EP1581779B9 - Cooling element, particularly for furnaces, and method for producing a cooling element - Google Patents
Cooling element, particularly for furnaces, and method for producing a cooling element Download PDFInfo
- Publication number
- EP1581779B9 EP1581779B9 EP03782142A EP03782142A EP1581779B9 EP 1581779 B9 EP1581779 B9 EP 1581779B9 EP 03782142 A EP03782142 A EP 03782142A EP 03782142 A EP03782142 A EP 03782142A EP 1581779 B9 EP1581779 B9 EP 1581779B9
- Authority
- EP
- European Patent Office
- Prior art keywords
- copper
- pipes
- cooling element
- cooling
- cast
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000010949 copper Substances 0.000 claims abstract description 80
- 229910052802 copper Inorganic materials 0.000 claims abstract description 77
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 76
- 239000011248 coating agent Substances 0.000 claims abstract description 19
- 238000000576 coating method Methods 0.000 claims abstract description 19
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 10
- 239000002826 coolant Substances 0.000 claims abstract description 8
- 230000008646 thermal stress Effects 0.000 claims abstract 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 58
- 238000005266 casting Methods 0.000 claims description 28
- 229910052759 nickel Inorganic materials 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 11
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 238000007747 plating Methods 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 238000005422 blasting Methods 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 claims 1
- 239000002184 metal Substances 0.000 abstract description 13
- 229910052751 metal Inorganic materials 0.000 abstract description 13
- 239000000463 material Substances 0.000 abstract description 7
- 238000012546 transfer Methods 0.000 abstract description 7
- 238000009713 electroplating Methods 0.000 abstract description 3
- 239000002131 composite material Substances 0.000 description 13
- 229910000934 Monel 400 Inorganic materials 0.000 description 10
- OANFWJQPUHQWDL-UHFFFAOYSA-N copper iron manganese nickel Chemical compound [Mn].[Fe].[Ni].[Cu] OANFWJQPUHQWDL-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000000155 melt Substances 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910000570 Cupronickel Inorganic materials 0.000 description 5
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 5
- 229910003322 NiCu Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- 239000005751 Copper oxide Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910000431 copper oxide Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910003336 CuNi Inorganic materials 0.000 description 2
- 229910002482 Cu–Ni Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241001124569 Lycaenidae Species 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 235000014987 copper Nutrition 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/12—Casings; Linings; Walls; Roofs incorporating cooling arrangements
Definitions
- the invention relates to a cooling element, in particular for use in walls of highly thermally stressed furnaces, consisting of cast copper or a low-alloyed copper alloy with arranged in its interior coolant channels made of cast copper in the copper or copper alloy copper pipes.
- Such cooling elements are usually arranged between the shell and the lining of a furnace, often for use behind the refractory lining, including the cooling elements to the cooling system of the furnace, for.
- the surfaces of these cooling elements can, as for example in the EP 0 816 515 A1 is described, provided on the side facing the furnace interior with additional webs or grooves or honeycomb depressions, so as to allow a better bond with the refractory lining of the furnace or a good adhesion of the furnace process resulting and due to the intense cooling by the cooling elements solidifying slag or metal to protect the cooling element from chemical attack and erosion.
- cooling elements are usually in the form of cooling plates in the furnace walls or the ceiling or the hearth area of cylindrical or oval shaft furnaces. Also used are such Cooling elements also in pig iron blast furnaces, in electric arc furnaces, direct reduction reactors and melter gasifiers. Further areas of use for the cooling elements are burner blocks, nozzles, pouring troughs, electrode clamps, taphole blocks, hearth anodes or dies for anode forms.
- a high degree of heat dissipation is aimed at the cooling elements, whereby both the service life of the cooling elements can be improved and it is avoided that thermal peak loads of the furnace process, especially during dynamic operation, lead to destruction of the cooling element.
- Metallurgical dependencies also play a major role in the use of copper melts. Copper melts tend to absorb gases. Hydrogen and oxygen in particular have a disruptive effect on the casting process. The duration of the melting time and possibly the superheating temperature also play a role and can vary from melting process to melting process. Hydrogen and oxygen are in equilibrium with each other, which is why low hydrogen contents are set at high oxygen contents and vice versa. Since the solubility of hydrogen in solid copper is much lower than in liquid copper, it can be deduced that the solubility for hydrogen decreases significantly with decreasing temperature. The transition from the liquid to the solid phase of the copper melt has an extremely large reduction in solubility for hydrogen, one generally speaks of a solubility jump when falling below the liquidus temperature, this is about 3.5 ml of hydrogen per 100 g of copper melt.
- the oxygen content must be deliberately reduced by a deoxidizing treatment of the melt in the ladle. Due to this, however, complicated two-stage metallurgical treatment of the copper melt, a reaction with the oxygen of the copper oxide of the cast-copper pipes can no longer lead to an undesirable formation of water vapor and thus gas bubbles within the melt.
- the prior art further includes a cooling element, as this in the DE-PS 1386 645 is described.
- the tube to be encapsulated is not in the mold from the beginning, but first the copper melt for the production of copper block is placed in the mold, and then immersed the prefabricated tube in this melt, at the same time the tube inner walls are cooled.
- the attachment proposed an additional layer on the outside of the tube, said additional layer consists of a further, third metal, which can be applied, for example, galvanically on the tube. Which metals can be suitable for such purposes, remains open.
- the invention has for its object to provide a cooling element in particular for use in walls of thermally highly loaded stoves, which is characterized at the interfaces between the cooling tube and Umgussmetall by an improved composite material and thus an increased heat transfer. Furthermore, a method is proposed, with which such a cooling element can be produced.
- the tubes to be cast in the manufacture of the cooling element are previously coated by electroplating with a suitable metal layer, this metal layer on the one hand brings no deterioration, but rather an improvement of the heat transfer with it, so has a very good specific heat conduction.
- the galvanically applied metal layer leads to advantages in the passivation of the pipe outside against oxidation effects during casting, further improves the adhesion between the pipe and Umgussmetall as a result of bordering adjusting diffusion processes. It is thus an immediate connection between the Umgussmetall and the cast-tube allows, the heat transfer is greatly improved and the cast-tube body promotes the subsequent use of the cooling element, for example, in an industrial furnace, a good cooling effect.
- the tubes are copper tubes
- the coating is a galvanic nickel coating. According to the method, this is achieved by coating the outside of the pipe in a galvanic nickel bath, the thickness of the layer thus formed being between 3 and 12 .mu.m, preferably between 6 and 10 .mu.m.
- Nickel is characterized by a relatively good thermal conductivity, in addition, nickel has a density comparable to copper and a very similar atomic diameter.
- the melting point of nickel at 1453 ° C is significantly higher than the melting point of copper at 1083 ° C, which prevents or delays melting of the electrolytic nickel layer during filling of the liquid copper.
- the high melting point of the nickel protects the nickel plating layer of the tube from attack by the melt, such as an additional tube.
- the high heat energy causes diffusion processes to take place between the galvanic nickel layer and the copper encapsulation, which lead to a significantly better adhesion of the encapsulation to the copper tube.
- connection surface is corrosion resistant, here in particular affects the complete solubility of the copper for nickel and the approximately equal atomic diameter positive.
- the nickel of the galvanic nickel layer in this region is barely detectable.
- the long cooling time after the solidification of the copper up to the end of the diffusion processes at about 400 ° C, which at least makes up depending on the size of the cast cooling element 4 to 8 hours.
- the thickness of the nickel layer electroplated on the outside of the pipe the optimum seems to exist between 6 and 10 ⁇ m.
- the copper pipes are coated only after the production of the desired pipe shape.
- the manufacture of the copper tube including all desired bends, branches and similar flow structures takes place. Only then will the Copper pipes electrolytically nickel-plated on the outer side of the pipe in a galvanic bath. If, in contrast, the copper pipe is already nickel-plated before the various deformation processes are carried out, it turns out that the nickel layers change greatly due to the heating in the region of, for example, the arcs and radii of the pipe, and thus does not subsequently establish a uniform bond with the metal casting.
- the tube outer sides are mechanically blasted before the coating, preferably by blasting with a coarse glass grain. Before electroplating is a strong pickling, d. H. Staining required. Furthermore, it is advantageous if the coated tube outer sides are degreased prior to encapsulation of the tubes, preferably by cleaning with acetone.
- the finished in their geometry copper tubes are first blasted with coarse glass grain, so as to achieve a rough as possible and thus large surface with the result of a good pre-cleaning and activation of the tubes. Subsequently, the electrolytic coating of the tube outside in the galvanic nickel bath then takes place. Due to the previously activated by decapitation surface good adhesion of the nickel layer is achieved. During the subsequent installation of the copper pipes in the molding box of the casting mold, attention should be paid to a non-greasy surface, whereby the cleaning of the pipes with acetone is recommended. Then, the sprue of the liquid copper takes place in the casting mold. Based on the previously cleaned surface, any oxidation of the pipe surfaces during casting could be avoided. A deterioration of the network is prevented in this way. Even a slight oxidation of the nickel surface does not appear to be detrimental to the incoming fusion and the ongoing diffusion processes.
- the tubes are not copper tubes, but copper-nickel tubes with a copper content of 30 to 70% and a nickel content of 20 to 65%, wherein the electrolytic coating is a copper coating is.
- a suitable method for producing such a cooling element method is characterized in that the tubes used are copper-nickel tubes with a copper content of 30 to 70% and a nickel content of 20 to 65%, and that the coating of the tube outer sides done in a galvanic copper bath.
- Table 2 shows the test results of the thermographic examination by thermal image evaluation: Table 2 Test results of the thermographic examination (thermal image evaluation) Cooling through 1.8 m 3 / h water flow rate and 6 bar pressure from about 175-180 ° Celsius TEMPERATURES IN ° CELSIUS Sample No.
- Table 3 gives the results of the shear tests carried out, specifying the shear strength ⁇ in N / mm 2 for the four material combinations copper without nickel plating, copper with nickel plating, Monel 400 without copper layer and Monel 400 with electrolytic copper layer.
- Table 3 Results of the shear test in N / mm 2 Example results: copper without Ni layer 4.5 copper with Ni layer 20.7 4-5 times by optimal nickel coating Monel 400 without Cu layer 4.8 Monel 400: with Cu layer 27.4 5-6 times by optimal copper coating
- the thus prepared specimens were heated in an annealing furnace, during the subsequent cooling with a defined amount of water and a defined pressure thermographic images were taken with the help of an infrared camera.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electroplating Methods And Accessories (AREA)
- Continuous Casting (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Articles (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
Die Erfindung betrifft ein Kühlelement, insbesondere für den Einsatz in Wandungen thermisch hochbelasteter Öfen, bestehend aus gegossenem Kupfer oder einer niedrig legierten Kupferlegierung mit in seinem Inneren angeordneten Kühlmittelkanälen aus in dem Kupfer bzw. der Kupferlegierung eingegossenen Kupferrohren.The invention relates to a cooling element, in particular for use in walls of highly thermally stressed furnaces, consisting of cast copper or a low-alloyed copper alloy with arranged in its interior coolant channels made of cast copper in the copper or copper alloy copper pipes.
Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines in seinem Inneren mit aus Kupferrohren gebildeten Kühlmittelkanälen versehenen Kühlelements, insbesondere für den Einsatz in Wandungen thermisch hochbelasteter Öfen, mit den Schritten
- a) Fertigung des Rohres einschließlich aller gewünschten Krümmungen, Abzweigungen und dergleichen Strömungsstrukturen,
- b) innerhalb einer Gießform Umgießen der Rohre mit geschmolzenem Kupfer oder Kupferlegierung bei vorzugsweise gleichzeitiger Kühlung der Rohrinnenwandungen,
- c) Abkühlen der Kupferschmelze.
- a) fabrication of the pipe including all desired bends, branches and the like flow structures,
- b) casting the tubes within a casting mold with molten copper or copper alloy with preferably simultaneous cooling of the tube inner walls,
- c) cooling the copper melt.
Derartige Kühlelemente werden üblicherweise zwischen dem Mantel und der Ausmauerung eines Ofens angeordnet, häufig auch für eine Nutzung hinter der Feuerfest-Ausmauerung, wozu die Kühlelemente an das Kühlsystem des Ofens, zum. Beispiel eines pyrometallurgischen Schmelzofens, angeschlossen sind. Die Oberflächen dieser Kühlelemente können, wie dies zum Beispiel in der
Grundsätzlich angestrebt wird bei den Kühlelementen ein hohes Maß an Wärmeableitung, wodurch sich sowohl die Standzeit der Kühlelemente verbessern lässt als auch vermieden wird, dass thermische Spitzenbelastungen des Ofenprozesses, insbesondere bei dynamischem Betrieb, zu einer Zerstörung des Kühlelementes führen.Basically, a high degree of heat dissipation is aimed at the cooling elements, whereby both the service life of the cooling elements can be improved and it is avoided that thermal peak loads of the furnace process, especially during dynamic operation, lead to destruction of the cooling element.
Bei Kühlelementen mit umgossenen Rohren als Kühlmittelkanäle wird neben einer guten, möglichst verlustfreien Strömungsführung ein guter Wärmeübergang von dem Gußmetall des Kühlelementes auf die in den Rohren strömende Kühlflüssigkeit angestrebt. In der oben bereits benannten
Beim Einsatz von Kupferschmelzen spielen auch metallurgische Abhängigkeiten eine große Rolle. Kupferschmelzen neigen dazu, Gase aufzunehmen. Bei dem Gießprozess wirken sich insbesondere Wasserstoff und Sauerstoff störend aus. Die Dauer der Schmelzzeit und ggf. die Überhitzungstemperatur spielen ebenfalls eine Rolle und können von Schmelzprozess zu Schmelzprozess variieren. Wasserstoff und Sauerstoff stehen im Gleichgewicht zueinander, weshalb bei hohen Sauerstoffgehalten niedrige Wasserstoffgehalte eingestellt sind und umgekehrt. Weil die Löslichkeit von Wasserstoff in festem Kupfer wesentlich geringer ist als in flüssigem Kupfer, lässt sich daraus ableiten, dass die Löslichkeit für Wasserstoff mit sinkender Temperatur deutlich abnimmt. Beim Übergang von der flüssigen in die feste Phase der Kupferschmelze wirkt sich eine extrem starke Reduzierung des Löslichkeitsvermögens für Wasserstoff aus, man spricht allgemein von einem Löslichkeitssprung beim Unterschreiten der Liquidustemperatur, dieser beträgt ca. 3,5 ml Wasserstoff pro 100 g Kupferschmelze.Metallurgical dependencies also play a major role in the use of copper melts. Copper melts tend to absorb gases. Hydrogen and oxygen in particular have a disruptive effect on the casting process. The duration of the melting time and possibly the superheating temperature also play a role and can vary from melting process to melting process. Hydrogen and oxygen are in equilibrium with each other, which is why low hydrogen contents are set at high oxygen contents and vice versa. Since the solubility of hydrogen in solid copper is much lower than in liquid copper, it can be deduced that the solubility for hydrogen decreases significantly with decreasing temperature. The transition from the liquid to the solid phase of the copper melt has an extremely large reduction in solubility for hydrogen, one generally speaks of a solubility jump when falling below the liquidus temperature, this is about 3.5 ml of hydrogen per 100 g of copper melt.
Für die Aufnahmefähigkeit einer Schmelze für Gase spielen auch die Temperatur und der Druck eine wesentliche Rolle. Das Abgießen einer wasserstoffhaltigen Kupferschmelze unter Anwesenheit von Sauerstoff in Form von Kupferoxid auf der Rohroberfläche ist problematisch, da es sich beim Abgießen durch den Luftsauerstoff aufgrund der extrem schnellen Rohrerwärmung durch die Schmelze bildet. Aufgrund des Löslichkeitssprungs beim Übergang der Schmelze von ihrem flüssigen auf den festen Zustand reagiert der freiwerdende Wasserstoff mit dem Kupferoxid, indem dieses reduziert wird und der so entstehende Wasserdampf eine Gasporösität des Gusses verursacht. Verfahrenstechnisch kann man sich hiergegen mit einer Vakuumentgasung helfen, die allerdings einen zusätzlichen Aufwand darstellt. Alternativ lässt sich durch eine gezielte Sauerstoffaufladung eine Verschiebung des Wasser-Sauerstoff-Gleichgewichts in Richtung Sauerstoff erzielen, und damit eine Entfernung des Wasserstoffs. Im Anschluss an die oxidierende Schmelzenbehandlung muss der Sauerstoffgehalt gezielt abgebaut werden, indem eine desoxidierende Behandlung der Schmelze in der Pfanne erfolgt. Aufgrund dieser allerdings aufwendigen zweistufigen metallurgischen Behandlung der Kupferschmelze kann eine Reaktion mit dem Sauerstoff des Kupferoxids der umgossenen Kupferrohre nicht mehr zu einer unerwünschten Bildung von Wasserdampf und damit zu Gasblasen innerhalb der Schmelze führen.For the absorption capacity of a melt for gases also the temperature and the pressure play an essential role. The pouring of a hydrogen-containing molten copper in the presence of oxygen in the form of copper oxide on the pipe surface is problematic because it forms during casting by the atmospheric oxygen due to the extremely rapid pipe heating by the melt. Due to the solubility jump in the transition of the melt from its liquid to the solid state of the released hydrogen reacts with the copper oxide by this is reduced and causes the resulting water vapor gas porosity of the casting. In terms of process technology, this can be remedied with vacuum degassing, which, however, represents an additional expense. Alternatively, a targeted oxygenation can achieve a shift of the water-oxygen balance in the direction of oxygen, and thus a removal of the hydrogen. Following the oxidizing treatment of the melt, the oxygen content must be deliberately reduced by a deoxidizing treatment of the melt in the ladle. Due to this, however, complicated two-stage metallurgical treatment of the copper melt, a reaction with the oxygen of the copper oxide of the cast-copper pipes can no longer lead to an undesirable formation of water vapor and thus gas bubbles within the melt.
Durch den Kontakt einer hocherhitzten Kupferschmelze mit einem in der Gießform angeordneten Kupferrohr kommt es, wie bereits beschrieben, zu einer mechanischen Schwächung des Kupferrohres. Das Rohr neigt dazu, an jenen Stellen eingedrückt zu werden, auf denen eine höhere Metallsäule lastet. Zur Beseitigung dieser Schwierigkeit ist in der
Verschiedene Alternativen bei der Materialwahl der vergossenen Rohre sind in der
Ferner besteht die bereits beschriebene Gefahr erhöhter Gasporositäten aufgrund von Wasserdampfbildung, was ebenfalls die Gussqualität verschlechtert, die Wärmeabfuhr einschränkt und damit die Wärmeleitung reduziert, da die Gasblasen im Guß wie Isolatoren wirken. Von Nachteil ist ferner der unterschiedliche Wärmeausdehnungskoeffizient der beteiligten Metalle. Es kommt zu Druck- und Zugspannungen auf das in die Gießform eingebettete Rohr, was in Abhängigkeit von der Formgebung des Rohres zu einem örtlich schlechteren Verbund zwischen dem Rohr und dem umgossenen Kupfer und damit wiederum zu einer Verschlechterung der Wärmeleitung führen kann.Furthermore, there is the already described danger of increased gas porosity due to water vapor formation, which also degrades the casting quality, limits the heat dissipation and thus reduces the heat conduction, since the gas bubbles act as insulators in the casting. Another disadvantage is the different thermal expansion coefficient of the metals involved. It comes to compressive and tensile stresses on the embedded in the mold tube, which can lead depending on the shape of the tube to a locally poorer bond between the tube and the cast-copper and thus in turn to a deterioration of the heat conduction.
Zum Stand der Technik gehört ferner ein Kühlelement, wie dieses in der
Der Erfindung liegt die Aufgabe zugrunde, ein Kühlelement insbesondere für den Einsatz in Wandungen thermisch hoch belasteter Öfen zu schaffen, das sich an den Grenzflächen zwischen Kühlrohr und Umgussmetall durch einen verbesserten Materialverbund und damit einem erhöhten Wärmeübergang auszeichnet. Ferner soll ein Verfahren vorgeschlagen werden, mit dem sich ein solches Kühlelement herstellen lässt.The invention has for its object to provide a cooling element in particular for use in walls of thermally highly loaded stoves, which is characterized at the interfaces between the cooling tube and Umgussmetall by an improved composite material and thus an increased heat transfer. Furthermore, a method is proposed, with which such a cooling element can be produced.
Zur Lösung wird ein Kühlelement mit den Merkmalen gemäß Anspruch 1 vorgeschlagen.To solve a cooling element with the features of claim 1 is proposed.
Zur Lösung der Teilaufgabe der Bereitstellung eines für die Herstellung derartiger Kühlelemente geeigneten Verfahrens wird ein Verfahren mit den Merkmalen gemäß Anspruch 3 vorgeschlagen.To solve the subtask of providing a suitable method for the production of such cooling elements method, a method having the features of claim 3 is proposed.
Erfindungsgemäß werden daher die bei der Herstellung des Kühlelementes zu umgießenden Rohre zuvor auf galvanischem Wege mit einer geeigneten Metallschicht beschichtet, wobei diese Metallschicht einerseits keine Verschlechterung, sondern eher eine Verbesserung des Wärmeübergangs mit sich bringt, also eine sehr gute spezifische Wärmeleitung hat. Andererseits führt die galvanisch aufgetragene Metallschicht zu Vorteilen bei der Passivierung der Rohraußenseite gegen Oxidationseinflüsse während des Abgießens, ferner verbessert sich die Haftung zwischen Rohr und Umgussmetall infolge im Grenzbereich sich einstellender Diffusionsvorgänge. Es wird somit eine unmittelbare Verbindung zwischen dem Umgussmetall und dem umgossenen Rohr ermöglicht, der Wärmeübergang wird stark verbessert und der so eingegossene Rohrkörper fördert beim späteren Einsatz des Kühlelements zum Beispiel in einem industriellen Ofen eine gute Kühlwirkung.According to the invention, therefore, the tubes to be cast in the manufacture of the cooling element are previously coated by electroplating with a suitable metal layer, this metal layer on the one hand brings no deterioration, but rather an improvement of the heat transfer with it, so has a very good specific heat conduction. On the other hand, the galvanically applied metal layer leads to advantages in the passivation of the pipe outside against oxidation effects during casting, further improves the adhesion between the pipe and Umgussmetall as a result of bordering adjusting diffusion processes. It is thus an immediate connection between the Umgussmetall and the cast-tube allows, the heat transfer is greatly improved and the cast-tube body promotes the subsequent use of the cooling element, for example, in an industrial furnace, a good cooling effect.
Von besonderem Vorteil sind insbesondere die Diffusionsvorgänge, welche sich in der äußersten Schicht der elektrolytischen Beschichtung einstellen, nachdem diese mit der eingegossenen Kupferschmelze in Kontakt kommt. Diese Diffusionsvorgänge führen zu einer deutlich verbesserten Haftung des Gussmetalls an dem Rohr, verbunden mit einem nahezu verlustlosen Wärmeübergang. Da an der Grenzfläche zwischen elektrolytischer Beschichtung des Rohres und dem umgossenen Kupfer eine dünne Legierungsschicht entsteht, ist die Verbindungsfläche in diesem Bereich nahezu korrosionsfest.Of particular advantage are, in particular, the diffusion processes which occur in the outermost layer of the electrolytic coating after it comes into contact with the cast-in molten copper. These diffusion processes lead to a significantly improved adhesion of the cast metal to the pipe, combined with a virtually lossless heat transfer. Since a thin alloy layer is formed at the interface between the electrolytic coating of the tube and the cast-copper, the bonding surface in this region is almost corrosion-resistant.
In einer bevorzugten Ausgestaltung des Kühlelementes wird vorgeschlagen, dass die Rohre Kupferrohre sind, und die Beschichtung eine galvanische Nickelbeschichtung ist. Verfahrungsgemäß wird dies dadurch erreicht, dass die Beschichtung der Rohraußenseiten in einem galvanischen Nickelbad erfolgt, wobei die Dicke der so gebildeten Schicht zwischen 3 und 12 µm, vorzugsweise zwischen 6 und 10 µm beträgt.In a preferred embodiment of the cooling element is proposed that the tubes are copper tubes, and the coating is a galvanic nickel coating. According to the method, this is achieved by coating the outside of the pipe in a galvanic nickel bath, the thickness of the layer thus formed being between 3 and 12 .mu.m, preferably between 6 and 10 .mu.m.
Nickel zeichnet sich durch eine relativ gute Wärmeleitfähigkeit aus, außerdem verfügt Nickel über eine dem Kupfer vergleichbare Dichte und einen sehr ähnlichen Atomdurchmesser. Der Schmelzpunkt von Nickel liegt mit 1453 °C deutlich höher als der Schmelzpunkt von Kupfer mit 1083 °C, wodurch beim Einfüllen des flüssigen Kupfers ein Anschmelzen der elektrolytischen Nickelschicht vermieden oder verzögert wird. In Versuchen hat sich herausgestellt, dass der hohe Schmelzpunkt des Nickels die galvanische Nickelschicht des Rohres vor einem Angriff durch die Schmelze schützt, wie ein zusätzliches Rohr. Zugleich führt die hohe Wärmeenergie dazu, dass sich zwischen der galvanischen Nickelschicht und dem Umguss aus Kupfer Diffusionsvorgänge abspielen, die zu einer deutlich besseren Haftung des Umgusses an dem Kupferrohr führen. Durch das Entstehen einer dünne Legierungsschicht an der Grenzfläche zwischen dem Rohr und der Umgussmasse wird die Verbindungsfläche korrosionsfest, hier wirkt sich vor allem die vollständige Löslichkeit des Kupfers für Nickel und der annähernd gleiche Atomdurchmesser positiv aus. Nach Abschluss des Gusses und der Erstarrung des Kupfers ist das Nickel der galvanischen Nickelschicht in dieser Region kaum noch nachweisbar. Hier wirkt sich auch die lange Abkühlzeit nach dem Erstarren des Kupfers bis hin zum Ende der Diffusionsvorgänge bei etwa 400 °C aus, was immerhin je nach Größe des gegossenen Kühlelementes 4 bis 8 Stunden ausmacht.Nickel is characterized by a relatively good thermal conductivity, in addition, nickel has a density comparable to copper and a very similar atomic diameter. The melting point of nickel at 1453 ° C is significantly higher than the melting point of copper at 1083 ° C, which prevents or delays melting of the electrolytic nickel layer during filling of the liquid copper. In experiments, it has been found that the high melting point of the nickel protects the nickel plating layer of the tube from attack by the melt, such as an additional tube. At the same time, the high heat energy causes diffusion processes to take place between the galvanic nickel layer and the copper encapsulation, which lead to a significantly better adhesion of the encapsulation to the copper tube. The formation of a thin alloy layer at the interface between the tube and the encapsulant, the connection surface is corrosion resistant, here in particular affects the complete solubility of the copper for nickel and the approximately equal atomic diameter positive. After completion of the casting and the solidification of the copper, the nickel of the galvanic nickel layer in this region is barely detectable. Here, too, the long cooling time after the solidification of the copper up to the end of the diffusion processes at about 400 ° C, which at least makes up depending on the size of the cast cooling element 4 to 8 hours.
Hinsichtlich der Dicke der auf die Rohraußenseite galvanisch aufgetragenen Nickelschicht scheint das Optimum zwischen 6 und 10 µm zu bestehen.With regard to the thickness of the nickel layer electroplated on the outside of the pipe, the optimum seems to exist between 6 and 10 μm.
In einer weiteren Ausgestaltung des Verfahrens wird vorgeschlagen, dass die Kupferrohre erst nach der Fertigung der gewünschten Rohrgestalt beschichtet werden. Es erfolgt also zunächst die Herstellung des Kupferrohres einschließlich aller gewünschter Krümmungen, Abzweigungen und dergleichen Strömungsstrukturen. Erst dann werden die Kupferrohre auf ihrer Rohraußenseite in einem galvanischen Bad elektrolytisch vernickelt. Wird demgegenüber das Kupferrohr bereits vor der Durchführung der verschiedenen Verformungsprozesse vernickelt, so stellt sich heraus, dass sich die Nickelschichten aufgrund des Erwärmens im Bereich zum Beispiel der Bögen und Radien des Rohres stark verändern, und sich damit später kein gleichmäßiger Verbund mit dem Metallguß einstellt.In a further embodiment of the method, it is proposed that the copper pipes are coated only after the production of the desired pipe shape. Thus, first of all, the manufacture of the copper tube including all desired bends, branches and similar flow structures takes place. Only then will the Copper pipes electrolytically nickel-plated on the outer side of the pipe in a galvanic bath. If, in contrast, the copper pipe is already nickel-plated before the various deformation processes are carried out, it turns out that the nickel layers change greatly due to the heating in the region of, for example, the arcs and radii of the pipe, and thus does not subsequently establish a uniform bond with the metal casting.
Mit einer weiteren Ausgestaltung des Verfahrens wird vorgeschlagen, dass die Rohraußenseiten vor der Beschichtung mechanisch gestrahlt werden, vorzugsweise durch Strahlen mit grobem Glaskorn. Vor dem galvanischen Veredeln ist eine starke Dekapierung, d. h. Beizung erforderlich. Desweiteren ist es von Vorteil, wenn die beschichteten Rohraußenseiten vor dem Umgießen der Rohre entfettet werden, vorzugsweise durch Reinigung mit Aceton.With a further embodiment of the method, it is proposed that the tube outer sides are mechanically blasted before the coating, preferably by blasting with a coarse glass grain. Before electroplating is a strong pickling, d. H. Staining required. Furthermore, it is advantageous if the coated tube outer sides are degreased prior to encapsulation of the tubes, preferably by cleaning with acetone.
Die in ihrer Geometrie fertiggestellten Kupferrohre werden zunächst mit grobem Glaskorn gestrahlt, um so eine möglichst rauhe und damit große Oberfläche zu erzielen mit dem Ergebnis einer guten Vorreinigung und Aktivierung der Rohre. Anschließend erfolgt dann die elektrolytische Beschichtung der Rohraußenseiten in dem galvanischen Nickelbad. Aufgrund der vorher durch Dekapierung aktivierten Oberfläche wird eine gute Haftung der Nickelschicht erreicht. Beim anschließenden Einbau der Kupferrohre in den Formkasten der Gießform sollte auf eine fettfrei bleibende Oberfläche geachtet werden, wobei sich hierzu die Reinigung der Rohre mit Aceton empfiehlt. Sodann erfolgt der Einguss des flüssigen Kupfers in die Gießform. Basierend auf der vorher gesäuberten Oberfläche konnte während des Eingießens jegliche Oxidation der Rohroberflächen vermieden werden. Eine Verschlechterung des Verbundes wird auf diese Weise unterbunden. Selbst eine leichte Oxidation der Nickeloberfläche scheint sich bei der eintretenden Fusion sowie den ablaufenden Diffusionsvorgängen nicht nachteilig bemerkbar zu machen.The finished in their geometry copper tubes are first blasted with coarse glass grain, so as to achieve a rough as possible and thus large surface with the result of a good pre-cleaning and activation of the tubes. Subsequently, the electrolytic coating of the tube outside in the galvanic nickel bath then takes place. Due to the previously activated by decapitation surface good adhesion of the nickel layer is achieved. During the subsequent installation of the copper pipes in the molding box of the casting mold, attention should be paid to a non-greasy surface, whereby the cleaning of the pipes with acetone is recommended. Then, the sprue of the liquid copper takes place in the casting mold. Based on the previously cleaned surface, any oxidation of the pipe surfaces during casting could be avoided. A deterioration of the network is prevented in this way. Even a slight oxidation of the nickel surface does not appear to be detrimental to the incoming fusion and the ongoing diffusion processes.
Die Ergebnisse durchgeführter Versuche zeigen, dass auch eine schnelle Abkühlung aus dem flüssigen Zustand infolge einer sehr intensiven Kühlung der mit Kühlwasser beschickten Kupferrohre während und nach dem Gießvorgang möglich ist. Normalerweise wirkt sich eine solche intensive Kühlung auf die Verbundqualität nachteilig aus. Bei Verwendung galvanisierter Kupferrohre hingegen konnten in Versuchen qualitätsmäßig gute Güsse selbst bei starker Kühlleistung des durch die Rohre durchgeleiteten Wassers erzielt werden. Es lässt sich daher von einem robusten, gegenüber Variationen der Verfahrensparameter relativ unempfindlichen Gussprozess sprechen.The results of tests carried out show that rapid cooling from the liquid state as a result of very intensive cooling of the copper tubes charged with cooling water during and after the casting process is also possible. Normally, such intensive cooling adversely affects the composite quality. By contrast, when using galvanized copper pipes, good quality castings could be obtained even with strong cooling performance of the water passing through the pipes. It can therefore speak of a robust, relatively insensitive to variations in the process parameters casting process.
Mit einer weiteren Ausführungsform des erfindungsgemäßen Kühlelementes wird vorgeschlagen, dass die Rohre nicht Kupferrohre sind, sondern Kupfer-Nickel-Rohre mit einem Kupfer-Anteil von 30 bis 70 % und einem Nickel-Anteil von 20 bis 65 %, wobei die elektrolytische Beschichtung eine Kupferbeschichtung ist.
Entsprechend ist ein zur Herstellung eines solchen Kühlelements geeignetes Verfahren dadurch gekennzeichnet, dass die verwendeten Rohre Kupfer-Nickel-Rohre mit einem Kupfer-Anteil von 30 bis 70 % und einem Nickel-Anteil von 20 bis 65 % sind, und dass die Beschichtung der Rohraußenseiten in einem galvanischen Kupferbad erfolgt.With a further embodiment of the cooling element according to the invention it is proposed that the tubes are not copper tubes, but copper-nickel tubes with a copper content of 30 to 70% and a nickel content of 20 to 65%, wherein the electrolytic coating is a copper coating is.
Accordingly, a suitable method for producing such a cooling element method is characterized in that the tubes used are copper-nickel tubes with a copper content of 30 to 70% and a nickel content of 20 to 65%, and that the coating of the tube outer sides done in a galvanic copper bath.
In der folgenden Tabelle 1 sind die Ergebnisse an Hand von insgesamt elf durchgeführten Proben zusammengefasst, wobei auch Vergleichsproben ohne elektrolytische Veredelung geprüft wurden. Die Prüfung erfolgte unter Einsatz von Infrarot-Wärmemessungen (thermographische Analyse) sowie anschließender Scherversuche:
Die besten Ergebnisse zeigten daher die Proben Nr. 4 und Nr. 5, bei denen jeweils ein Kupferrohr mit galvanischer Vernickelung eingesetzt wurde, wobei die Schichtdicke bei Probe Nr. 4 6 µm und bei Probe Nr. 5 9 µm beträgt. Einen guten Verbund zeigt auch die Probe Nr. 3 mit einer reduzierten Nickelschicht von 3 µm. Aber auch die nach dem Parallelverfahren unter Einsatz eines Rohres "Monel 400" durchgeführten Versuche zeigen noch einen guten Verbund zwischen Rohr und Umgussmasse, lediglich im Bereich des Rohrbogens zeigten die durchgeführten Scherversuche schlechtere Ergebnisse.Therefore, the best results were shown in Samples Nos. 4 and 5, each of which used a copper tube with galvanic nickel plating, the layer thickness being 6 μm for Sample No. 4 and 9 μm for Sample No. 5. A good composite also shows the sample No. 3 with a reduced nickel layer of 3 microns. However, the tests carried out using the parallel method using a tube "Monel 400" also show a good bond between pipe and casting compound, only in the area of the pipe bend showed the shear tests performed worse results.
Die nachfolgende Tabelle 2 gibt die Versuchsergebnisse der thermografischen Untersuchung durch Wärmebild-Auswertung wieder:
Die nachfolgende Tabelle 3 schließlich gibt die Ergebnisse der durchgeführten Scherversuche unter Angabe der Scherfestigkeit τ in N/mm2 für die vier Materialpaarungen Kupfer ohne Vernickelung, Kupfer mit Vernickelung, Monel 400 ohne Kupferschicht und Monel 400 mit elektrolytischer Kupferschicht wieder. Die besonders guten Ergebnisse bei dem Einsatz eines vernickelten Kupferrohres sowie eines verkupferten Rohres aus Monel 400 sind augenfällig:
Den in den Tabellen 1, 2 und 3 zusammengefaßten Proben- und Scherergebnissen liegt der in
Die so gefertigten Probenkörper wurden in einem Glühofen erwärmt, während der anschließenden Abkühlung mit einer definierten Wassermenge und einem definierten Druck erfolgten thermografische Aufnahmen mit Hilfe einer Infrarot-Kamera.The thus prepared specimens were heated in an annealing furnace, during the subsequent cooling with a defined amount of water and a defined pressure thermographic images were taken with the help of an infrared camera.
Claims (8)
- Cooling element, in particular for use in walls of furnaces subjected to high thermal stress, composed of cast copper or a low-alloy copper alloy with coolant ducts arranged in its interior comprising pipes cast in the copper or the copper alloy, characterised in that the pipes of the coolant ducts are copper pipes, which have an electroplated coating on the outside.
- Cooling element according to claim 1, characterised in that the thickness of the coating amounts to between 3 and 12 µm, preferably between 6 and 10 µm.
- Process for the production of a cooling element provided with coolant ducts formed from pipes in its interior, in particular for use in walls of furnaces subjected to high thermal stress, with the stepsa) producing the pipe including all the required bends, branches and similar flow structures,b) casting molten copper or a low-alloy copper alloy around the pipes within a die, preferably with simultaneous cooling of the pipe inside walls,c) cooling the copper melt,characterised in that copper pipes are used and during the production of the pipes at least those regions of the pipe outer surfaces, around which the copper or the copper alloy are later cast, are electrolytically coated.
- Process according to claim 3, characterised in that the pipes are only coated after the required pipe structure has been produced.
- Process according to claim 3 or 4, characterised in that the pipe outer surfaces are blasted mechanically before coating, preferably by abrasion blasting with coarse glass grains.
- Process according to one of claims 3 to 5, characterised in that the coated pipe outer surfaces are degreased before casting around the pipes, preferably by cleaning with acetone.
- Process according to one of claims 3 to 6, characterised in that the pipes used are copper pipes, and that the coating of the pipe outer surfaces takes place in a nickel plating bath.
- Process according to one of claims 3 to 7, characterised in that the thickness of the electroplated coating amounts to between 3 and 12 µm, preferably between 6 and 10 µm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10259870A DE10259870A1 (en) | 2002-12-20 | 2002-12-20 | Cooling element, in particular for ovens, and method for producing a cooling element |
DE10259870 | 2002-12-20 | ||
PCT/DE2003/004030 WO2004057256A1 (en) | 2002-12-20 | 2003-12-08 | Cooling element, particularly for furnaces, and method for producing a cooling element |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1581779A1 EP1581779A1 (en) | 2005-10-05 |
EP1581779B1 EP1581779B1 (en) | 2008-11-12 |
EP1581779B9 true EP1581779B9 (en) | 2009-08-12 |
Family
ID=32404024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03782142A Expired - Lifetime EP1581779B9 (en) | 2002-12-20 | 2003-12-08 | Cooling element, particularly for furnaces, and method for producing a cooling element |
Country Status (12)
Country | Link |
---|---|
US (1) | US8080116B2 (en) |
EP (1) | EP1581779B9 (en) |
JP (1) | JP4764008B2 (en) |
KR (1) | KR101051942B1 (en) |
AT (1) | ATE414250T1 (en) |
AU (1) | AU2003289826A1 (en) |
BR (1) | BR0317488A (en) |
CA (1) | CA2511141C (en) |
DE (2) | DE10259870A1 (en) |
ES (1) | ES2316841T3 (en) |
WO (1) | WO2004057256A1 (en) |
ZA (1) | ZA200504909B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015001190A1 (en) | 2015-01-31 | 2016-08-04 | Karlfried Pfeifenbring | Cooling element for metallurgical furnaces and method for producing a cooling element |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI121429B (en) | 2005-11-30 | 2010-11-15 | Outotec Oyj | Heat sink and method for making the heat sink |
DE102010055162A1 (en) * | 2010-12-18 | 2012-06-21 | Mahle International Gmbh | Coating and coated casting component |
FI123631B (en) * | 2011-11-30 | 2013-08-30 | Outotec Oyj | COOLING ELEMENT |
US10301208B2 (en) * | 2016-08-25 | 2019-05-28 | Johns Manville | Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same |
WO2024254264A1 (en) * | 2023-06-06 | 2024-12-12 | Magna International Inc. | Conformal cooling insert |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE726599C (en) | 1941-01-17 | 1942-10-16 | Hundt & Weber G M B H | Process for encapsulating tubular bodies |
FI47052C (en) | 1971-10-11 | 1973-09-10 | Outokumpu Oy | Process for producing cooling elements useful in different melting furnaces. |
JPS555101A (en) * | 1978-06-05 | 1980-01-16 | Nikkei Giken:Kk | Casting method for wrapping metal |
JPS56169819A (en) * | 1980-06-02 | 1981-12-26 | Hiroyuki Kanai | Traveler for spinning frame |
JPH0225261Y2 (en) * | 1981-03-28 | 1990-07-11 | ||
JPS58147504A (en) * | 1982-02-24 | 1983-09-02 | Mishima Kosan Co Ltd | Cooling plate for body of blast furnace |
JPS58207375A (en) * | 1982-05-28 | 1983-12-02 | Usui Internatl Ind Co Ltd | Heat and corrosion reistant coated metallic pipe and its manufacture |
JPS59170698A (en) * | 1983-03-18 | 1984-09-26 | Hitachi Ltd | Heat exchanger surface treatment method |
JPH0364492A (en) * | 1989-07-31 | 1991-03-19 | Kobe Steel Ltd | Plated member having superior resistance to stress corrosion cracking |
US5441763A (en) * | 1994-04-05 | 1995-08-15 | A.O. Smith Corporation | Method of corrosion protecting steel structural components |
RU2100728C1 (en) * | 1996-04-08 | 1997-12-27 | Виктор Никонорович Семенов | Melting unit jacket and method of its manufacture |
DE29611704U1 (en) * | 1996-07-05 | 1996-10-17 | MAN Gutehoffnungshütte AG, 46145 Oberhausen | Cooling plate for metallurgical furnaces |
FI107789B (en) * | 1999-02-03 | 2001-10-15 | Outokumpu Oy | Casting mold for producing a cooling element and forming cooling element in the mold |
DE10014359A1 (en) * | 2000-03-24 | 2001-09-27 | Km Europa Metal Ag | Copper or copper alloy cooling plate used as a component of a wall of a metallurgical furnace has coolant channels and a coating on the side facing the inside of the oven |
US6280681B1 (en) * | 2000-06-12 | 2001-08-28 | Macrae Allan J. | Furnace-wall cooling block |
-
2002
- 2002-12-20 DE DE10259870A patent/DE10259870A1/en not_active Withdrawn
-
2003
- 2003-12-08 EP EP03782142A patent/EP1581779B9/en not_active Expired - Lifetime
- 2003-12-08 JP JP2004561029A patent/JP4764008B2/en not_active Expired - Fee Related
- 2003-12-08 KR KR1020057011562A patent/KR101051942B1/en active IP Right Grant
- 2003-12-08 AT AT03782142T patent/ATE414250T1/en not_active IP Right Cessation
- 2003-12-08 AU AU2003289826A patent/AU2003289826A1/en not_active Abandoned
- 2003-12-08 CA CA2511141A patent/CA2511141C/en not_active Expired - Fee Related
- 2003-12-08 WO PCT/DE2003/004030 patent/WO2004057256A1/en active Application Filing
- 2003-12-08 DE DE50310788T patent/DE50310788D1/de not_active Expired - Lifetime
- 2003-12-08 ES ES03782142T patent/ES2316841T3/en not_active Expired - Lifetime
- 2003-12-08 BR BR0317488-3A patent/BR0317488A/en not_active IP Right Cessation
- 2003-12-08 US US10/539,965 patent/US8080116B2/en not_active Expired - Fee Related
-
2005
- 2005-06-15 ZA ZA200504909A patent/ZA200504909B/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015001190A1 (en) | 2015-01-31 | 2016-08-04 | Karlfried Pfeifenbring | Cooling element for metallurgical furnaces and method for producing a cooling element |
WO2016119770A1 (en) | 2015-01-31 | 2016-08-04 | Karlfried Pfeifenbring | Cooling element for metallurgical furnaces, and method for producing a cooling element |
DE102015001190B4 (en) * | 2015-01-31 | 2016-09-01 | Karlfried Pfeifenbring | Cooling element for metallurgical furnaces and method for producing a cooling element |
Also Published As
Publication number | Publication date |
---|---|
ES2316841T3 (en) | 2009-04-16 |
US8080116B2 (en) | 2011-12-20 |
CA2511141C (en) | 2011-05-31 |
AU2003289826A1 (en) | 2004-07-14 |
BR0317488A (en) | 2005-11-16 |
CA2511141A1 (en) | 2004-07-08 |
JP4764008B2 (en) | 2011-08-31 |
EP1581779B1 (en) | 2008-11-12 |
DE50310788D1 (en) | 2008-12-24 |
KR20050084441A (en) | 2005-08-26 |
DE10259870A1 (en) | 2004-07-01 |
KR101051942B1 (en) | 2011-07-26 |
US20070000579A1 (en) | 2007-01-04 |
JP2006510866A (en) | 2006-03-30 |
ZA200504909B (en) | 2006-08-30 |
ATE414250T1 (en) | 2008-11-15 |
EP1581779A1 (en) | 2005-10-05 |
WO2004057256A1 (en) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0038584B1 (en) | Multi-layered-solder and method of producing such solder | |
EP1216772B1 (en) | Method for producing a tubular sputtering target | |
DE69329243T2 (en) | ROLLS FOR SHAPING METAL | |
DE112006003537B4 (en) | Method of making a sputtering target assembly | |
DE69709956T2 (en) | USE OF NI BASE ALLOY FOR COMPOSITION TUBES FOR COMBUSTION PLANT | |
EP1124660B2 (en) | A cylinder crank case, method for the manufacture of a cylinder liner therefor and method for the production of the cylinder crank case with said cylinder liners | |
AT3175U1 (en) | METHOD FOR PRODUCING A THERMALLY HIGH-STRENGTH COMPOSITE COMPONENT | |
DE2231807A1 (en) | SLEEVE AS CYLINDRICAL PRESSURE CHAMBER FOR INJECTION MOLDING MACHINES | |
EP1581779B9 (en) | Cooling element, particularly for furnaces, and method for producing a cooling element | |
EP2334834B1 (en) | Method for producing composite metal semi-finished products | |
DE2049757A1 (en) | Process for the manufacture of coated articles | |
DE2804544B2 (en) | Cooling plate for a steel mill, in particular a blast furnace | |
EP0663670B1 (en) | Method for setting-up a cooling system | |
DE69103854T2 (en) | Jacket for cast rolls for the continuous casting of metal, in particular steel, between or on the cast rolls. | |
DE3013560A1 (en) | HIGH OVEN CORSET COOLING DEVICE | |
DE102010055791A1 (en) | Process for the manufacture of components made of refractory metals | |
EP1314495B1 (en) | Sleeve for a casting roll of a twin roll continuous caster | |
DE2951640C2 (en) | Cooling plate for a metallurgical furnace, in particular a blast furnace, and a method for producing it | |
DE69702468T2 (en) | Heat insulating alloy steel and parts for a die casting machine | |
AT385927B (en) | CHOCOLATE OR CHOCOLATE TOWEL AND METHOD FOR YOUR OR HIS PRODUCTION | |
DE4100908C2 (en) | mold material | |
EP2132751A1 (en) | Components for reducing heat | |
WO2023155954A1 (en) | Method for producing a welding cap and welding cap | |
DE2601727A1 (en) | Protective coating for blast furnace tuyeres - obtd. by deposition welding of refractory metal carbide onto end of tuyere | |
DE1811295C (en) | Process for the production of a furnace-dependent continuous casting mold |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050708 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20060809 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HERING, MARCUS Inventor name: MUELLER, PETER, H. Inventor name: PFEIFENBRING, KARLFRIED |
|
17Q | First examination report despatched |
Effective date: 20060809 |
|
17Q | First examination report despatched |
Effective date: 20060809 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50310788 Country of ref document: DE Date of ref document: 20081224 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20090400401 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2316841 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E004812 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090413 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
26N | No opposition filed |
Effective date: 20090813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081208 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20101206 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20101201 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20121203 Year of fee payment: 10 Ref country code: FI Payment date: 20121214 Year of fee payment: 10 Ref country code: BG Payment date: 20121221 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20121217 Year of fee payment: 10 Ref country code: ES Payment date: 20121217 Year of fee payment: 10 Ref country code: GR Payment date: 20121221 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20121217 Year of fee payment: 10 Ref country code: FR Payment date: 20130123 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50310788 Country of ref document: DE Representative=s name: ADVOTEC. PATENT- UND RECHTSANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50310788 Country of ref document: DE Owner name: LEBRONZE ALLOYS GERMANY GMBH, DE Free format text: FORMER OWNER: HUNDT & WEBER GMBH, 57074 SIEGEN, DE Effective date: 20140129 Ref country code: DE Ref legal event code: R082 Ref document number: 50310788 Country of ref document: DE Representative=s name: ADVOTEC. PATENT- UND RECHTSANWAELTE, DE Effective date: 20140129 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20140501 AND 20140507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121208 |
|
BERE | Be: lapsed |
Owner name: HUNDT & WEBER G.M.B.H. Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131208 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131208 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131209 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20090400401 Country of ref document: GR Effective date: 20140702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140702 Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131209 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131209 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20191216 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20191220 Year of fee payment: 17 Ref country code: DE Payment date: 20200220 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50310788 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20201208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201208 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201208 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210701 |