EP1566829B1 - Method for the production of an output-ion-stream - Google Patents
Method for the production of an output-ion-stream Download PDFInfo
- Publication number
- EP1566829B1 EP1566829B1 EP04028501A EP04028501A EP1566829B1 EP 1566829 B1 EP1566829 B1 EP 1566829B1 EP 04028501 A EP04028501 A EP 04028501A EP 04028501 A EP04028501 A EP 04028501A EP 1566829 B1 EP1566829 B1 EP 1566829B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ions
- source
- region
- ion
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/10—Ion sources; Ion guns
- H01J49/14—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
- H01J49/145—Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers using chemical ionisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
Definitions
- the invention relates to a method for obtaining an essentially only one single ion species existing source ion current, wherein in the ionization of a source gas in an ionization region formed ions and / or extracted from the ionization ion ions in a region in which there is source gas, be reacted until essentially only one or more source ion types are present that do not react with the source gas.
- Such a method is for example from the AT 001 637 U1 known.
- This document describes a process for obtaining an ion stream consisting essentially of H 3 O + ions.
- water vapor is ionized in an ionization region by means of an ion source, whereby various ions are formed (O + , OH + , H + , H 2 + , ...).
- These ions are extracted by means of a weak electric field into a region outside the ionization region and are left in this region, in which H 2 O is at a pressure above 0.01 Torr, until the first of H 3 O + ions have converted various ions by subsequent reactions in H 3 O + ions.
- the ion current is also passed through an electric field whose field strength is sufficiently high, so that H 3 O + .
- H 2 O cluster ions formed by association reactions with neutral ions occur between two successive bursts Shock partners have acquired sufficient kinetic energy, so that these shocks are predominantly dissociative. It prevents the formation of such cluster ions or largely reversed.
- H 2 O may also be admixed with an additional gas, such as Ar, Kr or N 2 , which serves as cluster partner for the cluster ions but does not react chemically with the H 3 O + ions.
- Such an ion stream consisting essentially of H 3 O + ions can be used in particular as a primary ion stream for the chemical ionization of a sample gas by proton exchange reactions in order to mass spectrometrically examine the ions formed in the sample gas.
- This proton exchange reaction mass spectrometry, short PTR-MS is in the AT 001 637 U1 and the references cited therein. It is a special one Type of Ion Molecule Reaction Mass Spectrometry (IMR-MS), which is also described in the AT 001 637 U1 and the references cited therein.
- the AT 406 206 B is also a procedural ago from the AT 001 637 U1 known methods analogous to obtain a substantially consisting of NH 4 + ions ionic current.
- ammonia NH 3
- the ions formed are left after extraction from the ionization area in a range with an ammonia pressure of above 0.01 Torr (1.33 Pascal) until the substantially only NH 4 + ion has formed ion current (to prevent or reverse the formation of cluster ions again a sufficiently high electric field strength is applied to induce shocks).
- the chemical ionization of the substance gas takes place here as an ionization chamber described space (which is commonly referred to as "drift tube").
- the ionization chamber is supplied partially ionized primary gas from an ion source, which is designed here as a gas discharge chamber.
- the ionization chamber is also supplied with a reactant gas in addition to the substance gas, which reacts with the ions entering the ionization chamber from the ion source and in turn ionizes the substance gas.
- the ionization chamber is thus a mixture of the more or less ionized components of the primary gas, reactant gas and the gas of substance. An extraction of an essentially only one single ion species existing initial ion current is not apparent from this document.
- both the ionized primary particles and the reactant gas and substance ions are conducted.
- the object of the invention is to expand the range of producible output ion currents, which consist essentially of only a single type of ion, without requiring a mass spectrometric filtering (as in AT 403 214 B described) is required. According to the invention, this is achieved by a method having the features of patent claim 1.
- the addition of the reactant gas in a spatially separated from the primary ionization reaction area also has the advantage that gases can be added, the presence of which would be problematic in the primary ionization, z. NO in filament ion sources (leads to rapid filament breakage) or carbon-containing gases in plasma ion sources (leading to carbon deposits).
- suitable measures are taken so that a backflow of the reactant gas from the reaction zone into the ionization zone is substantially prevented, ie. H. less than 10%, preferably less than 5%, of the partial pressure in the ionization zone should originate from the reactant gas or from products formed therefrom.
- the spaces forming the ionization region and the reaction region may be separated by one or more intermediate walls, wherein a diaphragm opening is arranged in a respective intermediate wall, and a gas flow pointing in the direction from the ionization region to the reaction region through at least one of the diaphragm openings is maintained by appropriate pumping devices , Also Eisenabpumpeptept between the areas are conceivable and possible.
- ions extracted from the ionization zone directly into the reaction zone.
- ions of the one or more source ion species can subsequently be extracted into the reaction zone in which they are substantially (ie more than 90%, preferably more than 95%, by adding the reactant gas into the single ion species of the parent ion stream. ) being transformed.
- the reactions of the ions formed in the ionization to the ions of the one or more source ion species are essentially already in the ionization region or these reactions take place mainly or partly in the reaction region , It must be to source gas with a sufficient pressure (for example, more than 1 Pascal) in the reaction area.
- the reactant gas should not react with ions that have not yet been converted into ions of one or more source ion species. This is the case for some combinations of source gases and reactant gases.
- a clean gas or a gas mixture can be used.
- the use of a clean gas is preferred, wherein the use of gas mixtures would also be conceivable and possible.
- the device shown schematically in the figure for carrying out the method according to the invention has three areas.
- the primary ionization area A is supplied with a source gas through a feed 1.
- an ion source or ionization device 2 is arranged in the ionization region A.
- the primary ionization of the source gas takes place z.
- electron emission from a filament by ionizing radiation (eg, ⁇ -particles), by an electrical discharge, or other ionization techniques.
- the choice of the primary ionization method is not relevant to the subject invention.
- the source gas used is a clean gas, for example hydrogen (H 2 ), or a gas mixture, for example H 2 argon (Ar) or nitrogen (N 2 ) nitrous oxide (N 2 O).
- H 2 hydrogen
- Ar hydrogen
- N 2 nitrogen
- N 2 O nitrous oxide
- Total pressure and partial pressures depend on the choice of ionization method (low pressure or high pressure ion source).
- the primary ionization region A there are a variety of species (ions, electrons, atoms, molecules, radicals, excited atoms, excited molecules).
- the relative proportions of the exemplified, extractable ion species depend on various source parameters (total pressure of the source gas or partial pressures of the various source gas components, temperature, etc.). In addition to singly charged ions, multiply charged ions can also occur and be extracted, depending on the ion source and the source gas.
- the intermediate region B is fed with the source gas (total pressure> 0.01 mbar, particle gas density N B ).
- the feed can be done by flowing out of the ionization region A in the intermediate region of source gas.
- the pressure of the source gas in the intermediate region B may be similar or equal to the pressure of the source gas in the ionization region A.
- an electric field of field strength E B is applied by electrodes 5.
- the intermediate region is at a temperature T B.
- the ions extracted from the primary ionization region A interact with the source gas.
- the spectrum of interactions includes binary ion-molecule reactions (eg H 2 + + H 2 ⁇ H 3 + + H), ternary ion-molecule reactions (eg H + + H 2 + H 2 ⁇ H 3 + + H 2 ), collision-induced dissociation reactions (eg H 3 + • H 2 + H 2 ⁇ H 3 + + H 2 + H 2 ), as well as activation and deactivation reactions (eg (H 2 + ) * + H 2 ⁇ H 2 + + H 2 )
- the parameters E B / N B and T B define the reaction conditions, ie by varying these parameters it is possible to prefer or suppress certain reaction channels.
- the ion stream consisting of numerous ion species and extracted from the primary ionization region A is extracted is converted into a selective ionic stream substantially of an ion species not reacting with the source gas, or an ionic stream of essentially a plurality of non-source-reactive ion species.
- source ion species These one or more ion species which do not react with the source gas, ie they are "stable" to the source gas, are referred to in this document as "source ion species”.
- the ionic current is preferably at least 90% of the one or more source ion species, with a value of at least 95% being particularly preferred.
- the proportion of ions of the source ion species could also be lower than the stated value of preferably 90% or 95%, for example if a proportion of cluster ions (eg H 3 + .H 2 ) is present, which is converted into dissociation reactions in ions of the one or more source ion species (plus neutral source gas) only in reaction region C described below by applying an electric field with a sufficient field strength in the reaction region C to carry out the required collision-induced dissociation reactions becomes.
- a proportion of cluster ions eg H 3 + .H 2
- E B / N B and T B vary depending on the application example. It would also be conceivable and possible to improve the efficiency of the dissociation reactions taking place in the intermediate region B by adding an additional gas (eg Ar, Kr or N 2 ) to the source gas which does not react with the ions extracted in the intermediate region via ion molecule reactions but instead only serves as collision partner.
- an additional gas eg Ar, Kr or N 2
- a selective H 3 + ion stream is also formed (cf. Praxmarer et al., J. Chem. Phys. 100 (12), 8884-8889, 1994 ).
- a pure gas X whose proton affinity is smaller than that of H 2 is formed as source ion type H 3 + . If the proton affinity of component X is greater than that of H 2 , XH + ions are formed as source ion species.
- reaction conditions are chosen so that a selective O - ion current is maintained (ref2).
- the intermediate region B is already known from conventional methods and devices for obtaining a selective ion current (it corresponds to the regions B and C of FIG AT 001 637 U1 and AT 406 206 B ) and is also called "source drift region".
- the intermediate region B could also be divided into two subregions B1 and B2. In the area B1, the source gas would then be present, but the electric field strength would be too small for dissociation reactions. In the subsequent area B2, a higher field strength would be present to cause the dissociation reactions.
- the resulting ions of the one or more source ion species are extracted through an aperture 6 in an intermediate wall 7 in the reaction region C.
- reaction region C an additional, different from the source gas in its chemical composition, reactive collision partner is added, which is referred to in the context of this document as a reactant gas.
- the reactant gas can be formed by a clean gas or a gas mixture.
- the total pressure in the reaction region C is more than 0.01 mbar (particle gas density N c ).
- the partial pressures of source gas and reactant gas vary depending on the source and reactant gas used.
- the admixture of the reactant gas is effected by a feed 8 shown schematically in the figure. By means of electrodes 9, an electric field of the field strength E c is applied.
- the reaction region C is at a temperature T c .
- the ion stream extracted from the intermediate region B is converted into an output ion stream which is substantially, i. H. more than 90%, preferably more than 95%, of a single type of ion. In practice, values of up to more than 99% can be achieved. If the ion stream extracted from the intermediate region B consists of more than one source ion species, the conversion into the starting ion stream comprising essentially only one single ion species is achieved by the fact that only the reactions of the various source ion species with the reactant gas a single production variety emerges.
- the parameters E c / N c and T c define the reaction conditions, ie by varying these parameters it is possible to favor certain reaction channels and suppress others to produce a selective ion source ion stream.
- the field strength of the field E c dissociation reactions can be effected in order to reverse the formation of cluster ions or to prevent their formation from the outset.
- an additional gas could also be mixed into the reaction region C, which does not react with the ions present in the reaction region C via ion molecule reactions, but serves only as a collision partner.
- an electrostatic potential is preferably generated. It is hereby preferred that in the intermediate region B and / or in the reaction region C, a homogeneous electric field E B or E c is generated. Due to the homogeneity of the electric field E B or E c , the reaction conditions can be manipulated in an advantageous manner, ie, certain reaction channels are preferred or suppressed.
- different selective output ion streams ie, essentially only one ionic sort of output ion streams
- Such chemical ionization methods are used, for example, in ion-molecule reaction mass spectrometry (IMR-MS) or in proton exchange reaction mass spectrometry (PTR-MS).
- IMR-MS ion-molecule reaction mass spectrometry
- PTR-MS proton exchange reaction mass spectrometry
- a substance gas to be examined is ionized by means of the initial ion current in a drift tube and subsequently analyzed by mass spectrometry.
- the reaction region C remains substantially free of the substance gas to be examined, ie the partial pressure of the substance gas in the reaction region C is less than 1/10 of the partial pressure of the substance gas in the drift tube.
- Non-reactive components eg nitrogen
- the type of ion at the exit 10 differs from the one or more source ion types.
- BH 3 + ions are extracted as source ion species at the exit of the intermediate region, they can be used to generate, for example, initial ion currents which have the following ions in each case as substantially single ion species: N 2 H + , H 3 O + , NO + , NH 4 + .
- Reactant gases which react with the H 3 + ion stream from intermediate region B to the single ion species forming the parent ion stream are: Nitrogen (N 2 ) H 3 + + N 2 ⁇ N 2 H + + H 2 resulting selective output ion current N 2 H + Water (H 2 O) H 3 + + H 2 O ⁇ H 3 O + + H 2 resulting selective output ion current H 3 O + Nitric oxide (NO) H 3 + + NO ⁇ HNO + + H 2 ENT + + NO ⁇ NO + + ENT resulting selective output ion current NO + Ammonia (NH 3 ) H 3 + + NH 3 ⁇ NH 4 + + H 2 resulting selective ion current: NH 4 +
- a selective OH - exit ion current can be obtained from the O - ion stream extracted from the intermediate region B by means of the reactant gases methane (CH 4 ) or H 2 : O - + C ⁇ H 4 ⁇ OH - + C ⁇ H 4 O - + H 2 ⁇ OH - + H
- N 2 H + is formed as N 2 reactant gas as the starting ion current, if the proton affinity of component X is smaller than that of N 2 .
- H 2 O as the reactant gas, if the proton affinity of X is less than the proton affinity of H 2 O, then the essentially single ion species of the H 2 O + source ion current is formed.
- the intermediate area B it would also be conceivable and possible for the intermediate area B to be omitted.
- the reactions of the ions formed in the ionization region to the source ion species which does not react with the source gas or the plurality of source ion species which do not react with the source gas could then either proceed essentially completely already in the ionization region and / or after the extraction of the (not or only partially reacted to the one or more source ion species) continue ions from the ionization in the reaction region C in this by the existing partial pressure of source gas.
- the reactant gas does not react with the precursor products of the one or more source ion species and / or precursor products reacting with the reactant gas are allowed to react with non-interfering ions with a suitable additional gas.
- areas A and B can at least partially overlap or areas B and C can partially overlap, as long as B does not overlap with A.
- the reaction region C is located outside the ionization region A (ie outside the region in which the plasma formed during the ionization of the source gas is present).
- the reaction area C is thus spatially separated from the ionization region A and it is a feedback of reactant gas from the reaction region C in the ionization A substantially suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Electron Tubes For Measurement (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Gewinnung eines im Wesentlichen nur aus einer einzigen lonensorte bestehenden Ausgangs-lonenstroms, wobei bei der Ionisation eines Quellgases in einem lonisationsbereich gebildete lonen und/oder aus dem lonisationsbereich extrahierte lonen solange in einem Bereich, in welchem sich Quellgas befindet, reagieren gelassen werden, bis im Wesentlichen nur noch eine oder mehrere Quell-lonensorten vorliegen, die nicht mit dem Quellgas reagieren.The invention relates to a method for obtaining an essentially only one single ion species existing source ion current, wherein in the ionization of a source gas in an ionization region formed ions and / or extracted from the ionization ion ions in a region in which there is source gas, be reacted until essentially only one or more source ion types are present that do not react with the source gas.
Ein derartiges Verfahren ist beispielsweise aus der
Ein solcher im Wesentlichen aus H3O+-lonen bestehender Ionenstrom kann insbesondere als Primärionenstrom für die chemische lonisation eines Probegases durch Protonentausch-Reaktionen eingesetzt werden, um die gebildeten lonen des Probegases massenspektromerisch zu untersuchen. Diese Protonentausch-Reaktions-Massenspektrometrie, kurz PTR-MS, ist in der
In der
Aus der
Die Gewinnung von nur aus einer einzigen lonensorte bestehenden Ausgangs-lonenströmen ohne eine solche massenspektrometrische Filterung, wie sie aus der
In der
Aufgabe der Erfindung ist es, das Spektrum an erzeugbaren Ausgangs-lonenströmen, die im Wesentlichen nur aus einer einzigen lonensorte bestehen, zu erweitern, ohne dass hierzu eine massenspektrometrische Filterung (wie in der
Durch das erfindungsgemäße Verfahren ist es insbesondere möglich im Wesentlichen nur aus einer einzigen lonensorte bestehende Ausgangs-lonenströme zu erzeugen, welche bei direkter Zugabe des Reaktantgases in den primären lonisationsbereich aufgrund der in diesem Bereich anwesenden verschiedenen Spezies (lonen, Elektronen, Atome, Moleküle, Radikale, angeregte Atome, angeregte Moleküle) nicht in dieser Form entstehen würden. Würde zum Beispiel Stickstoff (N2) dem Quellgas H2 beigemischt, so würde im Plasma des primären lonisierungsbereiches neutrales NH3 entstehen (vgl.: ref1:
Die Zugabe des Reaktantgases in einen vom primären lonisationsraum räumlich getrennten Reaktionsbereich hat weiters den Vorteil, dass auch Gase beigemengt werden können, deren Anwesenheit im primären lonisationsbereich problematisch wäre, z. B. NO in Filament-lonenenquellen (führt zu raschem Filamentbruch) oder kohlenstoffhaltige Gase in Plasmaionenquellen (führt zu Kohlenstoffabscheidungen).The addition of the reactant gas in a spatially separated from the primary ionization reaction area also has the advantage that gases can be added, the presence of which would be problematic in the primary ionization, z. NO in filament ion sources (leads to rapid filament breakage) or carbon-containing gases in plasma ion sources (leading to carbon deposits).
Bevorzugerweise werden geeignete Maßnahmen getroffen, so dass eine Rückströmung des Reaktantgases vom Reaktionsbereich in den lonisationsbereich im Wesentlichen unterbunden wird, d. h. weniger als 10%, vorzugsweise weniger als 5% des Partialdrucks im lonisationsbereich soll vom Reaktantgas oder daraus gebildeten Produkten herrühren. Hierzu können beispielsweise die den lonisationsbereich und den Reaktionsbereich bildenden Räume durch ein oder mehrere Zwischenwände getrennt sein, wobei in einer jeweiligen Zwischenwand eine Blendenöffnung angeordnet ist, und durch entsprechende Pumpeinrichtungen ein in Richtung vom lonisationsbereich zum Reaktionsbereich weisender Gasfluss durch mindestens eine der Blendenöffnungen aufrecht erhalten werden. Auch Zwischenabpumpungen zwischen den Bereichen sind denkbar und möglich.Preferably, suitable measures are taken so that a backflow of the reactant gas from the reaction zone into the ionization zone is substantially prevented, ie. H. less than 10%, preferably less than 5%, of the partial pressure in the ionization zone should originate from the reactant gas or from products formed therefrom. For this purpose, for example, the spaces forming the ionization region and the reaction region may be separated by one or more intermediate walls, wherein a diaphragm opening is arranged in a respective intermediate wall, and a gas flow pointing in the direction from the ionization region to the reaction region through at least one of the diaphragm openings is maintained by appropriate pumping devices , Also Zwischenabpumpungen between the areas are conceivable and possible.
Prinzipiell wäre es - zumindest in einigen Anwendungsfällen - denkbar und möglich, die aus dem lonisationsbereich extrahierten lonen direkt in den Reaktionsbereich zu führen. Bevorzugt ist es aber, die aus dem lonisationsbereich extrahierten lonen zunächst in einen Zwischenbereich zu führen, in welchem sie solange belassen werden, bis sich auch die zunächst noch von der ein oder mehreren Quell-lonensorten verschiedenen lonen im Wesentlichen (d. h. zu mehr als 90%, vorzugsweise zu mehr als 95%) in lonen der ein oder mehreren Quell-lonensorten umgewandelt haben. Von diesem Zwischenbereich können in der Folge lonen der ein oder mehreren Quell-lonensorten in den Reaktionsbereich extrahiert werden, in dem sie durch Zugabe des Reaktantgases in die einzige lonensorte des Ausgangsionenstroms im Wesentlichen (d. h. zu mehr als 90%, vorzugsweise zu mehr als 95%) umgewandelt werden.In principle, it would be conceivable and possible, at least in some applications, to lead the ions extracted from the ionization zone directly into the reaction zone. However, it is preferred to first guide the ions extracted from the ionization region into an intermediate region in which they are left until the ions, which are still initially different from the one or more source ion species, essentially (ie more than 90%) , preferably more than 95%) in ions of one or more source ion species. From this intermediate region, ions of the one or more source ion species can subsequently be extracted into the reaction zone in which they are substantially (ie more than 90%, preferably more than 95%, by adding the reactant gas into the single ion species of the parent ion stream. ) being transformed.
Falls die Extraktion von lonen aus dem lonisationsbereich direkt in den Reaktionsbereich erfolgt, sind die Reaktionen der bei der lonisation gebildeten lonen zu den lonen der ein oder mehreren Quell-lonensorten im Wesentlichen bereits im lonisationsbereich erfolgt oder diese Reaktionen finden hauptsächlich oder zum Teil im Reaktionsbereich statt. Es muss dazu Quellgas mit einem ausreichenden Druck (beispielsweise mehr als 1 Pascal) im Reaktionsbereich vorhanden sein. Weiters soll das Reaktantgas möglichst nicht mit lonen, welche noch nicht in lonen der einen oder mehreren Quell-lonensorten umgewandelt worden sind, reagieren. Bei manchen Kombinationen von Quellgasen und Reaktantgasen ist dies der Fall. Denkbar und möglich wäre es, in speziellen Fällen, von den Primärionen und/oder Folgeprodukten störende lonensorten (die mit dem Reaktantgas zu unerwünschten lonensorten reagieren) durch Zugabe eines geeigneten Zusatzgases in nicht störende lonen umzuwandeln.If the extraction of ions from the ionization region takes place directly into the reaction region, the reactions of the ions formed in the ionization to the ions of the one or more source ion species are essentially already in the ionization region or these reactions take place mainly or partly in the reaction region , It must be to source gas with a sufficient pressure (for example, more than 1 Pascal) in the reaction area. Furthermore, if possible, the reactant gas should not react with ions that have not yet been converted into ions of one or more source ion species. This is the case for some combinations of source gases and reactant gases. It would be conceivable and possible, in special cases, for the primary ions and / or secondary products to disrupt interfering ion types (which are undesirable with the reactant gas) ion species) by adding a suitable additional gas into non-interfering ions to convert.
Als Quellgas kann ein Reingas oder ein Gasgemisch verwendet werden. Für das Reaktantgas ist die Verwendung eines Reingases bevorzugt, wobei die Verwendung von Gasgemischen ebenfalls denkbar und möglich wäre.As a source gas, a clean gas or a gas mixture can be used. For the reactant gas, the use of a clean gas is preferred, wherein the use of gas mixtures would also be conceivable and possible.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der beiliegenden Zeichnung erläutert. In dieser zeigt die einzige Fig. eine stark schematisierte Darstellung einer Einrichtung, mit welcher das erfindungsgemäße Verfahren durchführbar ist.Hereinafter, embodiments of the invention will be explained with reference to the accompanying drawings. In this, the only Fig. Shows a highly schematic representation of a device with which the inventive method is feasible.
Die in der Fig. schematisch dargestellte Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens weist drei Bereiche auf. Dem primären lonisationsbereich A wird durch eine Zuführung 1 ein Quellgas zugeführt. Im lonisationsbereich A ist eine nicht im Einzelnen dargestellte lonenquelle bzw. lonisationseinrichtung 2 angeordnet. Die primäre lonisation des Quellgases erfolgt z. B. durch Elektronenemission aus einem Filament, durch ionisierende Strahlung (z. B. α-Teilchen), durch eine elektrische Entladung oder andere lonisationsverfahren. Die Wahl des primären lonisationsverfahrens ist für die gegenständliche Erfindung nicht relevant.The device shown schematically in the figure for carrying out the method according to the invention has three areas. The primary ionization area A is supplied with a source gas through a
Als Quellgas wird ein Reingas, z.B. Wasserstoff (H2), oder ein Gasgemisch, z.B. H2-Argon (Ar) oder Stickstoff (N2)-Distickstoffmonoxid (N2O), verwendet. Totaldruck und Partialdrücke hängen von der Wahl des lonisationsverfahrens (Niederdruck- oder Hochdruck-lonenquelle) ab.The source gas used is a clean gas, for example hydrogen (H 2 ), or a gas mixture, for example H 2 argon (Ar) or nitrogen (N 2 ) nitrous oxide (N 2 O). Total pressure and partial pressures depend on the choice of ionization method (low pressure or high pressure ion source).
Im primären lonisationsbereich A existiert eine Vielzahl von Spezies (lonen, Elektronen, Atome, Moleküle, Radikale, angeregte Atome, angeregte Moleküle).In the primary ionization region A, there are a variety of species (ions, electrons, atoms, molecules, radicals, excited atoms, excited molecules).
Durch Anlegen eines elektrischen Feldes geeigneter Polarität werden entweder positive oder negative lonen durch eine Blendenöffnung 3 in einer Zwischenwand 4 in den Zwischenbereich B extrahiert. Der erzeugte lonenstrom ist in der Regel nicht selektiv, d.h. er besteht im Allgemeinen aus verschiedenen lonensorten:
- Im Fall von H2 als Quellgas besteht der extrahierbare positive lonenstrom einfach geladener lonen aus H+, H2 +, H3 + und H3 +·H2.
- Im Fall eines H2-Ar-Gemisches besteht der extrahierbare positive lonenstrom einfach geladener lonen aus Ar+, Ar2 +, ArH+, ArH2 +, ArH2 +, H+, H2 +, H3 +, H3 +•H2.
- Im Fall eines N2-N2O-Gemisches besteht der extrahierbare negative lonenstrom aus vornehmlich O--lonen, mit Spuren von NO--lonen. (vgl. ref2:
A.P. Bruins et al., Adv. Mass Spectrom. 7, 355, 1978
- In the case of H 2 as a source gas, the extractable positive ionic current of singly charged ions consists of H + , H 2 + , H 3 + and H 3 + · H 2 .
- In the case of an H 2 -Ar mixture, the extractable positive ion current of singly charged ions consists of Ar + , Ar 2 + , ArH + , ArH 2 + , ArH 2 + , H + , H 2 + , H 3 + , H 3 + • H 2 .
- In the case of an N 2 -N 2 O mixture, the extractable negative ionic current consists primarily of O - ions, with traces of NO - ions. (see ref2:
Bruins AP et al., Adv. Mass Spectrom. 7, 355, 1978
Die Relativanteile der beispielhaft angeführten, extrahierbaren lonensorten hängen von verschiedenen Quellparametern (Totaldruck des Quellgases bzw. Partialdrücke der verschiedenen Quellgaskomponenten, Temperatur, u.a.) ab. Neben einfach geladenen lonen können - in Abhängigkeit von der lonenquelle und vom Quellgas - auch mehrfach geladene lonen auftreten und extrahiert werden.The relative proportions of the exemplified, extractable ion species depend on various source parameters (total pressure of the source gas or partial pressures of the various source gas components, temperature, etc.). In addition to singly charged ions, multiply charged ions can also occur and be extracted, depending on the ion source and the source gas.
Der Zwischenbereich B wird mit dem Quellgas (Totaldruck > 0,01 mbar, Teilchengasdichte NB) gespeist. Die Speisung kann durch aus dem lonisationsbereich A in den Zwischenbereich strömendes Quellgas erfolgen. Es kann auch eine in der Fig. nicht dargestellte separate Zuführung vorhanden sein. Der Druck des Quellgases im Zwischenbereich B kann ähnlich oder gleich wie der Druck des Quellgases im lonisationsbereich A sein. Im Zwischenbereich B wird durch Elektroden 5 ein elektrisches Feld der Feldstärke EB angelegt. Der Zwischenbereich befindet sich auf einer Temperatur TB.The intermediate region B is fed with the source gas (total pressure> 0.01 mbar, particle gas density N B ). The feed can be done by flowing out of the ionization region A in the intermediate region of source gas. There may also be a separate feeder, not shown in the figure. The pressure of the source gas in the intermediate region B may be similar or equal to the pressure of the source gas in the ionization region A. In the intermediate region B, an electric field of field strength E B is applied by
Im Zwischenbereich B wechselwirken die aus dem primären lonisationsbereich A extrahierten Ionen mit dem Quellgas. Das Spektrum an Wechselwirkungen umfasst binäre lonen-Molekül-Reaktionen (z.B. H2 + + H2 → H3 + + H), ternäre lonen-Molekül-Reaktionen (z.B. H+ + H2 + H2 → H3 + + H2), stoßinduzierte Dissoziationsreaktionen (z.B. H3 +•H2 + H2 → H3 + + H2 + H2), sowie An- und Abregungsreaktionen (z.B. (H2 +)* + H2 → H2 + + H2)In the intermediate region B, the ions extracted from the primary ionization region A interact with the source gas. The spectrum of interactions includes binary ion-molecule reactions (eg H 2 + + H 2 → H 3 + + H), ternary ion-molecule reactions (eg H + + H 2 + H 2 → H 3 + + H 2 ), collision-induced dissociation reactions (eg H 3 + • H 2 + H 2 → H 3 + + H 2 + H 2 ), as well as activation and deactivation reactions (eg (H 2 + ) * + H 2 → H 2 + + H 2 )
Die Parameter EB/NB und TB definieren die Reaktionsbedingungen, d.h. durch Variation dieser Parameter ist es möglich, gewisse Reaktionskanäle zu bevorzugen oder zu unterdrücken.The parameters E B / N B and T B define the reaction conditions, ie by varying these parameters it is possible to prefer or suppress certain reaction channels.
Durch geeignete Wahl der Reaktionsbedingungen wird der, aus zahlreichen lonensorten bestehende, aus dem primären lonisationsbereich A extrahierte lonenstrom in einen selektiven lonenstrom im Wesentlichen einer nicht mit dem Quellgas reagierenden lonensorte oder einen lonenstrom aus im Wesentlichen mehreren nicht mit dem Quellgas reagierenden lonensorten umgewandelt. Diese ein oder mehreren nicht mit dem Quellgas reagierenden lonensorten, d.h. sie sind gegenüber dem Quellgas "stabil", werden in dieser Schrift als "Quell-lonensorten" bezeichnet. Am Ausgang des Zwischenbereichs B, zu dem der Ionenstrom durch das elektrische Feld EB geführt wird, besteht der lonenstrom vorzugsweise zu mindestens 90% aus der einen oder mehreren Quell-lonensorten, wobei ein Wert von mindestens 95% besonders bevorzugt ist.By suitable choice of the reaction conditions, the ion stream consisting of numerous ion species and extracted from the primary ionization region A is extracted is converted into a selective ionic stream substantially of an ion species not reacting with the source gas, or an ionic stream of essentially a plurality of non-source-reactive ion species. These one or more ion species which do not react with the source gas, ie they are "stable" to the source gas, are referred to in this document as "source ion species". At the exit of the intermediate region B, to which the ion current is passed through the electric field E B , the ionic current is preferably at least 90% of the one or more source ion species, with a value of at least 95% being particularly preferred.
Am Ausgang des Zwischenbereichs könnte der Anteil an Ionen der Quell-lonensorten auch niedriger als der angegebene Wert von vorzugsweise 90% bzw. 95% sein, beispielsweise wenn am Ausgang des Zwischenbereichs noch ein Anteil von Clusterionen (z. B. H3 +.H2) vorhanden ist, welcher erst im weiter unten beschriebenen Reaktionsbereich C durch Dissoziationsreaktionen in lonen der ein oder mehreren Quell-lonensorten (plus neutrales Quellgas) umgewandelt wird, indem im Reaktionsbereich C ein elektrisches Feld mit einer ausreichenden Feldstärke zur Durchführung der erforderlichen stoßinduzierten Dissoziationsreaktionen angelegt wird.At the exit of the intermediate region, the proportion of ions of the source ion species could also be lower than the stated value of preferably 90% or 95%, for example if a proportion of cluster ions (eg H 3 + .H 2 ) is present, which is converted into dissociation reactions in ions of the one or more source ion species (plus neutral source gas) only in reaction region C described below by applying an electric field with a sufficient field strength in the reaction region C to carry out the required collision-induced dissociation reactions becomes.
Die Werte von EB/NB und TB variieren je nach Anwendungsbeispiel. Denkbar und möglich wäre es auch zur Verbesserung der Effizienz der im Zwischenbereich B ablaufenden Dissoziationsreaktionen dem Quellgas ein zusätzliches Gas (z. B. Ar, Kr oder N2) zuzumischen, welches nicht mit den in den Zwischenbereich extrahierten Ionen über lonen-Molekülreaktionen reagiert sondern nur als Stoßpartner dient.The values of E B / N B and T B vary depending on the application example. It would also be conceivable and possible to improve the efficiency of the dissociation reactions taking place in the intermediate region B by adding an additional gas (eg Ar, Kr or N 2 ) to the source gas which does not react with the ions extracted in the intermediate region via ion molecule reactions but instead only serves as collision partner.
Im Fall von H2 als Quellgas entsteht ein selektiver H3 +-lonenstrom. Es laufen hierbei lonen-Molekülreaktionen folgender Art ab:
Durch das angelegte elektrische Feld laufen weiters Dissoziationsreaktionen ab, welche gegenüber den Assoziationsreaktionen überwiegen und durch die die Bildung von Clusterionen weitgehend rückgängig gemacht wird, bzw. ihre Bildung von vornherein verhindert wird:
Im Fall eines H2-Ar-Gemisches als Quellgas entsteht ebenfalls ein selektiver H3 +lonenstrom (vgl. ref3:
Im Fall des N2-N2O-Quellgasgemisches werden die Reaktionsbedingungen so gewählt, dass ein selektiver O--Ionenstrom erhalten bleibt (ref2).In the case of the N 2 -N 2 O source gas mixture, the reaction conditions are chosen so that a selective O - ion current is maintained (ref2).
Der Zwischenbereich B ist von herkömmlichen Verfahren und Einrichtungen zur Gewinnung eines selektiven lonenstroms bereits bekannt (er entspricht den Bereichen B und C der
Durch Anlegen eines elektrischen Feldes werden die entstandenen lonen der ein oder mehreren Quell-lonensorten durch eine Blendenöffnung 6 in einer Zwischenwand 7 in den Reaktionsbereich C extrahiert.By applying an electric field, the resulting ions of the one or more source ion species are extracted through an
Im Reaktionsbereich C wird ein zusätzlicher, vom Quellgas in seiner chemischen Zusammensetzung verschiedener, reaktiver Stoßpartner beigemengt, der im Rahmen dieser Schrift als Reaktantgas bezeichnet wird. Das Reaktantgas kann von einem Reingas oder einem Gasgemisch gebildet werden. Der Totaldruck im Reaktionsbereich C beträgt mehr als 0,01 mbar (Teilchengasdichte Nc). Die Partialdrücke von Quellgas und Reaktantgas variieren in Abhängigkeit vom verwendeten Quell- und Reaktantgas. Die Beimengung des Reaktantgases erfolgt durch eine in der Fig. schematisch dargestellte Zuführung 8. Mittels Elektroden 9 wird ein elektrisches Feld der Feldstärke Ec angelegt. Der Reaktionsbereich C befindet sich auf einer Temperatur Tc.In the reaction region C, an additional, different from the source gas in its chemical composition, reactive collision partner is added, which is referred to in the context of this document as a reactant gas. The reactant gas can be formed by a clean gas or a gas mixture. The total pressure in the reaction region C is more than 0.01 mbar (particle gas density N c ). The partial pressures of source gas and reactant gas vary depending on the source and reactant gas used. The admixture of the reactant gas is effected by a
Durch lonen-Molekül-Reaktionen mit dem Reaktantgas wird der aus dem Zwischenbereich B extrahierte lonenstrom - vorzugsweise bestehend im Wesentlichen aus der einen oder mehreren Quell-lonensorten - in einen Ausgangs-lonenstrom umgewandelt, der im Wesentlichen, d. h. zu mehr als 90%, vorzugsweise zu mehr als 95% aus einer einzigen lonensorte besteht. In der Praxis können Werte von bis zu mehr als 99% erreicht werden. Besteht der aus dem Zwischenbereich B extrahierte lonenstrom aus mehr als einer Quell-lonensorte, so gelingt die Umwandlung in den im Wesentlichen nur aus einer einzigen lonensorte bestehenden Ausgangs-lonen-strom dadurch, dass aus den Reaktionen der verschiedenen Quell-lonensorten mit dem Reaktantgas nur eine einzige Produktionensorte hervorgeht.By ion-molecule reactions with the reactant gas, the ion stream extracted from the intermediate region B, preferably consisting essentially of the one or more source ion species, is converted into an output ion stream which is substantially, i. H. more than 90%, preferably more than 95%, of a single type of ion. In practice, values of up to more than 99% can be achieved. If the ion stream extracted from the intermediate region B consists of more than one source ion species, the conversion into the starting ion stream comprising essentially only one single ion species is achieved by the fact that only the reactions of the various source ion species with the reactant gas a single production variety emerges.
Die Parameter Ec/Nc und Tc definieren die Reaktionsbedingungen, d.h. durch Variation dieser Parameter ist es möglich, gewisse Reaktionskanäle zu bevorzugen und andere zu unterdrücken, um einen selektiven Ausgangs-lonenstrom einer lonensorte zu erzeugen. Beispielsweise können durch geeignete Wahl der Feldstärke des Feldes Ec Dissoziationsreaktionen bewirkt werden, um die Bildung von Clusterionen rückgängig zu machen bzw. ihre Bildung von vorneherein zu verhindern. Zur Verbesserung der Effizienz solcher Dissoziationsreaktionen könnte in den Reaktionsbereich C auch ein zusätzliches Gas zugemischt werden, welches nicht mit den im Reaktionsbereich C vorhandenen Ionen über lonen-Molekülreaktionen reagiert, sondern nur als Stoßpartner dient.The parameters E c / N c and T c define the reaction conditions, ie by varying these parameters it is possible to favor certain reaction channels and suppress others to produce a selective ion source ion stream. For example, by suitable choice of the field strength of the field E c dissociation reactions can be effected in order to reverse the formation of cluster ions or to prevent their formation from the outset. To improve the efficiency of such dissociation reactions, an additional gas could also be mixed into the reaction region C, which does not react with the ions present in the reaction region C via ion molecule reactions, but serves only as a collision partner.
Durch das elektrische Feld Ec werden die lonen durch den Reaktionsbereich C zum Ausgang 10 geführt.By the electric field E c , the ions are passed through the reaction region C to the
Durch die Elektroden 5 im Zwischenbereich B und/oder durch die Elektroden 9 im Reaktionsbereich C wird bevorzugterweise ein elektrostatisches Potential erzeugt. Es ist hierbei bevorzugt, dass im Zwischenbereich B und/oder im Reaktionsbereich C ein homogenes elektrisches Feld EB bzw. Ec erzeugt wird. Durch die Homogenität des elektrischen Feldes EB bzw. Ec können die Reaktionsbedingungen in vorteilhafter Weise manipuliert werden, d.h. gewisse Reaktionskanäle bevorzugt oder unterdrückt werden.By the
Durch den Wechsel des Reaktantgases können auf einfachem, schnellem Wege unterschiedliche selektive Ausgangs-lonenströme (d. h. im Wesentlichen nur aus einer einzigen lonensorte bestehende Ausgangs-lonenströme) erzeugt werden, welche z.B. als Primärionen für chemische lonisationsverfahren genutzt werden können. Solche chemische lonisationsverfahren werden zum Beispiel bei der lonen-Molekül-Reaktions-Massenspektrometrie (IMR-MS) oder der Protonentausch-Reaktions-Massenspektrometrie (PTR-MS) eingesetzt. Es wird dabei ein zu untersuchendes Substanzgas mittels des Ausgangs-lonenstroms in einer Drift Tube ionisiert und in der Folge massenspektrometrisch untersucht. Der Reaktionsbereich C bleibt dabei aber im Wesentlichen frei von dem zu untersuchenden Substanzgas, d.h. der Partialdruck des Substanzgases im Reaktionsbereich C beträgt weniger als 1/10 des Partialdruckes des Substanzgases in der Drift Tube. Im Reaktionsbereich C sollen abgesehen von den Komponenten des Quell- und Reaktionsgases bevorzugterweise weniger als 50 ppm an anderen reaktiven Komponenten (=reaktiven Verunreinigungen) vorliegen (die beispielsweise von rückströmenden Komponenten eines zu analysierenden Substanzgases gebildet werden), wobei ein Wert von weniger als 25 ppm besonders bevorzugt ist. Nicht reaktive Komponenten (z.B. Stickstoff) können dagegen mit höheren Anteilen vorliegen.By changing the reactant gas, different selective output ion streams (ie, essentially only one ionic sort of output ion streams) can be generated in a simple, fast way. which can be used, for example, as primary ions for chemical ionization processes. Such chemical ionization methods are used, for example, in ion-molecule reaction mass spectrometry (IMR-MS) or in proton exchange reaction mass spectrometry (PTR-MS). In this case, a substance gas to be examined is ionized by means of the initial ion current in a drift tube and subsequently analyzed by mass spectrometry. However, the reaction region C remains substantially free of the substance gas to be examined, ie the partial pressure of the substance gas in the reaction region C is less than 1/10 of the partial pressure of the substance gas in the drift tube. In the reaction region C, apart from the components of the source and reaction gases, preferably less than 50 ppm of other reactive components (= reactive impurities) are present (formed, for example, by backflowing components of a substance gas to be analyzed), with a value of less than 25 ppm is particularly preferred. Non-reactive components (eg nitrogen) can be present with higher proportions.
Die lonensorte am Ausgang 10 unterscheidet sich von der einen bzw. den mehreren Quell-lonensorten.The type of ion at the
Falls als Quell-lonensorte am Ausgang des Zwischenbereichs B H3 +-lonen extrahiert werden, so sind aus diesen beispielsweise Ausgangs-lonenströme erzeugbar, welche als jeweils im Wesentlichen einzige lonensorte folgende lonen aufweisen: N2H+, H3O+, NO+, NH4 +. Reaktantgase, welche mit dem H3 +-lonenstrom aus dem Zwischenbereich B zu der jeweiligen, den Ausgangs-lonenstrom bildenden einzigen lonensorte reagieren, sind:
HNO+ + NO → NO+ + HNO
ENT + + NO → NO + + ENT
Ein selektiver OH--Ausgangs-Ionenstrom kann aus dem aus dem Zwischenbereich B extrahierten O--lonenstrom mittels der Reaktantgase Methan (CH4)oder H2 gewonnen werden:
Falls als Quell-lonensorte XH+-lonen vorliegen, wobei X eine Komponente des Quellgases ist, dessen Protonenaffinität größer als H2 ist, so entsteht mit N2 als Reaktantgas als Ausgangs-lonenstrom N2H+, wenn die Protonenaffinität der Komponente X kleiner als diejenige von N2 ist. Mit H2O als Reaktantgas entsteht, falls die Protonenaffinität von X kleiner als die Protonenaffinität von H2O ist, als im Wesentlichen einzige lonensorte des Ausgangsionenstroms H3O+.If XH + ions are present as the source ion species, X being a component of the source gas whose proton affinity is greater than H 2 , then N 2 H + is formed as N 2 reactant gas as the starting ion current, if the proton affinity of component X is smaller than that of N 2 . With H 2 O as the reactant gas, if the proton affinity of X is less than the proton affinity of H 2 O, then the essentially single ion species of the H 2 O + source ion current is formed.
Grundsätzlich wäre es auch denkbar und möglich, dass der Zwischenbereich B entfällt. Die Reaktionen der im lonisationsbereich gebildeten lonen zu der nicht mit dem Quellgas reagierenden Quell-lonensorte bzw. den mehreren nicht mit dem Quellgas reagierenden Quell-lonen-sorten könnte dann entweder schon im lonisationsbereich im Wesentlichen vollständig ablaufen und/oder nach der Extraktion der (nicht oder nur teilweise zu den ein oder mehreren Quell-lonensorten reagierten) Ionen aus dem lonisationsbereich in den Reaktionsbereich C in diesem durch den vorhandenen Partialdruck an Quellgas weiterlaufen. Es sollen dabei solche Verhältnisse vorliegen, dass das Reaktantgas nicht mit den Vorläufer-Produkten der ein oder mehreren Quell-lonensorten reagiert und/oder mit dem Reaktantgas reagierende Vorläufer-Produkte werden mit einem geeigneten Zusatzgas in nicht störende Ionen reagieren gelassen.In principle, it would also be conceivable and possible for the intermediate area B to be omitted. The reactions of the ions formed in the ionization region to the source ion species which does not react with the source gas or the plurality of source ion species which do not react with the source gas could then either proceed essentially completely already in the ionization region and / or after the extraction of the (not or only partially reacted to the one or more source ion species) continue ions from the ionization in the reaction region C in this by the existing partial pressure of source gas. There should be such conditions that the reactant gas does not react with the precursor products of the one or more source ion species and / or precursor products reacting with the reactant gas are allowed to react with non-interfering ions with a suitable additional gas.
Auch bei vorhandenem Zwischenbereich B wäre es denkbar und möglich, dass die Vervollständigung der Reaktionen zu den ein oder mehreren Quell-lonensorten erst im Reaktionsbereich C stattfindet.Even with an existing intermediate region B, it would be conceivable and possible that the completion of the reactions to the one or more source ion species takes place only in the reaction region C.
Es können sich somit die Bereiche A und B zumindest teilweise überdecken oder es können sich die Bereich B und C teilweise überdecken, soweit sich B nicht mit A überdeckt. Jedenfalls befindet sich der Reaktionsbereich C außerhalb des lonisationsbereiches A (d. h. außerhalb des Bereiches, in welchem das bei der lonisation des Quellgases entstehende Plasma vorliegt). Der Reaktionsbereich C ist somit vom lonisationsbereich A räumlich getrennt und es wird eine Rückführung von Reaktantgas aus dem Reaktionsbereich C in den lonisationsbereich A im Wesentlichen unterbunden.Thus, areas A and B can at least partially overlap or areas B and C can partially overlap, as long as B does not overlap with A. In any case, the reaction region C is located outside the ionization region A (ie outside the region in which the plasma formed during the ionization of the source gas is present). The reaction area C is thus spatially separated from the ionization region A and it is a feedback of reactant gas from the reaction region C in the ionization A substantially suppressed.
- 11
- Zuführungfeed
- 22
- lonisationseinrichtungionization device
- 33
- Blendenöffnungaperture
- 44
- Zwischenwandpartition
- 55
- Elektrodeelectrode
- 66
- Blendenöffnungaperture
- 77
- Zwischenwandpartition
- 88th
- Zuführungfeed
- 99
- Elektrodeelectrode
- 1010
- Ausgangoutput
Claims (13)
- Method for obtaining an output ion stream consisting substantially only of a single type of ion, ions formed in the ionization of a source gas in an ionization region (A) and/or ions extracted from the ionization region (A) being allowed to react in a region (A, B, C) in which source gas is present until substantially only one or more types of source ions which do not react with the source gas are present, characterized in that a reactant gas differing from the source gas is fed to a reaction region (C) which is present outside the ionization region (A) and in which ions of the one or more types of source ions are present, which reactant gas reacts with the ions of the one or more types of source ions, the ions of the one or more types of source ions being substantially converted into the single type of ions which forms the output ion stream.
- Method according to Claim 1, characterized in that backflow of the reactant gas from the reaction region (C) into the ionization region (A) is substantially suppressed.
- Method according to Claim 1 or Claim 2, characterized in that the ions extracted from the ionization region (A) are fed into an intermediate region (B) in which they are left until the ions initially still differing from the one or more types of source ions have also been substantially converted into ions of the one or more types of source ions or cluster ions thereof by ion-molecule reactions with source gas present in the intermediate region.
- Method according to Claim 3, characterized in that ions of the one or more types of source ions or cluster ions thereof are extracted from the intermediate region (B) into the reaction region (C).
- Method according to Claim 1 or Claim 2, characterized in that the ions extracted from the ionization region are fed directly into the reaction region (C).
- Method according to any of Claims 1 to 5, characterized in that source gas is also fed to the reaction region (C).
- Method according to any of Claims 1 to 6, characterized in that an electric field (Ec) having a strength by means of which the formation of cluster ions from the ion type of the output ion stream is prevented or reversed is applied at least in a section adjacent to the output of the reaction region (C).
- Process according to either of Claims 3 and 4, characterized in that an electric field (EB) having a strength by means of which formation of cluster ions from the one or more types of source ions is prevented or reversed is applied at least in a section adjacent to the output of the intermediate region (B).
- Method according to any of Claims 1 to 8, characterized in that only one type of source ion is formed.
- Method according to any of Claims 1 to 9, characterized in that source gas having a pressure of at least one Pascal is present in the region (A, B, C) in which the ions formed in the ionization region (A) and/or ions extracted from the ionization region (A) are allowed to react to form the one or more types of source ions.
- Method according to any of Claims 1 to 9, characterized in that, for obtaining in each case output ion streams which consist substantially only of a single type of ion and differ in the type of ion, different reactant gasses are fed to the reaction region (C) depending on that ion type of the output ion stream which is to be formed, the reaction region (C) being pumped out to remove previously used different reactant gas before a respective reactant gas is fed in.
- Method according to any of Claims 7 to 11, characterized in that the electric field (Ec) applied in the reaction region (C) is electrostatic and homogeneous.
- Method according to any of Claims 8 to 12, characterized in that the electric field (EB) applied in the intermediate region (B) is electrostatic and homogeneous.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0201903A AT413463B (en) | 2003-12-16 | 2003-12-16 | METHOD FOR OBTAINING AN OUTPUT ION CURRENT |
AT20192003 | 2003-12-16 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1566829A2 EP1566829A2 (en) | 2005-08-24 |
EP1566829A3 EP1566829A3 (en) | 2006-08-02 |
EP1566829B1 true EP1566829B1 (en) | 2007-08-08 |
Family
ID=34705516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04028501A Expired - Lifetime EP1566829B1 (en) | 2003-12-16 | 2004-12-02 | Method for the production of an output-ion-stream |
Country Status (4)
Country | Link |
---|---|
US (1) | US7009175B2 (en) |
EP (1) | EP1566829B1 (en) |
AT (2) | AT413463B (en) |
DE (1) | DE502004004565D1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2421024A1 (en) | 2010-08-18 | 2012-02-22 | Ionicon Analytik Gesellschaft m.b.h. | Ionisation method for a universal gas analyzer |
AT514744A1 (en) | 2013-08-19 | 2015-03-15 | Universität Innsbruck | Device for analyzing a sample gas comprising an ion source |
EP3062332A1 (en) | 2015-02-25 | 2016-08-31 | Universität Innsbruck | Method and device for chemical ionization of a gas mixture |
EP3503161B1 (en) | 2017-12-20 | 2021-03-24 | Ionicon Analytik Gesellschaft m.b.H. | Method for producing gaseous ammonium for ion-molecule-reaction mass spectrometry |
EP3629365A1 (en) * | 2018-09-28 | 2020-04-01 | Ionicon Analytik Gesellschaft m.b.H. | Imr-ms reaction chamber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT1637B (en) | 1897-11-16 | 1900-07-10 | Petolite Fuel Syndicate Ltd | |
DE2737852C2 (en) | 1977-08-23 | 1982-04-22 | Bruker - Franzen Analytik GmbH, 2800 Bremen | Ion sources for chemical ionization |
AT403214B (en) * | 1991-10-21 | 1997-12-29 | Ionentechnik Ges M B H | METHOD FOR ANALYZING GAS MIXTURES |
AT1637U1 (en) * | 1995-01-05 | 1997-08-25 | Lindinger Werner Dr | METHOD FOR OBTAINING AN ION CURRENT |
AT406206B (en) * | 1997-04-15 | 2000-03-27 | Lindinger Werner Dr | OBTAINING NH4 + IONS |
US6753523B1 (en) * | 1998-01-23 | 2004-06-22 | Analytica Of Branford, Inc. | Mass spectrometry with multipole ion guides |
US7087898B2 (en) * | 2000-06-09 | 2006-08-08 | Willoughby Ross C | Laser desorption ion source |
-
2003
- 2003-12-16 AT AT0201903A patent/AT413463B/en not_active IP Right Cessation
-
2004
- 2004-12-01 US US11/000,412 patent/US7009175B2/en not_active Expired - Lifetime
- 2004-12-02 EP EP04028501A patent/EP1566829B1/en not_active Expired - Lifetime
- 2004-12-02 AT AT04028501T patent/ATE369621T1/en active
- 2004-12-02 DE DE502004004565T patent/DE502004004565D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
ATA20192003A (en) | 2005-07-15 |
US7009175B2 (en) | 2006-03-07 |
EP1566829A2 (en) | 2005-08-24 |
ATE369621T1 (en) | 2007-08-15 |
US20050178956A1 (en) | 2005-08-18 |
EP1566829A3 (en) | 2006-08-02 |
DE502004004565D1 (en) | 2007-09-20 |
AT413463B (en) | 2006-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69317693T2 (en) | Method for increasing the resolving power in a tandem wet spectrometer | |
DE69528418T2 (en) | Operating mode of an ion mobility spectrometer for improved detection of Narcotica | |
DE60210056T2 (en) | Mass spectrometric method with electron capture by ions and mass spectrometer for performing the method | |
DE19838599B4 (en) | Chemical ionization source for mass spectrometry | |
DE102018010478B3 (en) | PROCEDURE IN MASS SPECTROMETRY USING COLLISION GAS AS ION SOURCE | |
DE10322020B4 (en) | Mass spectrometers and methods for mass spectrometry | |
DE102012207403B4 (en) | METHOD AND APPARATUS FOR CHECKING IONS IN A MASS SPECTROMETER MAINTAINED IN A SUB-ATMOSPHERIC PRESSURE REGIME | |
DE102013213501A1 (en) | Mass spectrometer, its use, and method for mass spectrometric analysis of a gas mixture | |
DE112012005395T5 (en) | The collision | |
DE102020113976A1 (en) | Hybrid mass spectrometric system | |
DE102017127189B4 (en) | Determination of isobaric interferences in a mass spectrometer | |
WO2020064201A1 (en) | Mass spectrometer and method for analysing a gas by mass spectrometry | |
DE102016011086A1 (en) | mass spectrometry | |
DE102015122155A1 (en) | Apparatus and method for ionizing a gaseous substance and apparatus and method for analyzing a gaseous substance | |
DE102016121127A1 (en) | Add reactive species to the ICP source in a mass spectrometer | |
EP1566829B1 (en) | Method for the production of an output-ion-stream | |
EP0290711B1 (en) | Method and device for measuring the concentration in a gas mixture | |
DE2737852C2 (en) | Ion sources for chemical ionization | |
DE102014002079B4 (en) | ion fragmentation | |
AT406206B (en) | OBTAINING NH4 + IONS | |
AT1637U1 (en) | METHOD FOR OBTAINING AN ION CURRENT | |
DE112022003505T5 (en) | ELECTRON IMPACT IONIZATION WITHIN HIGH FREQUENCY CONFINEMENT FIELDS | |
DE10330080A1 (en) | mass spectrometry | |
AT403214B (en) | METHOD FOR ANALYZING GAS MIXTURES | |
Li et al. | Structures of the adduct ions formed in the ammonia chemical ionization of ketones |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01J 49/14 20060101AFI20060626BHEP Ipc: H01J 49/26 20060101ALI20060626BHEP Ipc: H01J 49/04 20060101ALI20060626BHEP |
|
17P | Request for examination filed |
Effective date: 20070125 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004004565 Country of ref document: DE Date of ref document: 20070920 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SCHNEIDER FELDMANN AG PATENT- UND MARKENANWAELTE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20071105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071119 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071208 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071108 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080108 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
BERE | Be: lapsed |
Owner name: WISTHALER, ARMIN, DR. Effective date: 20071231 Owner name: HANSEL, ARMIN, DR. Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071108 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
26N | No opposition filed |
Effective date: 20080509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070808 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: HANSEL, ARMIN, DR., AT Free format text: FORMER OWNER: HANSEL, ARMIN, DR., AT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20211202 Year of fee payment: 18 Ref country code: GB Payment date: 20211209 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20211229 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221222 Year of fee payment: 19 Ref country code: AT Payment date: 20221206 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20221228 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20221227 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221202 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004004565 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 369621 Country of ref document: AT Kind code of ref document: T Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240702 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231202 |