EP1549920A2 - Irradiation device for testing objects coated with light-sensitive paint - Google Patents
Irradiation device for testing objects coated with light-sensitive paintInfo
- Publication number
- EP1549920A2 EP1549920A2 EP03808674A EP03808674A EP1549920A2 EP 1549920 A2 EP1549920 A2 EP 1549920A2 EP 03808674 A EP03808674 A EP 03808674A EP 03808674 A EP03808674 A EP 03808674A EP 1549920 A2 EP1549920 A2 EP 1549920A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- euv
- dose
- aperture
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 18
- 239000003973 paint Substances 0.000 title claims abstract description 10
- 230000005855 radiation Effects 0.000 claims abstract description 126
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 229920002120 photoresistant polymer Polymers 0.000 claims description 14
- 230000003595 spectral effect Effects 0.000 claims description 10
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000001629 suppression Effects 0.000 claims 1
- 238000005286 illumination Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 30
- 239000004922 lacquer Substances 0.000 description 9
- 230000006870 function Effects 0.000 description 7
- 238000000576 coating method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000002966 varnish Substances 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 241000478345 Afer Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K5/00—Irradiation devices
- G21K5/04—Irradiation devices with beam-forming means
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70558—Dose control, i.e. achievement of a desired dose
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/10—Scattering devices; Absorbing devices; Ionising radiation filters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechanical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/044—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using shutters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/429—Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
Definitions
- the invention relates to a device for test irradiation of objects coated with photosensitive paints with an EUV radiation source, an optical system for filtering the radiation from the EUV radiation source, a chamber for receiving the object and means for interrupting the beam path onto the object.
- the invention also relates to an operating method for such a device.
- lithography is a method for transferring circuit patterns of microelectronic components and integrated circuits to a silicon semiconductor wafer, the afer.
- a mask is first produced which contains the pattern in the form of transparency differences for the rays with which it is transferred to the wafer.
- the wafer surface is coated with a radiation-sensitive photoresist and exposed through the mask.
- Semiconductor structures are transferred to the photoresist using a so-called lithography scanner.
- the exposed or the unexposed photoresist is detached and the wafer surface is exposed at these points.
- the changed requirements for the coatings require an adaptation of their test systems, which are used before the series production of the wafers to determine the coating properties under different irradiation.
- EUV radiation is extremely strongly absorbed by matter. It is therefore necessary that the EUV radiation is conducted under ultra high vacuum conditions.
- the source of the EUV radiation is a thermally emitting plasma. In contrast to the lasers previously used, plasma emits very broadband, so that in addition to the desired EUV radiation, DUV, VUV and UV radiation is also produced. It is therefore necessary to keep this radiation away from the paints with spectral filters.
- EUV radiation sources of this type emit very short radiation pulses ( ⁇ 1 ns) with repetition frequencies of a few MHz, so that these EUV sources are often referred to as quasi-cw sources.
- individual fields were sequentially irradiated with different radiation doses to test the varnish applied to plates in order to determine the influence of the radiation dose on the varnish.
- several fields coated with lacquer have already been exposed simultaneously on synchrotron storage rings, with a rapidly rotating diaphragm wheel arranged in front of the lacquer layer taking on the function of a gray wedge.
- the aperture openings arranged radially on the wheel are of different sizes, so that the individual fields are exposed to the radiation for different lengths during each revolution. reproducible Radiation conditions in the individual fields of the object are only possible with the aperture wheel because the EUV radiation source behaves quasi stationary due to the high repetition frequency and radiates very stably.
- EUV laboratory radiation sources generate a dense and hot (> 200,000 ° C) plasma and emit the EUV radiation only in very short pulses (typically 100 ns) with very low repetition rates (typically 10 - 1000 Hz).
- the object of the invention is to provide a device for test irradiation of objects coated with photosensitive paints, which, using an inexpensive radiation source, enables at least partially simultaneous irradiation of several radiation fields on the object with different doses in the shortest possible time , does not require complex and therefore costly optics in the beam path of the EUV radiation and in which a degradation of the optical elements in the beam path due to EUV radiation has no influence on the test result achieved.
- the EUV radiation source is a laboratory source for EUV radiation
- the optical system at least one filter for suppressing unwanted spectral components of the radiation, in particular VIS, UV, DUV, VUV radiation, and at least one mirror for spectral filtering of the "in-band" - EUV area
- the means for interrupting the beam path comprise a plurality of closable diaphragm openings, which enable the irradiation fields behind the diaphragm openings, radiation fields located on the object, to be timed
- the at least one monitor detector is arranged in the direction of the beam path behind the optical system, which during the radiation dose of radiation.
- the laboratory source for EUV radiation is, for example, a plasma-based low power source, e.g. an EUV lamp with a power of 100 W and a pulse frequency of 50 Hz according to the HCT (Hollow Cathode Triggered) principle.
- the laboratory source reliably provides the required EUV radiation over a long operating period.
- the plasma from the laboratory source emits very broadband radiation, which in addition to the desired EUV radiation also contains DUV, VUV, UV and VIS radiation.
- the optical system preferably has a spectral filter.
- the filter can, for example, consist of a thin metal foil (e.g. a 150 nm thick zirconium foil on a support grid).
- the filter is preferably located at the outlet of the laboratory source. With this arrangement, the filter prevents contaminants from the laboratory source from entering the receiving chamber for the object to be irradiated and contaminating parts located there.
- the optical system has the further task of ensuring that the radiation is carried out only with the "in-band" EUV radiation with a wavelength of 13.5 nm.
- a multilayer mirror is particularly suitable for filtering.
- the components of the optical system ensure that practically only the desired EUV radiation hits the object.
- the compact optical system of the device according to the invention in particular with only one filter and one mirror, enables a very short distance from the EUV laboratory source to the object to be irradiated with homogeneous irradiation of all irradiation fields. Due to the small distance, a large solid angle of the thermal emission of the plasma can also be used without an expensive condenser.
- the diaphragm openings which can be closed according to the invention permit at least partially simultaneous irradiation of the radiation fields defined on the object through the diaphragm openings. All radiation fields are initially irradiated in parallel until individual aperture openings after reaching the target dose for the assigned
- the diaphragm openings are preferably arranged in a flat plate and have a diameter of 5 mm, for example. With 20 such apertures, the test duration for a photoresist can be reduced almost by a factor of 20 compared to individual irradiations with different radiation doses.
- the monitor detectors arranged behind the optical system allow an exact measurement of the radiation dose of the individual radiation fields.
- several photodiodes Schottky type
- the signals supplied by the diodes are preferably averaged in order to improve the measurement accuracy.
- the radiation dose is recorded continuously during the radiation, the radiation of the radiation fields can be carried out with precisely definable target values for the radiation dose.
- the monitor detectors are preferably arranged between the optical system and the closable openings; they are conveniently located as close as possible to the object to be irradiated. This arrangement of the monitor detectors makes the device insensitive to the degradation of the optical system.
- the chamber for receiving the object is therefore designed and evacuated, for example, to a negative pressure of 10 ⁇ 6 mbar. It is separated from the discharge chamber of the laboratory source by a window with an opening for the passage of the radiation, the window in particular having a filter of the optical system, for example in the form of a metallic foil. This prevents contamination of the receiving chamber.
- the receiving chamber preferably has its own pump system and is separated from the laboratory source and preferably also the area for receiving the optical system when handling the object to be irradiated by means of a slide valve.
- the radiation fields are preferably arranged parallel to the plane of the diaphragm openings.
- the object coated with photoresist is in particular a silicon wafer, for example a 6 inch wafer with a thickness of 650 ⁇ m and with 20 radiation fields defined by the aperture openings.
- a holder in the receiving chamber which receives the wafer in such a way that that the EUV radiation hits its photoresist coating.
- the laboratory source emits radiation pulses of a duration of less than 1 ⁇ s, in particular 100 ns, with a repetition rate between 1 and 10,000 Hz, in particular 1-5000 Hz.
- the radiation from the laboratory source comes from a thermally emitting plasma, in particular from a laser-generated one or discharge-generated plasma or from an electron beam.
- a thin metal foil in particular a zirconium foil with a thickness of less than 200 nm but more than 100 nm is preferably arranged in the beam path as a filter for suppressing undesirable visible to VUV radiation.
- the film transmits up to 50% of the desired EUV radiation, while the unwanted radiation is suppressed by a factor> 1000.
- Each mirror for spectral filtering of the "in-band" EUV range is preferably designed as a multilayer mirror, it being possible for the mirror to be designed as a plane mirror or as a curved mirror.
- the multilayer mirrors reflect up to 70% of the incident radiation in a narrow spectral band in the EUV range, while radiation which is not in this narrow band is almost completely absorbed by the multilayer mirror.
- the diaphragm openings are preferably closed by means of a flat slide, which is in a to the plane of
- Aperture openings are arranged parallel to the plane and has a contour that enables a successive opening or closing of the aperture openings.
- the contour is in particular stair-shaped, so that the diaphragm openings arranged in rows can be opened or closed line by line.
- the flat slide as a closure for all aperture openings provides with only a mechanical component is a very favorable solution in terms of design and control technology.
- FIG. 1 shows the spectrum of the radiation generated by the EUV radiation source.
- FIG. 2 shows a basic illustration of the invention
- FIG. 3 Device for test irradiation of objects coated with photosensitive lacquers, FIG. 3, one arranged in the device according to FIG
- Figure 4 shows an irradiation function with a variation of
- FIG. 5 shows the film thickness of a coating application as a function of the dose of test radiation
- the device for EUV test radiation is used to apply a photoresist (resist) for lithography in the area of EUV radiation. H. at a wavelength of 13.5 nm, with 20 different radiation doses in one operation. The removal of the photoresist after development and the sharpness of the structures depicted should be determined as a function of the dose.
- the device for EUV test radiation consists of an EUV laboratory lamp (1) which generates radiation with a spectrum according to FIG. 1.
- the likewise horizontally oriented beam path (4) leaves the EUV laboratory lamp (1) via a horizontally oriented beam pipe (2) with an outlet opening (3).
- a jet pipe slide unit (5) is arranged at the outlet opening (3).
- the jet tube slide has a passage into which a 150 nm thick zirconium foil is inserted, which can be moved into the beam path (4) by means of the slide.
- the slide movable transversely to the axis of the beam path (4) allows the zirconium foil to be completely moved out of the cross section of the jet pipe (2), so that the outlet opening (3) is completely closed by the jet pipe slide, which is otherwise made of metal.
- a turbomolecular pump (6) is also arranged on the jet pipe (2) and generates a vacuum of approximately 10 "3 mbar in the EUV lamp (1) while maintaining a xenon atmosphere.
- a hollow cylindrical angle piece (7) which receives a deflecting mirror (8), adjoins the jet tube slide unit (5).
- the deflecting mirror (8) is arranged in the interior of the angle piece in the outer region of the bend in such a way that the horizontally incident beam path (4) is deflected by 90 ° into a wafer chamber (9), designated overall by (9).
- a mirror recipient (11) carries and fixes the deflecting mirror (8). It is pointed out that the constructively favorable angle of incidence of the EUV radiation of 45 ° shown in the exemplary embodiment can be varied without further ado.
- the angle chamber (7) is followed by the wafer chamber (9), which consists of a hollow cylindrical jet tube (12) and a receiving space (13) for the wafer coated with lacquer.
- the beam path (4) spreads from the deflecting mirror (8) through the beam pipe (12) in the direction of a diaphragm system (15).
- the surface of the wafer is oriented in the direction of the diaphragm system (15), so that the EUV radiation passing through the diaphragm system falls on the lacquer coating of the wafer.
- Aperture openings of the aperture system (15) are driven by a stepper motor (14).
- the side of the receiving space (13) a further turbo-molecular pump (17) is arranged, which kel Culture mbar during the exposure for the maintenance of a pressure of 10 "6 in the winter (7) and the wafer chamber (9) provides.
- the photodiodes In the direction of propagation of the beam path (4) of the EUV radiation to the side in the aperture system (15) there are three photodiodes (18) which can be seen in FIG. 3 and which record the radiation energy of the individual radiation pulses of the EUV lamp (1), the radiation energy being proportional to that charge generated in the photodiodes (18).
- the photodiodes are arranged as close as possible to the diaphragm openings in the diaphragm system, but in such a way that they are not covered by the motor-driven closure.
- the device for EUV test radiation has a further slide (19), which is arranged between the angle piece (7) and the beam pipe (12) of the wafer chamber (9). If the slide (19) is closed, the wafer chamber is
- FIG. 3 illustrates the structure of the diaphragm system, designated overall by (15), which has a shadow mask (21) with 5 rows, each with 4 diaphragm openings (22).
- the EUV radiation passing through each aperture (22) defines a delimited radiation field on the lacquer layer (16) of the wafer.
- the distance between the wafer and the aperture system (15) and the distance between the aperture openings (22) is designed in such a way that the radiation fields do not overlap.
- the aperture system (15) produces twenty delimited radiation fields of approximately 5 mm in diameter on the surface of the wafer coated with photoresist.
- the flat slide valve (24) is connected on the side opposite the contour (23) to the stepping motor (14) shown in FIG. By moving the flat slide
- the diaphragm openings (22) can be mechanically closed line by line. The consequence of this is that the radiation fields defined by the individual aperture openings (22) are given individual radiation times.
- the filter has two functions:
- the permeability of the zirconium filter is less than 10%.
- the deflecting mirror (8) is a multilayer mirror with, for example, 40 layers of a silicon substrate with a period thickness of approximately 10 nm. This mirror reflects a wavelength of 13.5 +/- 0.2 nm at an angle of 45 ° into the beam tube (12) of the wafer chamber (9).
- the slide (19) between the angle piece (7) and the wafer chamber is closed.
- the vacuum in the EUV lamp (1) and the angle piece (7) is maintained when the wafer chamber (9) is ventilated in order to open it, for example, to remove the irradiated wafer.
- the slide (19) not only enables shorter evacuation times for the wafer chamber (9) during the wafer handling, but also an effective protection of the sensitive optical system, which is formed by the zirconium foil in the beam tube slide unit (5) and the deflecting mirror (8) in the elbow.
- the photodiodes (18) arranged in the beam mask (4) in the shadow mask (21) measure the radiation energy of the EUV radiation pulses by generating a charge proportional to the radiation energy in the photodiodes.
- the charge generated by the individual pulses is added up electronically and queried cyclically by a controller (not shown in the figure). If the query shows that a certain radiation dose (target value) has been reached, a control command for the stepper motor (14) is triggered, which moves the flat slide valve (24) in the direction of the arrow (25) in order to line by line the next aperture opening (22) to close.
- the setpoints which must be reached depending on a target dose specified by the user (definition: a dose assumed by the user of the test system for the lacquer to be examined to be optimal) until the next aperture (22) is closed, form the bases of an irradiation function.
- the individual setpoints are calculated using the following formula:
- the function value s is the setpoint that must be reached before the next aperture is closed.
- the parameter F stands for the currently closed field and lies in the value range from 1 to 20.
- Exp The parameter Exp is the exponent set by the user and has the values from 1 to 5.
- the Tar parameter is the target dose set by the user.
- Var The Var parameter is the variation range set by the user in percent in the range from 1 to 100.
- Irradiation with EUV radiation causes the lacquer film to be removed from the wafer after development.
- the relationship between dose and erosion after development is shown in the curve in Fig. 5 using the example of a specific paint. From a certain dose, the value for the remaining thickness of the paint film drops sharply.
- the minimum dose required for the irradiation of this lacquer in the exemplary embodiment approximately 6 mJ / cm 2 ) can be read off the x-axis. In this way, the EUV radiation sensitivity of a photoresist for wafers can be determined in one operation.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- X-Ray Techniques (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
Vorrichtung zur Testbestrahlung von mit photoempfindlichen Lacken beschichteten ObjektenDevice for test irradiation of objects coated with photosensitive paints
Die Erfindung betrifft eine Vorrichtung zur Testbestrahlung von mit photoempfindlichen Lacken beschichteten Objekten mit einer EUV-Strahlungsquelle, einem optischen System zur Filterung der Strahlung der EUV-Strahlungsquelle, einer Kammer zur Aufnahme des Objektes sowie Mitteln zum Unterbrechen des Strahlengangs auf das Objekt. Außerdem betrifft die Erfindung ein Betriebsverfahren für eine derartige Vorrichtung.The invention relates to a device for test irradiation of objects coated with photosensitive paints with an EUV radiation source, an optical system for filtering the radiation from the EUV radiation source, a chamber for receiving the object and means for interrupting the beam path onto the object. The invention also relates to an operating method for such a device.
Mit Lithographie wird in der Halbleitertechnologie ein Verfahren zur Übertragung von Schaltkreismustern mikroelektronischer Bauelemente und integrierter Schaltungen auf eine Silizium-Halbleiter-Scheibe, den afer, bezeichnet. Zu diesem Zweck wird zunächst eine Maske hergestellt, die das Muster in Form von Transparenzunterschieden für die Strahlen enthält, mit denen es auf den Wafer übertragen wird. Die Wafer-Ober- fläche wird mit einem strahlungsempfindlichen Photolack beschichtet und durch die Maske belichtet. Die Übertragung von Halbleiterstrukturen auf den Photolack erfolgt mit einem sogenannten Lithographie-Scanner. Bei der anschließenden Entwicklung wird, je nach dem ob es sich um ein Positiv- oder Negativlack handelt, der belichtete oder der unbelichtete Photolack weggelöst und an diesen Stellen die Wafer-Oberflä- ehe freigelegt.In semiconductor technology, lithography is a method for transferring circuit patterns of microelectronic components and integrated circuits to a silicon semiconductor wafer, the afer. For this purpose, a mask is first produced which contains the pattern in the form of transparency differences for the rays with which it is transferred to the wafer. The wafer surface is coated with a radiation-sensitive photoresist and exposed through the mask. Semiconductor structures are transferred to the photoresist using a so-called lithography scanner. In the subsequent development, depending on whether it is a positive or negative varnish, the exposed or the unexposed photoresist is detached and the wafer surface is exposed at these points.
Die Herstellung moderner Halbleiterelemente, wie beispielsweise Speicherbausteine und CPUs, erfordert aufgrund der abnehmenden Strukturgröße der Halbleiter eine Auflösung, die die Verwendung extrem kurzwelliger Strahlung von etwa 13nm mit einer Quantenenergie von etwa 92 eV (EUV-Strahlung) notwendig macht. Die bisher verwendeten Bestrahlungswellenlängen von 248nm (UV-Strahlung) , 193 nm (DUV-Strahlung) oder 157 nm (VUV-Strahlung) reichen nicht mehr aus, um die kleiner wer- denden Strukturen zu erzeugen. Mit abnehmender Strukturgröße und Wellenlänge steigen jedoch die Anforderungen an die ein- gesetzten Lacke, das sogenannte Resistmaterial, sowohl was die Empfindlichkeit als auch die Linienrauhigkeit betrifft.The production of modern semiconductor elements, such as memory chips and CPUs, requires a resolution due to the decreasing structure size of the semiconductors, which necessitates the use of extremely short-wave radiation of approximately 13 nm with a quantum energy of approximately 92 eV (EUV radiation). The previously used radiation wavelengths of 248 nm (UV radiation), 193 nm (DUV radiation) or 157 nm (VUV radiation) are no longer sufficient to produce the structures that are becoming smaller. However, with decreasing structure size and wavelength, the requirements for the set varnishes, the so-called resist material, both in terms of sensitivity and line roughness.
Die geänderten Anforderungen an die Lacke erfordern eine An- passung von deren Testsystemen, die vor der Serienfertigung der Wafer zur Ermittlung der Lackeigenschaften bei unterschiedlicher Bestrahlung zum Einsatz kommen.The changed requirements for the coatings require an adaptation of their test systems, which are used before the series production of the wafers to determine the coating properties under different irradiation.
EUV-Strahlung wird außerordentlich stark von Materie absor- biert. Es ist daher erforderlich, dass die EUV-Strahlung unter Ultra-Hochvakuumbedingungen geführt wird. Die Quelle der EUV-Strahlung ist ein thermisch emittierendes Plasma. Plasma emittiert im Gegensatz zu den bisher eingesetzten Lasern sehr breitbandig, so dass neben der gewünschten EUV-Strahlung auch DUV- , VUV- und UV-Strahlung anfällt. Es ist daher erforderlich, diese Strahlung mit spektralen Filtern von den Lacken fernzuhalten .EUV radiation is extremely strongly absorbed by matter. It is therefore necessary that the EUV radiation is conducted under ultra high vacuum conditions. The source of the EUV radiation is a thermally emitting plasma. In contrast to the lasers previously used, plasma emits very broadband, so that in addition to the desired EUV radiation, DUV, VUV and UV radiation is also produced. It is therefore necessary to keep this radiation away from the paints with spectral filters.
Eine sehr stabile EUV-Strahlungsquelle zur Erforschung der EUV-Litographie Technologie stellen die sogenannte EUV-A very stable EUV radiation source for researching EUV litography technology is the so-called EUV
Strahlrohre an Synchrotron-Speicherringen dar, die monochro- matisierte EUV-Strahlung abgeben. Derartige EUV-Strahlungs- quellen emittieren sehr kurze Strahlungspulse (< 1 ns) mit Wiederholfrequenzen von einigen MHz, so dass diese EUV-Quel- len häufig als quasi-cw-Quellen bezeichnet werden. An EUV- Strahlrohren an Synchrotron-Speicherringen wurden zum Test von auf Platten aufgetragenen Lacken einzelne Felder sequentiell mit unterschiedlichen Strahlungsdosen bestrahlt, um den Einfluss der Strahlungsdosis auf den Lack zu ermitteln. Dar- über hinaus wurden an Synchrotron-Speicherringen auch bereits mehrere mit Lack beschichtete Felder gleichzeitig belichtet, wobei ein vor der Lackschicht im Strahlengang angeordnetes, schnell umlaufendes Blendenrad die Funktion eines Graukeils übernimmt. Die radial auf dem Rad angeordneten Blendenöffnungen sind unterschiedlich groß, so dass die einzelnen Felder während jeder Umdrehung unterschiedlich lange der Strahlung ausgesetzt sind. Reproduzierbare Strahlungsbedingungen auf den einzelnen Feldern des Objektes sind mit dem Blendenrad nur möglich, weil sich die EUV- Strahlungsquelle aufgrund der hohen Widerholfrequenz quasi stationär verhält und sehr stabil strahlt.Beam tubes on synchrotron storage rings that emit monochromatized EUV radiation. EUV radiation sources of this type emit very short radiation pulses (<1 ns) with repetition frequencies of a few MHz, so that these EUV sources are often referred to as quasi-cw sources. On EUV beam tubes on synchrotron storage rings, individual fields were sequentially irradiated with different radiation doses to test the varnish applied to plates in order to determine the influence of the radiation dose on the varnish. In addition, several fields coated with lacquer have already been exposed simultaneously on synchrotron storage rings, with a rapidly rotating diaphragm wheel arranged in front of the lacquer layer taking on the function of a gray wedge. The aperture openings arranged radially on the wheel are of different sizes, so that the individual fields are exposed to the radiation for different lengths during each revolution. reproducible Radiation conditions in the individual fields of the object are only possible with the aperture wheel because the EUV radiation source behaves quasi stationary due to the high repetition frequency and radiates very stably.
Schließlich wurden bereits mit Labor-Strahlungsquellen geringer Leistung für EUV-Strahlung Bestrahlungsversuche an Lacken durchgeführt, wobei jeweils nur ein einzelnes Feld auf dem Objekt bestrahlt wurde. EUV-Labor-Strahlungsquellen erzeugen ein dichtes und heißes (> 200.000° C) Plasma und emittieren die EUV-Strahlung ausschließlich in sehr kurzen Pulsen (typischerweise 100 ns) mit sehr geringen Widerholraten (typisch 10 - 1000 Hz) .Finally, radiation tests on paints have already been carried out with low-power laboratory radiation sources for EUV radiation, only one single field on the object being irradiated. EUV laboratory radiation sources generate a dense and hot (> 200,000 ° C) plasma and emit the EUV radiation only in very short pulses (typically 100 ns) with very low repetition rates (typically 10 - 1000 Hz).
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur Testbestrahlung von mit photoempfindlichen Lacken beschichteten Objekten zu schaffen, die unter Verwendung einer preiswerten Strahlungsquelle eine zumindest teilweise gleichzeitige Bestrahlung mehrerer Bestrahlungsfelder auf dem Objekt mit unterschiedlicher Dosis in möglichst kurzer Zeit ermöglicht, ohne aufwändige und daher kostenträchtige Optiken im Strahlengang der EUV-Strahlung auskommt und bei der eine Degradation der optischen Elemente im Strahlengang durch EUV-Bestrahlung keinen Einfluss auf das erzielte Testergebnis hat.Based on this prior art, the object of the invention is to provide a device for test irradiation of objects coated with photosensitive paints, which, using an inexpensive radiation source, enables at least partially simultaneous irradiation of several radiation fields on the object with different doses in the shortest possible time , does not require complex and therefore costly optics in the beam path of the EUV radiation and in which a degradation of the optical elements in the beam path due to EUV radiation has no influence on the test result achieved.
Diese Aufgabe wird bei einer Vorrichtung der eingangs erwähnten Art dadurch gelöst, dassThis object is achieved in a device of the type mentioned in the introduction in that
- die EUV-Strahlungsquelle eine Laborquelle für EUV- Strahlung ist, das optische System mindestens einen Filter zur Unterdrückung unerwünschter spektraler Bestandteile der Strahlung, insbesondere von VIS-, UV-, DUV- , VUV- Strahlung, sowie mindestens einen Spiegel zur spektralen Filterung des "in-band" - EUV-Bereiches aufweist, die Mittel zum Unterbrechen des Strahlengangs mehrere verschließbare Blendenöffnungen umfassen, die eine zeitliche Steuerung der Bestrahlung hinter den Blendenöffnungen befindlicher, auf dem Objekt liegender Bestrahlungsfelder ermöglichen und das mindestens ein Monitor-Detektor in Richtung des Strahlengangs hinter dem optischen System angeordnet ist, der die Strahlungsdosis während der Bestrahlung erfasst .- The EUV radiation source is a laboratory source for EUV radiation, the optical system at least one filter for suppressing unwanted spectral components of the radiation, in particular VIS, UV, DUV, VUV radiation, and at least one mirror for spectral filtering of the "in-band" - EUV area, the means for interrupting the beam path comprise a plurality of closable diaphragm openings, which enable the irradiation fields behind the diaphragm openings, radiation fields located on the object, to be timed and the at least one monitor detector is arranged in the direction of the beam path behind the optical system, which during the radiation dose of radiation.
Die Laborquelle für EUV-Strahlung ist beispielsweise eine plasmabasierte Quelle geringer Leistung, z.B. eine EUV-Lampe mit einer Leistung von 100 W und einer Pulsfrequenz von 50 Hz nach dem HCT (Hollow Cathode Triggered) Prinzip. Die Labor- quelle stellt die erforderliche EUV-Strahlung über einen langen Betriebszeitraum zuverlässig zur Verfügung.The laboratory source for EUV radiation is, for example, a plasma-based low power source, e.g. an EUV lamp with a power of 100 W and a pulse frequency of 50 Hz according to the HCT (Hollow Cathode Triggered) principle. The laboratory source reliably provides the required EUV radiation over a long operating period.
Das Plasma der Laborquelle emittiert sehr breitbandige Strahlung, die neben der erwünschten EUV-Strahlung auch DUV- , VUV- , UV- und VIS-Strahlung enthält. Um diese unerwünschten spektralen Bestandteile der Strahlung zu unterdrücken, weist das optische System vorzugsweise einen spektralen Filter auf. Der Filter kann beispielsweise aus einer dünnen Metallfolie (z.B. einer 150 nm dicken Zirkoniumfolie auf einem Stützgit- ter) bestehen. Der Filter befindet sich vorzugsweise an der Austrittsöffnung der Laborquelle. Durch diese Anordnung verhindert der Filter, dass Verunreinigungen aus der Laborquelle in die Aufnahmekammer für das zu bestrahlende Objekt gelangen und dort befindliche Teile verschmutzen.The plasma from the laboratory source emits very broadband radiation, which in addition to the desired EUV radiation also contains DUV, VUV, UV and VIS radiation. In order to suppress these undesired spectral components of the radiation, the optical system preferably has a spectral filter. The filter can, for example, consist of a thin metal foil (e.g. a 150 nm thick zirconium foil on a support grid). The filter is preferably located at the outlet of the laboratory source. With this arrangement, the filter prevents contaminants from the laboratory source from entering the receiving chamber for the object to be irradiated and contaminating parts located there.
Das optische System hat die weitere Aufgabe dafür zu sorgen, dass die Bestrahlung nur mit der "in-band" EUV-Strahlung mit einer Wellenlänge von 13,5 nm erfolgt. Zur Filterung eignet sich insbesondere ein Vielschichtspiegel .The optical system has the further task of ensuring that the radiation is carried out only with the "in-band" EUV radiation with a wavelength of 13.5 nm. A multilayer mirror is particularly suitable for filtering.
Die Bestandteile des optischen Systems bewirken, dass auf das Objekt praktisch nur die gewünschte EUV-Strahlung auftrifft. Das kompakte optische System der erfindungsgemäßen Vorrichtung, insbesondere mit nur einem Filter und einem Spiegel, ermöglicht einen sehr geringen Abstand von der EUV-Labor- quelle zu dem zu bestrahlenden Objekt bei homogener Bestrah- lung sämtlicher Bestrahlungsfelder. Aufgrund des geringen Ab- standes kann ein großer Raumwinkel der thermischen Emission des Plasmas auch ohne einen aufwändigen Kondensor genutzt werden.The components of the optical system ensure that practically only the desired EUV radiation hits the object. The compact optical system of the device according to the invention, in particular with only one filter and one mirror, enables a very short distance from the EUV laboratory source to the object to be irradiated with homogeneous irradiation of all irradiation fields. Due to the small distance, a large solid angle of the thermal emission of the plasma can also be used without an expensive condenser.
Die erfindungsgemäß verschließbaren Blendenöffnungen erlauben eine zumindest teilweise zeitgleiche Bestrahlung der auf dem Objekt durch die Blendenöffnungen definierten Bestrahlungsfelder. Sämtliche Bestrahlungsfelder werden zunächst parallel bestrahlt, bis einzelne Blendenöffnungen nach Erreichen der Zieldosis für das zugeordneteThe diaphragm openings which can be closed according to the invention permit at least partially simultaneous irradiation of the radiation fields defined on the object through the diaphragm openings. All radiation fields are initially irradiated in parallel until individual aperture openings after reaching the target dose for the assigned
Bestrahlungsfeld verschlossen werden. Dadurch wird beim Testen des Einflusses der Bestrahlungsdosis auf einen Photolack ein erheblicher Zeitgewinn erzielt.Radiation field are closed. This saves a considerable amount of time when testing the influence of the radiation dose on a photoresist.
Die Blendenöffnungen sind vorzugsweise in einer ebenen Platte angeordnet und weisen beispielsweise einen Durchmesser von 5 mm auf. Mit 20 derartigen Blendenöffnungen lässt sich die Testdauer für einen Photolack nahezu um den Faktor 20 gegenüber Einzelbestrahlungen mit unterschiedlichen Strahlungsdo- sen reduzieren.The diaphragm openings are preferably arranged in a flat plate and have a diameter of 5 mm, for example. With 20 such apertures, the test duration for a photoresist can be reduced almost by a factor of 20 compared to individual irradiations with different radiation doses.
Die hinter dem optischen System angeordneten Monitor-Detektoren erlauben nach einer zuvor durchgeführten Kalibration eine exakte Messung der Bestrahlungsdosis der einzelnen Bestrah- lungsfeider. Als Monitor-Detektoren können beispielsweise mehrere Photodioden (Schottky Type) zum Einsatz kommen. Die von den Dioden gelieferten Signale werden vorzugsweise gemit- telt, um die Messgenauigkeit zu verbessern. In dem die Bestrahlungsdosis fortlaufend während der Bestrahlung erfasst wird, kann die Bestrahlung der Bestrahlungsfelder mit genau festlegbaren Sollwerten für die Bestrahlungsdosis durchgeführt werden. Die Monitor-Detektoren sind vorzugsweise zwischen dem optischen System und den verschließbaren Öffnungen angeordnet; sie befinden sich zweckmäßigerweise so nah wie möglich an dem zu bestrahlenden Objekt. Diese Anordnung der Monitor-Detektoren macht die Vorrichtung unempfindlich gegen die Degradation des optischen Systems.After a calibration has been carried out, the monitor detectors arranged behind the optical system allow an exact measurement of the radiation dose of the individual radiation fields. For example, several photodiodes (Schottky type) can be used as monitor detectors. The signals supplied by the diodes are preferably averaged in order to improve the measurement accuracy. In that the radiation dose is recorded continuously during the radiation, the radiation of the radiation fields can be carried out with precisely definable target values for the radiation dose. The monitor detectors are preferably arranged between the optical system and the closable openings; they are conveniently located as close as possible to the object to be irradiated. This arrangement of the monitor detectors makes the device insensitive to the degradation of the optical system.
Wie bereits eingangs erwähnt, muss der gesamte Strahlengang unter Vakuumbedingungen bis zum Objekt geführt werden. Die Kammer zur Aufnahme des Objektes wird daher beispielsweise auf einen Unterdruck von 10~6 mbar ausgelegt und evakuiert. Sie ist von der Entladungskammer der Laborquelle durch ein Fenster mit einer Öffnung für den Durchtritt der Strahlung getrennt, wobei sich in dem Fenster insbesondere ein Filter des optischen Systems, beispielsweise in Form einer metallischen Folie, befindet. Hierdurch wird eine Kontamination der Aufnahmekammer vermieden. Die Aufnahmekammer hat vorzugsweise ein eigenes Pumpsystem und wird beim Handling des zu bestrah- lenden Objektes mittels eines Schieberventils von der Laborquelle und vorzugsweise auch dem Bereich zur Aufnahme des optischen Systems getrennt.As already mentioned at the beginning, the entire beam path must be guided to the object under vacuum conditions. The chamber for receiving the object is therefore designed and evacuated, for example, to a negative pressure of 10 ~ 6 mbar. It is separated from the discharge chamber of the laboratory source by a window with an opening for the passage of the radiation, the window in particular having a filter of the optical system, for example in the form of a metallic foil. This prevents contamination of the receiving chamber. The receiving chamber preferably has its own pump system and is separated from the laboratory source and preferably also the area for receiving the optical system when handling the object to be irradiated by means of a slide valve.
Um eine möglichst homogene Bestrahlung in den einzelnen Be- Strahlungsfeldern zu erzielen, sind sämtlicheIn order to achieve the most homogeneous radiation possible in the individual radiation fields, all are
Blendenöffnungen in einer Ebene angeordnet und die durch jede Blendenöffnung auf dem Objekt erzeugten Bestrahlungsfelder überlappen sich nicht. Die Bestrahlungsfelder sind vorzugsweise parallel zu der Ebene der Blendenöffnungen angeordnet.Diaphragm openings arranged in one plane and the radiation fields generated by each diaphragm opening on the object do not overlap. The radiation fields are preferably arranged parallel to the plane of the diaphragm openings.
Das mit Photolack beschichtete Objekt ist insbesondere ein Siliziumwafer, beispielsweise ein 6 Zoll Wafer mit einer Dicke vom 650 μm und mit 20 durch die Blendenöffnungen definierten Bestrahlungsfeldern. In der Aufnahmekammer befindet sich eine Halterung, die den Wafer derart aufnimmt, dass die EUV-Strahlung auf dessen Photolackbeschichtung auftrifft .The object coated with photoresist is in particular a silicon wafer, for example a 6 inch wafer with a thickness of 650 μm and with 20 radiation fields defined by the aperture openings. There is a holder in the receiving chamber which receives the wafer in such a way that that the EUV radiation hits its photoresist coating.
Die Laborquelle emittiert in zweckmäßiger Ausgestaltung der Erfindung Strahlungspulse von einer Dauer kleiner 1 μs , insbesondere 100 ns, mit einer Wiederholrate zwischen 1 und 10000 Hz, insbesondere 1 - 5000 Hz. Die Strahlung der Laborquelle stammt von einem thermisch emittierendem Plasma, insbesondere von einem lasererzeugtem oder entladungserzeugtem Plasma oder von einem Elektronenstrahl.In an expedient embodiment of the invention, the laboratory source emits radiation pulses of a duration of less than 1 μs, in particular 100 ns, with a repetition rate between 1 and 10,000 Hz, in particular 1-5000 Hz. The radiation from the laboratory source comes from a thermally emitting plasma, in particular from a laser-generated one or discharge-generated plasma or from an electron beam.
Als Filter zur Unterdrückung von unerwünschter sichtbarer bis VUV-Strahlung ist vorzugsweise eine dünne Metallfolie, insbesondere eine Zirkoniumfolie mit einer Dicke von weniger als 200 nm jedoch mehr als 100 nm im Strahlengang angeordnet. Die Folie transmittiert bis zu 50 % der gewünschten EUV- Strahlung, während die unerwünschte Strahlung um einen Faktor > 1000 unterdrückt wird.A thin metal foil, in particular a zirconium foil with a thickness of less than 200 nm but more than 100 nm is preferably arranged in the beam path as a filter for suppressing undesirable visible to VUV radiation. The film transmits up to 50% of the desired EUV radiation, while the unwanted radiation is suppressed by a factor> 1000.
Jeder Spiegel zur spektralen Filterung des "in-band"-EUV-Be- reiches ist vorzugsweise als Vielschichtspiegel ausgestaltet, wobei der Spiegel als Planspiegel oder als gekrümmter Spiegel ausgeführt sein kann. Die Vielschichtspiegel reflektieren in einem schmalen spektralen Band im EUV-Bereich bis zu 70 % der einfallenden Strahlung, während Strahlung, die nicht in diesem schmalen Band liegt, nahezu vollständig von dem Vielschichtspiegel absorbiert wird.Each mirror for spectral filtering of the "in-band" EUV range is preferably designed as a multilayer mirror, it being possible for the mirror to be designed as a plane mirror or as a curved mirror. The multilayer mirrors reflect up to 70% of the incident radiation in a narrow spectral band in the EUV range, while radiation which is not in this narrow band is almost completely absorbed by the multilayer mirror.
Die Blendenöffnungen werden vorzugsweise mittels eines Flach- Schiebers verschlossen, der in einer zur Ebene derThe diaphragm openings are preferably closed by means of a flat slide, which is in a to the plane of
Blendenöffnungen parallelen Ebene verschieblich angeordnet ist und eine Kontur aufweist, die ein aufeinanderfolgendes Öffnen bzw. Verschließen der Blendenöffnungen ermöglicht. Die Kontur ist insbesondere treppenförmig, so dass ein zeilenweises Öffnen bzw. Verschließen der in Reihen angeordneten Blendenöffnungen möglich ist. Der Flachschieber als Verschluss für sämtliche Blendenöffnungen stellt mit nur einer mechanischen Komponente eine konstruktiv und steuerungstechnisch sehr günstige Lösung dar.Aperture openings are arranged parallel to the plane and has a contour that enables a successive opening or closing of the aperture openings. The contour is in particular stair-shaped, so that the diaphragm openings arranged in rows can be opened or closed line by line. The flat slide as a closure for all aperture openings provides with only a mechanical component is a very favorable solution in terms of design and control technology.
Weitere Vorteile und Wirkungen der Erfindung sowie deren Be- triebsweise ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Figuren.Further advantages and effects of the invention and its mode of operation result from the following description of an embodiment with reference to the figures.
Es zeigen:Show it:
Figur 1 das Spektrum der von der EUV-Strahlungsquelle erzeugten Strahlung Figur 2 eine Prinzipdarstellung der erfindungsgemäßen1 shows the spectrum of the radiation generated by the EUV radiation source. FIG. 2 shows a basic illustration of the invention
Vorrichtung zur Testbestrahlung von mit photoempfindlichen Lacken beschichteten Objekten Figur 3 ein in der Vorrichtung nach Figur 2 angeordnetesDevice for test irradiation of objects coated with photosensitive lacquers, FIG. 3, one arranged in the device according to FIG
Blendensystem mit einem Flachschieber Figur 4 eine Bestrahlungsfunktion bei einer Variation vonDiaphragm system with a flat slide valve Figure 4 shows an irradiation function with a variation of
50% mit verschiedenen Exponenten sowie Figur 5 eine Darstellung der Filmdicke eines Lackauftrags in Abhängigkeit von der Dosis einer Test-Bestrahlung50% with different exponents and FIG. 5 shows the film thickness of a coating application as a function of the dose of test radiation
Die Vorrichtung zur EUV-Testbestrahlung dient dazu, einen Photolack (Resist) für die Lithographie im Bereich der EUV- Strahlung, d. h. bei einer Wellenlänge von 13,5 nm, mit 20 verschiedenen Strahlungsdosen in einem Arbeitsgang zu untersuchen. Dabei soll der Abtrag des Photolacks nach der Entwicklung und die Schärfe der abgebildeten Strukturen in Abhängigkeit von der Dosis ermittelt werden.The device for EUV test radiation is used to apply a photoresist (resist) for lithography in the area of EUV radiation. H. at a wavelength of 13.5 nm, with 20 different radiation doses in one operation. The removal of the photoresist after development and the sharpness of the structures depicted should be determined as a function of the dose.
Die Vorrichtung zur EUV-Testbestrahlung besteht aus einer EUV-Labor-Lampe (1) , die eine Strahlung mit einem Spektrum nach Figur 1 erzeugt. Über ein horizontal ausgerichtetes Strahlrohr (2) mit einer Austrittsöffnung (3) verlässt der ebenfalls horizontal ausgerichtete Strahlengang (4) die EUV- Labor-Lampe (1) . An der Austrittsöffnung (3) ist eine Strahlrohrschieber-Einheit (5) angeordnet. Der Strahlrohrschieber weist einen Durchgang auf, in den eine 150 nm dicke Zirkoniumfolie eingesetzt ist, die mittels des Schiebers in den Strahlengang (4) bewegbar ist. Der quer zur Achse des Strahlengangs (4) bewegliche Schieber erlaubt es, die Zirkoniumfolie vollständig aus dem Querschnitt des Strahlrohrs (2) herauszubewegen, so dass die Austrittsöffnung (3) vollständig von dem im Übrigen aus Metall bestehenden Strahlrohrschieber verschlossen ist. An dem Strahlrohr (2) ist darüber hinaus eine Turbomolekularpumpe (6) angeordnet, die in der EUV-Lampe (1) unter Aufrechterhaltung einer Xenon-Atmosphäre ein Vakuum von etwa 10"3 mbar erzeugt.The device for EUV test radiation consists of an EUV laboratory lamp (1) which generates radiation with a spectrum according to FIG. 1. The likewise horizontally oriented beam path (4) leaves the EUV laboratory lamp (1) via a horizontally oriented beam pipe (2) with an outlet opening (3). A jet pipe slide unit (5) is arranged at the outlet opening (3). The jet tube slide has a passage into which a 150 nm thick zirconium foil is inserted, which can be moved into the beam path (4) by means of the slide. The slide movable transversely to the axis of the beam path (4) allows the zirconium foil to be completely moved out of the cross section of the jet pipe (2), so that the outlet opening (3) is completely closed by the jet pipe slide, which is otherwise made of metal. A turbomolecular pump (6) is also arranged on the jet pipe (2) and generates a vacuum of approximately 10 "3 mbar in the EUV lamp (1) while maintaining a xenon atmosphere.
An die Strahlrohrschieber-Einheit (5) schließt sich ein hohl- zylindrisches Winkelstück (7) an, das einen Umlenkspiegel (8) aufnimmt. Der Umlenkspiegel (8) ist im Inneren des Winkelstücks im äußeren Bereich der Abwinklung derart angeordnet, dass der horizontal auftreffende Strahlengang (4) um 90° in eine insgesamt mit (9) bezeichnete Waferkammer (9) umlenkt wird. Ein Spiegelrezipient (11) trägt und fixiert den Umlenkspiegel (8) . Es wird darauf hingewiesen, dass der im Ausführungsbeispiel dargestellte, konstruktiv günstige Einfallswinkel der EUV-Strahlung von 45° ohne Weiteres variiert werden kann .A hollow cylindrical angle piece (7), which receives a deflecting mirror (8), adjoins the jet tube slide unit (5). The deflecting mirror (8) is arranged in the interior of the angle piece in the outer region of the bend in such a way that the horizontally incident beam path (4) is deflected by 90 ° into a wafer chamber (9), designated overall by (9). A mirror recipient (11) carries and fixes the deflecting mirror (8). It is pointed out that the constructively favorable angle of incidence of the EUV radiation of 45 ° shown in the exemplary embodiment can be varied without further ado.
An das Winkelstück (7) schließt sich die Waferkammer (9) an, die aus einem hohlzylindrischen Strahlrohr (12) sowie einem Aufnahmeraum (13) für den mit Lack beschichteten Wafer be- steht. Der Strahlengang (4) breitet sich von dem Umlenkspiegel (8) ausgehend durch das Strahlrohr (12) in Richtung eines Blendensystems (15) aus. Der Wafer ist mit seiner Lackoberfläche in Richtung des Blendensystems (15) ausgerichtet, so dass die das Blendensystem passierende EUV-Strahlung auf die Lackbeschichtung des Wafers fällt. Der Verschluss derThe angle chamber (7) is followed by the wafer chamber (9), which consists of a hollow cylindrical jet tube (12) and a receiving space (13) for the wafer coated with lacquer. The beam path (4) spreads from the deflecting mirror (8) through the beam pipe (12) in the direction of a diaphragm system (15). The surface of the wafer is oriented in the direction of the diaphragm system (15), so that the EUV radiation passing through the diaphragm system falls on the lacquer coating of the wafer. The closure of the
Blendenöffnungen des Blendensystems (15) wird von einem Schrittmotor (14) angetrieben. Seitlich an dem Aufnahmeraum (13) ist eine weitere Turbomolekularpumpe (17) angeordnet, die während der Belichtung für die Aufrechterhaltung eines Drucks von 10"6 mbar in dem Win- kelstück (7) sowie der Waferkammer (9) sorgt.Aperture openings of the aperture system (15) are driven by a stepper motor (14). The side of the receiving space (13) a further turbo-molecular pump (17) is arranged, which kelstück mbar during the exposure for the maintenance of a pressure of 10 "6 in the winter (7) and the wafer chamber (9) provides.
In Ausbreitungsrichtung des Strahlengangs (4) der EUV-Strahlung seitlich im Blendensystem (15) befinden sich drei in Figur 3 erkennbare Photodioden (18) , die die Strahlungsenergie der einzelnen Strahlungspulse der EUV-Lampe (1) erfassen, wobei die Strahlungsenergie proportional zu der in den Photodioden (18) erzeugten Ladung ist. Die Photodioden sind mit geringst möglichem Abstand zu den Blendenöffnungen im Blendensystem angeordnet, jedoch derart, dass sie nicht von dem motorisch angetriebenen Verschluss verdeckt werden.In the direction of propagation of the beam path (4) of the EUV radiation to the side in the aperture system (15) there are three photodiodes (18) which can be seen in FIG. 3 and which record the radiation energy of the individual radiation pulses of the EUV lamp (1), the radiation energy being proportional to that charge generated in the photodiodes (18). The photodiodes are arranged as close as possible to the diaphragm openings in the diaphragm system, but in such a way that they are not covered by the motor-driven closure.
Schließlich weist die Vorrichtung zur EUV-Testbestrahlung einen weiteren Schieber (19) auf, der zwischen dem Winkelstück (7) und dem Strahlrohr (12) der Waferkammer (9) angeordnet ist. Ist der Schieber (19) geschlossen, ist die WaferkammerFinally, the device for EUV test radiation has a further slide (19), which is arranged between the angle piece (7) and the beam pipe (12) of the wafer chamber (9). If the slide (19) is closed, the wafer chamber is
(9) vollständig gegen die EUV-Lampe (1) und den Innenraum des Winkelstücks (7) abgeschottet.(9) completely sealed off from the EUV lamp (1) and the interior of the elbow (7).
Figur 3 verdeutlicht den Aufbau des insgesamt mit (15) be- zeichneten Blendensystems, das eine Lochmaske (21) mit 5 Reihen mit jeweils 4 Blendenöffnungen (22) aufweist. Die durch jede Blendenöffnung (22) hindurchtretende EUV-Strahlung definiert auf der Lackschicht (16) des Wafers ein abgegrenztes Bestrahlungs-Feld. Der Abstand zwischen Wafer und Blendensys- tem (15) sowie der Abstand zwischen den Blendenöffnungen (22) ist so ausgelegt, dass sich die Bestrahlungs-Felder nicht überschneiden. Im Ergebnis erzeugt das Blendensystem (15) zwanzig abgegrenzte Bestrahlungs-Felder von etwa 5 mm Durchmesser auf der Oberfläche des mit Photolack beschichteten Wa- fers.FIG. 3 illustrates the structure of the diaphragm system, designated overall by (15), which has a shadow mask (21) with 5 rows, each with 4 diaphragm openings (22). The EUV radiation passing through each aperture (22) defines a delimited radiation field on the lacquer layer (16) of the wafer. The distance between the wafer and the aperture system (15) and the distance between the aperture openings (22) is designed in such a way that the radiation fields do not overlap. As a result, the aperture system (15) produces twenty delimited radiation fields of approximately 5 mm in diameter on the surface of the wafer coated with photoresist.
Ein stirnseitig eine treppenförmige Kontur (23) aufweisender Flachschieber (24) befindet sich seitlich neben der Lochmaske (21) . Der Flachschieber (24) ist an der der Kontur (23) gegenüberliegenden Seite mit dem in Figur 2 dargestellten Schrittmotor (14) verbunden. Durch Bewegen des FlachschiebersA flat slide (24), which has a step-shaped contour (23) on the end face, is located on the side next to the shadow mask (21). The flat slide valve (24) is connected on the side opposite the contour (23) to the stepping motor (14) shown in FIG. By moving the flat slide
(24) in Richtung des Pfeils (25) lassen sich die Blendenöffnungen (22) zeilenweise nacheinander mechanisch verschließen. Dies hat zur Folge, dass die durch die einzelnen Blendenöffnungen (22) definierten Bestrahlungs- Felder individuelle Bestrahlungszeiten erhalten.(24) in the direction of arrow (25), the diaphragm openings (22) can be mechanically closed line by line. The consequence of this is that the radiation fields defined by the individual aperture openings (22) are given individual radiation times.
Während der Bestrahlung des beschichteten Wafers ist derDuring the irradiation of the coated wafer, the
Schieber der Strahlrohrschieber-Einheit (5) eingeschoben, so dass der Strahlengang durch den Zirkoniumfilter hindurchgeht. Dabei hat der Filter zwei Funktionen:Slide the slide tube slide unit (5) so that the beam path passes through the zirconium filter. The filter has two functions:
1. Zurückhaltung von Strahlungen mit Wellenlängen größer als 20 nm. Bei Wellenlängen größer als 20 nm ist die Durchlässigkeit des Zirkoniumfilters kleiner als 10 %. 2. Trennung der Xenon-Atmosphäre in der EUV-Lampe (1) von dem durch das Winkelstück (7) und die Waferkammer (9) ge- bildeten Bereich, in den kein Xenon-Gas gelangen sollte. Der Zirkoniumfilter ist ausreichend stabil, um den Druckunterschied zwischen der EUV-Lampe (1) und dem genannten Bereich stand zu halten.1. Retention of radiation with wavelengths greater than 20 nm. At wavelengths greater than 20 nm, the permeability of the zirconium filter is less than 10%. 2. Separation of the xenon atmosphere in the EUV lamp (1) from the area formed by the elbow (7) and the wafer chamber (9) into which no xenon gas should get. The zirconium filter is sufficiently stable to withstand the pressure difference between the EUV lamp (1) and the specified area.
Bei dem Umlenkspiegel (8) handelt es sich um einen Vielschichtspiegel mit beispielsweise 40 Lagen eines Silizium- Substrates von etwa 10 nm Periodendicke. Dieser Spiegel reflektiert eine Wellenlänge von 13,5 +/- 0,2 nm unter einem Winkel von 45° in das Strahlrohr (12) der Waferkammer (9) .The deflecting mirror (8) is a multilayer mirror with, for example, 40 layers of a silicon substrate with a period thickness of approximately 10 nm. This mirror reflects a wavelength of 13.5 +/- 0.2 nm at an angle of 45 ° into the beam tube (12) of the wafer chamber (9).
Nach Abschluss der Bestrahlung des Photolacks auf dem Wafer wird der Schieber (19) zwischen dem Winkelstück (7) und der Waferkammer geschlossen. Dadurch bleibt das Vakuum in der EUV-Lampe (1) und dem Winkelstück (7) erhalten, wenn die Wa- ferkammer (9) belüftet wird, um diese beispielsweise zur Entnahme des bestrahlten Wafers zu öffnen. Der Schieber (19) ermöglicht nicht nur kürzere Evakuierungszeiten der Waferkammer (9) während des Wafer-Handlings , sondern darüber hinaus einen wirksamen Schutz des empfindlichen optischen Systems, das von der Zirkoniumfolie in der Strahlrohrschieber-Einheit (5) und dem Umlenkspiegel (8) in dem Winkelstück gebildet wird.After the irradiation of the photoresist on the wafer has been completed, the slide (19) between the angle piece (7) and the wafer chamber is closed. As a result, the vacuum in the EUV lamp (1) and the angle piece (7) is maintained when the wafer chamber (9) is ventilated in order to open it, for example, to remove the irradiated wafer. The slide (19) not only enables shorter evacuation times for the wafer chamber (9) during the wafer handling, but also an effective protection of the sensitive optical system, which is formed by the zirconium foil in the beam tube slide unit (5) and the deflecting mirror (8) in the elbow.
Die im Strahlengang (4) in der Lochmaske (21) angeordneten Photodioden (18) messen die Strahlungsenergie der EUV-Strahlungspulse, in dem sie in den Photodioden eine zu der Strahlungsenergie proportionale Ladung erzeugen. Die durch die einzelnen Pulse erzeugte Ladung wird elektronisch aufaddiert und von einer in der Figur nicht dargestellten Steuerung zyklisch abgefragt. Ergibt die Abfrage, dass eine bestimmte Strahlungsdosis (Sollwert) erreicht ist, wird ein Steuerbefehl für den Schrittmotor (14) ausgelöst, der den Flachschie- ber (24) in Richtung des Pfeils (25) bewegt, um zeilenweise die nächste Blendenöffnung (22) zu verschließen. Die Sollwerte, die abhängig von einer vom Benutzer vorgegebenen Zieldosis (Definition: Eine von dem Benutzer des Testsystem für den zu untersuchenden Lack als optimal angenommene Dosis) erreicht werden müssen, bis die nächste Blendenöffnung (22) verschlossen wird, bilden die Stützpunkte einer Bestrahlungsfunktion. Die einzelnen Sollwerte errechnen sich nach der folgenden Formel :The photodiodes (18) arranged in the beam mask (4) in the shadow mask (21) measure the radiation energy of the EUV radiation pulses by generating a charge proportional to the radiation energy in the photodiodes. The charge generated by the individual pulses is added up electronically and queried cyclically by a controller (not shown in the figure). If the query shows that a certain radiation dose (target value) has been reached, a control command for the stepper motor (14) is triggered, which moves the flat slide valve (24) in the direction of the arrow (25) in order to line by line the next aperture opening (22) to close. The setpoints, which must be reached depending on a target dose specified by the user (definition: a dose assumed by the user of the test system for the lacquer to be examined to be optimal) until the next aperture (22) is closed, form the bases of an irradiation function. The individual setpoints are calculated using the following formula:
Wenn s ≠ 10 dann :If s ≠ 10 then:
RF \ RF s(F, Exp, Tar, Var) = Tar(\ + VB RF 10 Exp) mit VB = und RF = F - 10RF \ RF s (F, Exp, Tar, Var) = Tar (\ + VB RF 10 Exp ) with VB = and RF = F - 10
100 sonst : s(F, Exp, Tar, Var) = Tar100 otherwise: s (F, Exp, Tar, Var) = Tar
Dabei giltThe following applies
Der Funktionswert s ist der Sollwert, der erreicht werden muß, bevor die nächste Blendenöffnung verschlossen wird. Der Parameter F steht für das aktuell verschlossene Feld und liegt im Wertebereich von 1 bis 20. Exp Der Parameter Exp ist der vom Benutzer eingestellte Exponent und hat die Werte von 1 bis 5.The function value s is the setpoint that must be reached before the next aperture is closed. The parameter F stands for the currently closed field and lies in the value range from 1 to 20. Exp The parameter Exp is the exponent set by the user and has the values from 1 to 5.
Tar Der Parameter Tar ist die vom Benutzer eingestellte Zieldosis . Var Der Parameter Var ist die vom Benutzer eingestellte Variationsbreite in Prozent im Bereich von 1 bis 100.Tar The Tar parameter is the target dose set by the user. Var The Var parameter is the variation range set by the user in percent in the range from 1 to 100.
Für Tar: =1.0 und Var: =50 ergeben sich die in Abb. 4 gezeigten Kennlinien in Abhängigkeit des Exponenten Exp:=l bis 5 für die Sollwerte s. Es wird deutlich, dass sich mit der Erhöhung des Exponenten Exp die Stützpunktdichte um die Zieldosis Tar erhöht .For Tar: = 1.0 and Var: = 50, the characteristic curves shown in Fig. 4 result depending on the exponent Exp: = 1 to 5 for the setpoints s. It becomes clear that as the exponent Exp increases, the base density increases by the target dose Tar.
Die Bestrahlung mit EUV-Strahlung ruft auf dem Wafer einen Abtrag des Lackfilms nach der Entwicklung hervor. Der Zusammenhang zwischen Dosis und Abtrag nach der Entwicklung ist in der Kurve nach Abb. 5 am Beispiel eines konkreten Lacks dargestellt. Ab einer bestimmten Dosis fällt der Wert für die verbleibende Dicke des Lackfilms steil ab. An der x-Achse kann man die für die Bestrahlung dieses Lacks erforderliche Mindestdosis (im Ausführungsbeispiel etwa 6 mJ/cm2) ablesen. Auf diese Weise lässt sich die EUV-Strahlungsempfindlichkeit eines Photolacks für Wafer in einem Arbeitsgang ermitteln. Irradiation with EUV radiation causes the lacquer film to be removed from the wafer after development. The relationship between dose and erosion after development is shown in the curve in Fig. 5 using the example of a specific paint. From a certain dose, the value for the remaining thickness of the paint film drops sharply. The minimum dose required for the irradiation of this lacquer (in the exemplary embodiment approximately 6 mJ / cm 2 ) can be read off the x-axis. In this way, the EUV radiation sensitivity of a photoresist for wafers can be determined in one operation.
Bezugszeichenliste:LIST OF REFERENCE NUMBERS
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10247626 | 2002-10-11 | ||
DE10247626 | 2002-10-11 | ||
DE10305573A DE10305573B3 (en) | 2002-10-11 | 2003-02-10 | Device and method for test irradiation of objects coated with photosensitive paints |
DE10305573 | 2003-02-10 | ||
PCT/DE2003/003381 WO2004036312A2 (en) | 2002-10-11 | 2003-10-08 | Irradiation device for testing objects coated with light-sensitive paint |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1549920A2 true EP1549920A2 (en) | 2005-07-06 |
Family
ID=32108781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03808674A Withdrawn EP1549920A2 (en) | 2002-10-11 | 2003-10-08 | Irradiation device for testing objects coated with light-sensitive paint |
Country Status (4)
Country | Link |
---|---|
US (1) | US7378666B2 (en) |
EP (1) | EP1549920A2 (en) |
JP (1) | JP2006503419A (en) |
WO (1) | WO2004036312A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9832852B1 (en) * | 2016-11-04 | 2017-11-28 | Asml Netherlands B.V. | EUV LPP source with dose control and laser stabilization using variable width laser pulses |
US11266002B2 (en) | 2017-10-26 | 2022-03-01 | Asml Netherlands B.V. | System for monitoring a plasma |
CN113687574A (en) | 2020-05-18 | 2021-11-23 | 长鑫存储技术有限公司 | Photoetching equipment and light source position monitoring method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474864A (en) | 1983-07-08 | 1984-10-02 | International Business Machines Corporation | Method for dose calculation of photolithography projection printers through bleaching of photo-active compound in a photoresist |
DE10053587A1 (en) * | 2000-10-27 | 2002-05-02 | Zeiss Carl | Lighting system with variable adjustment of the illumination |
WO2002029870A1 (en) | 2000-10-05 | 2002-04-11 | Nikon Corporation | Method of determining exposure conditions, exposure method, device producing method and recording medium |
EP1202100A3 (en) | 2000-10-27 | 2005-04-06 | Carl Zeiss SMT AG | Illumination system with reduced heat load |
WO2002059905A2 (en) | 2001-01-26 | 2002-08-01 | Carl Zeiss Smt Ag | Narrow-band spectral filter and the use thereof |
DE10136620A1 (en) | 2001-07-19 | 2003-02-06 | Zeiss Carl | Optical filter used in an illuminating system or projection system for extreme UV light, especially in semiconductor lithography comprises silicon layers arranged between a zirconium layer |
US6998620B2 (en) | 2001-08-13 | 2006-02-14 | Lambda Physik Ag | Stable energy detector for extreme ultraviolet radiation detection |
DE10204994B4 (en) | 2002-02-05 | 2006-11-09 | Xtreme Technologies Gmbh | Arrangement for monitoring the energy emission of an EUV radiation source |
WO2004031854A2 (en) * | 2002-09-30 | 2004-04-15 | Carl Zeiss Smt Ag | Illumination system for a wavelength = 193 nm, comprising sensors for determining the illumination |
US7471375B2 (en) * | 2003-02-11 | 2008-12-30 | Asml Netherlands B.V. | Correction of optical proximity effects by intensity modulation of an illumination arrangement |
-
2003
- 2003-10-08 WO PCT/DE2003/003381 patent/WO2004036312A2/en active Search and Examination
- 2003-10-08 EP EP03808674A patent/EP1549920A2/en not_active Withdrawn
- 2003-10-08 US US10/530,964 patent/US7378666B2/en not_active Expired - Lifetime
- 2003-10-08 JP JP2005501266A patent/JP2006503419A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO2004036312A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2004036312A3 (en) | 2004-11-04 |
US7378666B2 (en) | 2008-05-27 |
US20060138311A1 (en) | 2006-06-29 |
WO2004036312A2 (en) | 2004-04-29 |
JP2006503419A (en) | 2006-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69933257T2 (en) | Lithographic device | |
DE60127050T2 (en) | Lithographic projection apparatus | |
EP1892748B1 (en) | Material processing system and material processing method | |
DE68925898T2 (en) | LARGE UNIFORM ELECTRON SOURCE | |
DE60204389T2 (en) | Device for removing debris for use in an X-ray source | |
DE60116967T2 (en) | Lithographic apparatus | |
DE69232367T2 (en) | X-ray apparatus for projection lithography | |
DE602005004592T2 (en) | Lithographic apparatus, lighting system and debris collection system | |
EP1213617A1 (en) | Process and device for in-situ decontamination of an EUV exposure apparatus | |
DE102011008924B4 (en) | Defect repair device and method for EUV mask | |
WO2010043398A1 (en) | Euv lithography device and method for processing an optical element | |
DE102017208114A1 (en) | Method and apparatus for particle beam induced etching of a photolithographic mask | |
DE60105527T2 (en) | Lithographic apparatus and method for producing an integrated circuit arrangement | |
DE102007057252A1 (en) | Method for measuring outgassing in EUV lithography apparatus and EUV lithography apparatus | |
US12326407B2 (en) | Inspection apparatus and inspection method | |
DE69322345T2 (en) | Synchrotron X-ray exposure process | |
DE602004003015T2 (en) | Method and device for producing a protective layer on a mirror | |
WO2019025109A1 (en) | Reflective optical element for euv lithography and method for adapting a geometry of a component | |
DE102017205870A1 (en) | EUV lithography system with a hydrogen plasma sensor | |
DE60025303T2 (en) | Lithographic projection apparatus | |
DE102007043635A1 (en) | Microlithography projection illumination system for illuminating semiconductor wafer, has collector to determine position of multiplied electrical charge, and radiation detector for position-dissolved detection of electromagnetic radiation | |
DE102022206124A1 (en) | DEVICE AND METHOD FOR PROCESSING A SURFACE OF AN OPTICAL ELEMENT OF A LITHOGRAPHY SYSTEM | |
WO2004036312A2 (en) | Irradiation device for testing objects coated with light-sensitive paint | |
DE102018200118B4 (en) | Device and method for identifying contaminants | |
DE102006009460A1 (en) | Process device used in production of integrated circuits comprises process chamber, holder within chamber for holding substrate, radiation source, radiation detector and control and evaluation unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050502 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT NL |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LEBERT, RAINER Inventor name: DOMKE, WOLF-DIETER Inventor name: KRAGLER, KARL Inventor name: MEISEN, MANFRED Inventor name: JUSCHKIN, LARISSA |
|
17Q | First examination report despatched |
Effective date: 20080328 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090225 |