[go: up one dir, main page]

EP1564369B1 - Method and device for stabilising an underground broken out cavity - Google Patents

Method and device for stabilising an underground broken out cavity Download PDF

Info

Publication number
EP1564369B1
EP1564369B1 EP04405086A EP04405086A EP1564369B1 EP 1564369 B1 EP1564369 B1 EP 1564369B1 EP 04405086 A EP04405086 A EP 04405086A EP 04405086 A EP04405086 A EP 04405086A EP 1564369 B1 EP1564369 B1 EP 1564369B1
Authority
EP
European Patent Office
Prior art keywords
compression body
compression
cavity
plastic
employed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04405086A
Other languages
German (de)
French (fr)
Other versions
EP1564369A1 (en
Inventor
Kalman Prof. Dr. Kovari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP04405086A priority Critical patent/EP1564369B1/en
Priority to DE502004005697T priority patent/DE502004005697D1/en
Priority to ES04405086T priority patent/ES2297363T3/en
Priority to AT04405086T priority patent/ATE380925T1/en
Priority to US11/052,221 priority patent/US7404694B2/en
Priority to JP2005037880A priority patent/JP3977843B2/en
Publication of EP1564369A1 publication Critical patent/EP1564369A1/en
Application granted granted Critical
Publication of EP1564369B1 publication Critical patent/EP1564369B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/05Lining with building materials using compressible insertions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • E21D11/083Methods or devices for joining adjacent concrete segments
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0086Bearing plates

Definitions

  • the present invention relates to a method and a device for stabilizing a cavity excavated in underground mining according to the preamble of claims 1 and 8, respectively.
  • This method and device is preferably used in poor low-pressure rock.
  • a tunnel lining which has at least two serving as support parts lining segments, which are separated by a running in the tunnel longitudinal direction of contraction joint.
  • compression tubes are used, each of which is arranged between an outer and an inner support tube and the end face clamped between two pressure transfer plates. About these Pressure plates, the pressure of the lining segments is transferred to the respective compression tube.
  • the Ausbeulwiderstand of the compression tube excess axial load, the compression tube bulges gradually and shortens.
  • the lining segments can move while overcoming a resistance in the circumferential direction of the tunnel against each other and at the same time exert an expansion resistance to the mountains.
  • This known tunnel lining has certain practical disadvantages. In the area of the end faces of the compression tubes, a local stress concentration occurs in the lining segments. It must therefore be made in addition to installing the pressure transfer plates further precautions so that the lining segments take no harm because of this stress concentration. This also has a negative effect on the costs. In the case of a shotcrete coating, the contraction joint must also be protected against the ingress of sprayed concrete during its manufacture. Furthermore, a possible misalignment of the stuffing tubes as a result of transverse movements of the lining segments relative to one another can lead to problems.
  • EP-A-0 089 403 discloses a lining for cavities excavated in underground mining which has two concrete segments serving as support members, between which a crushing or compliant element of concrete mortar is arranged. At a compressive load, the compliance element yields and compresses.
  • pipes are embedded in the concrete mortar. This adjustment force is determined inter alia by the number of tubes and their mutual distance and by the tube diameter and the wall thickness of the pipes. By filling the pipes with fillers, eg concrete mortar, the mentioned adjustment force can be increased.
  • the present invention is based on the object to provide a method and a device of the type mentioned, in which or in which the compression element can be produced in a simpler and more cost-effective manner and the admission of deformations the pressure exerted on the support means a targeted adjustable resistance to oppose.
  • the deliberately introduced in the production cavities of the compression body which is turned on in the, originating from the deforming mountain force flow, are gradually reduced when exceeding a certain pressure load.
  • This reduction of the cavities takes place in a metal-based compression body by a stepwise compression of the same, in a compression body on cement base by a gradual collapse of the cavities.
  • This reduction of the voids in connection with the deformation of the base material of the compression body allows a considerable relative movement within the support means.
  • There is no or in relation to the compression only a small transverse deformation of the compression body, which has an advantageous effect in certain applications.
  • the void fraction compared to the total volume of the compression body is determining for the maximum Compressibility and compression resistance.
  • the compression body can be easily adapted to the respective requirements.
  • the compression body can be configured as an elongated in the direction transverse to the applied compressive forces structure, so that the risk of stress concentration is avoided in the support means.
  • Tunnelausbau 1 consists of two serving as a support means Tunnelausbaumaschinen 2 and 3.
  • the arrow C is the last installation stage designated.
  • the Tunnelausbauium 2, 3 are separated by a running in the tunnel longitudinal direction gap 6 (contraction joint).
  • elongated compression body 7 are arranged, which fill the gap 6 practically completely.
  • the compression bodies 7 have a length which corresponds to the length of an installation stage C.
  • Each Stauchgroper 7 consists of a material with a certain volume fraction of cavities, which are distributed throughout the compression body 7.
  • the cavities are introduced in the production of the compression body 7 targeted.
  • the compression body 7 in particular has a compressive strength of at least 1 MPa and a void fraction of 10 to 90% of its total volume.
  • the Stauchgroper 7 preferably has a compressive strength of at least 3 MPa and a void content of 20 to 70%.
  • the compression body 7 should be able to withstand a certain pressure load, but deform relatively strong when exceeding a certain pressure load. This deformation is largely due to the fact that the cavities gradually collapse or are gradually compressed.
  • the cavities of the compression body 7 can be closed or open and partially or completely interconnected.
  • particles of another suitable material e.g. Plastic or steel foam, to be used. It is also possible to combine one or more of these materials. So it is possible to use, for example, styrofoam grains. While the expanded glass particles oppose a compression of the compression body 7 a certain resistance, this is hardly the case with styrofoam grains.
  • a base material instead of cement, a plastic, for example, a synthetic resin may be used.
  • a region of the tunnel construction is shown with the compression body 7 in the unloaded or loaded state, wherein the force acting on the compression body 7 compressive force with N, whose cross-sectional area is denoted by F and the height of the compression body 7 in the unloaded state with d and in the loaded state with d '.
  • the compression bodies 7 are arranged between the tunnel extension elements 2, 3, without being additionally connected to the expansion elements 2, 3.
  • the one with each adjacent tunnel extension element 2, 3 in contact, pressure-loaded surfaces 7a, 7b of the upsetting elements 7 extend parallel to each other.
  • these surfaces 7a, 7b can also be arranged at an angle to one another, ie forming an angle with one another.
  • the compression elements 7 then have a wedge shape.
  • the compression elements 7 are installed in the gap 6 so that the surfaces 7 a, 7 b diverge in the direction of the mountains 5 out.
  • FIGS. 6 to 8 various possibilities for additional connection of the compression body 7 with the respectively adjacent expansion element 2 or 3 are shown.
  • Fig. 6 shows a tongue and groove connection, in which the compression body 7 is provided with projecting strips 8, which engage in recesses 9 in the expansion element 2 and 3 respectively. It is also possible to provide the recesses on the upsetting body 7 and the strips on the tunnel extension elements 2, 3.
  • head bolts 11 also distributed in the longitudinal direction of the tunnel make the connection between compression body 7 and tunnel extension elements 2, 3.
  • steel beams 12 and 13 are used as support means which are installed in the tunnel longitudinal direction at certain intervals (see FIG. 9).
  • interacting Steel beams 12, 13 are the same as in the embodiment according to FIGS. 1 and 2 separated by a gap 6, in each of which a compression body 7 is inserted.
  • These compression bodies 7 correspond in construction and the mode of operation to the compression bodies 7 described with reference to FIGS. 1 to 5 and are adapted only in their shape to the somewhat different size ratios.
  • FIG. 11 shows a possibility for connecting the compression body 7 to the adjacent steel beams 12, 13. This connection is ensured by head bolts 14 arranged offset in the longitudinal direction of the tunnel.
  • FIG. 12 A third embodiment of a tunnel construction 1 will now be described with reference to FIG. 12, in which anchors 15 fixed in the mountains 5 are used.
  • FIG. 12 only one of these anchors 15 is shown.
  • the anchor 15 is firmly anchored with his anchor rod 16 in the mountains 5, e.g. mechanically or by mortaring.
  • anchor head 17 which is fixedly connected to the anchor rod 16, a compression body 7 is installed, which corresponds to the compression body described in connection with FIGS. 1 to 5.
  • the compression body 7 is arranged between two steel discs 18 and 19.
  • anchor rod 16 of the compression body 7 is deformed by the pressure forces acting on it, ie pressed together.
  • a certain relative movement between the anchor rod 16 and the wall region 20 is made possible without the armature 15 being exposed to an excessive mechanical load which destroys it.
  • stepwise collapse or compression of the cavities in the interior of the compression body 7 takes place under load in a very specific, controlled manner.
  • a controlled behavior of the compression body 7 under pressure load can be achieved that in the compression bodies 7 by a corresponding shaping of the compression body 7 or by suitable measures in their preparation, e.g. by providing weak points, an inhomogeneous stress state is generated.
  • the compression bodies 7 can also be provided with at least one plate-like or lattice-shaped reinforcing element, which extends transversely and preferably at right angles to the loading direction (effective direction of the compressive force N in FIGS. 3 and 4).
  • This reinforcing element which has a high mechanical strength, may be embedded in the base material of the compression body 7.
  • the compression body 7 is formed as a multilayer composite body, in which a respective layer of a partial body, which consists of a material containing the cavities, alternates with a plate-like or lattice-like reinforcing element.
  • support means or extensions 1 described above can be used not only in tunneling, but quite generally in underground mining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

Process for stabilizing a hollow chamber (4) formed during mining comprises using an upsetting body (7) formed as an upsetting element containing particles, preferably expanded glass or plastic particles, embedded in a binder, preferably cement or plastic, and reinforcing elements made from steel, plastic or glass. An independent claim is also included for a device for stabilizing a hollow chamber formed during mining. Preferred Features: The upsetting body has a compression strength of at least 1 MPa and a hollow chamber amount of 10-90 % of the total volume. The reinforcing elements are steel fibers.

Description

Die vorliegende Erfindung betrifft ein Verfahren sowie eine Einrichtung zum Stabilisieren eines beim Untertagebau ausgebrochenen Hohlraumes gemäss dem Oberbegriff des Anspruches 1 bzw. 8. Dieses Verfahren und diese Einrichtung findet bevorzugt Anwendung im schlechten, druckhaften Gebirge mit geringer Festigkeit.The present invention relates to a method and a device for stabilizing a cavity excavated in underground mining according to the preamble of claims 1 and 8, respectively. This method and device is preferably used in poor low-pressure rock.

Bei Untertagebauten (Tunnels, Stollen, Schächten, Kavernen und dgl.) ist es bekannt, den ausgebrochenen Hohlraum mittels eines Ausbaues, d.h. mittels Stützmitteln, wie z.B. Stahlbogen, Spritzbeton, Ankern, vorfabrizierten Betonelementen (Tübbingen), zu sichern. Im schlechten, druckhaften Gebirge mit geringer Festigkeit hat das Profil des ausgebrochenen Hohlraumes die Tendenz, sich zu verengen. Dadurch wirken auf den Ausbau Kräfte, die in den Stützmitteln Druckspannungen hervorrufen. Bekannte Stützmittel sind unter solchen Verhältnissen deshalb so ausgelegt, dass sie einer Ueberbelastung ausweichen können. Infolge dieses Ausweichens nimmt der Gebirgsdruck in der Regel ab.In underground structures (tunnels, tunnels, shafts, caverns and the like). It is known that the excavated cavity by means of an expansion, i. by means of proppants, e.g. Steel arch, shotcrete, anchors, prefabricated concrete elements (tubbing) to secure. In the bad, low-pressure rocky mountains, the profile of the excavated cavity tends to narrow. As a result, acting on the expansion forces that cause compressive stresses in the support means. Known support means are therefore designed under such conditions that they can avoid overloading. As a result of this evasion, the mountain pressure usually decreases.

In der EP-B-1 034 096 ist eine Tunnelauskleidung gezeigt und beschrieben, die wenigstens zwei als Stützteile dienende Auskleidungssegmente aufweist, die durch eine in Tunnellängsrichtung verlaufende Kontraktionsfuge voneinander getrennt sind. In diese Kontraktionsfuge sind Stauchrohre eingesetzt, von denen jedes zwischen einem äusseren und einem inneren Stützrohr angeordnet und stirnseitig zwischen zwei Druckübertragungsplatten eingespannt ist. Ueber diese Druckplatten wird der Druck von den Auskleidungssegmenten auf das jeweilige Stauchrohr übertragen. Bei einer bestimmten, den Ausbeulwiderstand des Stauchrohres übersteigenden Axialbelastung beult sich das Stauchrohr schrittweise aus und verkürzt sich. Die Auskleidungssegmente können sich unter Ueberwindung eines Widerstandes in Umfangsrichtung des Tunnels gegeneinander bewegen und gleichzeitig einen Ausbauwiderstand gegen das Gebirge ausüben.In the EP-B-1 034 096 a tunnel lining is shown and described, which has at least two serving as support parts lining segments, which are separated by a running in the tunnel longitudinal direction of contraction joint. In this contraction joint compression tubes are used, each of which is arranged between an outer and an inner support tube and the end face clamped between two pressure transfer plates. About these Pressure plates, the pressure of the lining segments is transferred to the respective compression tube. At a certain, the Ausbeulwiderstand of the compression tube excess axial load, the compression tube bulges gradually and shortens. The lining segments can move while overcoming a resistance in the circumferential direction of the tunnel against each other and at the same time exert an expansion resistance to the mountains.

Diese bekannte Tunnelauskleidung hat gewisse praktische Nachteile. Im Bereich der Stirnseiten der Stauchrohre tritt in den Auskleidungssegmenten eine örtliche Spannungskonzentration auf. Es müssen daher ausser dem Einbauen der Druckübertragungsplatten weitere Vorkehrungen getroffen werden, damit die Auskleidungssegmente wegen dieser Spannungskonzentration keinen Schaden nehmen. Das wirkt sich auch nachteilig auf die Kosten aus. Bei einer Auskleidung aus Spritzbeton muss bei deren Herstellung zudem die Kontraktionsfuge gegen das Eindringen von Spritzbeton geschützt werden. Weiter kann eine mögliche Schiefstellung der Stauchrohre infolge von Querbewegungen der Auskleidungssegmente relativ zueinander zu Problemen führen.This known tunnel lining has certain practical disadvantages. In the area of the end faces of the compression tubes, a local stress concentration occurs in the lining segments. It must therefore be made in addition to installing the pressure transfer plates further precautions so that the lining segments take no harm because of this stress concentration. This also has a negative effect on the costs. In the case of a shotcrete coating, the contraction joint must also be protected against the ingress of sprayed concrete during its manufacture. Furthermore, a possible misalignment of the stuffing tubes as a result of transverse movements of the lining segments relative to one another can lead to problems.

In der den nächstliegenden Stand der Technik bildenden EP-A-0 089 403 ist ein Auskleidung für beim Untertagebau ausgebrochene Hohlräume offenbart, die zwei als Stützteile dienende Betonsegmente aufweist, zwischen denen ein Stauch- oder Nachgiebigkeitselement aus Betonmörtel angeordnet ist. Bei einer Druckbelastung gibt das Nachgiebigkeitselement nach und wird zusammengedrückt. Um die Nachgiebigkeit des Nachgiebigkeitselementes besser einstellen zu können, werden in den Betonmörtel Rohre eingebettet. Diese Einstellkraft wird unter anderem bestimmt durch die Anzahl der Rohre und deren gegenseitigen Abstand sowie durch den Rohrdurchmesser und die Wandstärke der Rohre. Durch Füllen der Rohre mit Füllstoffen, z.B. Betonmörtel, lässt sich die erwähnte Einstellkraft erhöhen.In the closest prior art forming EP-A-0 089 403 discloses a lining for cavities excavated in underground mining which has two concrete segments serving as support members, between which a crushing or compliant element of concrete mortar is arranged. At a compressive load, the compliance element yields and compresses. In order to better adjust the compliance of the compliance element, pipes are embedded in the concrete mortar. This adjustment force is determined inter alia by the number of tubes and their mutual distance and by the tube diameter and the wall thickness of the pipes. By filling the pipes with fillers, eg concrete mortar, the mentioned adjustment force can be increased.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren und eine Einrichtung der eingangs genannten Art zu schaffen, bei dem bzw. bei der das Stauchelement auf einfachere und kostengünstigere Weise herstellt werden kann und unter Zulassung von Verformungen dem auf die Stützmittel ausgeübten Druck einen gezielt einstellbaren Widerstand entgegen zu setzen vermag.The present invention is based on the object to provide a method and a device of the type mentioned, in which or in which the compression element can be produced in a simpler and more cost-effective manner and the admission of deformations the pressure exerted on the support means a targeted adjustable resistance to oppose.

Diese Aufgabe wird erfindungsgemäss mit einem Verfahren mit den Merkmalen des Anspruches 1 bzw. mit einer Einrichtung mit den Merkmalen des Anspruches 8 gelöst. Der mit dieser Einrichtung verwendbare Stauchkörper ist wie in den Ansprüchen 15 bis 19 definiert ausgebildet.This object is achieved according to the invention with a method having the features of claim 1 or with a device having the features of claim 8. The compressible body usable with this device is designed as defined in claims 15 to 19.

Die bei der Herstellung gezielt eingebrachten Hohlräume des Stauchkörpers, der in den, vom sich deformierenden Gebirge herrührenden Kraftfluss eingeschaltet ist, werden beim Ueberschreiten einer bestimmten Druckbelastung schrittweise verkleinert. Diese Verkleinerung der Hohlräume erfolgt bei einem Stauchkörper auf Metallbasis durch ein schrittweises Zusammendrücken derselben, bei einem Stauchkörper auf Zementbasis durch ein schrittweises Zusammenbrechen der Hohlräume. Diese Verkleinerung der Hohlräume in Verbindung mit der Verformung des Grundmaterials des Stauchkörpers erlaubt eine erhebliche Relativbewegung innerhalb der Stützmittel. Es erfolgt dabei keine oder im Verhältnis zur Stauchung nur eine geringe Querverformung des Stauchkörpers, was sich bei gewissen Anwendungen vorteilhaft auswirkt. Der Hohlraumanteil im Vergleich zum Gesamtvolumen des Stauchkörpers ist mitbestimmend für dessen maximale Zusammendrückbarkeit und den Stauchwiderstand.The deliberately introduced in the production cavities of the compression body, which is turned on in the, originating from the deforming mountain force flow, are gradually reduced when exceeding a certain pressure load. This reduction of the cavities takes place in a metal-based compression body by a stepwise compression of the same, in a compression body on cement base by a gradual collapse of the cavities. This reduction of the voids in connection with the deformation of the base material of the compression body allows a considerable relative movement within the support means. There is no or in relation to the compression only a small transverse deformation of the compression body, which has an advantageous effect in certain applications. The void fraction compared to the total volume of the compression body is determining for the maximum Compressibility and compression resistance.

Die Abmessungen und mechanischen Eigenschaften des Stauchkörpers lassen sich sehr einfach an die jeweiligen Anforderungen anpassen. So kann der Stauchkörper als ein in Richtung quer zu den einwirkenden Druckkräften langgestrecktes Gebilde ausgestaltet sein, so dass die Gefahr einer Spannungskonzentration in den Stützmitteln vermieden wird.The dimensions and mechanical properties of the compression body can be easily adapted to the respective requirements. Thus, the compression body can be configured as an elongated in the direction transverse to the applied compressive forces structure, so that the risk of stress concentration is avoided in the support means.

Bevorzugte Weiterausgestaltungen des erfindungsgemässen Verfahrens, der erfindungsgemässen Einrichtung und des erfindungsgemässen Stauchkörpers bilden Gegenstand der abhängigen Ansprüche.Preferred further developments of the method according to the invention, the device according to the invention and the compression body according to the invention form the subject of the dependent claims.

Nachfolgend werden anhand der Figuren AusführungsbeispieleHereinafter, with reference to the figures embodiments

Der in den Fig. 1 und 2 bereichsweise dargestellte Tunnelausbau 1 besteht aus zwei als Stützmittel dienenden Tunnelausbauelementen 2 und 3. Mit dem Pfeil C ist die letzte Einbauetappe bezeichnet. Die Tunnelausbauelemente 2, 3, die aus Spritzbeton, Ortsbeton oder vorfabrizierten Betonelementen hergestellt sind, nehmen den Druck, der durch die Verformungen des den Tunnelhohlraum 4 umgebenden Gebirges 5 hervorgerufen wird, auf. Die Tunnelausbauelemente 2, 3 sind durch einen in Tunnellängsrichtung verlaufenden Zwischenraum 6 (Kontraktionsfuge) voneinander getrennt. In diesem Zwischenraum 6 sind längliche Stauchkörper 7 angeordnet, die den Zwischenraum 6 praktisch vollständig ausfüllen. Vorzugsweise haben die Stauchkörper 7 eine Länge, die der Länge einer Einbauetappe C entspricht.1 and 2 partially shown Tunnelausbau 1 consists of two serving as a support means Tunnelausbauelementen 2 and 3. The arrow C is the last installation stage designated. The Tunnelausbauelemente 2, 3, which are made of shotcrete, mixed concrete or prefabricated concrete elements, take the pressure, which is caused by the deformations of the tunnel cavity 4 surrounding mountains 5, on. The Tunnelausbauelemente 2, 3 are separated by a running in the tunnel longitudinal direction gap 6 (contraction joint). In this space 6 elongated compression body 7 are arranged, which fill the gap 6 practically completely. Preferably, the compression bodies 7 have a length which corresponds to the length of an installation stage C.

Jeder Stauchköper 7 besteht aus einem Material mit einem bestimmten Volumenanteil von Hohlräumen, die im ganzen Stauchkörper 7 verteilt sind. Die Hohlräume werden bei der Herstellung des Stauchkörpers 7 gezielt eingebracht. Der Stauchkörper 7 hat insbesondere eine Druckfestigkeit von mindestens 1 MPa und einen Hohlraumanteil von 10 bis 90% seines Gesamtvolumens. Vorzugsweise hat der Stauchköper 7 jedoch eine Druckfestigkeit von mindestens 3 MPa und einen Hohlraumanteil von 20 bis 70%. Die Stauchkörper 7 sollen einer gewissen Druckbelastung standhalten können, sich aber bei Ueberschreiten einer bestimmten Druckbelastung vergleichsweise stark verformen. Diese Verformung geschieht zum grössten Teil dadurch, dass die Hohlräume schrittweise in sich zusammenbrechen oder schrittweise zusammengedrückt werden.Each Stauchköper 7 consists of a material with a certain volume fraction of cavities, which are distributed throughout the compression body 7. The cavities are introduced in the production of the compression body 7 targeted. The compression body 7 in particular has a compressive strength of at least 1 MPa and a void fraction of 10 to 90% of its total volume. However, the Stauchköper 7 preferably has a compressive strength of at least 3 MPa and a void content of 20 to 70%. The compression body 7 should be able to withstand a certain pressure load, but deform relatively strong when exceeding a certain pressure load. This deformation is largely due to the fact that the cavities gradually collapse or are gradually compressed.

Die Hohlräume der Stauchkörper 7 können geschlossen oder offen und teilweise oder ganz miteinander verbunden sein.The cavities of the compression body 7 can be closed or open and partially or completely interconnected.

Bei einer Ausführungsform enthalten die Stauchkörper 7 Zement, Blähglaspartikel, z.B. Blähglasgranulat, und Verstärkungselemente aus Stahl, Kunststoff oder Glas. Dabei können Verstärkungselemente in der Form von Fasern, Gittern, Netzen, Stäben oder Platten mit oder ohne Öffnungen Anwendung finden. Die Blähglaspartikel legen in der Grundmasse (Matrix) die Hohlräume fest. Für den erfindungsgemässen Einsatz besonders geeignete Stauchkörper 7 werden aus einem Gemisch mit den folgenden Komponenten je m3 hergestellt:

  • Zement: 1000 -1300 kg
  • Wasser: 390 - 410 kg
  • Glasschaum: 140 - 180 kg
  • Verflüssiger: 10 1
  • Stahlfasern: 90 - 120 kg
In one embodiment, the compression bodies contain 7 cement, expanded glass particles, eg expanded glass granules, and reinforcing elements made of steel, plastic or glass. In this case, reinforcing elements in the form of fibers, meshes, nets, rods or plates can be used with or without openings. The expanded glass particles define the cavities in the matrix (matrix). Particularly suitable compression bodies 7 for the use according to the invention are produced from a mixture with the following components per m 3 :
  • Cement: 1000 - 1300 kg
  • Water: 390 - 410 kg
  • Glass foam: 140 - 180 kg
  • Condenser: 10 1
  • Steel fibers: 90 - 120 kg

Als Bestandteile dieser Mischung eignen sich die folgenden Produkte:

  • Zement: Portlandsilicatstaubzement "Fortico 5R"; Lieferant: Holcim (Schweiz) AG, Zürich.
  • Glasschaum: "Liaver" mit einer Körnung von 2 -4 mm und einer Korndichte von ca. 0.3 g/cm3; Lieferant: Liaver Ilmenau, Deutschland.
  • Verflüssiger: "Glenium AC20"; Lieferant: Degussa Construction Chemicals AG, Zürich.
  • Stahlfasern: "DRAMIX RC - 65/35 - BN steel fibre"; Lieferant: Dramix, Belgien.
As components of this mixture, the following are suitable Products:
  • Cement: portland silicate dust cement "Fortico 5R"; Supplier: Holcim (Schweiz) AG, Zurich.
  • Glass foam: "Liaver" with a grain size of 2 -4 mm and a grain density of about 0.3 g / cm 3 ; Supplier: Liaver Ilmenau, Germany.
  • Condenser: "Glenium AC20"; Supplier: Degussa Construction Chemicals AG, Zurich.
  • Steel fibers: "DRAMIX RC - 65/35 - BN steel fiber"; Supplier: Dramix, Belgium.

Zur Bildung der Hohlräume können anstelle von Blähglaspartikeln auch Partikel aus einem andern geeigneten Material, z.B. Kunststoff oder Stahlschaum, verwendet werden. Möglich ist auch die Kombination einzelner oder mehrerer dieser Materialien. So ist es möglich, beispielsweise Styroporkörner einzusetzen. Während die Blähglaspartikel einem Zusammendrücken des Stauchkörpers 7 einen gewissen Widerstand entgegensetzen, ist das bei Styroporkörnern kaum der Fall.To form the cavities, particles of another suitable material, e.g. Plastic or steel foam, to be used. It is also possible to combine one or more of these materials. So it is possible to use, for example, styrofoam grains. While the expanded glass particles oppose a compression of the compression body 7 a certain resistance, this is hardly the case with styrofoam grains.

Ferner kann als Grundstoff, anstelle von Zement, auch ein Kunststoff, beispielsweise ein Kunstharz, verwendet werden.Further, as a base material, instead of cement, a plastic, for example, a synthetic resin may be used.

Anhand der Fig. 3 bis 5 wird nachfolgend die Wirkungsweise des in den Fig. 1 und 2 gezeigten Tunnelausbaus 1 erläutert.The operation of the tunnel construction 1 shown in FIGS. 1 and 2 will now be explained with reference to FIGS. 3 to 5.

In den Fig. 3 und 4 ist ein Bereich des Tunnelausbaus mit dem Stauchkörper 7 in unbelastetem bzw. belastetem Zustand gezeigt, wobei die auf den Stauchkörper 7 wirkende Druckkraft mit N, dessen Querschnittsfläche mit F und die Höhe des Stauchkörpers 7 in unbelastetem Zustand mit d und in belastetem Zustand mit d' bezeichnet ist. In Fig. 5 ist auf der horizontalen Achse die Stauchung ε des Stauchkörpers 7 (ε = (d-d')/d) und auf der vertikalen Achse die Druckspannung σ im Stauchkörper 7 (σ = N/F) aufgetragen.3 and 4, a region of the tunnel construction is shown with the compression body 7 in the unloaded or loaded state, wherein the force acting on the compression body 7 compressive force with N, whose cross-sectional area is denoted by F and the height of the compression body 7 in the unloaded state with d and in the loaded state with d '. In FIG. 5, the compression ε of the compression body 7 (ε = (d-d ') / d) is plotted on the horizontal axis and the compressive stress σ in the compression body 7 (σ = N / F) is plotted on the vertical axis.

Verformungen im Gebirge 5 rufen eine Verengung des Profils des Tunnelhohlraumes 4 hervor, wodurch die Tunnelausbauelemente 2, 3 Druckkräften ausgesetzt werden und sich relativ zueinander zu verschieben beginnen. Dabei werden in den Stauchkörpern 7 Druckspannungen erzeugt, die ein Zusammendrücken der Stauchkörper 7 zur Folgen haben. Zu Beginn der Belastung der Stauchkörper 7 verläuft deren Stauchung ε mit zunehmender Druckspannung σ im wesentlich linear (Bereich I in Fig. 5). Bei Erreichen einer bestimmten Druckspannung σ beginnt eine Rissbildung in den Stauchkörpern 7 und ein schrittweises Zusammenbrechen bzw. eine plastische Verformung der Hohlräume der Stauchkörper 7 (Bereich II in Fig. 5). Die Tunnelausbauelemente 2, 3 geben der wachsenden Belastung nach und verschieben sich unter Verkleinerung des Zwischenraumes 6 aufeinander zu. Die Stauchelemente 7 werden dabei immer stärker zusammengedrückt. Wie die Fig. 5 zeigt, bleibt dabei die Druckspannung im Bereich II auf einem durchschnittlich hohen Niveau. Anschliessend folgt eine Phase der zunehmenden Verfestigung infolge einer besseren Druckübertragung bei abnehmendem Hohlraumvolumen (Bereich III in Fig. 5).Deformations in the mountains 5 cause a narrowing of the profile of the tunnel cavity 4, whereby the Tunnelausbauelemente 2, 3 are subjected to compressive forces and start to move relative to each other. In this case, 7 compressive stresses are generated in the compression bodies, which have a compression of the compression body 7 to follow. At the beginning of the loading of the compression body 7 whose compression ε with increasing compressive stress σ is substantially linear (range I in Fig. 5). Upon reaching a certain compressive stress σ cracking begins in the compression bodies 7 and a gradual collapse or a plastic deformation of the cavities of the compression body 7 (area II in Fig. 5). The Tunnelausbauelemente 2, 3 give way to the growing load and move towards each other while reducing the gap 6. The compression elements 7 are compressed more and more. As shown in FIG. 5, the compressive stress in region II remains at an average high level. This is followed by a phase of increasing solidification as a result of better pressure transmission with decreasing void volume (region III in FIG. 5).

Beim in den Fig. 1 bis 4 gezeigten Ausführungsbeispiel sind die Stauchkörper 7 zwischen den Tunnelausbauelementen 2, 3 angeordnet, ohne dass sie noch zusätzlich mit den Ausbauelementen 2, 3 verbunden sind. Die mit dem jeweils angrenzenden Tunnelausbauelement 2, 3 in Berührung stehenden, druckbelasteten Flächen 7a, 7b der Stauchelemente 7 verlaufen dabei parallel zueinander. Um zu vermeiden, dass bei einer Druckbelastung die Stauchelemente 7 aus dem Zwischenraum 6 herausgedrückt werden, können diese Flächen 7a, 7b auch schräg zueinander, d.h. miteinander einen Winkel bildend, angeordnet werden. Die Stauchelemente 7 haben dann eine Keilform. Die Stauchelemente 7 werden so in den Zwischenraum 6 eingebaut, dass die Flächen 7a, 7b in Richtung zum Gebirge 5 hin divergieren.In the embodiment shown in FIGS. 1 to 4, the compression bodies 7 are arranged between the tunnel extension elements 2, 3, without being additionally connected to the expansion elements 2, 3. The one with each adjacent tunnel extension element 2, 3 in contact, pressure-loaded surfaces 7a, 7b of the upsetting elements 7 extend parallel to each other. In order to avoid that the compression elements 7 are pressed out of the intermediate space 6 during a pressure load, these surfaces 7a, 7b can also be arranged at an angle to one another, ie forming an angle with one another. The compression elements 7 then have a wedge shape. The compression elements 7 are installed in the gap 6 so that the surfaces 7 a, 7 b diverge in the direction of the mountains 5 out.

In den Fig. 6 bis 8 sind nun verschiedene Möglichkeiten zum zusätzlichen Verbinden der Stauchkörper 7 mit dem jeweils angrenzenden Ausbauelement 2 bzw. 3 gezeigt.In FIGS. 6 to 8, various possibilities for additional connection of the compression body 7 with the respectively adjacent expansion element 2 or 3 are shown.

Fig. 6 zeigt eine Nut-Feder-Verbindung, bei der der Stauchkörper 7 mit vorspringenden Leisten 8 versehen ist, die in Ausnehmungen 9 im Ausbauelement 2 bzw. 3 eingreifen. Es ist auch möglich, die Ausnehmungen am Stauchkörper 7 und die Leisten an den Tunnelausbauelementen 2, 3 vorzusehen.Fig. 6 shows a tongue and groove connection, in which the compression body 7 is provided with projecting strips 8, which engage in recesses 9 in the expansion element 2 and 3 respectively. It is also possible to provide the recesses on the upsetting body 7 and the strips on the tunnel extension elements 2, 3.

Bei der in der Fig. 7 gezeigten Ausführungsform erfolgt die Verbindung zwischen Stauchkörper 7 und Ausbauelement 2, 3 mittels Bolzen 10, die in Längsrichtung des Zwischenraumes 6, d.h. in Tunnellängsrichtung, versetzt angeordnet sind.In the embodiment shown in Fig. 7, the connection between the upsetting body 7 and the expansion element 2, 3 by means of bolts 10, in the longitudinal direction of the gap 6, i. in the tunnel longitudinal direction, staggered.

Bei der Variante gemäss Fig. 8 stellen ebenfalls in Tunnellängsrichtung verteilte Kopfbolzen 11 die Verbindung zwischen Stauchkörper 7 und Tunnelausbauelementen 2, 3 her.In the variant according to FIG. 8, head bolts 11 also distributed in the longitudinal direction of the tunnel make the connection between compression body 7 and tunnel extension elements 2, 3.

Bei der in den Fig. 9 und 10 gezeigten zweiten Ausführungsform eines Tunnelausbaus 1 werden als Stützmittel an Stelle der Tunnelausbauelemente 2, 3 Stahlträger 12 und 13 verwendet, die in Tunnellängsrichtung jeweils in gewissen Abständen eingebaut werden (siehe Fig. 9). Zusammenwirkende Stahlträger 12, 13 sind gleich wie beim Ausführungsbeispiel gemäss den Fig. 1 und 2 durch einen Zwischenraum 6 voneinander getrennt, in den jeweils ein Stauchkörper 7 eingesetzt ist. Diese Stauchkörper 7 entsprechen im Aufbau und der Wirkungsweise den anhand der Fig. 1 bis 5 beschriebenen Stauchkörpern 7 und sind lediglich in ihrer Form den etwas andern Grössenverhältnissen angepasst.In the second embodiment of a tunnel construction 1 shown in FIGS. 9 and 10, instead of the tunnel construction elements 2, 3, steel beams 12 and 13 are used as support means which are installed in the tunnel longitudinal direction at certain intervals (see FIG. 9). interacting Steel beams 12, 13 are the same as in the embodiment according to FIGS. 1 and 2 separated by a gap 6, in each of which a compression body 7 is inserted. These compression bodies 7 correspond in construction and the mode of operation to the compression bodies 7 described with reference to FIGS. 1 to 5 and are adapted only in their shape to the somewhat different size ratios.

Die Fig. 11 zeigt eine Möglichkeit zum Verbinden des Stauchkörpers 7 mit den angrenzenden Stahlträgern 12, 13. Diese Verbindung wird durch in Tunnellängsrichtung versetzt angeordnete Kopfbolzen 14 sichergestellt.FIG. 11 shows a possibility for connecting the compression body 7 to the adjacent steel beams 12, 13. This connection is ensured by head bolts 14 arranged offset in the longitudinal direction of the tunnel.

Anhand der Fig. 12 wird nun eine dritte Ausführungsform eines Tunnelausbaus 1 beschrieben, bei der im Gebirge 5 fixierte Anker 15 verwendet werden. In der Fig. 12 ist nur einer dieser Anker 15 dargestellt. Der Anker 15 ist mit seinem Ankerstab 16 im Gebirge 5 fest verankert, z.B. mechanisch oder mittels Vermörtelung. In den in den Tunnelhohlraum 4 hineinragenden Ankerkopf 17, der mit dem Ankerstab 16 fest verbunden ist, ist ein Stauchkörper 7 eingebaut, der dem im Zusammenhang mit den Fig. 1 bis 5 beschriebenen Stauchkörper entspricht. Der Stauchkörper 7 ist zwischen zwei Stahlscheiben 18 und 19 angeordnet.A third embodiment of a tunnel construction 1 will now be described with reference to FIG. 12, in which anchors 15 fixed in the mountains 5 are used. In Fig. 12, only one of these anchors 15 is shown. The anchor 15 is firmly anchored with his anchor rod 16 in the mountains 5, e.g. mechanically or by mortaring. In the projecting into the tunnel cavity 4 anchor head 17 which is fixedly connected to the anchor rod 16, a compression body 7 is installed, which corresponds to the compression body described in connection with FIGS. 1 to 5. The compression body 7 is arranged between two steel discs 18 and 19.

Bei einer Bewegung des den Tunnelhohlraum 4 begrenzenden Wandbereiches 20 relativ zum tief in das Gebirge 5 hineinragenden Ankerstab 16 wird der Stauchkörper 7 durch die auf ihn wirkenden Druckkräfte verformt, d. h. zusammen gedrückt. Dabei wird wie anhand der Fig. 3 bis 5 erläutert eine gewisse Relativbewegung zwischen dem Ankerstab 16 und dem Wandbereich 20 ermöglicht, ohne dass der Anker 15 einer zu grossen, ihn zerstörenden mechanischen Belastung ausgesetzt wird.During a movement of the tunnel cavity 4 limiting wall portion 20 relative to the deep projecting into the mountains 5 anchor rod 16 of the compression body 7 is deformed by the pressure forces acting on it, ie pressed together. As explained with reference to FIGS. 3 to 5, a certain relative movement between the anchor rod 16 and the wall region 20 is made possible without the armature 15 being exposed to an excessive mechanical load which destroys it.

Es kann erwünscht sein, dass das schrittweise Zusammenbrechen bzw. Zusammendrücken der Hohlräume im Innern der Stauchkörper 7 bei Belastung auf eine ganz bestimmte, gesteuerte Weise erfolgt. Ein derartiges gesteuertes Verhalten der Stauchkörper 7 unter Druckbelastung kann dadurch erreicht werden, dass in den Stauchkörpern 7 durch eine entsprechende Formgebung der Stauchkörper 7 oder durch geeignete Massnahmen bei deren Herstellung, z.B. durch Vorsehen von Schwächungsstellen, ein inhomogener Spannungszustand erzeugt wird.It may be desirable that the stepwise collapse or compression of the cavities in the interior of the compression body 7 takes place under load in a very specific, controlled manner. Such a controlled behavior of the compression body 7 under pressure load can be achieved that in the compression bodies 7 by a corresponding shaping of the compression body 7 or by suitable measures in their preparation, e.g. by providing weak points, an inhomogeneous stress state is generated.

Die Stauchkörper 7 können auch mit mindestens einem platten- oder gitterförmigen Bewehrungselement versehen sein, das quer und vorzugsweise rechtwinklig zur Belastungsrichtung (Wirkrichtung der Druckkraft N in den Fig. 3 und 4) verläuft. Dieses Bewehrungselement, das eine hohe mechanische Festigkeit aufweist, kann in das Grundmaterial des Stauchkörpers 7 eingebettet sein. Vorzugsweise ist jedoch der Stauchkörper 7 als ein mehrschichtiger Verbundkörper ausgebildet, bei dem jeweils eine Schicht aus einem Teilkörper, der aus einem die Hohlräume enthaltenden Material besteht, mit einem platten- oder gitterartigen Bewehrungselement abwechselt. Mittels der Bewehrungselemente kann das Stauchverhalten des Stauchkörpers 7 bei Druckbelastung günstig beeinflusst werden.The compression bodies 7 can also be provided with at least one plate-like or lattice-shaped reinforcing element, which extends transversely and preferably at right angles to the loading direction (effective direction of the compressive force N in FIGS. 3 and 4). This reinforcing element, which has a high mechanical strength, may be embedded in the base material of the compression body 7. Preferably, however, the compression body 7 is formed as a multilayer composite body, in which a respective layer of a partial body, which consists of a material containing the cavities, alternates with a plate-like or lattice-like reinforcing element. By means of the reinforcing elements, the compression behavior of the compression body 7 can be favorably influenced under pressure.

Es versteht sich, dass die vorstehend beschriebenen Stützmittel bzw. Ausbauten 1 nicht nur im Tunnelbau, sondern ganz generell im Untertagebau eingesetzt werden können.It is understood that the support means or extensions 1 described above can be used not only in tunneling, but quite generally in underground mining.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Tunnelausbautunneling
2, 32, 3
TunnelausbauelementeTunnel lining elements
44
Tunnelhohlraumtunnel void
55
Gebirgemountains
66
Zwischenraumgap
77
Stauchkörper; 7a, 7b druckbelastete FlächeCompression body; 7a, 7b pressure-loaded surface
88th
Leistestrip
99
Ausnehmungrecess
1010
Bolzenbolt
1111
Kopfbolzenstuds
12, 1312, 13
Stahlträgersteel beams
1414
Kopfbolzenstuds
1515
Ankeranchor
1616
Ankerstabtie rod
1717
Ankerkopfanchor head
18, 1918, 19
Stahlscheibesteel disc
2020
Wandbereichwall area

Claims (19)

  1. Method for stabilizing a cavity (4) excavated in underground construction, in which the cavity (4) is secured by supporting means (2, 3; 12, 13; 15), and the pressure exerted by the rock (5) on the supporting means (2, 3; 12, 13; 15) is directed through at least one compression element (7), which deforms when a predetermined compressive load is exceeded, and which is composed of a material containing a predetermined volume fraction of voids, whereas a compression body (7) is employed as the compression element, which compression body (7) contains a binding means, preferably cement or plastic, characterized in that the compression body (7) further comprises the particles forming the voids, preferably blown-glass particles or plastic particles, and reinforcement elements of steel, plastic or glass.
  2. Method according to Claim 1, characterized in that a compression body (7) is employed having a compressive strength of at least 1 MPa, and a void fraction of between 10% and 90% of the total volume.
  3. Method according to Claim 2, characterized in that a compression body (7) is employed having a compressive strength of at least 3 MPa, and a void fraction of between 20% and 70% of the total volume.
  4. Method according to Claim 1, characterized in that steel fibers are employed as reinforcement elements.
  5. Method according to one of Claims 1 through 4, characterized in that a compression body (7) designed preferably as a multilayer composite body is employed having at least one installed plate-like or lattice-like reinforcement element.
  6. Method according to one of Claims 1 through 5, wherein the cavity (4) is secured by means of at least two supporting components (2, 3; 12, 13) which are displaceable relative to each other under the pressure exerted by the rock (5), which supporting components are separated by at least one space (6) in the longitudinal direction of the cavity (4),
    characterized in that at least one compression body (7) is inserted into this space (6), which compression body (7) is compressed or squeezed together in response to a relative motion of the supporting components (2, 3; 12, 13).
  7. Method according to one of Claims 1 through 5, wherein the cavity (4) is secured by at least one anchor (15) fixed within the rock (5), characterized in that at least one compression body (7) is inserted in the head (17) of the anchor (15), which compression body (7) is compressed or squeezed together relative to the rod (16) of the anchor (1 5) in response to a movement of the wall region (20) of the cavity (4).
  8. Device for stabilizing a cavity (4) excavated in underground construction, comprising supporting means (2, 3; 12, 13; 15) to secure the cavity (4), and at least one compression element (7) which deforms in response to the compressive load exerted by the rock (5) on the supporting means (2, 3; 12, 13; 15) when a predetermined compressive load is exceeded, which compression element (7) is composed of a material containing a predetermined volume fraction of voids, whereas the at least one compression element is a compression body (7) that contains a binding means, preferably, cement or plastic; characterized in that the compression body (7) further comprises the particles forming the voids, preferably, blown-glass particles or plastic particles; and reinforcement elements of steel, plastic or glass.
  9. Device according to Claim 8, characterized in that the compression body (7) has a compressive strength of at least 1 MPa, and void fraction of between 10% and 90% of its total volume.
  10. Device according to Claim 9, characterized in that the compression body (7) has compressive strength of at least 3 Wa, and a void fraction of between 20% and 70% of its total volume.
  11. Device according to Claim 8, characterized in that steel fibers are employed as reinforcement elements.
  12. Device according to one of Claims 8 through 11,
    characterized in that the compression body (7), preferably designed as a multilayer composite body, is provided with at least one installed plate-like or lattice-like reinforcement element.
  13. Device according to one of Claims 8 through 12, comprising at least two supporting components (2, 3; 12, 13) which are displaceable relative to each other under the pressure exerted by the rock (5) and intended to secure the cavity (4), which supporting components are separated by at least one space (6) running in the longitudinal direction of the cavity (4) to be secured, characterized in that at least one compression body (7) is inserted into this space (6), which compression body is compressed or squeezed together in response to a relative motion of the supporting components (2, 3; 12, 13; 15).
  14. Device according to one of Claims 8 through 12, comprising at least one anchor (15) which is fixable within the rock (5) and intended to secure the cavity (4), characterized in that at least one compression body (7) is inserted in the head (17) of the anchor (15), which compression body is compressed or squeezed together in response to a movement of the wall region (20) of the cavity (4) relative to the rod of the anchor (15).
  15. Compression body (7) for a device according to Claims 8 through 14, which is composed of a material containing a predetermined volume fraction of voids, whereas the compression body (7) contains a binding means, preferably, cement or plastic; characterized in that the compression body (7) further comprises the particles forming the voids, preferably, blown-glass particles or plastic particles; and reinforcement elements of steel, plastic or glass.
  16. Compression body according to Claim 15, characterized in that the body has a compressive strength of at least 1 MPa, and a void fraction of between 10% and 90% of its total volume.
  17. Compression body according to Claim 16, characterized in that the body has a compressive strength of at least 3 MPa, and a void fraction of between 20% and 70% of its total volume.
  18. Compression body (7) according to Claim 15, characterized in that steel fibers are employed as reinforcement elements.
  19. Compression body (7) according to one of Claims 15 through 18, characterized in that the compression body is provided with at least one installed plate-like or lattice-like reinforcement element, and is preferably designed as a multilayer composite body.
EP04405086A 2004-02-16 2004-02-16 Method and device for stabilising an underground broken out cavity Expired - Lifetime EP1564369B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP04405086A EP1564369B1 (en) 2004-02-16 2004-02-16 Method and device for stabilising an underground broken out cavity
DE502004005697T DE502004005697D1 (en) 2004-02-16 2004-02-16 Method and device for stabilizing a cavity excavated in underground mining
ES04405086T ES2297363T3 (en) 2004-02-16 2004-02-16 PROCEDURE AND DEVICE FOR STABILIZING AN EXCAVATED CAVITY IN A UNDERGROUND CONSTRUCTION.
AT04405086T ATE380925T1 (en) 2004-02-16 2004-02-16 METHOD AND DEVICE FOR STABILIZING A CAVITY EMERGED DURING UNDERGROUND MINING
US11/052,221 US7404694B2 (en) 2004-02-16 2005-02-08 Method and device for stabilizing a cavity excavated in underground construction
JP2005037880A JP3977843B2 (en) 2004-02-16 2005-02-15 Method and apparatus for stabilizing a hollow space formed by underground excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04405086A EP1564369B1 (en) 2004-02-16 2004-02-16 Method and device for stabilising an underground broken out cavity

Publications (2)

Publication Number Publication Date
EP1564369A1 EP1564369A1 (en) 2005-08-17
EP1564369B1 true EP1564369B1 (en) 2007-12-12

Family

ID=34684812

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04405086A Expired - Lifetime EP1564369B1 (en) 2004-02-16 2004-02-16 Method and device for stabilising an underground broken out cavity

Country Status (6)

Country Link
US (1) US7404694B2 (en)
EP (1) EP1564369B1 (en)
JP (1) JP3977843B2 (en)
AT (1) ATE380925T1 (en)
DE (1) DE502004005697D1 (en)
ES (1) ES2297363T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570397A2 (en) 2011-09-16 2013-03-20 Schretter & Cie GmbH & Co. KG Shotcrete
DE202021003746U1 (en) 2021-12-10 2022-04-21 Implenia Schweiz Ag Device for absorbing rock deformations in underground mining and use of a polystyrene compression element
EP4194664A1 (en) 2021-12-10 2023-06-14 Implenia Schweiz AG Device for receiving rock deformations in underground mining, method for manufacturing a reinforcement layer suitable for receiving rock deformations in underground mining and use of a polystyrene compression element and method for the production of such a device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006007122D1 (en) 2006-12-16 2010-07-15 Kalman Kovari Anchoring device for stabilizing the subsoil
EP2042686B1 (en) * 2007-09-27 2009-07-08 Bochumer Eisenhütte Heintzmann GmbH & Co. KG Elasticity element
DE102009057521B4 (en) * 2009-12-10 2011-07-21 Bochumer Eisenhütte Heintzmann GmbH & Co. KG, 44793 Tubbing extension with integrated compliance element
JP6769754B2 (en) * 2016-06-29 2020-10-14 大成建設株式会社 Shrinkable member
JP6730883B2 (en) * 2016-08-31 2020-07-29 大成建設株式会社 Design method of flexible support
JP6730884B2 (en) * 2016-08-31 2020-07-29 大成建設株式会社 How to design a structure
JP6778061B2 (en) * 2016-09-07 2020-10-28 大成建設株式会社 Shrinkable members and tunnels
JP6858605B2 (en) * 2017-03-21 2021-04-14 鹿島建設株式会社 Support structure and construction method of support structure
NO345341B1 (en) * 2017-09-22 2020-12-21 Foamrox As A tunnel profile element and a method of assembling a tunnel profile element.
EP3540178B1 (en) * 2018-03-14 2021-08-25 Solexperts AG Supporting device for stabilising underground cavities, particularly tunnels, as well as mining openings
SG11202111283XA (en) * 2019-04-26 2021-11-29 Kajima Corp Construction method of tunnel supporting structure
JP7267889B2 (en) * 2019-09-24 2023-05-02 鹿島建設株式会社 Construction method of tunnel support structure
JP7345409B2 (en) * 2020-02-04 2023-09-15 鹿島建設株式会社 How to construct a tunnel support structure
CN111764930B (en) * 2020-06-05 2025-06-17 中南大学 A tunnel support structure with honeycomb energy absorption device and construction method thereof
CN112880605B (en) * 2020-10-26 2022-02-08 西南交通大学 Method for determining railway tunnel base void volume

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR848702A (en) * 1938-07-13 1939-11-06 Entpr S Campenon Bernard Method of execution of underground galleries or conduits and structures thus produced
AU542884B2 (en) * 1980-07-31 1985-03-21 Dipl.Ing. Dr. Mont. Franz Powondra Resilient yieldable device
DE3210530C2 (en) * 1982-03-23 1984-01-05 Bergwerksverband Gmbh, 4300 Essen Resilient concrete segment support
DE4133267C2 (en) * 1991-10-08 1994-04-28 Linsingen Heintzmann Von Route expansion, especially for mining underground operations
US5992118A (en) * 1995-09-29 1999-11-30 Git Tunnelbau Gmbh Segment for lining cavities
DE19716514C1 (en) 1997-04-19 1998-06-10 Scholz Paul Friedrich Dr Ing Power metallurgical production of metallic semi-finished products
AT406893B (en) 1997-11-28 2000-10-25 Schubert Wulf Dipl Ing Dr DEVICE FOR MUTUAL SUPPORT OF TWO SEGMENTS OF A TUNNEL LINING DIVIDED IN THE CIRCUMFERENTIAL DIRECTION BY CONTRACTION JOINTS
DE60007237T2 (en) 1999-03-10 2004-05-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. USE OF METAL FOAMS IN ARMORING SYSTEMS
US20030154683A1 (en) * 2000-04-26 2003-08-21 Bache Hans Henrik Building blocks for reinforced structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570397A2 (en) 2011-09-16 2013-03-20 Schretter & Cie GmbH & Co. KG Shotcrete
DE202021003746U1 (en) 2021-12-10 2022-04-21 Implenia Schweiz Ag Device for absorbing rock deformations in underground mining and use of a polystyrene compression element
EP4194664A1 (en) 2021-12-10 2023-06-14 Implenia Schweiz AG Device for receiving rock deformations in underground mining, method for manufacturing a reinforcement layer suitable for receiving rock deformations in underground mining and use of a polystyrene compression element and method for the production of such a device
WO2023104772A1 (en) 2021-12-10 2023-06-15 Implenia Schweiz Ag Structure for absorbing rock deformations in underground mining, method for producing a reinforcing layer suitable for absorbing rock deformations in underground mining, and use of a polystyrene compression element and method for producing such a structure

Also Published As

Publication number Publication date
US20050191138A1 (en) 2005-09-01
DE502004005697D1 (en) 2008-01-24
EP1564369A1 (en) 2005-08-17
US7404694B2 (en) 2008-07-29
JP2005232958A (en) 2005-09-02
ES2297363T3 (en) 2008-05-01
JP3977843B2 (en) 2007-09-19
ATE380925T1 (en) 2007-12-15

Similar Documents

Publication Publication Date Title
EP1564369B1 (en) Method and device for stabilising an underground broken out cavity
EP1505223B1 (en) Corrosion protected tendon, especially for prestressed concrete
EP0025856B1 (en) Device for anchoring the end of at least one rod of fibrous composite material used as a tensioning member in prestressed concrete constructions
EP3112542B1 (en) Device and method for heat decoupling of concreted parts of buildings
EP0363779B1 (en) Anchoring device for a tensioning rod composed of a fibre composite
EP3085843B1 (en) Device and method for heat decoupling of concreted parts of buildings
EP1905923A2 (en) Tie rod and assembly for reinforcing existing construction elements against punching with such a tie rod
DE102007015259A1 (en) Friction tube anchor with cartridge adhesive
DE2823950C2 (en) Shaft construction, especially for the construction of deep shafts in unstable, water-bearing mountains
AT396153B (en) TENSION
DE3332242C2 (en)
DE3838880C1 (en) Method of producing a grouted anchor, and grouted anchor for carrying out the method
EP2467541B1 (en) Seal for sealing a potting cavity between at least two components
DE3879807T2 (en) Double-acting anchor.
EP1108855B1 (en) Self-supporting waterproof vault for tunnel lining
EP1933005B1 (en) Anchoring device for stabilising the ground
EP0457969B1 (en) Method and device for the lifting of buildings
EP2706148B1 (en) Method for improving the bearing capacity of open profiles placed in the foundation and system created using the same
AT366778B (en) POWER TRANSFER ELEMENT
EP1413681A2 (en) Building with a buffering and method of making said building
EP4520870A1 (en) Geotechnical anchor with swelling body, anchoring system and production of the anchoring system
AT163222B (en) Method for producing a lining of pressure tunnels, pressure shafts or the like.
AT512243B1 (en) COMPRESSION BODY FOR THE MUTUAL SUPPORTING OF TUNNEL CLADDING ELEMENTS AND / OR UNDERLYING CAVITY ELEMENTS
AT390467B (en) Apparatus and process for anchoring a compressive-stress element
EP1688545A1 (en) Injection or prestressed anchor for open-air and subsoil constructions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051017

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004005697

Country of ref document: DE

Date of ref document: 20080124

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PETER RUTZ

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080213

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20080400653

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2297363

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080512

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

26N No opposition filed

Effective date: 20080915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080216

BERE Be: lapsed

Owner name: KOVARI, KALMAN, PROF. DR.

Effective date: 20140228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160309

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160226

Year of fee payment: 13

Ref country code: BE

Payment date: 20160226

Year of fee payment: 13

Ref country code: GR

Payment date: 20160223

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20160411

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170216

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180216

Year of fee payment: 15

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: ALPENSTRASSE 14 POSTFACH 7627, 6302 ZUG (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190304

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200220

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005697

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210217

Year of fee payment: 18

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 380925

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190216

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220825

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220823

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230216

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228