EP1564369B1 - Method and device for stabilising an underground broken out cavity - Google Patents
Method and device for stabilising an underground broken out cavity Download PDFInfo
- Publication number
- EP1564369B1 EP1564369B1 EP04405086A EP04405086A EP1564369B1 EP 1564369 B1 EP1564369 B1 EP 1564369B1 EP 04405086 A EP04405086 A EP 04405086A EP 04405086 A EP04405086 A EP 04405086A EP 1564369 B1 EP1564369 B1 EP 1564369B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- compression body
- compression
- cavity
- plastic
- employed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000003019 stabilising effect Effects 0.000 title 1
- 230000006835 compression Effects 0.000 claims abstract description 102
- 238000007906 compression Methods 0.000 claims abstract description 102
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 21
- 239000010959 steel Substances 0.000 claims abstract description 21
- 239000004033 plastic Substances 0.000 claims abstract description 16
- 239000011521 glass Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 15
- 239000004568 cement Substances 0.000 claims abstract description 10
- 239000000835 fiber Substances 0.000 claims abstract description 9
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 5
- 239000011800 void material Substances 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000011435 rock Substances 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 4
- 230000002787 reinforcement Effects 0.000 claims 9
- 230000003014 reinforcing effect Effects 0.000 abstract description 8
- 238000005065 mining Methods 0.000 abstract description 5
- 239000011230 binding agent Substances 0.000 abstract 1
- 239000004567 concrete Substances 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 239000011378 shotcrete Substances 0.000 description 4
- 239000006260 foam Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920006328 Styrofoam Polymers 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000008261 styrofoam Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/05—Lining with building materials using compressible insertions
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D11/00—Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
- E21D11/04—Lining with building materials
- E21D11/08—Lining with building materials with preformed concrete slabs
- E21D11/083—Methods or devices for joining adjacent concrete segments
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21D—SHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
- E21D21/00—Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
- E21D21/0086—Bearing plates
Definitions
- the present invention relates to a method and a device for stabilizing a cavity excavated in underground mining according to the preamble of claims 1 and 8, respectively.
- This method and device is preferably used in poor low-pressure rock.
- a tunnel lining which has at least two serving as support parts lining segments, which are separated by a running in the tunnel longitudinal direction of contraction joint.
- compression tubes are used, each of which is arranged between an outer and an inner support tube and the end face clamped between two pressure transfer plates. About these Pressure plates, the pressure of the lining segments is transferred to the respective compression tube.
- the Ausbeulwiderstand of the compression tube excess axial load, the compression tube bulges gradually and shortens.
- the lining segments can move while overcoming a resistance in the circumferential direction of the tunnel against each other and at the same time exert an expansion resistance to the mountains.
- This known tunnel lining has certain practical disadvantages. In the area of the end faces of the compression tubes, a local stress concentration occurs in the lining segments. It must therefore be made in addition to installing the pressure transfer plates further precautions so that the lining segments take no harm because of this stress concentration. This also has a negative effect on the costs. In the case of a shotcrete coating, the contraction joint must also be protected against the ingress of sprayed concrete during its manufacture. Furthermore, a possible misalignment of the stuffing tubes as a result of transverse movements of the lining segments relative to one another can lead to problems.
- EP-A-0 089 403 discloses a lining for cavities excavated in underground mining which has two concrete segments serving as support members, between which a crushing or compliant element of concrete mortar is arranged. At a compressive load, the compliance element yields and compresses.
- pipes are embedded in the concrete mortar. This adjustment force is determined inter alia by the number of tubes and their mutual distance and by the tube diameter and the wall thickness of the pipes. By filling the pipes with fillers, eg concrete mortar, the mentioned adjustment force can be increased.
- the present invention is based on the object to provide a method and a device of the type mentioned, in which or in which the compression element can be produced in a simpler and more cost-effective manner and the admission of deformations the pressure exerted on the support means a targeted adjustable resistance to oppose.
- the deliberately introduced in the production cavities of the compression body which is turned on in the, originating from the deforming mountain force flow, are gradually reduced when exceeding a certain pressure load.
- This reduction of the cavities takes place in a metal-based compression body by a stepwise compression of the same, in a compression body on cement base by a gradual collapse of the cavities.
- This reduction of the voids in connection with the deformation of the base material of the compression body allows a considerable relative movement within the support means.
- There is no or in relation to the compression only a small transverse deformation of the compression body, which has an advantageous effect in certain applications.
- the void fraction compared to the total volume of the compression body is determining for the maximum Compressibility and compression resistance.
- the compression body can be easily adapted to the respective requirements.
- the compression body can be configured as an elongated in the direction transverse to the applied compressive forces structure, so that the risk of stress concentration is avoided in the support means.
- Tunnelausbau 1 consists of two serving as a support means Tunnelausbaumaschinen 2 and 3.
- the arrow C is the last installation stage designated.
- the Tunnelausbauium 2, 3 are separated by a running in the tunnel longitudinal direction gap 6 (contraction joint).
- elongated compression body 7 are arranged, which fill the gap 6 practically completely.
- the compression bodies 7 have a length which corresponds to the length of an installation stage C.
- Each Stauchgroper 7 consists of a material with a certain volume fraction of cavities, which are distributed throughout the compression body 7.
- the cavities are introduced in the production of the compression body 7 targeted.
- the compression body 7 in particular has a compressive strength of at least 1 MPa and a void fraction of 10 to 90% of its total volume.
- the Stauchgroper 7 preferably has a compressive strength of at least 3 MPa and a void content of 20 to 70%.
- the compression body 7 should be able to withstand a certain pressure load, but deform relatively strong when exceeding a certain pressure load. This deformation is largely due to the fact that the cavities gradually collapse or are gradually compressed.
- the cavities of the compression body 7 can be closed or open and partially or completely interconnected.
- particles of another suitable material e.g. Plastic or steel foam, to be used. It is also possible to combine one or more of these materials. So it is possible to use, for example, styrofoam grains. While the expanded glass particles oppose a compression of the compression body 7 a certain resistance, this is hardly the case with styrofoam grains.
- a base material instead of cement, a plastic, for example, a synthetic resin may be used.
- a region of the tunnel construction is shown with the compression body 7 in the unloaded or loaded state, wherein the force acting on the compression body 7 compressive force with N, whose cross-sectional area is denoted by F and the height of the compression body 7 in the unloaded state with d and in the loaded state with d '.
- the compression bodies 7 are arranged between the tunnel extension elements 2, 3, without being additionally connected to the expansion elements 2, 3.
- the one with each adjacent tunnel extension element 2, 3 in contact, pressure-loaded surfaces 7a, 7b of the upsetting elements 7 extend parallel to each other.
- these surfaces 7a, 7b can also be arranged at an angle to one another, ie forming an angle with one another.
- the compression elements 7 then have a wedge shape.
- the compression elements 7 are installed in the gap 6 so that the surfaces 7 a, 7 b diverge in the direction of the mountains 5 out.
- FIGS. 6 to 8 various possibilities for additional connection of the compression body 7 with the respectively adjacent expansion element 2 or 3 are shown.
- Fig. 6 shows a tongue and groove connection, in which the compression body 7 is provided with projecting strips 8, which engage in recesses 9 in the expansion element 2 and 3 respectively. It is also possible to provide the recesses on the upsetting body 7 and the strips on the tunnel extension elements 2, 3.
- head bolts 11 also distributed in the longitudinal direction of the tunnel make the connection between compression body 7 and tunnel extension elements 2, 3.
- steel beams 12 and 13 are used as support means which are installed in the tunnel longitudinal direction at certain intervals (see FIG. 9).
- interacting Steel beams 12, 13 are the same as in the embodiment according to FIGS. 1 and 2 separated by a gap 6, in each of which a compression body 7 is inserted.
- These compression bodies 7 correspond in construction and the mode of operation to the compression bodies 7 described with reference to FIGS. 1 to 5 and are adapted only in their shape to the somewhat different size ratios.
- FIG. 11 shows a possibility for connecting the compression body 7 to the adjacent steel beams 12, 13. This connection is ensured by head bolts 14 arranged offset in the longitudinal direction of the tunnel.
- FIG. 12 A third embodiment of a tunnel construction 1 will now be described with reference to FIG. 12, in which anchors 15 fixed in the mountains 5 are used.
- FIG. 12 only one of these anchors 15 is shown.
- the anchor 15 is firmly anchored with his anchor rod 16 in the mountains 5, e.g. mechanically or by mortaring.
- anchor head 17 which is fixedly connected to the anchor rod 16, a compression body 7 is installed, which corresponds to the compression body described in connection with FIGS. 1 to 5.
- the compression body 7 is arranged between two steel discs 18 and 19.
- anchor rod 16 of the compression body 7 is deformed by the pressure forces acting on it, ie pressed together.
- a certain relative movement between the anchor rod 16 and the wall region 20 is made possible without the armature 15 being exposed to an excessive mechanical load which destroys it.
- stepwise collapse or compression of the cavities in the interior of the compression body 7 takes place under load in a very specific, controlled manner.
- a controlled behavior of the compression body 7 under pressure load can be achieved that in the compression bodies 7 by a corresponding shaping of the compression body 7 or by suitable measures in their preparation, e.g. by providing weak points, an inhomogeneous stress state is generated.
- the compression bodies 7 can also be provided with at least one plate-like or lattice-shaped reinforcing element, which extends transversely and preferably at right angles to the loading direction (effective direction of the compressive force N in FIGS. 3 and 4).
- This reinforcing element which has a high mechanical strength, may be embedded in the base material of the compression body 7.
- the compression body 7 is formed as a multilayer composite body, in which a respective layer of a partial body, which consists of a material containing the cavities, alternates with a plate-like or lattice-like reinforcing element.
- support means or extensions 1 described above can be used not only in tunneling, but quite generally in underground mining.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Lining And Supports For Tunnels (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Verfahren sowie eine Einrichtung zum Stabilisieren eines beim Untertagebau ausgebrochenen Hohlraumes gemäss dem Oberbegriff des Anspruches 1 bzw. 8. Dieses Verfahren und diese Einrichtung findet bevorzugt Anwendung im schlechten, druckhaften Gebirge mit geringer Festigkeit.The present invention relates to a method and a device for stabilizing a cavity excavated in underground mining according to the preamble of
Bei Untertagebauten (Tunnels, Stollen, Schächten, Kavernen und dgl.) ist es bekannt, den ausgebrochenen Hohlraum mittels eines Ausbaues, d.h. mittels Stützmitteln, wie z.B. Stahlbogen, Spritzbeton, Ankern, vorfabrizierten Betonelementen (Tübbingen), zu sichern. Im schlechten, druckhaften Gebirge mit geringer Festigkeit hat das Profil des ausgebrochenen Hohlraumes die Tendenz, sich zu verengen. Dadurch wirken auf den Ausbau Kräfte, die in den Stützmitteln Druckspannungen hervorrufen. Bekannte Stützmittel sind unter solchen Verhältnissen deshalb so ausgelegt, dass sie einer Ueberbelastung ausweichen können. Infolge dieses Ausweichens nimmt der Gebirgsdruck in der Regel ab.In underground structures (tunnels, tunnels, shafts, caverns and the like). It is known that the excavated cavity by means of an expansion, i. by means of proppants, e.g. Steel arch, shotcrete, anchors, prefabricated concrete elements (tubbing) to secure. In the bad, low-pressure rocky mountains, the profile of the excavated cavity tends to narrow. As a result, acting on the expansion forces that cause compressive stresses in the support means. Known support means are therefore designed under such conditions that they can avoid overloading. As a result of this evasion, the mountain pressure usually decreases.
In der
Diese bekannte Tunnelauskleidung hat gewisse praktische Nachteile. Im Bereich der Stirnseiten der Stauchrohre tritt in den Auskleidungssegmenten eine örtliche Spannungskonzentration auf. Es müssen daher ausser dem Einbauen der Druckübertragungsplatten weitere Vorkehrungen getroffen werden, damit die Auskleidungssegmente wegen dieser Spannungskonzentration keinen Schaden nehmen. Das wirkt sich auch nachteilig auf die Kosten aus. Bei einer Auskleidung aus Spritzbeton muss bei deren Herstellung zudem die Kontraktionsfuge gegen das Eindringen von Spritzbeton geschützt werden. Weiter kann eine mögliche Schiefstellung der Stauchrohre infolge von Querbewegungen der Auskleidungssegmente relativ zueinander zu Problemen führen.This known tunnel lining has certain practical disadvantages. In the area of the end faces of the compression tubes, a local stress concentration occurs in the lining segments. It must therefore be made in addition to installing the pressure transfer plates further precautions so that the lining segments take no harm because of this stress concentration. This also has a negative effect on the costs. In the case of a shotcrete coating, the contraction joint must also be protected against the ingress of sprayed concrete during its manufacture. Furthermore, a possible misalignment of the stuffing tubes as a result of transverse movements of the lining segments relative to one another can lead to problems.
In der den nächstliegenden Stand der Technik bildenden
Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren und eine Einrichtung der eingangs genannten Art zu schaffen, bei dem bzw. bei der das Stauchelement auf einfachere und kostengünstigere Weise herstellt werden kann und unter Zulassung von Verformungen dem auf die Stützmittel ausgeübten Druck einen gezielt einstellbaren Widerstand entgegen zu setzen vermag.The present invention is based on the object to provide a method and a device of the type mentioned, in which or in which the compression element can be produced in a simpler and more cost-effective manner and the admission of deformations the pressure exerted on the support means a targeted adjustable resistance to oppose.
Diese Aufgabe wird erfindungsgemäss mit einem Verfahren mit den Merkmalen des Anspruches 1 bzw. mit einer Einrichtung mit den Merkmalen des Anspruches 8 gelöst. Der mit dieser Einrichtung verwendbare Stauchkörper ist wie in den Ansprüchen 15 bis 19 definiert ausgebildet.This object is achieved according to the invention with a method having the features of
Die bei der Herstellung gezielt eingebrachten Hohlräume des Stauchkörpers, der in den, vom sich deformierenden Gebirge herrührenden Kraftfluss eingeschaltet ist, werden beim Ueberschreiten einer bestimmten Druckbelastung schrittweise verkleinert. Diese Verkleinerung der Hohlräume erfolgt bei einem Stauchkörper auf Metallbasis durch ein schrittweises Zusammendrücken derselben, bei einem Stauchkörper auf Zementbasis durch ein schrittweises Zusammenbrechen der Hohlräume. Diese Verkleinerung der Hohlräume in Verbindung mit der Verformung des Grundmaterials des Stauchkörpers erlaubt eine erhebliche Relativbewegung innerhalb der Stützmittel. Es erfolgt dabei keine oder im Verhältnis zur Stauchung nur eine geringe Querverformung des Stauchkörpers, was sich bei gewissen Anwendungen vorteilhaft auswirkt. Der Hohlraumanteil im Vergleich zum Gesamtvolumen des Stauchkörpers ist mitbestimmend für dessen maximale Zusammendrückbarkeit und den Stauchwiderstand.The deliberately introduced in the production cavities of the compression body, which is turned on in the, originating from the deforming mountain force flow, are gradually reduced when exceeding a certain pressure load. This reduction of the cavities takes place in a metal-based compression body by a stepwise compression of the same, in a compression body on cement base by a gradual collapse of the cavities. This reduction of the voids in connection with the deformation of the base material of the compression body allows a considerable relative movement within the support means. There is no or in relation to the compression only a small transverse deformation of the compression body, which has an advantageous effect in certain applications. The void fraction compared to the total volume of the compression body is determining for the maximum Compressibility and compression resistance.
Die Abmessungen und mechanischen Eigenschaften des Stauchkörpers lassen sich sehr einfach an die jeweiligen Anforderungen anpassen. So kann der Stauchkörper als ein in Richtung quer zu den einwirkenden Druckkräften langgestrecktes Gebilde ausgestaltet sein, so dass die Gefahr einer Spannungskonzentration in den Stützmitteln vermieden wird.The dimensions and mechanical properties of the compression body can be easily adapted to the respective requirements. Thus, the compression body can be configured as an elongated in the direction transverse to the applied compressive forces structure, so that the risk of stress concentration is avoided in the support means.
Bevorzugte Weiterausgestaltungen des erfindungsgemässen Verfahrens, der erfindungsgemässen Einrichtung und des erfindungsgemässen Stauchkörpers bilden Gegenstand der abhängigen Ansprüche.Preferred further developments of the method according to the invention, the device according to the invention and the compression body according to the invention form the subject of the dependent claims.
Nachfolgend werden anhand der Figuren AusführungsbeispieleHereinafter, with reference to the figures embodiments
Der in den Fig. 1 und 2 bereichsweise dargestellte Tunnelausbau 1 besteht aus zwei als Stützmittel dienenden Tunnelausbauelementen 2 und 3. Mit dem Pfeil C ist die letzte Einbauetappe bezeichnet. Die Tunnelausbauelemente 2, 3, die aus Spritzbeton, Ortsbeton oder vorfabrizierten Betonelementen hergestellt sind, nehmen den Druck, der durch die Verformungen des den Tunnelhohlraum 4 umgebenden Gebirges 5 hervorgerufen wird, auf. Die Tunnelausbauelemente 2, 3 sind durch einen in Tunnellängsrichtung verlaufenden Zwischenraum 6 (Kontraktionsfuge) voneinander getrennt. In diesem Zwischenraum 6 sind längliche Stauchkörper 7 angeordnet, die den Zwischenraum 6 praktisch vollständig ausfüllen. Vorzugsweise haben die Stauchkörper 7 eine Länge, die der Länge einer Einbauetappe C entspricht.1 and 2 partially shown
Jeder Stauchköper 7 besteht aus einem Material mit einem bestimmten Volumenanteil von Hohlräumen, die im ganzen Stauchkörper 7 verteilt sind. Die Hohlräume werden bei der Herstellung des Stauchkörpers 7 gezielt eingebracht. Der Stauchkörper 7 hat insbesondere eine Druckfestigkeit von mindestens 1 MPa und einen Hohlraumanteil von 10 bis 90% seines Gesamtvolumens. Vorzugsweise hat der Stauchköper 7 jedoch eine Druckfestigkeit von mindestens 3 MPa und einen Hohlraumanteil von 20 bis 70%. Die Stauchkörper 7 sollen einer gewissen Druckbelastung standhalten können, sich aber bei Ueberschreiten einer bestimmten Druckbelastung vergleichsweise stark verformen. Diese Verformung geschieht zum grössten Teil dadurch, dass die Hohlräume schrittweise in sich zusammenbrechen oder schrittweise zusammengedrückt werden.Each Stauchköper 7 consists of a material with a certain volume fraction of cavities, which are distributed throughout the
Die Hohlräume der Stauchkörper 7 können geschlossen oder offen und teilweise oder ganz miteinander verbunden sein.The cavities of the
Bei einer Ausführungsform enthalten die Stauchkörper 7 Zement, Blähglaspartikel, z.B. Blähglasgranulat, und Verstärkungselemente aus Stahl, Kunststoff oder Glas. Dabei können Verstärkungselemente in der Form von Fasern, Gittern, Netzen, Stäben oder Platten mit oder ohne Öffnungen Anwendung finden. Die Blähglaspartikel legen in der Grundmasse (Matrix) die Hohlräume fest. Für den erfindungsgemässen Einsatz besonders geeignete Stauchkörper 7 werden aus einem Gemisch mit den folgenden Komponenten je m3 hergestellt:
- Zement: 1000 -1300 kg
- Wasser: 390 - 410 kg
- Glasschaum: 140 - 180 kg
- Verflüssiger: 10 1
- Stahlfasern: 90 - 120 kg
- Cement: 1000 - 1300 kg
- Water: 390 - 410 kg
- Glass foam: 140 - 180 kg
- Condenser: 10 1
- Steel fibers: 90 - 120 kg
Als Bestandteile dieser Mischung eignen sich die folgenden Produkte:
- Zement: Portlandsilicatstaubzement "Fortico 5R"; Lieferant: Holcim (Schweiz) AG, Zürich.
- Glasschaum: "Liaver" mit einer Körnung von 2 -4 mm und einer Korndichte von ca. 0.3 g/cm3; Lieferant: Liaver Ilmenau, Deutschland.
- Verflüssiger: "Glenium AC20"; Lieferant: Degussa Construction Chemicals AG, Zürich.
- Stahlfasern: "DRAMIX RC - 65/35 - BN steel fibre"; Lieferant: Dramix, Belgien.
- Cement: portland silicate dust cement "Fortico 5R"; Supplier: Holcim (Schweiz) AG, Zurich.
- Glass foam: "Liaver" with a grain size of 2 -4 mm and a grain density of about 0.3 g / cm 3 ; Supplier: Liaver Ilmenau, Germany.
- Condenser: "Glenium AC20"; Supplier: Degussa Construction Chemicals AG, Zurich.
- Steel fibers: "DRAMIX RC - 65/35 - BN steel fiber"; Supplier: Dramix, Belgium.
Zur Bildung der Hohlräume können anstelle von Blähglaspartikeln auch Partikel aus einem andern geeigneten Material, z.B. Kunststoff oder Stahlschaum, verwendet werden. Möglich ist auch die Kombination einzelner oder mehrerer dieser Materialien. So ist es möglich, beispielsweise Styroporkörner einzusetzen. Während die Blähglaspartikel einem Zusammendrücken des Stauchkörpers 7 einen gewissen Widerstand entgegensetzen, ist das bei Styroporkörnern kaum der Fall.To form the cavities, particles of another suitable material, e.g. Plastic or steel foam, to be used. It is also possible to combine one or more of these materials. So it is possible to use, for example, styrofoam grains. While the expanded glass particles oppose a compression of the
Ferner kann als Grundstoff, anstelle von Zement, auch ein Kunststoff, beispielsweise ein Kunstharz, verwendet werden.Further, as a base material, instead of cement, a plastic, for example, a synthetic resin may be used.
Anhand der Fig. 3 bis 5 wird nachfolgend die Wirkungsweise des in den Fig. 1 und 2 gezeigten Tunnelausbaus 1 erläutert.The operation of the
In den Fig. 3 und 4 ist ein Bereich des Tunnelausbaus mit dem Stauchkörper 7 in unbelastetem bzw. belastetem Zustand gezeigt, wobei die auf den Stauchkörper 7 wirkende Druckkraft mit N, dessen Querschnittsfläche mit F und die Höhe des Stauchkörpers 7 in unbelastetem Zustand mit d und in belastetem Zustand mit d' bezeichnet ist. In Fig. 5 ist auf der horizontalen Achse die Stauchung ε des Stauchkörpers 7 (ε = (d-d')/d) und auf der vertikalen Achse die Druckspannung σ im Stauchkörper 7 (σ = N/F) aufgetragen.3 and 4, a region of the tunnel construction is shown with the
Verformungen im Gebirge 5 rufen eine Verengung des Profils des Tunnelhohlraumes 4 hervor, wodurch die Tunnelausbauelemente 2, 3 Druckkräften ausgesetzt werden und sich relativ zueinander zu verschieben beginnen. Dabei werden in den Stauchkörpern 7 Druckspannungen erzeugt, die ein Zusammendrücken der Stauchkörper 7 zur Folgen haben. Zu Beginn der Belastung der Stauchkörper 7 verläuft deren Stauchung ε mit zunehmender Druckspannung σ im wesentlich linear (Bereich I in Fig. 5). Bei Erreichen einer bestimmten Druckspannung σ beginnt eine Rissbildung in den Stauchkörpern 7 und ein schrittweises Zusammenbrechen bzw. eine plastische Verformung der Hohlräume der Stauchkörper 7 (Bereich II in Fig. 5). Die Tunnelausbauelemente 2, 3 geben der wachsenden Belastung nach und verschieben sich unter Verkleinerung des Zwischenraumes 6 aufeinander zu. Die Stauchelemente 7 werden dabei immer stärker zusammengedrückt. Wie die Fig. 5 zeigt, bleibt dabei die Druckspannung im Bereich II auf einem durchschnittlich hohen Niveau. Anschliessend folgt eine Phase der zunehmenden Verfestigung infolge einer besseren Druckübertragung bei abnehmendem Hohlraumvolumen (Bereich III in Fig. 5).Deformations in the
Beim in den Fig. 1 bis 4 gezeigten Ausführungsbeispiel sind die Stauchkörper 7 zwischen den Tunnelausbauelementen 2, 3 angeordnet, ohne dass sie noch zusätzlich mit den Ausbauelementen 2, 3 verbunden sind. Die mit dem jeweils angrenzenden Tunnelausbauelement 2, 3 in Berührung stehenden, druckbelasteten Flächen 7a, 7b der Stauchelemente 7 verlaufen dabei parallel zueinander. Um zu vermeiden, dass bei einer Druckbelastung die Stauchelemente 7 aus dem Zwischenraum 6 herausgedrückt werden, können diese Flächen 7a, 7b auch schräg zueinander, d.h. miteinander einen Winkel bildend, angeordnet werden. Die Stauchelemente 7 haben dann eine Keilform. Die Stauchelemente 7 werden so in den Zwischenraum 6 eingebaut, dass die Flächen 7a, 7b in Richtung zum Gebirge 5 hin divergieren.In the embodiment shown in FIGS. 1 to 4, the
In den Fig. 6 bis 8 sind nun verschiedene Möglichkeiten zum zusätzlichen Verbinden der Stauchkörper 7 mit dem jeweils angrenzenden Ausbauelement 2 bzw. 3 gezeigt.In FIGS. 6 to 8, various possibilities for additional connection of the
Fig. 6 zeigt eine Nut-Feder-Verbindung, bei der der Stauchkörper 7 mit vorspringenden Leisten 8 versehen ist, die in Ausnehmungen 9 im Ausbauelement 2 bzw. 3 eingreifen. Es ist auch möglich, die Ausnehmungen am Stauchkörper 7 und die Leisten an den Tunnelausbauelementen 2, 3 vorzusehen.Fig. 6 shows a tongue and groove connection, in which the
Bei der in der Fig. 7 gezeigten Ausführungsform erfolgt die Verbindung zwischen Stauchkörper 7 und Ausbauelement 2, 3 mittels Bolzen 10, die in Längsrichtung des Zwischenraumes 6, d.h. in Tunnellängsrichtung, versetzt angeordnet sind.In the embodiment shown in Fig. 7, the connection between the upsetting
Bei der Variante gemäss Fig. 8 stellen ebenfalls in Tunnellängsrichtung verteilte Kopfbolzen 11 die Verbindung zwischen Stauchkörper 7 und Tunnelausbauelementen 2, 3 her.In the variant according to FIG. 8,
Bei der in den Fig. 9 und 10 gezeigten zweiten Ausführungsform eines Tunnelausbaus 1 werden als Stützmittel an Stelle der Tunnelausbauelemente 2, 3 Stahlträger 12 und 13 verwendet, die in Tunnellängsrichtung jeweils in gewissen Abständen eingebaut werden (siehe Fig. 9). Zusammenwirkende Stahlträger 12, 13 sind gleich wie beim Ausführungsbeispiel gemäss den Fig. 1 und 2 durch einen Zwischenraum 6 voneinander getrennt, in den jeweils ein Stauchkörper 7 eingesetzt ist. Diese Stauchkörper 7 entsprechen im Aufbau und der Wirkungsweise den anhand der Fig. 1 bis 5 beschriebenen Stauchkörpern 7 und sind lediglich in ihrer Form den etwas andern Grössenverhältnissen angepasst.In the second embodiment of a
Die Fig. 11 zeigt eine Möglichkeit zum Verbinden des Stauchkörpers 7 mit den angrenzenden Stahlträgern 12, 13. Diese Verbindung wird durch in Tunnellängsrichtung versetzt angeordnete Kopfbolzen 14 sichergestellt.FIG. 11 shows a possibility for connecting the
Anhand der Fig. 12 wird nun eine dritte Ausführungsform eines Tunnelausbaus 1 beschrieben, bei der im Gebirge 5 fixierte Anker 15 verwendet werden. In der Fig. 12 ist nur einer dieser Anker 15 dargestellt. Der Anker 15 ist mit seinem Ankerstab 16 im Gebirge 5 fest verankert, z.B. mechanisch oder mittels Vermörtelung. In den in den Tunnelhohlraum 4 hineinragenden Ankerkopf 17, der mit dem Ankerstab 16 fest verbunden ist, ist ein Stauchkörper 7 eingebaut, der dem im Zusammenhang mit den Fig. 1 bis 5 beschriebenen Stauchkörper entspricht. Der Stauchkörper 7 ist zwischen zwei Stahlscheiben 18 und 19 angeordnet.A third embodiment of a
Bei einer Bewegung des den Tunnelhohlraum 4 begrenzenden Wandbereiches 20 relativ zum tief in das Gebirge 5 hineinragenden Ankerstab 16 wird der Stauchkörper 7 durch die auf ihn wirkenden Druckkräfte verformt, d. h. zusammen gedrückt. Dabei wird wie anhand der Fig. 3 bis 5 erläutert eine gewisse Relativbewegung zwischen dem Ankerstab 16 und dem Wandbereich 20 ermöglicht, ohne dass der Anker 15 einer zu grossen, ihn zerstörenden mechanischen Belastung ausgesetzt wird.During a movement of the
Es kann erwünscht sein, dass das schrittweise Zusammenbrechen bzw. Zusammendrücken der Hohlräume im Innern der Stauchkörper 7 bei Belastung auf eine ganz bestimmte, gesteuerte Weise erfolgt. Ein derartiges gesteuertes Verhalten der Stauchkörper 7 unter Druckbelastung kann dadurch erreicht werden, dass in den Stauchkörpern 7 durch eine entsprechende Formgebung der Stauchkörper 7 oder durch geeignete Massnahmen bei deren Herstellung, z.B. durch Vorsehen von Schwächungsstellen, ein inhomogener Spannungszustand erzeugt wird.It may be desirable that the stepwise collapse or compression of the cavities in the interior of the
Die Stauchkörper 7 können auch mit mindestens einem platten- oder gitterförmigen Bewehrungselement versehen sein, das quer und vorzugsweise rechtwinklig zur Belastungsrichtung (Wirkrichtung der Druckkraft N in den Fig. 3 und 4) verläuft. Dieses Bewehrungselement, das eine hohe mechanische Festigkeit aufweist, kann in das Grundmaterial des Stauchkörpers 7 eingebettet sein. Vorzugsweise ist jedoch der Stauchkörper 7 als ein mehrschichtiger Verbundkörper ausgebildet, bei dem jeweils eine Schicht aus einem Teilkörper, der aus einem die Hohlräume enthaltenden Material besteht, mit einem platten- oder gitterartigen Bewehrungselement abwechselt. Mittels der Bewehrungselemente kann das Stauchverhalten des Stauchkörpers 7 bei Druckbelastung günstig beeinflusst werden.The
Es versteht sich, dass die vorstehend beschriebenen Stützmittel bzw. Ausbauten 1 nicht nur im Tunnelbau, sondern ganz generell im Untertagebau eingesetzt werden können.It is understood that the support means or
- 11
- Tunnelausbautunneling
- 2, 32, 3
- TunnelausbauelementeTunnel lining elements
- 44
- Tunnelhohlraumtunnel void
- 55
- Gebirgemountains
- 66
- Zwischenraumgap
- 77
- Stauchkörper; 7a, 7b druckbelastete FlächeCompression body; 7a, 7b pressure-loaded surface
- 88th
- Leistestrip
- 99
- Ausnehmungrecess
- 1010
- Bolzenbolt
- 1111
- Kopfbolzenstuds
- 12, 1312, 13
- Stahlträgersteel beams
- 1414
- Kopfbolzenstuds
- 1515
- Ankeranchor
- 1616
- Ankerstabtie rod
- 1717
- Ankerkopfanchor head
- 18, 1918, 19
- Stahlscheibesteel disc
- 2020
- Wandbereichwall area
Claims (19)
- Method for stabilizing a cavity (4) excavated in underground construction, in which the cavity (4) is secured by supporting means (2, 3; 12, 13; 15), and the pressure exerted by the rock (5) on the supporting means (2, 3; 12, 13; 15) is directed through at least one compression element (7), which deforms when a predetermined compressive load is exceeded, and which is composed of a material containing a predetermined volume fraction of voids, whereas a compression body (7) is employed as the compression element, which compression body (7) contains a binding means, preferably cement or plastic, characterized in that the compression body (7) further comprises the particles forming the voids, preferably blown-glass particles or plastic particles, and reinforcement elements of steel, plastic or glass.
- Method according to Claim 1, characterized in that a compression body (7) is employed having a compressive strength of at least 1 MPa, and a void fraction of between 10% and 90% of the total volume.
- Method according to Claim 2, characterized in that a compression body (7) is employed having a compressive strength of at least 3 MPa, and a void fraction of between 20% and 70% of the total volume.
- Method according to Claim 1, characterized in that steel fibers are employed as reinforcement elements.
- Method according to one of Claims 1 through 4, characterized in that a compression body (7) designed preferably as a multilayer composite body is employed having at least one installed plate-like or lattice-like reinforcement element.
- Method according to one of Claims 1 through 5, wherein the cavity (4) is secured by means of at least two supporting components (2, 3; 12, 13) which are displaceable relative to each other under the pressure exerted by the rock (5), which supporting components are separated by at least one space (6) in the longitudinal direction of the cavity (4),
characterized in that at least one compression body (7) is inserted into this space (6), which compression body (7) is compressed or squeezed together in response to a relative motion of the supporting components (2, 3; 12, 13). - Method according to one of Claims 1 through 5, wherein the cavity (4) is secured by at least one anchor (15) fixed within the rock (5), characterized in that at least one compression body (7) is inserted in the head (17) of the anchor (15), which compression body (7) is compressed or squeezed together relative to the rod (16) of the anchor (1 5) in response to a movement of the wall region (20) of the cavity (4).
- Device for stabilizing a cavity (4) excavated in underground construction, comprising supporting means (2, 3; 12, 13; 15) to secure the cavity (4), and at least one compression element (7) which deforms in response to the compressive load exerted by the rock (5) on the supporting means (2, 3; 12, 13; 15) when a predetermined compressive load is exceeded, which compression element (7) is composed of a material containing a predetermined volume fraction of voids, whereas the at least one compression element is a compression body (7) that contains a binding means, preferably, cement or plastic; characterized in that the compression body (7) further comprises the particles forming the voids, preferably, blown-glass particles or plastic particles; and reinforcement elements of steel, plastic or glass.
- Device according to Claim 8, characterized in that the compression body (7) has a compressive strength of at least 1 MPa, and void fraction of between 10% and 90% of its total volume.
- Device according to Claim 9, characterized in that the compression body (7) has compressive strength of at least 3 Wa, and a void fraction of between 20% and 70% of its total volume.
- Device according to Claim 8, characterized in that steel fibers are employed as reinforcement elements.
- Device according to one of Claims 8 through 11,
characterized in that the compression body (7), preferably designed as a multilayer composite body, is provided with at least one installed plate-like or lattice-like reinforcement element. - Device according to one of Claims 8 through 12, comprising at least two supporting components (2, 3; 12, 13) which are displaceable relative to each other under the pressure exerted by the rock (5) and intended to secure the cavity (4), which supporting components are separated by at least one space (6) running in the longitudinal direction of the cavity (4) to be secured, characterized in that at least one compression body (7) is inserted into this space (6), which compression body is compressed or squeezed together in response to a relative motion of the supporting components (2, 3; 12, 13; 15).
- Device according to one of Claims 8 through 12, comprising at least one anchor (15) which is fixable within the rock (5) and intended to secure the cavity (4), characterized in that at least one compression body (7) is inserted in the head (17) of the anchor (15), which compression body is compressed or squeezed together in response to a movement of the wall region (20) of the cavity (4) relative to the rod of the anchor (15).
- Compression body (7) for a device according to Claims 8 through 14, which is composed of a material containing a predetermined volume fraction of voids, whereas the compression body (7) contains a binding means, preferably, cement or plastic; characterized in that the compression body (7) further comprises the particles forming the voids, preferably, blown-glass particles or plastic particles; and reinforcement elements of steel, plastic or glass.
- Compression body according to Claim 15, characterized in that the body has a compressive strength of at least 1 MPa, and a void fraction of between 10% and 90% of its total volume.
- Compression body according to Claim 16, characterized in that the body has a compressive strength of at least 3 MPa, and a void fraction of between 20% and 70% of its total volume.
- Compression body (7) according to Claim 15, characterized in that steel fibers are employed as reinforcement elements.
- Compression body (7) according to one of Claims 15 through 18, characterized in that the compression body is provided with at least one installed plate-like or lattice-like reinforcement element, and is preferably designed as a multilayer composite body.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405086A EP1564369B1 (en) | 2004-02-16 | 2004-02-16 | Method and device for stabilising an underground broken out cavity |
DE502004005697T DE502004005697D1 (en) | 2004-02-16 | 2004-02-16 | Method and device for stabilizing a cavity excavated in underground mining |
ES04405086T ES2297363T3 (en) | 2004-02-16 | 2004-02-16 | PROCEDURE AND DEVICE FOR STABILIZING AN EXCAVATED CAVITY IN A UNDERGROUND CONSTRUCTION. |
AT04405086T ATE380925T1 (en) | 2004-02-16 | 2004-02-16 | METHOD AND DEVICE FOR STABILIZING A CAVITY EMERGED DURING UNDERGROUND MINING |
US11/052,221 US7404694B2 (en) | 2004-02-16 | 2005-02-08 | Method and device for stabilizing a cavity excavated in underground construction |
JP2005037880A JP3977843B2 (en) | 2004-02-16 | 2005-02-15 | Method and apparatus for stabilizing a hollow space formed by underground excavation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405086A EP1564369B1 (en) | 2004-02-16 | 2004-02-16 | Method and device for stabilising an underground broken out cavity |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1564369A1 EP1564369A1 (en) | 2005-08-17 |
EP1564369B1 true EP1564369B1 (en) | 2007-12-12 |
Family
ID=34684812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04405086A Expired - Lifetime EP1564369B1 (en) | 2004-02-16 | 2004-02-16 | Method and device for stabilising an underground broken out cavity |
Country Status (6)
Country | Link |
---|---|
US (1) | US7404694B2 (en) |
EP (1) | EP1564369B1 (en) |
JP (1) | JP3977843B2 (en) |
AT (1) | ATE380925T1 (en) |
DE (1) | DE502004005697D1 (en) |
ES (1) | ES2297363T3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2570397A2 (en) | 2011-09-16 | 2013-03-20 | Schretter & Cie GmbH & Co. KG | Shotcrete |
DE202021003746U1 (en) | 2021-12-10 | 2022-04-21 | Implenia Schweiz Ag | Device for absorbing rock deformations in underground mining and use of a polystyrene compression element |
EP4194664A1 (en) | 2021-12-10 | 2023-06-14 | Implenia Schweiz AG | Device for receiving rock deformations in underground mining, method for manufacturing a reinforcement layer suitable for receiving rock deformations in underground mining and use of a polystyrene compression element and method for the production of such a device |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE502006007122D1 (en) | 2006-12-16 | 2010-07-15 | Kalman Kovari | Anchoring device for stabilizing the subsoil |
EP2042686B1 (en) * | 2007-09-27 | 2009-07-08 | Bochumer Eisenhütte Heintzmann GmbH & Co. KG | Elasticity element |
DE102009057521B4 (en) * | 2009-12-10 | 2011-07-21 | Bochumer Eisenhütte Heintzmann GmbH & Co. KG, 44793 | Tubbing extension with integrated compliance element |
JP6769754B2 (en) * | 2016-06-29 | 2020-10-14 | 大成建設株式会社 | Shrinkable member |
JP6730883B2 (en) * | 2016-08-31 | 2020-07-29 | 大成建設株式会社 | Design method of flexible support |
JP6730884B2 (en) * | 2016-08-31 | 2020-07-29 | 大成建設株式会社 | How to design a structure |
JP6778061B2 (en) * | 2016-09-07 | 2020-10-28 | 大成建設株式会社 | Shrinkable members and tunnels |
JP6858605B2 (en) * | 2017-03-21 | 2021-04-14 | 鹿島建設株式会社 | Support structure and construction method of support structure |
NO345341B1 (en) * | 2017-09-22 | 2020-12-21 | Foamrox As | A tunnel profile element and a method of assembling a tunnel profile element. |
EP3540178B1 (en) * | 2018-03-14 | 2021-08-25 | Solexperts AG | Supporting device for stabilising underground cavities, particularly tunnels, as well as mining openings |
SG11202111283XA (en) * | 2019-04-26 | 2021-11-29 | Kajima Corp | Construction method of tunnel supporting structure |
JP7267889B2 (en) * | 2019-09-24 | 2023-05-02 | 鹿島建設株式会社 | Construction method of tunnel support structure |
JP7345409B2 (en) * | 2020-02-04 | 2023-09-15 | 鹿島建設株式会社 | How to construct a tunnel support structure |
CN111764930B (en) * | 2020-06-05 | 2025-06-17 | 中南大学 | A tunnel support structure with honeycomb energy absorption device and construction method thereof |
CN112880605B (en) * | 2020-10-26 | 2022-02-08 | 西南交通大学 | Method for determining railway tunnel base void volume |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR848702A (en) * | 1938-07-13 | 1939-11-06 | Entpr S Campenon Bernard | Method of execution of underground galleries or conduits and structures thus produced |
AU542884B2 (en) * | 1980-07-31 | 1985-03-21 | Dipl.Ing. Dr. Mont. Franz Powondra | Resilient yieldable device |
DE3210530C2 (en) * | 1982-03-23 | 1984-01-05 | Bergwerksverband Gmbh, 4300 Essen | Resilient concrete segment support |
DE4133267C2 (en) * | 1991-10-08 | 1994-04-28 | Linsingen Heintzmann Von | Route expansion, especially for mining underground operations |
US5992118A (en) * | 1995-09-29 | 1999-11-30 | Git Tunnelbau Gmbh | Segment for lining cavities |
DE19716514C1 (en) | 1997-04-19 | 1998-06-10 | Scholz Paul Friedrich Dr Ing | Power metallurgical production of metallic semi-finished products |
AT406893B (en) | 1997-11-28 | 2000-10-25 | Schubert Wulf Dipl Ing Dr | DEVICE FOR MUTUAL SUPPORT OF TWO SEGMENTS OF A TUNNEL LINING DIVIDED IN THE CIRCUMFERENTIAL DIRECTION BY CONTRACTION JOINTS |
DE60007237T2 (en) | 1999-03-10 | 2004-05-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | USE OF METAL FOAMS IN ARMORING SYSTEMS |
US20030154683A1 (en) * | 2000-04-26 | 2003-08-21 | Bache Hans Henrik | Building blocks for reinforced structures |
-
2004
- 2004-02-16 ES ES04405086T patent/ES2297363T3/en not_active Expired - Lifetime
- 2004-02-16 DE DE502004005697T patent/DE502004005697D1/en not_active Expired - Lifetime
- 2004-02-16 AT AT04405086T patent/ATE380925T1/en active
- 2004-02-16 EP EP04405086A patent/EP1564369B1/en not_active Expired - Lifetime
-
2005
- 2005-02-08 US US11/052,221 patent/US7404694B2/en not_active Expired - Fee Related
- 2005-02-15 JP JP2005037880A patent/JP3977843B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2570397A2 (en) | 2011-09-16 | 2013-03-20 | Schretter & Cie GmbH & Co. KG | Shotcrete |
DE202021003746U1 (en) | 2021-12-10 | 2022-04-21 | Implenia Schweiz Ag | Device for absorbing rock deformations in underground mining and use of a polystyrene compression element |
EP4194664A1 (en) | 2021-12-10 | 2023-06-14 | Implenia Schweiz AG | Device for receiving rock deformations in underground mining, method for manufacturing a reinforcement layer suitable for receiving rock deformations in underground mining and use of a polystyrene compression element and method for the production of such a device |
WO2023104772A1 (en) | 2021-12-10 | 2023-06-15 | Implenia Schweiz Ag | Structure for absorbing rock deformations in underground mining, method for producing a reinforcing layer suitable for absorbing rock deformations in underground mining, and use of a polystyrene compression element and method for producing such a structure |
Also Published As
Publication number | Publication date |
---|---|
US20050191138A1 (en) | 2005-09-01 |
DE502004005697D1 (en) | 2008-01-24 |
EP1564369A1 (en) | 2005-08-17 |
US7404694B2 (en) | 2008-07-29 |
JP2005232958A (en) | 2005-09-02 |
ES2297363T3 (en) | 2008-05-01 |
JP3977843B2 (en) | 2007-09-19 |
ATE380925T1 (en) | 2007-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1564369B1 (en) | Method and device for stabilising an underground broken out cavity | |
EP1505223B1 (en) | Corrosion protected tendon, especially for prestressed concrete | |
EP0025856B1 (en) | Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions | |
EP3112542B1 (en) | Device and method for heat decoupling of concreted parts of buildings | |
EP0363779B1 (en) | Anchoring device for a tensioning rod composed of a fibre composite | |
EP3085843B1 (en) | Device and method for heat decoupling of concreted parts of buildings | |
EP1905923A2 (en) | Tie rod and assembly for reinforcing existing construction elements against punching with such a tie rod | |
DE102007015259A1 (en) | Friction tube anchor with cartridge adhesive | |
DE2823950C2 (en) | Shaft construction, especially for the construction of deep shafts in unstable, water-bearing mountains | |
AT396153B (en) | TENSION | |
DE3332242C2 (en) | ||
DE3838880C1 (en) | Method of producing a grouted anchor, and grouted anchor for carrying out the method | |
EP2467541B1 (en) | Seal for sealing a potting cavity between at least two components | |
DE3879807T2 (en) | Double-acting anchor. | |
EP1108855B1 (en) | Self-supporting waterproof vault for tunnel lining | |
EP1933005B1 (en) | Anchoring device for stabilising the ground | |
EP0457969B1 (en) | Method and device for the lifting of buildings | |
EP2706148B1 (en) | Method for improving the bearing capacity of open profiles placed in the foundation and system created using the same | |
AT366778B (en) | POWER TRANSFER ELEMENT | |
EP1413681A2 (en) | Building with a buffering and method of making said building | |
EP4520870A1 (en) | Geotechnical anchor with swelling body, anchoring system and production of the anchoring system | |
AT163222B (en) | Method for producing a lining of pressure tunnels, pressure shafts or the like. | |
AT512243B1 (en) | COMPRESSION BODY FOR THE MUTUAL SUPPORTING OF TUNNEL CLADDING ELEMENTS AND / OR UNDERLYING CAVITY ELEMENTS | |
AT390467B (en) | Apparatus and process for anchoring a compressive-stress element | |
EP1688545A1 (en) | Injection or prestressed anchor for open-air and subsoil constructions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20051017 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004005697 Country of ref document: DE Date of ref document: 20080124 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PETER RUTZ |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080213 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20080400653 Country of ref document: GR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080312 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2297363 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080512 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080228 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 |
|
26N | No opposition filed |
Effective date: 20080915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080613 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080216 |
|
BERE | Be: lapsed |
Owner name: KOVARI, KALMAN, PROF. DR. Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160309 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160226 Year of fee payment: 13 Ref country code: BE Payment date: 20160226 Year of fee payment: 13 Ref country code: GR Payment date: 20160223 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20160411 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170216 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170906 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20180216 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180704 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170217 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: NEW ADDRESS: ALPENSTRASSE 14 POSTFACH 7627, 6302 ZUG (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190304 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20200220 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004005697 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20210217 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 380925 Country of ref document: AT Kind code of ref document: T Effective date: 20210216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190216 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220825 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220823 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230216 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |