[go: up one dir, main page]

EP1525929B1 - Molding composition - Google Patents

Molding composition Download PDF

Info

Publication number
EP1525929B1
EP1525929B1 EP04015692A EP04015692A EP1525929B1 EP 1525929 B1 EP1525929 B1 EP 1525929B1 EP 04015692 A EP04015692 A EP 04015692A EP 04015692 A EP04015692 A EP 04015692A EP 1525929 B1 EP1525929 B1 EP 1525929B1
Authority
EP
European Patent Office
Prior art keywords
moulding compound
granules
composition according
compound composition
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04015692A
Other languages
German (de)
French (fr)
Other versions
EP1525929A1 (en
Inventor
Werner Menk
Stefan Tuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Georg Fischer Automotive AG
Original Assignee
Georg Fischer Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Georg Fischer Automotive AG filed Critical Georg Fischer Automotive AG
Publication of EP1525929A1 publication Critical patent/EP1525929A1/en
Application granted granted Critical
Publication of EP1525929B1 publication Critical patent/EP1525929B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives

Definitions

  • the invention relates to a molding composition for producing molds from a metal granules and an inorganic binder, wherein the metal granules of aluminum or an aluminum alloy is formed.
  • molds of metal or molding compositions of sand-binder mixtures are used as molds.
  • Metal molds have the advantage of higher thermal conductivity but the disadvantage of higher production costs. Mixtures of sand and binder are more cost-effective, especially for smaller quantities of castings, but have a significantly lower thermal conductivity. This has the consequence that the castings go through a different temperature-time profile in the cooling phase after casting. The slower cooling leads, especially at high wall thicknesses of the castings to poorer mechanical properties.
  • the molding compound is composed of metal granules, preferably aluminum or aluminum alloys, and the binder is preferably synthetic resin. At casting temperatures above 400 ° C, the synthetic resin causes substances that pose a danger to the environment and employees.
  • a molding composition which is easy to produce, has a good thermal conductivity and is optimally compatible with the environment.
  • the molding compound should not release dangerous substances during manufacture, casting, unpacking and reprocessing for the environment and the health of foundry workers.
  • the water-soluble salt is magnesium (II) sulfate.
  • Magnesium (II) sulfate has a high and with increasing temperature a continuously higher solubility, so that you can work with highly concentrated salt water solutions. Even when unpacking the moldings can be dissolved with little water, much binder from the molding compound. The plant for the molding material preparation can be made smaller.
  • casting moldings made of aluminum can be produced with the novel molding composition which can not absorb hydrogen during casting. This is achieved in that the molding material is at least 98 wt.% Of aluminum granules and the remainder of anhydrous magnesium sulfate is formed.
  • the inventive molding composition casting moldings can be produced with mechanical properties that are comparable to the properties of cast in steel molds parts.
  • the aluminum granules have a mean particle size of 0.2 to 0.4 mm.
  • one made of the molding material and operational mold has a thermal conductivity of at least 1.2 (J / kg K).
  • FIG. 1 the thermal conductivity and the thermal diffusivity of three different compositions for the production of molds are shown.
  • SK the use of a steel mold is indicated.
  • QS a casting mold made of quartz sand and with A a casting mold made of 98% by weight of aluminum granules with 2% by weight of magnesium sulfate as binder.
  • the casting mold made of aluminum granules has twice the thermal conductivity and a 1.85 times greater thermal conductivity than a corresponding casting mold made of quartz sand.
  • the thermal conductivity of the mold can be increased.
  • FIG. 2 is the so-called Dendritenarmabstand of moldings shown in the molds with the three compositions FIG. 1 were manufactured.
  • the dendrite arm spacing when using 98% by weight of aluminum granules and 2% by weight of magnesium sulfate, measured at parts with 18 mm wall thickness at least 30% and measured at parts with 6 mm wall thickness at least 20% smaller than with the use of quartz sand.
  • the Dendritenarmabstand is when using aluminum granules 20 to 40% larger than when using steel molds.
  • the Dendritenarmabstand is a measure of the cooling rate of the casting and can be measured under a microscope on a ground surface of the casting. The smaller the Dendritenarmabstand, the greater are, for example, the notched impact strength and the elongation at break of the casting.
  • FIG. 2 shows that when using aluminum granules a Dendritenarmabstand of about 35 microns can be achieved.
  • a Brinell hardness of about 90 is reached.
  • FIGS. 3 and 4 are further mechanical properties of the molded parts shown.
  • FIG. 3 the properties measured on tension rods taken from the mold parts and in FIG. 4 the properties of the components, such as wheel, wishbone, pivot bearings or other structural parts in the automotive industry, even.
  • FIG. 3 shows that when using aluminum granules, a tensile strength of about 300 MPa, a 0.2% yield strength of about 250 MPa and an elongation at break of about 7% can be achieved.
  • magnesium sulfate is easily soluble in water and environmentally neutral. For frequently changing moldings and smaller quantities, the use of granules is more economical than the use of constantly changing molds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The composition of mold material, for casting, has a metal granulate and an inorganic bonding agent. The metal is aluminum or an aluminum alloy at a rate of at least 98 wt.%, and the bonding agent is a water-soluble magnesium salt as magnesium sulfate.

Description

Die Erfindung bezieht sich auf eine Formmassenzusammensetzung zur Herstellung von Giessformen aus einem Metallgranulat und einem anorganischen Bindemittel, wobei das Metallgranulat aus Aluminium oder einer Aluminiumlegierung ausgebildet ist.The invention relates to a molding composition for producing molds from a metal granules and an inorganic binder, wherein the metal granules of aluminum or an aluminum alloy is formed.

In der Metallgiesserei werden als Giessformen üblicherweise Kokillen aus Metall oder Formmassen aus Sand-Bindemittelmischungen verwendet. Kokillen aus Metall haben den Vorteil einer höheren Wärmeleitfähigkeit aber den Nachteil höherer Herstellkosten. Mischungen aus Sand und Bindemittel sind kostengünstiger, vor allem bei kleineren Stückzahlen der Gussformteile, weisen aber eine deutlich schlechtere Wärmeleitfähigkeit auf. Dies hat zur Folge, dass die Gussformteile in der Abkühlphase nach dem Giessen ein anderes Temperatur-Zeit-Profil durchlaufen. Die langsamere Abkühlung führt, vor allem bei hohen Wanddicken der Gussformteile zu schlechteren mechanischen Eigenschaften.In the metal foundry usually molds of metal or molding compositions of sand-binder mixtures are used as molds. Metal molds have the advantage of higher thermal conductivity but the disadvantage of higher production costs. Mixtures of sand and binder are more cost-effective, especially for smaller quantities of castings, but have a significantly lower thermal conductivity. This has the consequence that the castings go through a different temperature-time profile in the cooling phase after casting. The slower cooling leads, especially at high wall thicknesses of the castings to poorer mechanical properties.

Aus der DE OS 2450013 ist eine gattungsgemässe Gussformmischung mit hoher Wärmeleitfähigkeit bekannt. Die Formmasse wird zusammengesetzt aus Metallkörnchen, vorzugsweise Aluminium oder Aluminiumlegierungen und das Bindemittel ist vorzugsweise Kunstharz. Bei Giesstemperaturen oberhalb von 400° C entstehen aus dem Kunstharz Stoffe, die eine Gefahr für die Umwelt und die Mitarbeiter darstellen.From the DE OS 2450013 is a generic mold mix with high thermal conductivity known. The molding compound is composed of metal granules, preferably aluminum or aluminum alloys, and the binder is preferably synthetic resin. At casting temperatures above 400 ° C, the synthetic resin causes substances that pose a danger to the environment and employees.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine Formmassenzusammensetzung anzugeben, die einfach herstellbar ist, eine gute Wärmeleitfähigkeit aufweist und mit der Umwelt optimal verträglich ist. Die Formmasse soll bei der Herstellung, beim Giessen, beim Auspacken und bei der Wiederaufbereitung keine für die Umwelt und für die Gesundheit der Giessereiarbeiter gefährlichen Stoffen freisetzen.Based on this prior art, it is an object of the invention to provide a molding composition, which is easy to produce, has a good thermal conductivity and is optimally compatible with the environment. The molding compound should not release dangerous substances during manufacture, casting, unpacking and reprocessing for the environment and the health of foundry workers.

Diese Aufgabe wird gelöst durch eine Formmassenzusammensetzung zur Herstellung von Giessformen aus einem Metallgranulat und einem anorganischen Bindemittel, wobei das Metallgranulat aus Aluminium oder einer Aluminiumlegierung ausgebildet ist, dadurch gekennzeichnet, dass das Bindemittel ein wasserlösliches anorganisches Magnesiumsalz ist.This object is achieved by a molding composition for the production of molds from a metal granules and an inorganic binder, wherein the metal granules of aluminum or an aluminum alloy is formed, characterized in that the binder is a water-soluble inorganic magnesium salt.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.Preferred developments of the invention will become apparent from the dependent claims.

Es ist von Vorteil, dass bei der Herstellung der Formmassen möglichst wenig Wasser verwendet wird. Dies wird dadurch erreicht, dass das wasserlösliche Salz Magnesium(II)sulfat ist. Magnesium(II)sulfat hat eine hohe und mit steigender Temperatur eine kontinuierlich höhere Löslichkeit, so dass mit hochkonzentrierten Salz-Wasserlösungen gearbeitet werden kann. Auch beim Auspacken der Gussformteile kann mit wenig Wasser viel Bindemittel aus der Formmasse aufgelöst werden. Die Anlage für die Formstoffaufbereitung kann kleiner ausgelegt werden.It is advantageous that as little water as possible is used in the preparation of the molding compositions. This is achieved in that the water-soluble salt is magnesium (II) sulfate. Magnesium (II) sulfate has a high and with increasing temperature a continuously higher solubility, so that you can work with highly concentrated salt water solutions. Even when unpacking the moldings can be dissolved with little water, much binder from the molding compound. The plant for the molding material preparation can be made smaller.

Es ist auch von Vorteil, dass mit der erfindungsgemässen Formmassenzusammensetzung Gussformteile aus Aluminium hergestellt werden können, die beim Giessen keinen Wasserstoff aufnehmen können. Dies wird dadurch erreicht, dass die Formmasse zu mindestens 98 Gew.% aus Aluminiumgranulat und der Rest aus wasserfreiem Magnesiumsulfat ausgebildet ist.It is also of advantage that casting moldings made of aluminum can be produced with the novel molding composition which can not absorb hydrogen during casting. This is achieved in that the molding material is at least 98 wt.% Of aluminum granules and the remainder of anhydrous magnesium sulfate is formed.

Es ist weiter auch von Vorteil, dass mit der erfindungsgemässen Formmassenzusammensetzung Gussformteile mit mechanischen Eigenschaften hergestellt werden können, die vergleichbar sind mit den Eigenschaften von in Stahlkokillen abgegossenen Teilen. Dies wird dadurch erreicht, dass das Aluminiumgranulat eine mittlere Korngrösse von 0.2 bis 0.4 mm aufweist. Dies wird auch dadurch erreicht, dass eine aus der Formmasse hergestellte und betriebsbereite Giessform eine Wärmeleitfähigkeit von mindestens 1.2 (J / kg K) aufweist.It is also also advantageous that with the inventive molding composition casting moldings can be produced with mechanical properties that are comparable to the properties of cast in steel molds parts. This is achieved in that the aluminum granules have a mean particle size of 0.2 to 0.4 mm. This is also achieved in that one made of the molding material and operational mold has a thermal conductivity of at least 1.2 (J / kg K).

Ein Ausführungsbeispiel der Erfindung wird anhand der Figuren beschrieben. Es zeigen:

  • Figur 1 ein Diagramm zum Vergleich der Wärmeleitfähigkeit und der Temperaturleitfähigkeit der erfindungsgemässen Zusammensetzung mit anderen Formmassenzusammensetzungen,
  • Figur 2 ein Diagramm zum Vergleich des Dendritenarmabstandes der erfindungsgemässen Zusammensetzung mit anderen Formmassenzusammensetzungen,
  • Figur 3 ein Diagramm zum Vergleich der 0.2%-Dehngrenze, der Zugfestigkeit und der Bruchdehnung der erfindungsgemässen Zusammensetzung mit anderen Formmassenzusammensetzungen, und
  • Figur 4 ein Diagramm zum Vergleich der Bruchkraft und der Verformung bei Bruch der erfindungsgemässen Zusammensetzung mit anderen Formmassenzusammensetzungen.
An embodiment of the invention will be described with reference to the figures. Show it:
  • FIG. 1 a diagram for comparing the thermal conductivity and the thermal diffusivity of the inventive composition with other molding compositions,
  • FIG. 2 a diagram for comparing the Dendritenarmabstandes the inventive composition with other molding compositions,
  • FIG. 3 a diagram for comparing the 0.2% proof strength, the tensile strength and the elongation at break of the inventive composition with other molding compositions, and
  • FIG. 4 a diagram for comparing the breaking force and the deformation at break of the inventive composition with other molding compositions.

In Figur 1 sind die Wärmeleitfähigkeit und die Temperaturleitfähigkeit von drei verschiedenen Zusammensetzungen zur Herstellung von Giessformen dargestellt. Mit SK ist die Verwendung einer Stahlkokille angedeutet. Mit QS eine Giessform aus Quarzsand und mit A eine Giessform aus 98 Gew.% Aluminiumgranulat mit 2 Gew.% Magnesiumsulfat als Bindemittel. Die Giessform aus Aluminiumgranulat hat eine 2 mal so grosse Wärmeleitfähigkeit und eine 1.85 mal so grosse Temperaturleitfähigkeit als eine entsprechende Giessform aus Quarzsand. Je nachdem welche Kornverteilung für das Aluminiumgranulat gewählt wird, kann die Wärmeleitfähigkeit der Giessform noch erhöht werden.In FIG. 1 the thermal conductivity and the thermal diffusivity of three different compositions for the production of molds are shown. With SK the use of a steel mold is indicated. With QS a casting mold made of quartz sand and with A a casting mold made of 98% by weight of aluminum granules with 2% by weight of magnesium sulfate as binder. The casting mold made of aluminum granules has twice the thermal conductivity and a 1.85 times greater thermal conductivity than a corresponding casting mold made of quartz sand. Depending on which grain distribution is selected for the aluminum granules, the thermal conductivity of the mold can be increased.

In Figur 2 ist der sogenannte Dendritenarmabstand von Gussformteilen dargestellt, die in Giessformen mit den drei Zusammensetzungen aus Figur 1 hergestellt wurden. Der Dendritenarmabstand ist, bei Verwendung von 98 Gew.% Aluminiumgranulat und 2 Gew.% Magnesiumsulfat, gemessen an Teilen mit 18 mm Wanddicke mindestens 30% und gemessen an Teilen mit 6 mm Wanddicke mindestens 20% kleiner als bei der Verwendung von Quarzsand. Der Dendritenarmabstand ist bei der Verwendung von Aluminiumgranulat 20 bis 40% grösser als bei der Verwendung von Stahlkokillen. Der Dendritenarmabstand ist ein Mass für die Abkühlungsgeschwindigkeit des Gussformteiles und kann unter einem Mikroskop an einer angeschliffenen Fläche des Gussformteiles gemessen werden. Je kleiner der Dendritenarmabstand, desto grösser sind beispielsweise die Kerbschlagzähigkeit und die Bruchdehnung des Gussformteiles.In FIG. 2 is the so-called Dendritenarmabstand of moldings shown in the molds with the three compositions FIG. 1 were manufactured. The dendrite arm spacing, when using 98% by weight of aluminum granules and 2% by weight of magnesium sulfate, measured at parts with 18 mm wall thickness at least 30% and measured at parts with 6 mm wall thickness at least 20% smaller than with the use of quartz sand. The Dendritenarmabstand is when using aluminum granules 20 to 40% larger than when using steel molds. The Dendritenarmabstand is a measure of the cooling rate of the casting and can be measured under a microscope on a ground surface of the casting. The smaller the Dendritenarmabstand, the greater are, for example, the notched impact strength and the elongation at break of the casting.

Aus Figur 2 geht hervor, dass bei der Verwendung von Aluminiumgranulat ein Dendritenarmabstand von ca. 35 µm erreicht werden kann. Je kleiner der Dendritenarmabstand, desto höher wird die Brinellhärte des Gussformteiles. Bei einem Dendritenarmabstand von ca. 35 µm wird eine Brinellhärte von ca. 90 erreicht.Out FIG. 2 shows that when using aluminum granules a Dendritenarmabstand of about 35 microns can be achieved. The smaller the dendrite arm spacing, the higher the Brinell hardness of the molded part becomes. At a Dendritenarmabstand of about 35 microns, a Brinell hardness of about 90 is reached.

In Figur 3 und 4 sind weitere mechanischen Eigenschaften der Gussformteile dargestellt. In Figur 3 die Eigenschaften gemessen an Zugstäben, die aus den Gussformteilen entnommen wurden und in Figur 4 die Eigenschaften der Bauteile, wie beispielsweise Radträger, Querlenker, Schwenklager oder andere tragende Teile im Automobilbau, selbst.In FIGS. 3 and 4 are further mechanical properties of the molded parts shown. In FIG. 3 the properties measured on tension rods taken from the mold parts and in FIG. 4 the properties of the components, such as wheel, wishbone, pivot bearings or other structural parts in the automotive industry, even.

Aus Figur 3 geht hervor, dass bei der Verwendung von Aluminiumgranulat eine Zugfestigkeit von ca. 300 MPa, eine 0.2% Dehngrenze von ca. 250 MPa und eine Bruchdehnung von ca. 7 % erreicht werden kann.Out FIG. 3 shows that when using aluminum granules, a tensile strength of about 300 MPa, a 0.2% yield strength of about 250 MPa and an elongation at break of about 7% can be achieved.

Zusammenfassend kann gesagt werden, dass durch den Einsatz von Aluminiumgranulat mit Magnesiumsulfat als Bindemittel im Vergleich zu Quarzsand die Abkühlbedingungen stark verbessert werden können und dass die Gussformteile eine Bruchdehnung aufweisen, die sonst nur unter Verwendung von Stahlkokillen erreicht werden kann.In summary, it can be said that through the use of Aluminum granules with magnesium sulfate as a binder compared to quartz sand, the cooling conditions can be greatly improved and that the moldings have an elongation at break, which can otherwise be achieved only by using steel molds.

Die Verwendung von Aluminiumgranulat und Magnesiumsulfat hat weiterhin den Vorteil, dass Magnesiumsulfat leicht wasserlöslich und umweltneutral ist. Bei häufig wechselnden Formteilen und bei kleineren Stückzahlen ist die Verwendung von Granulat wirtschaftlicher als die Verwendung von ständig wechselnden Kokillenformen.The use of aluminum granules and magnesium sulfate has the further advantage that magnesium sulfate is easily soluble in water and environmentally neutral. For frequently changing moldings and smaller quantities, the use of granules is more economical than the use of constantly changing molds.

Claims (8)

  1. Moulding compound composition for producing casting moulds comprising metal granules and an inorganic binder, the metal granules being formed of aluminium or an aluminium alloy, characterized in that the binder is a water-soluble inorganic magnesium salt.
  2. Moulding compound composition according to Claim 1, characterized in that the water-soluble inorganic magnesium salt is magnesium(II) sulphate.
  3. Moulding compound composition according to at least one of Claims 1 and 2, characterized in that the moulding compound is formed of at least 98% by weight of aluminium granules with the remainder being of anhydrous magnesium sulphate.
  4. Moulding compound composition according to at least one of Claims 1 to 3, characterized in that the aluminium granules have an average grain size of 0.2 to 0.4 mm, less than 1% by weight of the aluminium granules having a grain size greater than 2.0 mm and less than 5% by weight of the aluminium granules having a grain size less than 0.1 mm.
  5. Moulding compound composition according to at least one of Claims 1 to 4, characterized in that a casting mould produced from the moulding compound and ready for operation has a thermal conductivity of at least 1.2 (J/kg K).
  6. Use of a moulding compound composition according to at least one of Claims 1 to 5 for producing castings having a dendrite arm spacing of less than 35 µm.
  7. Use of a moulding compound composition according to at least one of Claims 1 to 5 for producing castings having a 0.2% yield strength of at least 230 N/mm2 in conjunction with a breaking extension of at least 6%.
  8. Use of a moulding compound composition according to at least one of Claims 1 to 7 for producing load-bearing components for automotive engineering.
EP04015692A 2003-10-20 2004-07-03 Molding composition Expired - Lifetime EP1525929B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10349260A DE10349260A1 (en) 2003-10-20 2003-10-20 Molding composition
DE10349260 2003-10-20

Publications (2)

Publication Number Publication Date
EP1525929A1 EP1525929A1 (en) 2005-04-27
EP1525929B1 true EP1525929B1 (en) 2008-03-05

Family

ID=34384411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04015692A Expired - Lifetime EP1525929B1 (en) 2003-10-20 2004-07-03 Molding composition

Country Status (3)

Country Link
EP (1) EP1525929B1 (en)
AT (1) ATE387975T1 (en)
DE (2) DE10349260A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312011A1 (en) * 2009-10-15 2011-04-20 Georg Fischer Automotive AG Method for metallic coating of a casting mould part and aluminized casting mould part produced according to the method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB600093A (en) * 1945-08-28 1948-03-31 Jessop William & Sons Ltd Improvements in the manufacture of moulds for casting metals
DE608751C (en) * 1933-09-17 1935-01-31 Metallgesellschaft Ag Molding compound for permanent metal casting molds
FR2209622A1 (en) * 1972-12-11 1974-07-05 Pont A Mousson Foundry moulds and cores prodn. using powdered metal - with a binder contg. polymerisable resin, clays or silicates
HU167909B (en) * 1973-10-25 1976-01-28
KR890004247B1 (en) * 1984-04-02 1989-10-28 가부시기가이샤 히다찌세이사꾸쇼 Slip casting molding method and molding mold
EP0914886A1 (en) * 1997-11-12 1999-05-12 Georg Fischer Fahrzeugtechnik AG Method for fabricating casting moulds for pouring molten metal and use of the process
DE10059083C1 (en) * 2000-11-28 2002-01-24 Porsche Ag Core used in the production of a casting mold for a cylinder head housing or piston consists of metal granules and a binder

Also Published As

Publication number Publication date
DE502004006393D1 (en) 2008-04-17
DE10349260A1 (en) 2005-05-12
ATE387975T1 (en) 2008-03-15
EP1525929A1 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
DE69604158T2 (en) MAGNESIUM ALLOYS
DE112005000511B4 (en) Magnesium wrought alloy with improved extrudability and moldability
DE1936153B2 (en) PROCESS AND CASTING FORM FOR PRODUCING CASTINGS WITH BALL GRAPHITE
DE69506740T2 (en) Process for the thixotropic die casting of graphite cast iron
WO2020127980A1 (en) Mold composition comprising a sugar component
DE2929845C2 (en)
EP1525929B1 (en) Molding composition
EP1820582B1 (en) Aerogel containing core for light alloy and/or lost wax casting
DE602004000291T2 (en) Method for pressure casting of spheroidal cast iron
EP1680246B1 (en) Method for producing metal matrix composite materials
EP2193858A1 (en) Foundry core with improved gutting properties II
DE102012108079B3 (en) Producing a salt core salt core useful as a hollow space holder for die-casting process comprises introducing a liquid salt mixture into a metal mold, and solidifying a part of the salt mixture on walls of the metal mold
DE68907601T2 (en) Process for die-casting metallic objects using a lost foam plastic model.
CH294791A (en) Process for the production of castings from synthetic resin.
Gjestland et al. Optimizing the magnesium die casting process to achieve reliability in automotive applications
DE10216403B4 (en) Airgel-bound molded materials with high thermal conductivity
DE2708265C3 (en) Process for the production of a self-hardening and water-soluble form
DE60205694T2 (en) A cast iron composition that has good thixocasting properties
DE2929812C2 (en) Wheel for automobiles
DE10304099A1 (en) Test mold, for casting samples, has structured hollows to test the molten metal for a variety of parameters to set casting production, linked by a flow path to a common feeder sprue
EP0914886A1 (en) Method for fabricating casting moulds for pouring molten metal and use of the process
Talabi et al. Effects of spin casting on microstructure and mechanical behaviour of AA6063/SiC composite cold rolled and heat treated
DE102018114700B3 (en) Use of a method for producing a tool for aluminum sheet forming
DE19939828C1 (en) Foamed foundry pattern, especially a lost pattern tree for aluminum casting, is produced by adhesive bonding or welding of a frangible separation element between foamed runner and ingate components
JPH0672271B2 (en) Method for producing extruded aluminum alloy having excellent elastic modulus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050818

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GEORG FISCHER AUTOMOTIVE AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004006393

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

26N No opposition filed

Effective date: 20081208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080703

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080906

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080703

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180723

Year of fee payment: 15

Ref country code: FR

Payment date: 20180725

Year of fee payment: 15

Ref country code: IT

Payment date: 20180724

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180719

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006393

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190703