Minnesota Mining And Manufacturing Company | Moisture-resistant spring connector |
US6866529B2 (en) * | 2000-12-21 | 2005-03-15 | Tyco Electronics Corporation | Adjustable sealable connector |
-
2003
- 2003-12-01 JP JP2004568579A patent/JP2006511924A/en active Pending
- 2003-12-01 MX MXPA05006773A patent/MXPA05006773A/en active IP Right Grant
- 2003-12-01 EP EP03808437A patent/EP1586138B1/en not_active Expired - Lifetime
- 2003-12-01 WO PCT/US2003/038594 patent/WO2004075358A1/en active IP Right Grant
- 2003-12-01 CA CA2511007A patent/CA2511007C/en not_active Expired - Lifetime
- 2003-12-01 AU AU2003303936A patent/AU2003303936B2/en not_active Expired
- 2003-12-01 BR BR0317580-4A patent/BR0317580A/en active IP Right Grant
- 2003-12-01 NZ NZ540890A patent/NZ540890A/en not_active IP Right Cessation
- 2003-12-01 ES ES03808437T patent/ES2268484T3/en not_active Expired - Lifetime
- 2003-12-01 DE DE60306963T patent/DE60306963T2/en not_active Expired - Fee Related
- 2003-12-01 AT AT03808437T patent/ATE333715T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1586138A1 (en) | 2005-10-19 |
DE60306963T2 (en) | 2007-03-01 |
CA2511007A1 (en) | 2004-09-02 |
JP2006511924A (en) | 2006-04-06 |
NZ540890A (en) | 2007-09-28 |
ATE333715T1 (en) | 2006-08-15 |
DE60306963D1 (en) | 2006-08-31 |
BR0317580A (en) | 2005-11-22 |
MXPA05006773A (en) | 2005-10-05 |
AU2003303936A1 (en) | 2004-09-09 |
WO2004075358A1 (en) | 2004-09-02 |
ES2268484T3 (en) | 2007-03-16 |
AU2003303936B2 (en) | 2009-10-29 |
CA2511007C (en) | 2012-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2735331C (en) | Electrical connectors and methods for using the same | |
CA2693830C (en) | Electrical connector assemblies and methods for forming and using the same | |
US7201596B1 (en) | Electrical connector systems, plug systems and methods for using the same | |
EP1586138B1 (en) | Busbar assembly | |
US10840615B2 (en) | Connection enclosure assemblies, connector systems and methods for forming an enclosed connection between conductors | |
AU2009277136B2 (en) | Connection enclosure assemblies, connector systems and methods for forming an enclosed connection between conductors | |
US6627818B2 (en) | Electrical connection protector kit and method for using the same | |
CA2988835C (en) | Sealant-filled enclosures and methods for environmentally protecting a connection | |
AU2008227170A1 (en) | Electrical connector assemblies and joint assemblies and methods for using the same | |
CA2736059A1 (en) | Electrical connection protector kit and method for using the same | |
US11431114B2 (en) | Enclosed connection systems for forming an enclosed connection between conductors, and methods including same | |
BRPI0317580B1 (en) | BUS ASSEMBLY FOR ELECTRICAL CONNECTING A PLURALITY OF DRIVERS | |
CA2400029C (en) | Electrical connection protector kit and method for using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050715 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: BUSBAR ASSEMBLY |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60306963 Country of ref document: DE Date of ref document: 20060831 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061019 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061019 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061220 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20061226 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20061229 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061231 Year of fee payment: 4 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20070131 Year of fee payment: 4 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2268484 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070420 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061201 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070120 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071201 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20071203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071201 |