EP1574116A2 - Device and method for the creation of droplet targets - Google Patents
Device and method for the creation of droplet targetsInfo
- Publication number
- EP1574116A2 EP1574116A2 EP03813077A EP03813077A EP1574116A2 EP 1574116 A2 EP1574116 A2 EP 1574116A2 EP 03813077 A EP03813077 A EP 03813077A EP 03813077 A EP03813077 A EP 03813077A EP 1574116 A2 EP1574116 A2 EP 1574116A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- few
- nozzle
- expansion channel
- liquid
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/003—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/003—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
- H05G2/006—Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state details of the ejection system, e.g. constructional details of the nozzle
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05G—X-RAY TECHNIQUE
- H05G2/00—Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
- H05G2/001—Production of X-ray radiation generated from plasma
- H05G2/008—Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
Definitions
- the invention relates to a device for producing a droplet target, at least comprising a vessel for holding a target liquid, in which a high pressure is achieved by means of gaseous nitrogen, a magnetic valve connected to the vessel and switching in the ms range, and a nozzle, as well as a procedure.
- No. 6,324,256 also contains a device for generating droplet targets in an arrangement which describes a laser plasma source for generating EUV light.
- the droplets produced have a larger diameter than droplets which are generated from a gas which is passed through a nozzle, condenses here and forms a cloud of extremely small particles in the form of clusters.
- a liquid is first generated from a gas by means of a heat exchanger which reduces the temperature of the gas. This liquid is fed to a nozzle, the opening of which becomes larger in the direction of the outlet opening.
- the droplets are formed, which then emerge from the outlet opening of the nozzle and interact with a laser beam to generate EUV light to step.
- the droplet size cannot be set in a defined manner.
- the gaseous starting material is first converted into a liquid one.
- the droplets interact with the laser beam very close to the nozzle, which is subsequently destroyed by heating and erosion.
- High-density droplet mist with a density of up to 10 19 atoms / cm 3 and a droplet diameter of approximately 1 ⁇ m was produced using a droplet source, which is described in Rev. Sei. Instrum. 69, 3780 (1998) by LC Mountford, RA Smith and MRHR Hutchinson and from which the present invention is based.
- a solenoid valve, which forms the liquid pulse and thus the liquid volume, is the starting point of the droplet source.
- a vessel was filled with a liquid and kept under high pressure by means of ethanol. In synchronization with the laser the valve is opened for 2500 ⁇ s so that the droplets emerge from the nozzle.
- Droplets with a smaller diameter of approximately 0.6 ⁇ m could be achieved by subsequent electrostatic splitting of the droplets, which, however, requires a technically complex arrangement.
- the mist consisting of these droplets has a lower density, namely approximately 10 16 atoms / cm 3 .
- droplet targets are available which have the size of possible laser wavelengths (TD Donelly, M. Rust, I. Weiner, M. Allen, RA Smith , CA. Steinke, S. Wilks, J. Zweiack, TE Cowan and T. Ditmire J. Phys. B: At. Mol. Opt. Phys. 34, L313 (2001)) and thus a smaller one compared to the prior art Have diameter and form a nebula that has an atomic density of> 10 18 atoms / cm 3 .
- the high density should also be realized at a greater distance from the nozzle, i.e. the droplet target has better collimation compared to the prior art in order to increase the service life of the nozzle.
- the nozzle is designed as a supersonic nozzle
- the valve is connected to the supersonic nozzle via an expansion channel
- means for heating the expansion channel are designed such that the temperature can be adjusted to a size is, in which a supersaturated vapor is formed in the expansion channel
- an insulator is arranged between the electromagnetic valve and the means for heating.
- the device according to the invention enables the generation of high-density sub- ⁇ liquid targets that are used for the investigation of the Interaction processes of laser radiation with plasmas are required.
- the droplets in the solution according to the invention arise from supersaturated steam, which condenses in a cloud of fog.
- the target produced with the device according to the invention consists of droplets with an average diameter of approximately 150 nm and has an average atomic density of> 10 18 atoms / cm 3 .
- Such a target enables the investigation of hitherto unexplored states that exist between clusters (from a few atoms up to 10 6 atoms / clusters with a local density that is approximately similar to that of a solid) and solids.
- the spatial expansion of the droplets has an impact on the increased space charge limitation of hot electrons, which in turn leads to an improved coupling of the laser energy into the ions of the droplets. This makes it possible to generate a much hotter plasma and to achieve a higher efficiency in the conversion into X-rays.
- the droplet target produced with the device according to the invention can be produced continuously and has a time-unlimited mode of operation.
- Embodiments of the device according to the invention relate to the configuration of its individual components. It is provided that the pulsed electromagnetic valve operates with a pulse duration of 2 ms; the expansion channel has a length of a few mm to a few 10 mm and a diameter of a few 100 ⁇ m into the mm range, the supersonic nozzle has a conical opening angle 2 ⁇ of a few degrees to a few 10 degrees, an inlet opening of a few 100 ⁇ m in diameter and one has a few mm long conical section.
- the process according to the invention comprises the following process steps: filling a target liquid into a vessel in which a high pressure is achieved by means of non-reactive gas, briefly opening this vessel by means of a pulsed electromagnetic valve, intermittent introduction of the target liquid into an expansion channel, heating the Expansion channel in such a way that supersaturated liquid vapor forms, cooling of this vapor when passing through a supersonic nozzle connected to the expansion channel and droplets emerging from the outlet opening of the nozzle into the vacuum.
- a pulsed electromagnetic valve operating in the ms range with a pulse duration in particular of 2 ms is used.
- the target liquid is pressed into the expansion channel and the corresponding vapor into the supersonic nozzle.
- the nozzle diameter also determines the diameter of the liquid droplets which emerge from the nozzle opening into the vacuum.
- the valve in the solution according to the invention directly regulates the feed into an additionally arranged expansion channel in which the target Liquid is heated.
- the super-saturated gas now present is led to the nozzle outlet opening and cooled in the process, which causes droplet formation in the nozzle.
- the valve directly switches the nozzle on and off, as a result of which much less influence on the formation and expansion of the droplets and their collimation is possible.
- FIG. 1 shows the schematic structure of a device according to the invention
- Fig. 2 is a curve with the switching pulse of the valve and the associated
- Fig. 3 is a curve with the spread of the liquid mist in
- Air and vacuum; 4 shows a curve with the density of the liquid mist as a function of the distance from the outlet opening of the nozzle;
- the inventive device for generating a droplet target has a pulsed electromagnetic valve 1.
- This valve 1 closes a vessel (not shown) in which the target liquid is kept at a pressure of 35 bar by means of gaseous nitrogen.
- the target liquid can be water, but also in principle any other liquid.
- the valve 1 opens and closes with a pulse duration of 2 ms and releases water droplets into an expansion channel 2 with a diameter of 1 mm and a length of 15 mm in the opening phase.
- this expansion channel 2 is a temperature of 150 ° C by means of a heater 3 generated, the expansion channel 2 is separated from the valve 1 by means of an insulator 5.
- a droplet target which can be generated continuously and which enables an unlimited working time.
- Fig. 2 shows a curve with the switching pulse of the valve and the associated intensity of the resulting liquid mist as a function of time, at a distance of 1 mm from the outlet opening of the nozzle.
- the pulse duration of the valve in this measurement in which the radiation generated by a cw He-Ne laser was aimed at the droplet target, scattered there and the intensity of the scattered radiation was determined at a distance of 1 mm from the nozzle opening, was 2 ms , It can be seen that the main part of the spray pulse occurs about 1 ms after opening the valve.
- the measured droplet density varies for droplets with a diameter of 0.15 ⁇ m from (1, 6 + 0.5) 10 11 droplets / cm 3 (or an average molecular density of 1, 5-10 18 cm “3 ) directly at the Outlet opening of the nozzle up to (7.5 + 0.7) -10 9 droplets / cm 3 (or an average molecular density of 8-10 16 cm “3 ) at a distance of 20 mm from the outlet opening.
- this droplet size this is up to three orders of magnitude higher droplet density than with currently described spray droplet sources, which is important for the conversion of irradiated laser energy.
- the solid line indicates the theoretical distribution of the scattered light intensity of particles with a diameter of 0.15 ⁇ m.
- the good agreement with the measurement data shows that there is a narrower distribution of the droplet sizes than in comparison with the current state of the art, so that no droplet size filter has to be connected, as in the current state, and the effective droplet density is thus advantageously increased.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- X-Ray Techniques (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Structure Of Belt Conveyors (AREA)
Abstract
Description
Bezeichnungdescription
Vorrichtung und Verfahren zur Erzeugung eines Tröpfchen-TargetsDevice and method for generating a droplet target
Beschreibungdescription
Die Erfindung betrifft eine Vorrichtung zur Erzeugung eines Tröpfchen- Targets, mindestens aufweisend ein Gefäß zur Aufnahme einer Target- Flüssigkeit, in dem mittels gasförmigem Stickstoff ein hoher Druck realisiert ist, ein mit dem Gefaäß verbundenes im ms-Bereich schaltendes magnetisches Ventil und eine Düse, sowie ein Verfahren.The invention relates to a device for producing a droplet target, at least comprising a vessel for holding a target liquid, in which a high pressure is achieved by means of gaseous nitrogen, a magnetic valve connected to the vessel and switching in the ms range, and a nozzle, as well as a procedure.
Im Folgenden werden dem Stand der Technik nach bekannte Vorrichtungen beschrieben, mittels derer Flüssigkeitströpfchen erzeugt werden, wobei in der Wechselwirkung mit auf diese Tröpfchen gerichtetem Laserstrahl Röntgenstrahlen oder extrem ultraviolettes Licht gebildet werden. Diese Strahlen werden beispielsweise in der Mikroskopie oder Lithographie eingesetzt.Known devices according to the prior art are described below, by means of which liquid droplets are generated, X-rays or extremely ultraviolet light being formed in interaction with the laser beam directed onto these droplets. These beams are used, for example, in microscopy or lithography.
In US 6,324,256 ist in einer Anordnung, die eine Laserplasma-Quelle zur Erzeugung von EUV-Licht beschreibt, auch eine Einrichtung zur Erzeugung von Tröpfchen-Targets enthalten. Die erzeugten Tröpfchen weisen einen größeren Durchmesser als Tröpfchen auf, die aus einem Gas erzeugt werden, das durch eine Düse geführt wird, hier kondensiert und eine Wolke von extrem kleinen Teilchen in Form von Clustern bildet. In der beschriebenen Lösung wird zunächst aus einem Gas mittels eines Wärmeaustauschers, der die Temperatur des Gases reduziert, eine Flüssigkeit erzeugt. Diese Flüssigkeit wird einer Düse zugeführt, deren Öffnung in Richtung Austrittsöffnung größer wird. In diesem Abschnitt werden die Tröpfchen geformt, die dann aus der Austrittsöffnung der Düse austreten und mit einem Laserstrahl zur Erzeugung von EUV-Licht in Wechselwirkung treten. Die Tröpfchengröße ist hierbei jedoch nicht definiert einstellbar. Bei dieser Lösung wird also zunächst das gasförmige Ausgangsmaterial in ein flüssiges umgewandelt. Ausserdem wechselwirken die Tröpfchen mit dem Laserstrahl sehr dicht an der Düse, wodurch diese in der Folge durch Erhitzen und Erosion zerstört wird.No. 6,324,256 also contains a device for generating droplet targets in an arrangement which describes a laser plasma source for generating EUV light. The droplets produced have a larger diameter than droplets which are generated from a gas which is passed through a nozzle, condenses here and forms a cloud of extremely small particles in the form of clusters. In the solution described, a liquid is first generated from a gas by means of a heat exchanger which reduces the temperature of the gas. This liquid is fed to a nozzle, the opening of which becomes larger in the direction of the outlet opening. In this section, the droplets are formed, which then emerge from the outlet opening of the nozzle and interact with a laser beam to generate EUV light to step. However, the droplet size cannot be set in a defined manner. With this solution, the gaseous starting material is first converted into a liquid one. In addition, the droplets interact with the laser beam very close to the nozzle, which is subsequently destroyed by heating and erosion.
Von L. Rymell und H. M. Hertz wird in Opt. Commun. 103, 105 (1993) über eine Röntgenstrahlquelle berichtet, die Ethanol-Tröpfchen als Target verwendet. Für die Erzeugung dieser Tröpfchen wurde Ethanol bei 30 bis 50 at in eine Vakuumkammer durch eine Kapillare mit ca. 10 μm Durchmesser, die sich in eine Düse verjüngt, gedrückt. Um ein Flüssigkeitsvolumen - hier mit einem Durchmesser von ca. 15 μm - synchronisiert erzeugen zu können, werden Druckstöße piezoelektrisch mit einer Frequenz von ca. 1 MHz erzeugt. Diese relativ großen Flüssigkeitströpfchen wurden für die Untersuchung der Wechselwirkung mit Laserstrahlung in einem Intensitätsbereich von 1012 bis 1014 W/cm2 verwendet, wie von O. Hemberg, B. A. M. Henson, M. Berlund and H. M. Hertz in J. Appl. Phys. 88, 5421 (2000) beschrieben. Da hierbei die Wechselwirkung mit jedem einzelnen Tröpfchen erfolgt und der Laserfokus nur wenig größer ist als der Durchmesser der Ethanol-Tröpfchen, spielt das Drift-Problem der Tröpfchen-Quelle eine wichtige Rolle, weshalb diese Arbeit insbesondere auf eine Lösung für eine akkurate Tröpfchen-Laser- Synchronisation gerichtet ist.L. Rymell and HM Hertz published in Opt. Commun. 103, 105 (1993) reported an X-ray source using ethanol droplets as a target. To generate these droplets, ethanol was pressed at 30 to 50 at into a vacuum chamber through a capillary with a diameter of approx. 10 μm, which tapers into a nozzle. In order to be able to generate a liquid volume - here with a diameter of approx. 15 μm - synchronously, pressure surges are generated piezoelectrically with a frequency of approx. 1 MHz. These relatively large liquid droplets were used to study the interaction with laser radiation in an intensity range from 10 12 to 10 14 W / cm 2 , as described by O. Hemberg, BAM Henson, M. Berlund and HM Hertz in J. Appl. Phys. 88, 5421 (2000). Since the interaction takes place with every single droplet and the laser focus is only slightly larger than the diameter of the ethanol droplets, the drift problem of the droplet source plays an important role, which is why this work focuses in particular on a solution for an accurate droplet laser - synchronization is directed.
Hochdichter Tröpfchennebel mit einer Dichte von bis zu 1019 Atom/cm3 mit einem Tröpfchendurchmesser von etwa 1 μm wurde mit einer Tröpfchenquelle hergestellt, die in Rev. Sei. Instrum. 69, 3780 (1998) von L. C. Mountford, R. A. Smith and M. R. H. R. Hutchinson beschrieben wurde und von der die vorliegende Erfindung ausgeht. Hierbei ist ein Magnetventil, welches den Flüssigkeitspuls und damit das Flüssigkeitsvolumen formiert, der Ausgangspunkt der Tröpfchenquelle. Ein Gefäß wurde mit einer Flüssigkeit gefüllt und mittels Ethanol unter hohem Druck gehalten. In Synchronisation mit dem Laser wird das Ventil für 2500 μs geöffnet, so dass die Tröpfchen aus der Düse austreten. Tröpfchen mit einem kleineren Durchmesser von ca. 0,6 μm konnten durch anschließendes elektrostatisches Aufspalten der Tröpfchen, das aber eine technisch aufwendige Anordnung verlangt, erzielt werden. Jedoch weist der Nebel, der aus diesen Tröpfchen besteht, eine geringere Dichte, nämlich ca. 1016 Atom/cm3, auf.High-density droplet mist with a density of up to 10 19 atoms / cm 3 and a droplet diameter of approximately 1 μm was produced using a droplet source, which is described in Rev. Sei. Instrum. 69, 3780 (1998) by LC Mountford, RA Smith and MRHR Hutchinson and from which the present invention is based. A solenoid valve, which forms the liquid pulse and thus the liquid volume, is the starting point of the droplet source. A vessel was filled with a liquid and kept under high pressure by means of ethanol. In synchronization with the laser the valve is opened for 2500 μs so that the droplets emerge from the nozzle. Droplets with a smaller diameter of approximately 0.6 μm could be achieved by subsequent electrostatic splitting of the droplets, which, however, requires a technically complex arrangement. However, the mist consisting of these droplets has a lower density, namely approximately 10 16 atoms / cm 3 .
Für die effektive Erzeugung von Röntgenstrahlen oder EUV-Licht ist es aber notwendig, dass Tröpfchen-Targets zur Verfügung stehen, die eine Ausdehnung in der Größe möglicher Laserwellenlängen haben (T.D. Donelly, M. Rust, I. Weiner, M. Allen, R.A. Smith, CA. Steinke, S. Wilks, J. Zweiback, T.E. Cowan and T. Ditmire J. Phys. B: At. Mol. Opt. Phys. 34, L313 (2001)) und somit im Vergleich zum Stand der Technik einen kleineren Durchmesser aufweisen und die einen Nebel bilden, der eine Atomdichte von > 1018 Atome/cm3 aufweist.For the effective generation of X-rays or EUV light, however, it is necessary that droplet targets are available which have the size of possible laser wavelengths (TD Donelly, M. Rust, I. Weiner, M. Allen, RA Smith , CA. Steinke, S. Wilks, J. Zweiack, TE Cowan and T. Ditmire J. Phys. B: At. Mol. Opt. Phys. 34, L313 (2001)) and thus a smaller one compared to the prior art Have diameter and form a nebula that has an atomic density of> 10 18 atoms / cm 3 .
Deshalb ist es Aufgabe der Erfindung, eine Lösung anzugeben, die die Erzeugung von derartigen Tröpfchen-Targets ermöglicht. Die hohe Dichte soll auch in größerem Abstand von der Düse realisiert sein, d.h. das Tröpfchen- Target weist eine im Vergleich zum Stand der Technik bessere Kollimation auf, um die Lebensdauer der Düse zu erhöhen.It is therefore an object of the invention to provide a solution that enables the generation of such droplet targets. The high density should also be realized at a greater distance from the nozzle, i.e. the droplet target has better collimation compared to the prior art in order to increase the service life of the nozzle.
Die Aufgabe wird durch eine Vorrichtung der eingangs genannten Art dadurch gelöst, dass erfindungsgemäß die Düse als Uberschallduse ausgebildet ist, das Ventil mit der Uberschallduse über einen Expansionskanal verbunden ist, um den Expansionskanal Mittel zur Heizung derart ausgebildet sind, dass die Temperatur auf eine Größe einstellbar ist, bei der ein übersättigter Dampf im Expansionskanal ausgebildet ist, und zwischen elektromagnetischem Ventil und dem Mittel zur Heizung ein Isolator angeordnet ist.The object is achieved by a device of the type mentioned at the outset in that, according to the invention, the nozzle is designed as a supersonic nozzle, the valve is connected to the supersonic nozzle via an expansion channel, and means for heating the expansion channel are designed such that the temperature can be adjusted to a size is, in which a supersaturated vapor is formed in the expansion channel, and an insulator is arranged between the electromagnetic valve and the means for heating.
Die erfindungsgemäße Vorrichtung ermöglicht die Erzeugung von hochdichten sub-μ Flüssigkeitstargets, die für die Untersuchung der Wechselwirkungsprozesse von Laserstrahlung mit Plasmen erforderlich sind. Im Gegensatz zum zitierten Stand der Technik, bei dem die Tröpfchen in der gesättigten Gasphase geformt werden, entstehen die Tröpfchen in der erfindungsgemäßen Lösung aus übersättigtem Dampf, der in einer Nebelwolke kondensiert. Das mit der erfindungsgemäßen Vorrichtung hergestellte Target besteht aus Tröpfchen mit einem mittleren Durchmesser von ca. 150 nm und weist eine durchschnittliche Atomdichte von > 1018 Atome/cm3 auf. Ein derartiges Target ermöglicht die Untersuchung von bisher unerforschten Zuständen, die zwischen Clustern (von einigen Atomen bis zu 106 Atome/Cluster mit einer lokalen Dichte, die annähernd der eines Festkörpers gleicht) und Festkörpern existieren. Ausserdem - bezogen auf die Vorteile eines Clustertargets - hat die räumliche Ausdehnung der Tröpfchen Einfluss auf eine verstärkte Raumladungsbegrenzung von heißen Elektronen, was wiederum zu einer verbesserten Kopplung der Laserenergie in die Ionen der Tröpfchen führt. Damit ist es möglich, ein wesentlich heißeres Plasma zu erzeugen und einen höheren Wirkungsgrad bei der Umwandlung in Röntgenstrahlen zu erzielen. Das mit der erfindungsgemäßen Vorrichtung hergestellte Tröpfchen-Target kann kontinuierlich erzeugt werden und hat eine zeitlich unbegrenzte Arbeitsweise.The device according to the invention enables the generation of high-density sub-μ liquid targets that are used for the investigation of the Interaction processes of laser radiation with plasmas are required. In contrast to the cited prior art, in which the droplets are formed in the saturated gas phase, the droplets in the solution according to the invention arise from supersaturated steam, which condenses in a cloud of fog. The target produced with the device according to the invention consists of droplets with an average diameter of approximately 150 nm and has an average atomic density of> 10 18 atoms / cm 3 . Such a target enables the investigation of hitherto unexplored states that exist between clusters (from a few atoms up to 10 6 atoms / clusters with a local density that is approximately similar to that of a solid) and solids. In addition - based on the advantages of a cluster target - the spatial expansion of the droplets has an impact on the increased space charge limitation of hot electrons, which in turn leads to an improved coupling of the laser energy into the ions of the droplets. This makes it possible to generate a much hotter plasma and to achieve a higher efficiency in the conversion into X-rays. The droplet target produced with the device according to the invention can be produced continuously and has a time-unlimited mode of operation.
Ausführungsformen der erfindungsgemäßen Vorrichtung beziehen sich auf die Ausgestaltung ihrer einzelnen Bestandteile. So ist vorgesehen, dass das gepulste elektromagnetische Ventil mit einer Pulsdauer von 2 ms arbeitet; der Expansionskanal eine Länge von einigen mm bis einige 10 mm und einen Durchmesser von einigen 100 μm bis in den mm-Bereich aufweist, die Uberschallduse einen konischen Öffnungswinkel 2Θ von einigen grd bis einige 10 grd, eine Eintrittsöffnung von einigen 100 μm im Durchmesser und einem einige mm langen konisch geformten Abschnitt aufweist. Nachdem die Target-Flüssigkeit beim Öffnen des Ventils in den Expansionskanal gedrückt wird, hier durch die Erwärmung ein übersättigter Wasserdampf vorliegt, dehnt sich dieser bei Durchgang durch die Ultraschalldüse aus, kühlt ab und bildet Flüssigkeitströpfchen in der gewünschten Größe und Dichte, wobei diese Parameter durch die Abmessungen des Expansionskanals, seiner Temperatur und den in ihm herrschenden Druck bestimmt sind.Embodiments of the device according to the invention relate to the configuration of its individual components. It is provided that the pulsed electromagnetic valve operates with a pulse duration of 2 ms; the expansion channel has a length of a few mm to a few 10 mm and a diameter of a few 100 μm into the mm range, the supersonic nozzle has a conical opening angle 2Θ of a few degrees to a few 10 degrees, an inlet opening of a few 100 μm in diameter and one has a few mm long conical section. After the target liquid is pressed into the expansion channel when the valve is opened, here there is a supersaturated water vapor due to the heating, this expands as it passes through the ultrasonic nozzle, cools and forms liquid droplets of the desired size and density, whereby this Parameters are determined by the dimensions of the expansion channel, its temperature and the pressure prevailing in it.
Das erfindungsgemäße Verfahren umfasst die folgenden Verfahrensschritte: Einfüllen einer Target-Flüssigkeit in ein Gefäß, in dem mittels nichtreaktiven Gases ein hoher Druck realisiert ist, kurzzeitiges Öffnen dieses Gefäßes mittels eines gepulsten elektromagnetischen Ventils, stoßweise Einleitung der Target-Flüssigkeit in einen Expansionskanal, Erhitzen des Expansionskanals derart, dass sich übersättigter Flüssigkeitsdampf bildet, Abkühlen dieses Dampfes beim Durchgang durch eine mit dem Expansionskanal verbundene Uberschallduse und Austreten der Tröpfchen aus der Austrittsöffnung der Düse in das Vakuum.The process according to the invention comprises the following process steps: filling a target liquid into a vessel in which a high pressure is achieved by means of non-reactive gas, briefly opening this vessel by means of a pulsed electromagnetic valve, intermittent introduction of the target liquid into an expansion channel, heating the Expansion channel in such a way that supersaturated liquid vapor forms, cooling of this vapor when passing through a supersonic nozzle connected to the expansion channel and droplets emerging from the outlet opening of the nozzle into the vacuum.
In Ausführungsformen zu diesem Verfahren wird ein im ms-Bereich arbeitendes gepulstes elektromagnetisches Ventil mit einer Pulsdauer insbesondere von 2 ms verwendet. Bei jedem Schaltvorgang des Ventils wird die Target-Flüssigkeit in den Expansionskanal und der entsprechende Dampf in die Uberschallduse gedrückt. Hierbei wird ein Expansionskanal mit einer Länge von einigen mm bis einige 10 mm und einem Durchmesser von einigen 100 μm bis in den mm-Bereich und eine Uberschallduse mit einem konischen Öffnungswinkel 2Θ von einigen grd bis einige 10 grd, einer Eintrittsöffnung von einigen 100 μm im Durchmesser und einem einige mm langen konisch geformten Abschnitt verwendet. Auf dem Weg zur Austrittsöffnung der Düse wird das übersättigte Gas in der Düse abgekühlt, was zur Bildung von Flüssigkeitströpfchen führt. Weiter ist zu bemerken, dass neben den bereits erwähnten Parametern des Expansionskanals auch der Düsendurchmesser den Durchmesser der Flüssigkeitströpfchen bestimmt, die aus der Düsenöffnung in das Vakuum austreten.In embodiments of this method, a pulsed electromagnetic valve operating in the ms range with a pulse duration in particular of 2 ms is used. Each time the valve is switched, the target liquid is pressed into the expansion channel and the corresponding vapor into the supersonic nozzle. Here, an expansion channel with a length of a few mm to a few 10 mm and a diameter of a few 100 μm into the mm range and a supersonic nozzle with a conical opening angle 2Θ of a few degrees to a few 10 degrees, an inlet opening of a few 100 μm in Diameter and a few mm long conical section. On the way to the outlet opening of the nozzle, the supersaturated gas is cooled in the nozzle, which leads to the formation of liquid droplets. It should also be noted that in addition to the parameters of the expansion channel already mentioned, the nozzle diameter also determines the diameter of the liquid droplets which emerge from the nozzle opening into the vacuum.
Im Vergleich zum Stand der Technik, von dem die Erfindung ausgeht, reguliert das Ventil in der erfindungsgemäßen Lösung direkt die Einspeisung in einen zusätzlich angeordneten Expansionskanal, in dem die Target- Flüssigkeit erwärmt wird. Das nunmehr vorliegende supergesättigte Gas wird zur Düsenaustrittsöffnung geführt und dabei abgekühlt, was in der Düse die Tröpfchenbildung bewirkt. Bei der bekannten Lösung hingegen schaltet das Ventil direkt die Düse auf und zu, wodurch eine wesentlich geringere Einflussnahme auf die Bildung und Ausdehnung der Tröpfchen und ihre Kollimation möglich ist.In comparison to the prior art from which the invention is based, the valve in the solution according to the invention directly regulates the feed into an additionally arranged expansion channel in which the target Liquid is heated. The super-saturated gas now present is led to the nozzle outlet opening and cooled in the process, which causes droplet formation in the nozzle. In the known solution, on the other hand, the valve directly switches the nozzle on and off, as a result of which much less influence on the formation and expansion of the droplets and their collimation is possible.
Die Erfindung wird in folgendem Ausführungsbeispiel anhand von Zeichnungen näher erläutert.The invention is explained in more detail in the following embodiment with reference to drawings.
Dabei zeigen:Show:
Fig. 1 den schematischen Aufbau einer erfindungsgemäßen Vorrichtung;1 shows the schematic structure of a device according to the invention;
Fig. 2 eine Kurve mit dem Schaltimpuls des Ventils und der zugehörigenFig. 2 is a curve with the switching pulse of the valve and the associated
Intensität des entstehenden Flüssigkeitsnebels in Abhängigkeit von der Zeit;Intensity of the resulting liquid mist as a function of time;
Fig. 3 eine Kurve mit der Ausbreitungsbreite des Flüssigkeitsnebels inFig. 3 is a curve with the spread of the liquid mist in
Abhängigkeit von der Entfernung von der Austrittsöffnung der Düse inDepends on the distance from the nozzle outlet in
Luft und Vakuum; Fig. 4 eine Kurve mit der Dichte des Flüssigkeitsnebels in Abhängigkeit von der Entfernung von der Austrittsöffnung der Düse;Air and vacuum; 4 shows a curve with the density of the liquid mist as a function of the distance from the outlet opening of the nozzle;
Fig. 5 eine Kurve mit der mittels CCD gemessenen relativen Intensität des gestreuten Lichts.5 shows a curve with the relative intensity of the scattered light measured by means of CCD.
Die erfindungsgemäße Vorrichtung zur Erzeugung eines Tröpfchen-Targets weist ein gepulstes elektromagnetisches Ventil 1 auf. Diese Ventil 1 verschließt ein Gefäß (nicht dargestellt), in dem die Target-Flüssigkeit mittels gasförmigem Stickstoff bei einem Druck von 35 bar gehalten wird. Die Target- Flüssigkeit kann Wasser sein, aber auch prinzipiell jede andere Flüssigkeit. Das Ventil 1 öffnet und schließt mit einer Pulsdauer von 2 ms und entlässt in der Öffnungsphase Wassertröpfchen in einen Expansionskanal 2 mit einem Durchmesser von 1 mm und einer Länge von 15 mm. In diesem Expansionskanal 2 wird mittels eines Heizers 3 eine Temperatur von 150 °C erzeugt, der Expansionskanal 2 ist von dem Ventil 1 mittels eines Isolators 5 getrennt. Der nunmehr am Ende des Expansionskanals 2 vorliegende übersättigte Wasserdampf wird durch eine Uberschallduse 4 geführt, die einen Öffnungswinkel von 2Θ = 7°, eine Eintrittsöffnung mit 500 μm im Durchmesser und einen 8 mm langen konischen Abschnitt aufweist, und die sub-μ Flüssigkeitströpfchen in das Vakuum formt. An der Austrittsöffnung der Uberschallduse 4 entseht ein Tröpfchen-Target, das kontinuierlich erzeugbar ist und eine zeitlich unbegrenzte Arbeitsweise ermöglicht.The inventive device for generating a droplet target has a pulsed electromagnetic valve 1. This valve 1 closes a vessel (not shown) in which the target liquid is kept at a pressure of 35 bar by means of gaseous nitrogen. The target liquid can be water, but also in principle any other liquid. The valve 1 opens and closes with a pulse duration of 2 ms and releases water droplets into an expansion channel 2 with a diameter of 1 mm and a length of 15 mm in the opening phase. In this expansion channel 2 is a temperature of 150 ° C by means of a heater 3 generated, the expansion channel 2 is separated from the valve 1 by means of an insulator 5. The supersaturated water vapor now present at the end of the expansion channel 2 is passed through a supersonic nozzle 4, which has an opening angle of 2Θ = 7 °, an inlet opening with a diameter of 500 μm and an 8 mm long conical section, and the sub-μ liquid droplets into it Vacuum forms. At the outlet opening of the supersonic nozzle 4 there is a droplet target which can be generated continuously and which enables an unlimited working time.
Fig. 2 zeigt eine Kurve mit dem Schaltimpuls des Ventils und der zugehörigen Intensität des entstehenden Flüssigkeitsnebels in Abhängigkeit von der Zeit, im Abstand von 1 mm von der Austrittsöffnung der Düse. Die Pulsdauer des Ventils betrug bei dieser Messung, bei der die von einem cw He-Ne-Laser erzeugte Strahlung auf das Tröpfchen-Target gerichtet, dort gestreut und die Intensität der gestreuten Strahlung im Abstand von 1 mm von der Düsenöffnung ermittelt wurde, 2 ms. Erkennbar ist, dass der Hauptteil des Spray-Pulses etwa 1 ms nach Öffnung des Ventils auftritt.Fig. 2 shows a curve with the switching pulse of the valve and the associated intensity of the resulting liquid mist as a function of time, at a distance of 1 mm from the outlet opening of the nozzle. The pulse duration of the valve in this measurement, in which the radiation generated by a cw He-Ne laser was aimed at the droplet target, scattered there and the intensity of the scattered radiation was determined at a distance of 1 mm from the nozzle opening, was 2 ms , It can be seen that the main part of the spray pulse occurs about 1 ms after opening the valve.
In Fig. 3 ist eine Kurve dargestellt, die die Ausbreitung des Flüssigkeitsnebels (Sprays) in Abhängigkeit von der Entfernung von der Austrittsöffnung der Düse in Luft und Vakuum zeigt. Verglichen mit den bekannten Ergebnissen aus dem Stand der Technik kann festgestellt werden, dass bei der erfindungsgemäßen Lösung eine um ca. 30 % bessere Kollimation erzielbar ist.3 shows a curve which shows the spread of the liquid mist (sprays) as a function of the distance from the outlet opening of the nozzle in air and vacuum. Compared with the known results from the prior art, it can be established that the solution according to the invention can achieve a collimation which is approximately 30% better.
Die Ausbreitungsgeometrie der erzeugten Teilchen-Nebelwolke lässt sich beschreiben mit R = (0,32 ± 0,02) x h + r, wobei R der Radius der Spray- /Nebelwolke ist, h der Abstand von der Uberschallduse und r der Radius der Uberschallduse an der Austrittsöffnung ist. Der Abstand Null entspricht der Austrittsöffnung der Uberschallduse. In Fig. 4 ist eine Kurve abgebildet, die sowohl die Abhängigkeit der Tröpfchendichte im Spray als auch die Abhängigkeit der durchschnittlichen Atomdichte im Spray von der Entfernung von der Austrittsöffnung der Düse zeigt. Die gemessene Tröpfchendichte variiert für Tröpfchen mit einem Durchmesser von 0,15 μm von (1 ,6+0,5) 1011 Tröpfchen/cm3 (bzw. eine mittlere Moleküldichte von 1 ,5-1018 cm"3) direkt an der Austrittsöffnung der Düse bis (7,5+0,7)-109 Tröpfchen/cm3 (bzw. eine mittlere Moleküldichte von 8-1016 cm"3) in 20 mm Abstand von der Austrittsöffnung. Das ist bei dieser Tröpfchengröße eine bis zu drei Größenordnungen höhere Tröpfchendichte als mit gegenwärtig beschriebenen Spray-Tröpfchenquellen, welches wichtig für die Konversion von eingestrahlter Laserenergie ist.The propagation geometry of the generated particle cloud can be described with R = (0.32 ± 0.02) xh + r, where R is the radius of the spray / fog cloud, h the distance from the supersonic nozzle and r the radius of the supersonic nozzle the outlet opening is. The distance zero corresponds to the outlet opening of the supersonic nozzle. 4 shows a curve which shows both the dependence of the droplet density in the spray and the dependence of the average atomic density in the spray on the distance from the outlet opening of the nozzle. The measured droplet density varies for droplets with a diameter of 0.15 μm from (1, 6 + 0.5) 10 11 droplets / cm 3 (or an average molecular density of 1, 5-10 18 cm "3 ) directly at the Outlet opening of the nozzle up to (7.5 + 0.7) -10 9 droplets / cm 3 (or an average molecular density of 8-10 16 cm "3 ) at a distance of 20 mm from the outlet opening. With this droplet size, this is up to three orders of magnitude higher droplet density than with currently described spray droplet sources, which is important for the conversion of irradiated laser energy.
Fig. 5 zeigt die Messdaten der Streulichtintensität in Abhängigkeit vom Beobachtungswinkel. Die durchgezogene Linie gibt die theoretische Verteilung der Streulichtintensität von Teilchen mit einem Durchmesser von 0,15 μm an. Die gute Übereinstimmung mit den Messdaten zeigt, dass hier eine engere Verteilung der Tröpfchengrößen vorliegt als im Vergleich zum gegenwärtigen Stand der Technik, so dass kein - wie beim gegenwärtigen Stand - Tröpfchengrößefilter nachgeschaltet werden muss und so die effektive Tröpfchendichte vorteilhaft erhöht wird. 5 shows the measurement data of the scattered light intensity as a function of the observation angle. The solid line indicates the theoretical distribution of the scattered light intensity of particles with a diameter of 0.15 μm. The good agreement with the measurement data shows that there is a narrower distribution of the droplet sizes than in comparison with the current state of the art, so that no droplet size filter has to be connected, as in the current state, and the effective droplet density is thus advantageously increased.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10260376A DE10260376A1 (en) | 2002-12-13 | 2002-12-13 | Device and method for generating a droplet target |
DE10260376 | 2002-12-13 | ||
PCT/DE2003/004129 WO2004056158A2 (en) | 2002-12-13 | 2003-12-11 | Device and method for the creation of droplet targets |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1574116A2 true EP1574116A2 (en) | 2005-09-14 |
EP1574116B1 EP1574116B1 (en) | 2007-05-30 |
Family
ID=32519270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03813077A Expired - Lifetime EP1574116B1 (en) | 2002-12-13 | 2003-12-11 | Method for the creation of droplet targets |
Country Status (7)
Country | Link |
---|---|
US (1) | US7306015B2 (en) |
EP (1) | EP1574116B1 (en) |
JP (1) | JP4488214B2 (en) |
AT (1) | ATE363819T1 (en) |
AU (1) | AU2003300494A1 (en) |
DE (2) | DE10260376A1 (en) |
WO (1) | WO2004056158A2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7405416B2 (en) * | 2005-02-25 | 2008-07-29 | Cymer, Inc. | Method and apparatus for EUV plasma source target delivery |
DE102004036441B4 (en) | 2004-07-23 | 2007-07-12 | Xtreme Technologies Gmbh | Apparatus and method for dosing target material for generating shortwave electromagnetic radiation |
EP1854121B1 (en) * | 2005-02-25 | 2013-05-29 | Cymer, Inc. | Method and apparatus for euv light source target material handling |
DE102006017904B4 (en) * | 2006-04-13 | 2008-07-03 | Xtreme Technologies Gmbh | Arrangement for generating extreme ultraviolet radiation from an energy beam generated plasma with high conversion efficiency and minimal contamination |
DE102009018021B4 (en) | 2009-04-18 | 2013-09-05 | Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh | Microdosing system with a pulsed laser |
EP2951643B1 (en) | 2013-01-30 | 2019-12-25 | Kla-Tencor Corporation | Euv light source using cryogenic droplet targets in mask inspection |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE364469A (en) * | 1928-10-13 | |||
US4962886A (en) * | 1988-10-14 | 1990-10-16 | The Board Of Trustees Of The University Of Maine | High flow rate nozzle system with production of uniform size droplets |
FR2799667B1 (en) * | 1999-10-18 | 2002-03-08 | Commissariat Energie Atomique | METHOD AND DEVICE FOR GENERATING A DENSE FOG OF MICROMETRIC AND SUBMICROMETRIC DROPLETS, APPLICATION TO THE GENERATION OF LIGHT IN EXTREME ULTRAVIOLET IN PARTICULAR FOR LITHOGRAPHY |
US6711233B2 (en) * | 2000-07-28 | 2004-03-23 | Jettec Ab | Method and apparatus for generating X-ray or EUV radiation |
US6324256B1 (en) * | 2000-08-23 | 2001-11-27 | Trw Inc. | Liquid sprays as the target for a laser-plasma extreme ultraviolet light source |
US6498832B2 (en) * | 2001-03-13 | 2002-12-24 | Euv Llc | Electrode configuration for extreme-UV electrical discharge source |
US6738452B2 (en) * | 2002-05-28 | 2004-05-18 | Northrop Grumman Corporation | Gasdynamically-controlled droplets as the target in a laser-plasma extreme ultraviolet light source |
US6792076B2 (en) * | 2002-05-28 | 2004-09-14 | Northrop Grumman Corporation | Target steering system for EUV droplet generators |
-
2002
- 2002-12-13 DE DE10260376A patent/DE10260376A1/en not_active Ceased
-
2003
- 2003-12-11 WO PCT/DE2003/004129 patent/WO2004056158A2/en active IP Right Grant
- 2003-12-11 US US10/538,802 patent/US7306015B2/en not_active Expired - Lifetime
- 2003-12-11 AU AU2003300494A patent/AU2003300494A1/en not_active Abandoned
- 2003-12-11 AT AT03813077T patent/ATE363819T1/en not_active IP Right Cessation
- 2003-12-11 JP JP2004559610A patent/JP4488214B2/en not_active Expired - Lifetime
- 2003-12-11 DE DE50307397T patent/DE50307397D1/en not_active Expired - Fee Related
- 2003-12-11 EP EP03813077A patent/EP1574116B1/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO2004056158A2 * |
Also Published As
Publication number | Publication date |
---|---|
US7306015B2 (en) | 2007-12-11 |
US20060054238A1 (en) | 2006-03-16 |
WO2004056158A3 (en) | 2004-09-16 |
JP4488214B2 (en) | 2010-06-23 |
WO2004056158A2 (en) | 2004-07-01 |
EP1574116B1 (en) | 2007-05-30 |
AU2003300494A1 (en) | 2004-07-09 |
DE50307397D1 (en) | 2007-07-12 |
JP2006510176A (en) | 2006-03-23 |
DE10260376A1 (en) | 2004-07-15 |
ATE363819T1 (en) | 2007-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006017904B4 (en) | Arrangement for generating extreme ultraviolet radiation from an energy beam generated plasma with high conversion efficiency and minimal contamination | |
DE60310807T2 (en) | Method for producing droplet targets for a high-pulse-rate laser-plasma extreme-ultraviolet light source | |
DE69813065T2 (en) | X-ray source using laser-generated plasma, and device for semiconductor lithography and method using the same | |
DE102004036441B4 (en) | Apparatus and method for dosing target material for generating shortwave electromagnetic radiation | |
DE69722609T2 (en) | METHOD AND DEVICE FOR GENERATING X-RAY OR EXTREME UV RADIATION | |
DE10306668B4 (en) | Arrangement for generating intense short-wave radiation based on a plasma | |
DE102008018827A1 (en) | Apparatus for generating an atmospheric pressure plasma | |
EP1691588A2 (en) | Apparatus and method for production of extreme ultraviolet (EUV) radiation | |
WO2013091927A1 (en) | Device for generating a hollow cathode arc discharge plasma | |
EP2130414B1 (en) | Device and method for generating a plasma beam | |
DE4225169C2 (en) | Device and method for generating agglomerate jets | |
DE102007004440A1 (en) | Apparatus and method for generating extreme ultraviolet radiation by means of an electrically operated gas discharge | |
WO2010115526A1 (en) | Method for avoiding contamination and euv lithography system | |
EP0597240A1 (en) | Injection device and process | |
EP1574116B1 (en) | Method for the creation of droplet targets | |
EP0112858B1 (en) | Method and device producing molecular beams and use of this method | |
EP0405481B1 (en) | Apparatus for spraying a fluid | |
WO2020083746A1 (en) | Device and method for applying a liquid immersion agent into a gap between a microscope objective and a sample to be examined under the microscope | |
EP0794821B1 (en) | Process and device for transforming a liquid stream into a gas stream | |
DE69709270T2 (en) | Process for vaporizing liquid feeds and vaporizers therefor | |
DE69411882T2 (en) | Jet charge exchange device | |
WO2008125078A2 (en) | Method and device for cooling a gas | |
DE102010029939A1 (en) | Method and device for contacting a semiconductor substrate by means of a jet printing method | |
DE60212581T2 (en) | METHOD AND ARRANGEMENT FOR GENERATING RADIATION | |
DE102023107701A1 (en) | Method and laser system for generating secondary radiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050707 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR THE CREATION OF DROPLET TARGETS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FORSCHUNGSVERBUND BERLIN E.V. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SCHNUERER, MATTHIAS Inventor name: TER-AVETISYAN, SARGIS Inventor name: NICKLES, PETER-VIKTOR |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50307397 Country of ref document: DE Date of ref document: 20070712 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070910 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071030 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070831 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
26N | No opposition filed |
Effective date: 20080303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
BERE | Be: lapsed |
Owner name: FORSCHUNGSVERBUND BERLIN E.V. Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071201 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20211220 Year of fee payment: 19 Ref country code: GB Payment date: 20211222 Year of fee payment: 19 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |