EP1525371B1 - Conduite de guidage telescopique de forage en mer - Google Patents
Conduite de guidage telescopique de forage en mer Download PDFInfo
- Publication number
- EP1525371B1 EP1525371B1 EP03760741A EP03760741A EP1525371B1 EP 1525371 B1 EP1525371 B1 EP 1525371B1 EP 03760741 A EP03760741 A EP 03760741A EP 03760741 A EP03760741 A EP 03760741A EP 1525371 B1 EP1525371 B1 EP 1525371B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- telescopic
- guide pipe
- pipe
- drilling
- guide device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 123
- 238000007667 floating Methods 0.000 claims abstract description 28
- 238000009434 installation Methods 0.000 claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 230000000284 resting effect Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000012530 fluid Substances 0.000 claims description 10
- 230000003247 decreasing effect Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 2
- 239000002775 capsule Substances 0.000 claims 1
- 239000004459 forage Substances 0.000 description 13
- 230000035515 penetration Effects 0.000 description 13
- 239000002689 soil Substances 0.000 description 9
- 239000004020 conductor Substances 0.000 description 6
- 230000000994 depressogenic effect Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 229920000297 Rayon Polymers 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000002964 rayon Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 241001080024 Telles Species 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/12—Underwater drilling
- E21B7/128—Underwater drilling from floating support with independent underwater anchored guide base
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/101—Setting of casings, screens, liners or the like in wells for underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/043—Directional drilling for underwater installations
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/20—Driving or forcing casings or pipes into boreholes, e.g. sinking; Simultaneously drilling and casing boreholes
Definitions
- the present invention relates to the known field of drilling at sea from a floating support anchored to the surface and more particularly to guidance devices for the trains of drill pipes installed at the seabed.
- It relates more particularly to drilling deviated into deep water, so as to reach points distant from the vertical axis of the surface drill rig.
- This floating support generally comprises anchoring means to remain in position despite the effects of currents, winds and waves.
- it also generally comprises means for handling the drill string, as well as guidance equipment associated with safety systems installed at the seabed.
- Drilling is usually done vertically from the drill rig and then penetrates the ground vertically to heights of several hundred meters. Then, said drilling is continued to the oil slick called "reservoir", either vertically or with a gradual angular deflection, so as to reach points of said reservoir, more or less distant.
- the start phase of the well is generally carried out by descending from the surface a drilling base resting on the seabed provided with guide lines to the surface, then down a length of pipe, called “casing” or casing, strong diameter, generally 0.914 m (36 ”) and measuring 50 to 60 m in length, based on unit lengths of pipe approximately 12 m long assembled by screwing on the drilling platform, the level of the floor of the derrick.
- casing or casing, strong diameter, generally 0.914 m (36 ") and measuring 50 to 60 m in length, based on unit lengths of pipe approximately 12 m long assembled by screwing on the drilling platform, the level of the floor of the derrick.
- each unit length of casing has at each end a zone reinforced over a length of 0.5m to 1m, consisting of an extra thickness corresponding to about 0.5 to 2 times the current thickness of the wall of said casing, the thickness in which said threading is machined.
- This first casing is used to consolidate the walls of the well in the area near the seabed, and therefore serves as a guide device for a second casing, of smaller diameter and, in general, a total length of 150 to 200m, said second casing being also made by pipe assembly of 12m unit length comprising reinforced zones at the ends, has an outer diameter, including reinforced threading areas, much lower than the internal diameter of the outer casing, so that it can slide freely during installation and for the flow of cement grout can be done in the best conditions.
- Said second casing is then either vibrofoncured or drilled if the terrain requires it, and then cements from the surface the gap between said casings and the ground, as well as between the two said casings.
- open holes are used and there is a risk of being exposed to ground instabilities, or to untimely arrival of water at shallow depths below the seabed ( "Shallow water flow"), seriously disturbing the start-up phase of the well.
- the multiple casings have important spaces between each said casing and the following and, furthermore, because each of said casings extends from the level of the sea floor to its lowest end, this implies that sea level and over the entire height of the first and subsequent casings, radially two, three or even four or more successive thicknesses of casing are observed, which will in fact be useless in the pursuit of operations, because in the main phase of drilling and well exploitation, a single casing thickness is required for ensure the support of downhole equipment and the tightness of the whole.
- These multiple casings, redundant in the zone near the seabed, are made necessary because of the manner of proceeding to start a well drilling according to the prior art, redundancy which represents a considerable amount of steel, and therefore a very important cost.
- the patent is known GB-2,338,009 which describes a mode of installation of multiple elements of independent casings successively installed in each other with a reduced game. Said casings being installed in sequence, one after the other, this makes it possible, because of said reduced clearance, to minimize the maximum diameter of the hole to be drilled, both for external casing and intermediate casings, which reduces accordingly the amount of rubble to be evacuated and the power requirements of the drill rig and thereby are hourly cost.
- US 5307886 which describes a system and or installation mode for performing multiple casings with reduced clearance, and minimizing the space between said casing and the wall of the hole drilled in the ground.
- a first problem underlying the invention is to provide a guide device for guiding the drill string and the drilling tool as deep as possible in the basement at the bottom of the sea, so as to avoid these incidents of untimely arrival of water occurring at shallow depth during the installation of the casings.
- Another problem is to reduce the handling and assembly phases on board the drilling platform, the unit lines used to make said casings in order to reduce the difficulty, the duration and therefore the cost of installing the casings, particularly in the case of an installation in Ultra Large Funds ie for depths of 2000 to 3000 meters or more.
- these manipulations being carried out in successive and independent sequences, if the actual time of setting up, ie the depression in the ground, the first casing, the second casing or the following remains acceptable, the manipulations intermediaries consisting in bringing the gripping tools back to the surface and then going down again the next casing, then represent a time considerable, therefore an immobilization cost of the extremely high drilling rig, when the water height reaches 2000, 3000 or even 4000 to 5000m or more.
- the cementing phases of the gap between two risers require a very important time which increases the cost of the operation by the same amount.
- Another problem is to drastically reduce the quantity of steel necessary for the realization of these casings by minimizing the redundancies as well as the games between said successive casings.
- DTU Dry Tree Units
- ie units with dry well heads because in this case the wellheads are collected on the surface, out of water.
- the operation is thus greatly facilitated, since it is possible to have access to any of the wells from the DTU, to carry out all the control and maintenance operations on the wells, and this throughout the life of the facilities that reaches 20 to 25 years and even more.
- Patents are known EP 0952300 and EP 0952301 describing methods and devices for deviated drilling by taking advantage of the water body to deviate as far as possible from the vertical of the drill rig and to rest in the seabed substantially tangentially to the horizontal.
- the guidance devices installed at the bottom of the sea penetrate into the ground and allow to ensure the priming of the wellbore in the seabed at an inclination of a given angle relative to the vertical.
- the guiding device is connected to the drilling machine by a pipe called "drill riser" which guides the drill string that passes through them and ensures the recovery of sludge and drilling debris.
- This guide element installed at the bottom of the sea must allow to respect large radii of curvature of 500 to 1000 m and therefore must be large, while remaining very resistant to absorb the considerable efforts generated by the rod train. drilling which will also be forced to marry the same radius of curvature, which induces very high friction and risk of destabilization of the whole during drilling.
- this guide element of considerable size and mass must be preinstalled in the ultra deep sea, that is to say in water depths of 1000 to 2500 m or more.
- the guide device comprises a conductor element called "conductor” which is actually the guide tube of the wellbore deployed from the floating support through the drill riser to a structure called “skid” resting on the bottom
- This structure - skid maintains and guides the conductive tube horizontally above the seabed at a certain height. Then this conductor adopts a curvature towards the bottom of the sea under the effect of its own gravity.
- the driver during its deployment cooperates with drilling tools so that it sinks partially into the seabed.
- the establishment of such a guiding device including the driver from the floating support represents an operational constraint important.
- this guiding device does not allow any control of the curvature of the conductor.
- to respect a large radius of curvature especially greater than 500 m, it is necessary for the driver to deploy tangentially horizontally for several tens of meters beyond the fulcrum which ensures its guidance on the road. skid structure.
- the driver will reach the ground only 50 m further, which means a portion of conductor of 50 m, cantilevered , free and not maintained, which is unacceptable because the driver may break or bend due to excessive local curvature, because uncontrolled.
- the cantilever thus created may be detrimental to proper operation during drilling operations as well as throughout the lifetime that may exceed 25 years.
- Another problem according to the present invention is therefore to provide a guiding device in a deviated drilling application in the height of the water slice, which can be set up in a large radius of curvature reliably, it is to say being able to control the curvature with a large radius of curvature especially greater than 500 m and whose implementation and implementation are easy to achieve.
- the present invention provides a device for guiding an offshore drilling rig comprising at least one drill riser. extending from a floating support to said guide device at the bottom of the sea, said drilling being made from said floating support through said drill riser using a drill string equipped with its end of drilling tools passing through said drilling riser and said guiding device, said guiding device being characterized in that it comprises a telescopic guide pipe comprising coaxial telescopic pipe elements (XX ') and diameters decreasing, preassembled to each other, so that said telescopic pipe members are slidable in the axial direction (XX ') has
- the inner diameter telescopic pipe member being equipped at its end with a soil decohesion means capable of creating a gradual depression in the soil of said telescopic guide pipe by sliding outwardly. said telescopic pipe members to thereby allow deeper guidance in the ground of a drill bit at the end of said
- the progressive depression in the soil of the guide pipe is made from a retracted initial position in which the smaller diameter inner telescopic pipe element is retracted into the telescopic pipe elements of the pipe. larger diameter.
- all telescopic pipe members are positioned within an outer telescopic pipe member of larger diameter.
- the gradual insertion of said decohesion means occurs by progressive sliding outwards of the smaller diameter elements in those of larger diameter, and therefore first of the smaller diameter inner telescopic inner pipe member then progressively telescopic pipe elements of increasing diameter, and until full deployment of all the telescopic pipe elements extending outwards.
- said smaller diameter inner pipe member has a diameter substantially the same as that of said drilling riser.
- said soil decohesion means are constituted by a multiperforated seal allowing a jetting of water or sludge by injection under high pressure.
- said telescopic guide pipe comprises at least 3 coaxial telescopic pipe elements.
- each of said coaxial-telescopic pipe elements has a length of 50 to 300 meters, preferably 100 to 200 meters and said deployed guide pipe has a length of 150 to 600 meters, preferably 200 to 300 meters.
- the guiding device according to the invention is initially prefabricated on the ground, then put in retracted configuration by introducing the pipes into each other so as to reduce the total length to a minimum, then put into the water and equipped with flotation elements, then towed on site to the axis of the drill rig, and finally cabane so that the upper part of said telescopic pipe can be grasped by the handling tool installed at the end of the drill string handled by the derrick, the whole then being lowered in one go, in vertical configuration towards the guide base resting on the bottom of the sea.
- each of said telescopic pipe elements will be made by assembling successive lengths of pipe, said pipes being simply butt-welded in a conventional manner as in the case of the manufacture of pipelines. It is thus not necessary to reinforce the ends of each unit length of 12m, because no thread is machined, and the assembly then has an optimum diameter and significantly reduced compared to the prior art.
- retract telescopic guide pipe means that the various pre-assembled telescopic pipe elements are such that those of small diameters are returned inside those of larger diameters.
- the curvature of the telescopic guide pipe is thus formed by the controlled depression of the guide pipe. Due to long length of said guide pipe in the retracted position, each of the retracted section will take the same curvature, without generating significant efforts within the assembly.
- the means for driving the retracted telescopic guide pipe make it possible to obtain, by driving the pipe, a curvature of the pipe with a large radius of curvature at a desired and controlled value, the radius of curvature being in fact dependent on the characteristics and the arrangement of said driving means.
- said inclined linear portion is in the tangential extension of said curved portion and it is the inclination of this linear portion which determines said angle ⁇ of priming of the wellbore.
- said guide duct has a length of 100 to 600 m, preferably 250 to 450 m with a said given inclination ⁇ of the guide duct of about 10 to 60 °, preferably 25 to 45 °.
- the desired curvature of the guide duct then corresponds to an inclination increase of approximately 1 ° per portion of guide pipe length of 10 m, ie a radius of curvature of approximately 560 m.
- said front end of the retracted telescopic guide pipe is embedded in a base comprising a load resting on a front flange so that said base maintains said front end of said guide pipe substantially horizontally on the bottom of the base. the sea when it is towed. Said base prevents the depression of the front end of said retracted telescopic guide pipe, as well as its rotation about a substantially horizontal axis perpendicular to the axis of traction.
- the present invention also relates to an offshore drilling installation comprising a drilling riser extending from a floating support to a guide device according to the invention to which said drilling riser is connected.
- said drilling riser progressively deviates from a substantially vertical position at said floating support to a position substantially horizontal or tangential to the horizontal at the bottom of the sea , the drilling being possible from said floating support through said drill riser and said guide device so that the well of drilling starts in the seabed according to a given inclination ⁇ with respect to the vertical, preferably from 10 to 80 °.
- the subject of the present invention is a method of drilling using a drilling rig according to the invention, characterized in that drilling operations are carried out and a borehole is constructed in deploying rod trains cooperating with drilling tools and columns of tubes or casings, through a said riser and a said telescopic guide device according to the invention driven into the seabed.
- the drill string firstly makes it possible to deploy the drilling tools, and then to deploy the elements of tubes, called “columns of tubes or casings" which constitute the wellbore as the drilling progresses. and setting them up in the bottom of the sea.
- FIG. 1 there is shown a guide device consisting of 3 telescopic pipe elements 3a, 3b, 3c in a straight position, implemented in the context of a conventional vertical drilling.
- Said guiding device 3 consisting of three telescopic pipe elements 3a, 3b and 3c, is suspended from a drill riser 2 handled by the surface derrick, and down to a drilling base 45 resting on the bottom of the sea 4
- a first guiding means 47 has been previously lowered along the guide cables 48, to be centered on guide posts 46, and finally rest directly on the base.
- the guiding device 3 has been shown in a position slightly above said base 45, just before being deposited on the latter.
- This first guide means 47 has a funnel shape with a diameter slightly greater than the outside diameter of the portion 3a of the guiding device 3 and which, collaborating with the latter, thus makes it possible to guide it as it descends towards the base 45.
- the guide device 3 is secured to a second guide means 49 embedded in the latter at the plane DD and itself guided along the guide lines 48.
- the guiding device 3 was prefabricated on the ground, then the various elements were retracted into each other, so that the length of the assembly thus retracted is as low as possible, then the guiding device is launched and equipped with floats 50. It is then towed on site and, near the drilling platform 1, said guide device is cabane by removing the floats before, then transferred to the vertical axis of the derrick where it is taken by the rod train 2 equipped at its end with a gripper tool.
- the drilling platform 1 is replaced by a simple surface vessel, preferably dynamically positioned, the guide device 3 once cabane is then resumed in suspension by a cable connected to a winch installed on board of ship.
- the guide device is then lowered to the cable as a simple pendulum, preferably without guide lines, and then inserted into the drilling base.
- the beginning of penetration is carried out by launching, the hydraulic power being provided by the surface vessel and transmitted to the bottom, for example by a flexible pipe.
- the surface vessel suspends its operation, the installation will then be completed by the drilling platform upon arrival on site, vertical to said well to be drilled.
- the cost of the casing installation operation is drastically reduced, as the daily cost of the required surface ship is a small fraction of the cost of a drilling rig capable of drilling into depths. 3000m water, 4000m or more.
- the drill rig required will be of lower power, and therefore of a lower cost, because it will not have to manipulate the telescopic guide device according to the invention, nor even the single elements of a casing. conventional according to the prior art.
- the figure 2 represents the telescopic guiding device 3 in the retracted or folded position with an orifice 31 allowing the sludge and the drilling debris to be evacuated at the level of the sea floor.
- the telescopic pipe elements of said telescopic guide duct 3 are tubular and of diameter decreasing in size so as to slide into each other.
- the telescopic intermediate pipe element 3b of the telescopic guide device 3 is provided on its front part with a sealed sliding ring 32b providing the reduced-friction guiding of the terminal telescopic inner pipe element 3c of the telescopic guide device 3. and on its rear part, a non-sealing sliding ring 33b providing reduced frictional guiding of the outer telescopic pipe element 3a of said telescopic guide device 3.
- the portion 3a of said guiding device is equipped on the front with a sealed sliding ring 32a ensuring the reduced-friction guiding of the portion 3b and is integral with the rear of the drill riser in chain configuration 2.
- the portion 3c of said guide device is equipped on the front with a lid 35 pierced with multiple orifices, or equipped with a series of jets, allowing, by simple injection of water or mud under very high pressure, destroying the cohesion of the soil and thus allow the start of the well by simply launching, and on the back, a non-sealed sliding ring 33c.
- Complementary sliding rings 34 are advantageously installed, at regular intervals or not, respectively between the portions 3a-3b and 3b-3c so as to avoid that, when the guiding device portions are strongly curved, as indicated on FIG. figure 1 the outer wall of the inner guide, for example 3b, does not rub directly on the inner wall of the portion 3a.
- these sliding rings 34 are secured to said telescopic portion 3b so as to have a high friction with respect to this portion 3b, that is to say they have the possibility of sliding when they are subjected to a major force applying parallel to the longitudinal axis of said portion 3b.
- each of the sliding rings 34 is advantageously provided in its external part of a member 34 1 with reduced friction, so as to minimize the longitudinal contact forces between the walls of the various portions of the guide device 3, when the latter has a significant curvature.
- the figure 4 represents the start phase of the drilling, the guide device being installed at the bottom of the sea, the portions 3a, 3b and 3c being in the retracted position.
- the drilling tool 36 is integral with the lower end of the drill string 38 actuated from the surface-mounted derrick on the floating support.
- Said drilling tool 36 consists of a turbine 36 1 actuated by a fluid under pressure, generally a drilling mud brought by the rod train 38, actuating a tool holder 36 2 on the front face of which are secured the tools of section 36 3 and on the shaft of which are installed retractable cutting tools 36 4 , shown in the retracted position on the figure 3 and in working position on the figure 4 .
- a piston 40, shown on the figure 5 is secured to the drill string 38 and slides inside the riser 2 so as to provide a seal between the upstream and downstream of said piston 40.
- the drill bit 36 that is integral with the end of the drill string 38 is lowered from the surface, so as to reach the position described on FIG. figure 3 .
- the orifice 31 is closed by a valve that is not shown and a fluid under high pressure is sent through the drill string 38.
- the turbine 36 1 rotates in the vacuum and the fluid can come out only through the seal 35 pierced with a multitude of small holes.
- the jetting thus created at the front of the portion 3c of the guiding device, ensures the loosening of the soil and the piston effect due to the internal overpressure, pushes the portion 3c forward, possibly causing the portion 3b of said device guidance.
- a centering collar 37a secured to the turbine 36 1 slides freely inside the portion 3c of the guide device 3; said collar freely passes the sludge and the drilling debris, in both directions, from downstream to upstream.
- the collar 37a abuts with a ring 37b integral with the portion 3c of guiding device, inside the latter.
- the collar 37a and ring 37b have corresponding threaded portions, not shown, which, by simple rotation of the rod train from the surface, mechanically secures the body of the turbine 36 1 to the portion 3c of the telescopic guide device, as shown on the figure 4 .
- the opening cap 35 In advance of the drill string 38, one continues to inject fluid under pressure, which allows to destroy using the rotary drilling tool, the opening cap 35, but we have taken care to reopen the orifice 31, so that sludge and drilling residues stand out at the bottom of the sea.
- said riser and said guide portion have a substantially identical inner section and the centralizers 38a are advantageously installed. secured to the rod train and sliding freely in said riser.
- Such centralizers being known to those skilled in the field of drilling, will not be developed in more detail here.
- the drilling has begun and the extensible arms of the drilling tool 36 4 are deployed and enlarge the borehole to a diameter corresponding at least to the diameter of the portion 3b of the guiding device 3.
- Advantageously control the advancement of the tool by adjusting from the surface, by means of the derrick, the length of the shank.
- it is advantageously pressurized from the surface annular between the drill riser and the rod train 38.
- the pressure P created upstream of the sealed piston 40 creates a thrust F which, by intermediate of the drill string 38, pushes the tool forward, thereby driving the portions 3c and 3b of the telescopic guide device until complete deployment as shown in the figure 1 .
- the drill string is operated from the rotating surface in the unscrewing direction, so as to release the body of the turbine 36 1 from the ring 37 b , thus of the portion 3c of the telescopic guiding device 3.
- the drilling is then carried out in a conventional manner, after taking care to close the orifice 31 by means of a not shown valve, so as to recover the surface drilling muds for recycling in the drilling process.
- said portions 3a, 3b and 3c may be advantageously square or hexagonal tubular shapes.
- indexing will advantageously be integrated at sliding bearings 33.
- the telescopic guide pipe 3a, 3b, 3c has been described above in an application related to vertical drilling, but it also applies in deviated drilling in accordance with the Figure 6A .
- the equipment and operations remain substantially the same, it being understood however that the telescopic guide pipe 3 has a curvature due to its inclined position, in accordance with the representation of the Figure 6B , the guide device 3 being secured to the drill base at the plane AA.
- a curved guide device 3 consisting of three telescopic pipe elements 3a, 3b and 3c.
- the telescopic pipe element 3a is embedded at the plane AA in a stiff outer upper structure 20 described later in connection with the figure 17 .
- the telescopic guide pipe 3 is shown in the context of a deflected bore, that is to say in an inclined and curved position on the one hand, and on the other hand in a retracted position, ie with the different elements telescopic driving 3a, 3b, 3c, the smallest inside the largest.
- a telescopic guide pipe in the retracted position that is to say the telescopic driving elements of smaller all diameters being slid inside the outer telescopic pipe element.
- elements cooperating with said telescopic guide pipe it is the element cooperating with the outer telescopic pipe element 3a, Figures 1 to 5 .
- the Figure 6A is a side view of a surface support 1 of the DTU type equipped with a drilling rig and processing equipment.
- a drill riser 2 in a chain configuration is connected to a guide pipe 3 by means of an underwater automatic connector 2 1 .
- Structure 3 4 schematizes the controlled driving means.
- a subsea well control assembly 2 2 is associated with this inlet of the well and allows to close the well in case of eruption.
- the drilling is carried out conventionally from the surface through the drill riser 2 and through the guiding device 3-3 4 , until reaching the reservoir.
- the figure 7 illustrates this first version of the guide device according to the invention, wherein, the guide device is towed on site by means of a cable 10 connected to the front of the guide device via a head traction 11, the rear of said guiding device being connected by a second cable 12 to a very high performance anchor 13 of Stevpriss® or Stevmanta® type VryHOFF Company (Holland).
- the front part 3 1 of the guide device is secured to a sole 5 1 large surface and resting on the seabed so as to limit penetration into the ground.
- soles 5 2 , 5 3 of smaller dimensions are distributed along the retracted telescopic guide pipe, their bearing surface decreasing as one approaches the rear 3 3 of said conduct guidance.
- the front 3 1 is further stabilized by a base comprising a load 6 integral with the sole 5 1 thus creating a recess of the guide device in said base 6, as shown in FIG. figure 8 .
- a method for producing one of such guide device consists in carrying out a traction of the front end 3 1 of said pipe retracted telescopic guide 3 until said intermediate sole 5 2, 5 3 are found embedded in the ground deeper and deeper as they are closer to the rear end 3 3 of guide pipe to obtain the desired curvature R, preferably a radius of curvature greater than 500 m, preferably between 500 and 1000 m.
- Said controlled burying means comprise at least one deflector 7 1 '7 2' 7 3 secured to the outer telescopic pipe element of said telescopic guide pipe in said intermediate portion 3 3 2 or said rear portion 3 3 the telescopic outer guide pipe member comprising planar surfaces, preferably symmetrical with respect to the vertical axial plane XX ', YY' of said guide pipe in the longitudinal direction when it is in a straight horizontal position, and said planar surfaces of the baffles being inclined with respect to a horizontal axial plane XX ', ZZ' of said guide duct when the latter is in a horizontal position on the bottom of the sea, said deflector 7 1 , 7 2 , 7 3 being inclined an angle ⁇ 1 , ⁇ 2 , ⁇ 3 so as to create a depression of said guide duct when the latter is pulled from said substantially horizontal initial position A1 to a said depressed position A2 in the seabed .
- deflectors 7 1 , 7 2 , 7 3 make it possible to control the curvature of the retracted telescopic guide pipe driven into the seabed because, once said deflectors are in a horizontal position, as shown in FIG. figure 12 they prevent further driving of the pipe and stabilize it in the desired position A2. It is understood that it is the spacing and the inclination of the baffles which determine the curvature and more generally the shape of the retracted telescopic guide pipe in the depressed position A2.
- the guiding device comprises a plurality of deflectors 7 1 ' , 7 2' , 7 3 distributed along the outer pipe element of said telescopic guide pipe, inclined at angles ⁇ 1 , ⁇ 2 , ⁇ 3 , decreasing as said deflector 7 1 -7 3 is closer to said front end 3 1 .
- the guide duct is therefore equipped with several deflectors 7 1 -7 3 secured to the guide duct and oriented ⁇ 1 - ⁇ 3 with respect to the axis XX 'of the latter.
- the deflector 7 1 -7 3 is for example a simple flat sheet, preferably reinforced, preferably symmetrical along the vertical axial planes XX ', YY' and horizontal XX ', ZZ' of the guide pipe, welded to the pipe of guiding device as shown in the illustration figure 12 .
- This angle is adjusted beforehand during the manufacture of the guiding device, so as to act as the anchor 13 described in the Figures 7, 8 that is to say to create a depression of the retracted telescopic guide pipe, this depression being limited because of the angle ⁇ .
- the deflectors 7 1 -7 3 sink, driving 24 locally the guide pipe, until the deflector is substantially parallel to the force of the tow.
- traction on the cable 10 that is to say substantially parallel to the seabed 4, or substantially horizontal position in which it will then no longer exert vertical force downwards, tending to bring down the whole.
- a plurality of deflectors 7 1 -7 3 will be advantageously disposed along the guide device, each of them having an angle ⁇ 1 - ⁇ 3 decreasing as one moves closer to the front end 3 1 , as illustrated on the figure 11 .
- the desired curvature is obtained, as shown in FIG. figure 12 .
- a method of making a guide device is to achieve the end T of front wheel 3 1 of said retracted telescopic guide pipe 3 until said deflectors 7 1, 7 2, 7 3 are buried in the ground in a horizontal position to obtain a said curvature sought preferably at a radius of curvature greater than 500 m, preferably between 500 and 1000 m.
- said secondary lines 8 are connected by their ends 8 1 , 8 2 to the front and rear ends 3 1 , 3 3 of said outer pipe member of said telescopic guide pipe and communicate with said front ends 3 1 and rear 3 3 so that he is possible to feed them by the same supply pipe 19 from said front end 3 1 of said telescopic guide pipe 3.
- the secondary pipe 8 is connected at their two ends to the guide pipe 3 by non-return valves 8 1 , 8 2 .
- Said guide pipe 3 is itself hermetically closed at its two ends, on the one hand by the traction head 11 and on the other hand by a plug 14.
- An orifice is connected by a water supply pipe 19, the surface vessel 1 having the necessary pumping means.
- the current portion of the guide pipe is free to move vertically through the central opening 22 of the structure 20, as shown in FIG. figure 18 detailing the section according to the plane CC, structure elements 23 limiting the lateral displacements.
- These flexible links 17 1 , 17 2 , 17 3 are, for example, cables or chains connected on the one hand to the outer structure 20 in 26 and to the guide duct in 27. Said attachment points 26-27 are represented on the figure 17 .
- These flexible links 17 1 -17 3 are spaced along the guide pipe, uniform or not, and have a variable length, decreasing when it approaches the front 3 1 of the telescopic pipe element external guide pipe. Their position and their length are determined, so that at the end of penetration in the ground, when they are all in tension, the sought-after curve is obtained as illustrated on the figure 17 .
- a multitude of lateral flanges 21 is installed on the underside, so as to create a sufficient base.
- a method for producing one of such guide device essentially consists in carrying one end of T FWD 3 1 of the outer pipe element of said telescopic guide pipe 3 of said external rigid structure 20 integral with said guide duct until the one or more links 17 1 -17 3 prevent additional depression of at least said rear portion 3 3 of said retracted telescopic guide duct to obtain the desired curvature R preferably a higher radius of curvature at 500 m, more preferably between 500 and 1000 m.
- the outer structure 20 is preferably continuous along the guide pipe and represents an additional mass of 25 to 75 tons. Jetting is carried out with pressurized water from the surface at pressures of 20 to 100 bar in secondary lines 8.
- the portions 3a-3b-3c have a respective diameter of 0.55 m (21 "), 0.45 m (18") and 0.40 m ( 16 ") and a length of 100 to 150m each.
- the telescopic pipe elements are five in number, 30 ", 24", 21 “1/2, 18", 3/4 and 16 "in diameter, each of the telescopic pipe elements measuring approximately 200m, which represents a
- the total length of the casings according to the prior art would have a same internal diameter of 16 "and the respective decreasing diameters would then be 36", 30 ", 24", 20 “and 16". also about 1000m, but since each casing element extends downwards from the sea floor level, the whole represents a cumulative length of about 3000m of pipe, which then represents a weight of steel approximately 2 to 2.5 times greater than the weight of steel required to make the telescopic casing according to the invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
Description
- La présente invention concerne le domaine connu du forage en mer à partir d'un support flottant ancré en surface et plus particulièrement des dispositifs de guidage des trains de tiges de forage installés au niveau du fond de la mer.
- Elle concerne plus particulièrement le forage dévié en eau profondes, de manière à atteindre des points éloignés de la verticale de l'axe de l'engin de forage en surface.
- Dès que la profondeur d'eau devient importante l'exploration et l'exploitation des champs de production notamment des champs pétroliers s'effectue en général à partir d'un support flottant. Ce support flottant comporte en général des moyens d'ancrage pour rester en position malgré les effets des courants, des vents et de la houle.
- Dans le cas des opérations de forage, il comporte aussi en général des moyens de manutention des trains de tiges, ainsi que des équipements de guidage associés à des systèmes de sécurité installés au niveau du fond de la mer.
- Les forages sont habituellement réalisés à la verticale de l'engin de forage, puis pénètrent le sol verticalement sur des hauteurs de plusieurs centaines de mètres. Ensuite, lesdits forages sont poursuivis jusqu'à la nappe de pétrole appelée "réservoir", soit selon la verticale, soit avec une déviation angulaire progressive, de manière à atteindre des points dudit réservoir, plus ou moins éloignés.
- La phase de démarrage du puits est en général effectuée en descendant depuis la surface une embase de forage reposant sur le fond marin munie de lignes guides jusqu'en surface, puis on descend une longueur de conduite, appelée "casing" ou cuvelage, de fort diamètre, en général 0,914 m (36") et mesurant de 50 à 60m de long au total. Ledit casing est réalisé à partir de longueurs unitaires de conduite mesurant environ 12 m de long assemblées par vissage à bord de la plateforme de forage, au niveau du plancher du derrick. Pour résister aux efforts, chaque longueur unitaire de casing comporte à chaque extrémité une zone renforcée sur une longueur de 0.5m à 1m, constituée d'une surépaisseur correspondant à environ 0.5 à 2 fois l'épaisseur courante de la paroi dudit casing, épaisseur dans laquelle est usinée ledit filetage. Ledit casing, une fois assemblé, passant à travers ladite embase, est alors simplement planté dans le sol, en général peu consolidé et l'enfoncement est souvent effectué par lançage (c'est à dire par envoi d'eau sous pression). Ce premier casing sert à consolider les parois du puit dans la zone proche du fond de la mer, et fait donc office de dispositif de guidage d'un second casing, de diamètre inférieur et, en général, d'une longueur totale de 150 à 200m, ledit second casing étant lui aussi réalisé par assemblage de conduite de 12m de longueur unitaire comportant des zones renforcées aux extrémités, présente un diamètre extérieur, y compris les zones de filetage renforcées, largement inférieur au diamètre interne du casing externe, pour qu'il puisse y coulisser librement lors de l'installation et pour que le cheminement du coulis de cimentation puisse se faire dans les meilleures conditions. Ledit second casing est alors soit vibrofoncé, soit foré si le terrain l'exige, puis on cimente depuis la surface l'interstice entre lesdits casings et le sol, ainsi que entre les deux dits casings. Durant ces phases, on travaille à trou ouvert (« open hole ») et l'on risque d'être exposé à des instabilités de terrain, ou encore à des arrivées d'eau intempestives survenant à faible profondeur sous le fond de la mer (« shallow water flow »), perturbant gravement la phase de démarrage du puits.
- Selon la nature du sol, on peut être amené à considérer un troisième casing, voire un quatrième, de manière à atteindre une profondeur suffisante pour initier le forage proprement dit.
- Ainsi, les casings multiples présentent des espaces importants entre chaque dit casing et le suivant et, de plus, du fait que chacun desdits casings s'étend depuis le niveau du sol marin jusqu'à son extrémité la plus basse, ceci implique qu'au niveau du sol marin et sur toute la hauteur du premier casing et des suivants, on observe radialement deux, trois, voire quatre ou plus, épaisseurs successives de casing, qui seront en fait inutiles dans la poursuites des opérations, car dans la phase principale de forage et d'exploitation du puits, une seule épaisseur de casing est nécessaire pour assurer le supportage des équipements de fond ainsi que l'étanchéité de l'ensemble. Ces multiples casings, redondants dans la zone proche du fond marin, sont rendus nécessaires en raison de la manière de procéder pour le démarrage d'un forage de puits selon l'art antérieur, redondance qui représente une quantité d'acier considérable, et donc un coût très important.
- On connaît le brevet
GB-2,338,009 - On connaît le brevet
US-5,307,886 qui décrit un système et ou mode d'installation permettant de réaliser de multiples casings à jeu réduit, et minimisant l'espace entre ledit casing et la paroi du trou foré dans le sol. - Un premier problème à la base de l'invention est de fournir un dispositif de guidage permettant de guider le train de tige de forage et l'outil de forage le plus profondément possible dans le sous sol au fond de la mer, de manière à éviter ces incidents d'arrivée d'eau intempestive survenant à faible profondeur lors de l'installation des casings.
- Un autre problème est de réduire les phases de manipulation et d'assemblage à bord de la plateforme de forage, des conduites unitaires servant à réaliser lesdits casings afin de réduire la difficulté, la durée et donc le coût de l'installation des casings, particulièrement dans le cas d'une installation en Ultra Grands Fonds c'est à dire pour des profondeurs de 2000 à 3000 mètres voire plus. En effet, ces manipulations étant réalisées en séquences successives et indépendante, si le temps proprement dit de mise en place, c'est à dire l'enfoncement dans le sol, du premier casing, du second casing ou des suivants reste acceptable, les manipulations intermédiaires consistant à ramener en surface des outils de préhension, puis à redescendre à nouveau le casing suivant, représentent alors un temps considérable, donc un coût d'immobilisation de l'engin de forage extrêmement élevé, lorsque la hauteur d'eau atteint 2000, 3000 voire 4000 à 5000m ou plus. De plus, les phases de cimentation de l'interstice entre deux risers nécessitent un temps très important qui augmente d'autant le coût de l'opération.
- - Un autre problème est de réduire radicalement la quantité d'acier nécessaire à la réalisation de ces casings en minimisant les redondances ainsi que les jeux entre lesdits casings successifs.
- D'autre part dans le cas de forage de plusieurs puits déviés, il est possible de constituer un réseau de puits en forme de parapluie issus d'une même position du support flottant en surface, ce qui permet de regrouper, pendant toute l'exploitation du champ, l'ensemble des équipements de surface en un même lieu. De telles installations sont appelées DTU (Dry Tree Units), c'est à dire unités à têtes de puits sèches, car dans ce cas les têtes de puits sont rassemblées en surface, hors d'eau. L'exploitation est ainsi grandement facilitée, car il est possible d'avoir accès à l'un quelconque des puits depuis le DTU, pour effectuer toutes les opérations de contrôle et de maintenance sur les puits, et ce pendant toute la durée de vie des installations qui atteint 20 à 25 ans et voire même plus.
- De tels forages déviés ne sont possibles que si les réservoirs sont à grande profondeur, par exemple 2000 à 2500 m, car il est impératif d'avoir une longueur verticale de plusieurs centaines de mètres dans le fond marin, avant d'initier la déviation du puits dont le rayons de courbure des conduites constitutives du puits sont de l'ordre de 500 à 1000 m.
- On connaît les brevets
EP 0952300 etEP 0952301 qui décrivent des méthodes et dispositifs permettant d'effectuer des forages déviés en tirant profit de la tranche d'eau pour s'écarter au maximum de la verticale de l'engin de forage et pour reposer dans le fond marin de manière sensiblement tangentielle à l'horizontale. - Dans ces brevets, les dispositifs de guidage installés au fond de la mer pénètrent dans le sol et permettent d'assurer l'amorçage du puits de forage dans le fond marin selon une inclinaison d'un angle donnée par rapport à la verticale. Le dispositif de guidage est relié à l'engin de forage par une conduite appelée "riser de forage" qui guide le train de tiges de forage qui les traverse et assure la remontée des boues et des débris de forage.
- Cet élément de guidage installé au fond de la mer doit permettre de respecter des rayons de courbure importants de 500 à 1000 m et par conséquent doit être de grandes dimensions, tout en restant très résistant pour absorber les efforts considérables engendrés par le train de tige de forage qui sera lui aussi contraint à épouser le même rayon de courbure, ce qui induit des frottement très importants et dés risques de déstabilisation de l'ensemble au cours du forage.
- De plus cet élément de guidage de dimensions et de masse considérable doit être préinstallé dans les ultra grands fonds, c'est à dire dans des profondeurs d'eau de 1000 à 2500 m, voire plus.
- Plus précisément dans
EP-0,952,301 , le dispositif de guidage comprend un élément de conduite appelé "conducteur" qui est en fait le tube guide du puits de forage déployé à partir du support flottant à travers le riser de forage jusqu'à une structure appelée "skid" reposant sur le fond de la mer. Cette structure - skid maintient et guide le tube conducteur horizontalement au dessus du fond de la mer à une certaine hauteur. Puis ce conducteur adopte une courbure en direction du fond de la mer sous l'effet de sa propre gravité. Le conducteur lors de son déploiement coopère avec des outils de forage pour qu'il s'enfonce partiellement dans le fond de la mer. La mise en place d'un tel dispositif de guidage et notamment du conducteur depuis le support flottant représente une contrainte opérationnelle importante. En outre ce dispositif de guidage ne permet aucun contrôle de la courbure du conducteur. D'autre part, pour respecter un grand rayon de courbure, notamment supérieur à 500 m, il est nécessaire que le conducteur se déploie tangentiellement à l'horizontale sur plusieurs dizaines de mètres au delà du point d'appui qui assure son guidage sur la structure skid. - Enfin, aucun moyen n'est décrit dans ces brevets pour permettre la réalisation de la mise en place dudit conducteur selon un grand rayon de courbure comme cela est nécessaire pour que le train de tiges, et surtout les éléments de cuvelage puissent opérer avec un minimum de frottement latéral à l'intérieur de la conduite.
- Pour un rayon de 600 m, si la tête de puit est à 2 m au dessus du sol, le conducteur n'atteindra le sol que 50 m plus loin ce qui signifie une portion de conducteur de 50 m, en porte-à-faux, libre et non maintenu, ce qui est inacceptable car le conducteur risque de casser ou de plier en raison d'une courbure locale trop forte, car incontrôlée. De plus, le porte-à-faux ainsi créé risque d'être préjudiciable à un bon fonctionnement lors des opérations de forage ainsi que pendant toute la durée de vie qui peut dépasser 25 ans.
- Un autre problème selon la présente invention est donc de fournir un dispositif de guidage dans une application en forage dévié dans la hauteur de la tranche d'eau, qui puisse être mis en place selon un grand rayon de courbure de façon fiable, c'est à dire en pouvant contrôler la courbure selon un grand rayon de courbure notamment supérieur à 500 m et dont la réalisation et la mise en place soient faciles à réaliser.
- Selon un premier aspect apportant une solution au problème de guidage du train de tige et de l'outil de forage le plus profondément possible, la présente invention fournit un dispositif de guidage d'une installation de forage en mer comprenant au moins un riser de forage s'étendant depuis un support flottant jusqu'au dit dispositif de guidage au fond de la mer, ledit forage pouvant être réalisé depuis ledit support flottant à travers ledit riser de forage à l'aide d'un train de tige de forage équipé à son extrémité d'outils de forage passant à travers ledit riser de forage et ledit dispositif de guidage, ledit dispositif de guidage étant caractérisé en ce qu'il comprend une conduite de guidage télescopique comprenant des éléments de conduite télescopiques coaxiaux (XX') et de diamètres décroissants, préassemblés les uns aux autres, de manière à ce que lesdits éléments de conduite télescopiques soient aptes à coulisser dans la direction axiale (XX') les autres, l'élément de conduite télescopique interne de plus petit diamètre étant équipé à son extrémité d'un moyen de décohésion du sol apte à créer un enfoncement progressif dans le sol de ladite conduite de guidage télescopique par coulissement vers l'extérieur desdits éléments de conduite télescopiques pour permettre ainsi de guider plus profondément dans le sol un outil de forage à l'extrémité dudit train de tige.
- On comprend que l'enfoncement progressif dans le sol de la conduite de guidage se fait à partir d'une position initiale rétractée dans laquelle l'élément de conduite télescopique interne de plus petit diamètre est rentré à l'intérieur des éléments de conduite télescopique de plus grand diamètre. Donc tous les éléments de conduite télescopiques sont positionnés à l'intérieur d'un élément de conduite télescopique externe de plus grand diamètre. L'enfoncement progressif dudit moyen de décohésion se produit par coulissement progressif vers l'extérieur des éléments de plus petit diamètre dans ceux de plus grand diamètre, et donc tout d'abord de l'élément de conduite interne télescopique interne de plus petit diamètre puis progressivement des éléments de conduite télescopiques de diamètres croissants, et jusqu'à complet déploiement de tous les éléments de conduite télescopiques en extension vers l'extérieur.
- En procédant ainsi, dans le cas du forage vertical conventionnel, on descend depuis la surface un unique dispositif de guidage, au lieu de deux, voire trois dans l'art antérieur, ce qui représente un gain de temps considérable dans le cas de forage en mer profonde, par exemple par 2 000, 3 000m, voire plus, car ils doivent être descendus successivement. De plus, en cas d'instabilité de terrain, ou encore en cas d'arrivée d'eau intempestives survenant à faible profondeur sous le fond de la mer, le casing étant continu sur toute sa longueur, les risques d'effondrement sont considérablement réduits, voire même radicalement supprimés. Enfin, les opérations de cimentation du dispositif selon l'invention sont réduites au minimum, car il n'est plus nécessaire de l'effectuer après chaque mise en place d'un casing dans le casing précédent, comme c'est le cas dans les casings de la technique antérieure. En effet, la cimentation est effectuée en une seule fois après déploiement complet du dispositif télescopique.
- Dans un mode préféré de réalisation ledit élément de conduite interne de plus petit diamètre présente un diamètre sensiblement identique à celui dudit riser de forage.
- Dans un mode particulier de réalisation lesdits moyens de décohésion du sol sont constitués par un opercule multiperforé permettant de réaliser un lançage d'eau ou de boue par injection sous forte pression.
- Plus particulièrement, ladite conduite de guidage télescopique comprend au moins 3 éléments, de conduite télescopique coaxiaux.
- Plus particulièrement encore, chacun desdits éléments de conduite coaxiaux-télescopiques présentent une longueur de 50 à 300 mètres, de préférence 100 à 200 mètres et ladite conduite de guidage déployée présente une longueur de 150 à 600 mètres de préférence 200 à 300 mètres. Le dispositif de guidage selon l'invention est dans un premier temps préfabriqué à terre, puis mis en configuration rétractée par introduction des conduites les unes dans les autres de manière à réduire la longueur totale au minimum, puis mis à l'eau et équipé d'éléments de flottaison, puis remorqué sur site jusqu'à l'axe du derrick de forage, et enfin cabané de telle manière que la partie supérieure de ladite conduite télescopique puisse être saisie par l'outil de manipulation installé en extrémité du train de tiges manutentionné par le derrick, l'ensemble étant alors descendu en une seule fois, en configuration verticale vers l'embase de guidage reposant sur le fond de la mer.
- Etant préfabriqués à terre, chacun desdits éléments de conduite télescopique sera réalisé par assemblage de longueurs successives de conduites, lesdites conduites étant simplement soudées bout à bout de manière conventionnelle comme dans le cas de la fabrication des pipelines. Il n'est ainsi pas nécessaire de renforcer les extrémités de chacune des longueur unitaire de 12m, car aucun filetage n'y est usiné, et l'ensemble présente alors un diamètre optimal et nettement réduit par rapport à l'art antérieur.
- On entend par « conduite de guidage télescopique rétractée » que les différents éléments de conduite télescopique préassemblés sont tels que ceux de petits diamètres sont rentrés à l'intérieur de ceux de plus grands diamètres.
- Selon un second aspect permettant de résoudre le problème de la mise en place de dispositif de guidage dans une application en forage dévié dans la hauteur de la tranche d'eau, la présente invention fournit un dispositif de guidage utile dans une installation de forage en mer, installation dans laquelle au moins un riser de forage s'étend depuis un support flottant jusqu'audit dispositif de guidage au fond de la mer, ledit riser de forage déviant progressivement depuis une position sensiblement verticale au niveau dudit support flottant jusqu'à une position sensiblement horizontale ou tangentielle à l'horizontale au fond de la mer, ledit forage pouvant être réalisé depuis ledit support flottant à travers ledit riser de forage et ledit dispositif de guidage de manière à ce que le puits de forage dans le fond de la mer soit amorcé selon une inclinaison donnée α par rapport à l'horizontale de préférence de 5 à 60°, de préférence encore 25 à 45°, ledit dispositif de guidage étant caractérisé en ce qu'il comprend une dite conduite de guidage télescopique dans une position enfoncée dans le sol dans laquelle ladite conduite de guidage télescopique rétractée ou ledit élément de conduite télescopique externe lorsque ladite conduite télescopique est complètement déployée comprennent successivement :
- une extrémité avant reposant sensiblement horizontalement sur le fond de la mer,
- une portion intermédiaire courbe de enfoncée dans le sous-sol du fond de la mer selon un grand rayon de courbure, de préférence un rayon de courbure supérieur à 500 m, et
- une portion arrière sensiblement linéaire enfoncée dans le sous-sol du fond de la mer selon une dite inclinaison donnée α,
- La courbure de la conduite de guidage télescopique est donc formée par l'enfoncement contrôlé de la conduite de guidage. En raison de la longueur importante de ladite conduite de guidage en position rétractée, chacun des tronçon rétracté prendra la même courbure, sans engendrer d'efforts significatifs au sein de l'ensemble.
- Les moyens d'enfoncement de la conduite de guidage télescopique rétractée permettent d'obtenir par enfoncement de la conduite, une courbure de la conduite avec un grand rayon de courbure à une valeur voulue et contrôlée, le rayon de courbure étant en effet dépendant des caractéristiques et de l'agencement desdits moyens d'enfoncement.
- On comprend que ladite portion linéaire inclinée se trouve dans le prolongement tangentiel de ladite portion courbe et, c'est l'inclinaison de cette portion linéaire qui détermine ledit angle α d'amorçage du puits de forage.
- On comprend également qu'on entend par "horizontal au fond de la mer", une position sensiblement horizontale en fonction du relief du fond de la mer.
- Dans un mode particulier de réalisation, ladite conduite de guidage présente une longueur de 100 à 600 m, de préférence 250 à 450 m avec une dite inclinaison donnée α de la conduite de guidage d'environ 10 à 60°, de préférence 25 à 45°. La courbure recherchée de la conduite de guidage correspond alors à une augmentation d'inclinaison d'environ 1 ° par portion de longueur de conduite de guidage de 10 m, soit un rayon de courbure d'environ 560 m.
- Dans un mode préféré de réalisation, ladite extrémité avant de la conduite de guidage télescopique rétractée est encastrée dans une embase comprenant une charge reposant sur une semelle avant de sorte que ladite embase maintient ladite extrémité avant de ladite conduite de guidage sensiblement horizontalement sur le fond de la mer lorsque celle-ci est tractée. Ladite embase empêche l'enfoncement de l'extrémité avant de ladite conduite de guidage télescopique rétractée, ainsi que sa rotation autour d'un axe sensiblement horizontal perpendiculaire à l'axe de traction.
- La présente invention fournit également un procédé de réalisation d'un dispositif de guidage selon l'invention, caractérisé en ce qu'on réalise des étapes dans lesquelles :
- on met en place une dite conduite de guidage télescopique rétractée dans une dite position initiale reposant sensiblement horizontalement et de façon rectiligne sur le fond de la mer, ladite conduite de guidage télescopique rétractée coopérant avec desdits moyens d'enfoncement contrôlé, et
- on réalise une traction au fond de la mer de ladite extrémité avant de ladite conduite de guidage télescopique, de préférence dans la direction longitudinale axiale de ladite conduite de guidage télescopique, depuis ladite position initiale jusqu'à une dite position enfoncée.
- La présente invention a également pour objet une installation de forage en mer comprenant un riser de forage s'étendant depuis un support flottant jusqu'à un dispositif de guidage selon l'invention auquel ledit riser de forage est connecté.
- Dans le cas de forage dévié dans la hauteur de la tranche d'eau, ledit riser de forage dévie progressivement depuis une position sensiblement verticale au niveau dudit support flottant jusqu'à une position sensiblement horizontale ou tangentielle à l'horizontale au fond de la mer, le forage pouvant être réalisé depuis ledit support flottant à travers ledit riser de forage et ledit dispositif de guidage de manière à ce que le puit de forage s'amorce dans le fond de la mer selon une inclinaison donnée α par rapport à la verticale, de préférence de 10 à 80°.
- La présente invention a également pour objet un procédé de réalisation d'une installation de forage selon l'invention caractérisé en ce qu'on réalise des étapes dans lesquelles:
- on réalise un dispositif de guidage télescopique selon un procédé selon l'invention, et
- on réalise la connexion d'au moins dudit riser de forage à ladite extrémité avant de la conduite de guidage télescopique reposant sur le fond de la mer.
- La présente invention a enfin pour objet un procédé de forage à l'aide d'une installation de forage selon l'invention caractérisé en ce qu'on réalise des opérations de forage et on construit un puits de forage en déployant des trains de tiges coopérant avec des outils de forage et des colonnes de tubes ou cuvelages, à travers un dit riser de forage et un dit dispositif de guidage télescopique selon l'invention enfoncé dans le fond de la mer.
- On comprend plus précisément que le train de tiges permet dans un premier temps de déployer les outils de forage, puis de déployer les éléments de tubes, appelés "colonnes de tubes ou cuvelages" qui constituent le puits de forage au fur et à mesure du forage et de leur mise en place dans le fond de la mer.
- D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description de plusieurs exemples de réalisation préférés qui vont suivre, en référence aux figures suivantes dans lesquelles :
- la
figure 1 représente un dispositif de guidage télescopique constitué d'éléments de conduites coaxiaux télescopiques représentés en position rétractée, dans le cas d'un forage vertical conventionnel, - les
figures 2, 3 et 4 sont des coupes en vue de côté détaillant le dispositif de guidage télescopique en position rétractée, représenté en ligne droite, respectivement au moment de sa dépose au fond de la mer, au début de l'opération de forage par lançage et en cours de forage à l'outil rotatif, - la
figure 5 est une coupe en vue de côté du dispositif de guidage télescopique partiellement déployée, représentée en ligne droite, détaillant les forces de poussée s'exerçant sur les divers éléments télescopiques et sur l'outil de forage, dans le cas d'un forage vertical conventionnel, - la
figure 6A est une vue de côté d'un support de surface de type DTU équipé d'un riser de forage connecté à un dispositif de guidage préinstallé sur le fond de la mer pour un forage en eau profonde dévié dans la hauteur de la tranche d'eau, - la
figure 6B représente un dispositif de guidage télescopique constitué de 3 éléments de conduites coaxiaux télescopiques déployés, dans le cas d'un forage dévié dans la hauteur de la tranche d'eau, - les
figures 7 et 8 sont des vues de côté d'un dispositif de guidage associé à une ancre assurant la pénétration dans le sol, représenté respectivement avant et après pénétration dans le fond marin, - les
figures 9 et 10 sont des coupes en vue de côté selon les plans de coupe respectifs AA et BB du dispositif de guidage, - les
figures 11 et 12 sont des vues de côté d'un dispositif de guidage équipé d'ailerons latéraux assurant une pénétration variable dans le sol, représenté respectivement avant et après pénétration dans le fond marin, - la
figure 13 est une vue de gauche du dispositif de guidage selon lafigure 6 détaillant les ailerons latéraux, - la
figure 14 est une vue de côté d'un dispositif de guidage équipé de conduites secondaires de lançage facilitant la dé-cohésion du sol lors de la phase de pénétration dans le fond marin, - la
figure 15 est la vue en coupe de la section courante relative à lafigure 14 , - les
figures 16 et12 sont des vues de côté d'une structure associée au dispositif de guidage selon lesfigures 7 et 8 , limitant l'enfoncement lors de la pénétration dans le sol, représenté respectivement avant et après ladite pénétration dans le fond marin, - les
figures 18 et 19 sont les sections selon les plans CC et DD relatifs à lafigure 16 . - la
figure 20 est une vue de côté d'une plateforme de forage installée à la verticale de l'embase de forage d'un futur puits, détaillant la séquence d'installation d'un dispositif de guidage télescopique en position rétractée, lequel a été successivement préfabriqué à terre, puis équipé de flotteurs et remorqué sur site, puis cabané en position verticale, puis enfin repris en suspension par la plateforme de forage, au moyen d'un préhenseur installé à l'extrémité d'un train de tiges, l'ensemble étant alors prêt à être descendu le long de lignes guides vers ladite embase de forage. - Pour la clarté des explications, le jeu entre deux éléments de conduite télescopique adjacents a été considérablement amplifié sur les figures, de manière à faciliter la compréhension du fonctionnement des moyens de glissement, de guidage et d'étanchéité.
- Dans la
figure 1 on a représenté un dispositif de guidage constitué de 3 éléments de conduite télescopique 3a, 3b, 3c en position rectiligne, mis en oeuvre dans le cadre d'un forage vertical conventionnel. Ledit dispositif de guidage 3, constitué de trois éléments de conduite télescopiques 3a, 3b et 3c, est suspendu à un riser de forage 2 manutentionné par le derrick en surface, et descendu vers une embase de forage 45 reposant sur le fond de la mer 4. Un premier moyen de guidage 47 a été descendu au préalable le long des câbles guides 48, pour venir se centrer sur des poteaux guides 46, et reposer enfin directement sur l'embase. Pour la clarté du dessin le dispositif de guidage 3 a été représenté dans une position légèrement au dessus de ladite embase 45, juste avant d'être déposée sur cette dernière. Ce premier moyen de guidage 47 comporte une forme d'entonnoir d'un diamètre légèrement supérieur au diamètre extérieur de la portion 3a du dispositif de guidage 3 et qui, collaborant avec ce dernier, permet ainsi de le guider lors de sa descente vers l'embase 45. Lors de la descente, le dispositif de guidage 3 est solidaire d'un second moyen de guidage 49 encastré dans ce dernier au niveau du plan DD et lui-même guidé le long des lignes guides 48. - Comme montré sur la
figure 20 , le dispositif de guidage 3 a été préfabriqué à terre, puis les divers éléments ont été rentrés les uns dans les autres, de manière à ce que la longueur de l'ensemble ainsi rétracté soit la plus faible possible, puis le dispositif de guidage est mis à l'eau et équipé de flotteurs 50. Il est alors remorqué sur site et, à proximité de la plateforme de forage 1, ledit dispositif de guidage est cabané par suppression des flotteurs avant, puis transféré à la verticale de l'axe du derrick où il est repris par le train de tige 2 équipé à son extrémité d'un outil préhenseur. - Dans une variante préférée de l'invention, la plateforme de forage 1 est remplacée par un simple navire de surface, de préférence à positionnement dynamique, le dispositif de guidage 3 une fois cabané est alors repris en suspension par un câble relié à un treuil installé à bord du navire. Le dispositif de guidage est alors descendu au câble en simple pendule, de préférence sans lignes guides, puis inséré dans l'embase de forage. Le début de pénétration est effectué par lançage, la puissance hydraulique étant fournie par le navire de surface et transmise au fond, par exemple par une conduite flexible. Lorsque le lançage n'est plus efficace, le navire de surface suspend son opération, l'installation sera alors terminée par la plateforme de forage dès son arrivée sur site, à la verticale dudit puits à forer. En procédant ainsi, on réduit radicalement le coût de l'opération de la mise en place du casing, car le coût journalier du navire de surface requis représente une petite fraction du coût d'une plateforme de forage capable de forer dans des profondeurs d'eau de 3000m, 4000m, voire plus. De plus, l'engin de forage requis sera de plus faible puissance, donc d'un coût plus faible, car il n'aura pas à manipuler le dispositif de guidage télescopique selon l'invention, ni même les éléments unitaires d'un casing conventionnel selon l'art antérieur.
- La
figure 2 représente le dispositif de guidage télescopique 3 en position rétractée ou repliée avec un orifice 31 permettant aux boues et aux débris de forage d'être évacués au niveau du fond de la mer. Les éléments de conduite télescopique de ladite conduite télescopique de guidage 3 sont tubulaires et de diamètre de tailles décroissantes de manière à pouvoir coulisser les uns dans les autres. L'élément de conduite télescopique intermédiaire 3b du dispositif de guidage télescopique 3 est muni sur sa partie avant d'une bague de coulissement étanche 32b assurant le guidage à frottement réduit de l'élément de conduite interne télescopique terminal 3c du dispositif de guidage télescopique 3 et sur sa partie arrière, une bague de coulissement non étanche 33b assurant le guidage à frottement réduit de l'élément de conduite télescopique externe 3a dudit dispositif de guidage télescopique 3. - La portion 3a dudit dispositif de guidage est équipé sur l'avant d'une bague de coulissement étanche 32a assurant le guidage à frottement réduit de la portion 3b et est solidaire sur l'arrière du riser de forage en configuration de chaînette 2.
- La portion 3c dudit dispositif de guidage est équipée sur l'avant d'un opercule 35 percé de multiples orifices, ou encore équipé d'une série de duses, permettant, par simple injection d'eau ou de boue sous très forte pression, de détruire la cohésion du sol et de permettre ainsi le démarrage du puits par simple lançage, et sur l'arrière, d'une bague de coulissement non étanche 33c.
- Des bagues de coulissements complémentaires 34 sont avantageusement installés, à intervalles réguliers ou non, respectivement entre les portions 3a-3b et 3b-3c de manière à éviter que, lorsque les portions de dispositif de guidage sont fortement courbés, comme indiqué sur la
figure 1 , la paroi externe du guidage intérieur, par exemple 3b, ne vienne frotter directement sur la paroi interne de la portion 3a. Dans le cas de la portion 3b, ces bagues de coulissement 34 sont solidarisés à ladite portion télescopique 3b de manière à présenter un frottement élevés vis à vis de cette portion 3b, c'est à dire qu'elles ont la possibilité de glisser lorsqu'ils sont soumis à un effort important s'appliquant parallèlement à l'axe longitudinal de ladite portion 3b. Ainsi, lorsque la portion 3b coulisse vers l'extérieur de 3a, la bague de coulissement 34 vient buter contre la bague de coulissement étanche 32a et du fait qu'elle peut glisser sous effort important, le coulissement vers l'extérieur de 3b dans 3a n'est pas empêché. En fin de coulissement, toutes les bagues de coulissement 34 seront en contact avec ladite bague de coulissement 32a, la bague de coulissement 33b étant elle-même en contact avec lesdits bagues de coulissement 34. Chacune des bagues de coulissement 34 est avantageusement munie dans sa partie externe d'un élément 341 à frottement réduit, de manière à minimiser les efforts longitudinaux de contact entre les parois des diverses portions du dispositif de guidage 3, lorsque ce dernier présente une courbure importante. - La
figure 4 représente la phase de démarrage du forage, le dispositif de guidage étant installé au fond de la mer, les portions 3a, 3b et 3c étant en position rétractée. - L'outil de forage 36 est solidaire de l'extrémité inférieure du train de tiges de forage 38 actionné depuis le derrick installé en surface sur le support flottant. Ledit outil de forage 36 est constitué d'une turbine 361 actionnée par un fluide sous pression, en général une boue de forage amenée par le train de tige 38, actionnant un porte outils 362 sur la face avant duquel sont solidarisés les outils de coupe 363 et sur le fût duquel sont installés des outils de coupe rétractables 364, représentés en position rétractée sur la
figure 3 et en position de travail sur lafigure 4 . Un piston 40, représenté sur lafigure 5 est solidaire du train de tiges 38 et coulisse à l'intérieur du riser 2 de manière à réaliser une étanchéité entre l'amont et l'aval dudit piston 40. - Ainsi, en début d'opération de fonçage-forage, on descend depuis la surface l'outil de forage 36 solidaire de l'extrémité du train de tiges 38, de manière à atteindre la position décrite sur la
figure 3 . On obture l'orifice 31 par une vanne non représentée et l'on envoie à travers le train de tiges 38 un fluide sous forte pression. La turbine 361 tourne dans le vide et le fluide ne peut ressortir que par l'opercule 35 percé d'une multitude de petits trous. Le lançage ainsi créé à l'avant de la portion 3c du dispositif de guidage, assure la décohésion du sol et l'effet de piston dû à la surpression interne, pousse vers l'avant la portion 3c, entraînant éventuellement la portion 3b dudit dispositif de guidage. - Lorsque l'effet de lançage n'est plus suffisant pour engendrer l'avancement de la section frontale, le lançage est stoppé et l'outil de forage 36 est déplacé vers l'avant en poussant depuis la surface la longueur de train de tige 38 nécessaire. Un collier de centrage 37a solidaire de la turbine 361, coulisse librement à l'intérieur de la portion 3c du dispositif de guidage 3 ; ledit collier laisse passer librement les boues et les débris de forage, dans les deux sens, de l'aval vers l'amont. En fin de phase d'avancement, le collier 37a vient en butée avec une bague 37b solidaire de la portion 3c de dispositif de guidage, à l'intérieur de cette dernière. Les collier 37a et bague 37b présentent des portions filetées correspondantes, non représentées, ce qui, par simple rotation du train de tige depuis la surface, permet de solidariser mécaniquement le corps de la turbine 361 à la portion 3c du dispositif de guidage télescopique, tel que représenté sur la
figure 4 . Au cours de cette opération d'avance du train de tiges 38, on continue à injecter du fluide sous pression, ce qui permet de détruire à l'aide de l'outil de forage en rotation, l'opercule 35 de lançage, mais on aura pris soin de rouvrir l'orifice 31, de manière à ce que les boues et résidus de forage ressortent au niveau du fond de la mer. - Pour faciliter la progression de l'outil 36 à l'intérieur du riser puis de la portion 3c du dispositif de guidage télescopique 3, ledit riser ainsi que ladite portion de guidage ont un section intérieure sensiblement identique et l'on installe avantageusement des centraliseurs 38a solidaires du train de tige et coulissant librement dans ledit riser. De tels centraliseurs étant connue de l'homme de l'art dans le domaine du forage, ne seront pas développés plus en détails ici.
- Dans la
figure 4 , le forage a commencé et les bras extensibles de l'outil de forage 364 sont déployés et agrandissent le forage à un diamètre correspondant au moins au diamètre de la portion 3b du dispositif de guidage 3. On contrôle avantageusement l'avancement de l'outil en ajustant depuis la surface, au moyen du derrick, la longueur du train de tige. Pour augmenter la force de poussée, on pressurise avantageusement depuis la surface l'annulaire compris entre le riser de forage et le train de tige 38. Ainsi, la pression P créée en amont du piston 40 étanche, crée une poussée F qui, par l'intermédiaire du train de tiges 38, pousse l'outil en avant, entraînant de ce fait les portions 3c puis 3b du dispositif de guidage télescopique jusqu'à complet déploiement comme illustré sur lafigure 1 . - En position finale, le train de tiges est manoeuvré depuis la surface en rotation dans le sens du dévissage, de manière à libérer le corps de la turbine 361 de la bague 37b, donc de la portion 3c du dispositif de guidage télescopique 3.
- Après changement d'outil, le forage est ensuite effectué de manière conventionnelle, après avoir pris soin de fermer l'orifice 31 au moyen d'une vanne non représentée, de manière à récupérer en surface les boues de forage en vue de leur recyclage dans le processus de forage.
- Pour éviter que les diverses portions 3b et 3c ne soient entraînées en rotation lors du vissage-dévissage du corps de la turbine sur l'extrémité avant de la portion 3c, lesdites portions 3a, 3b et 3c, peuvent être avantageusement des formes tubulaires carrées ou hexagonales. Dans le cas de forme tubulaire circulaires, un indexage sera avantageusement intégré au niveau des paliers de coulissement 33.
- La conduite de guidage télescopique 3a, 3b, 3c a été décrite ci-dessus dans une application liée au forage vertical, mais elle s'applique aussi en forage dévié conformément à la
figure 6A . Les équipements et opérations restent sensiblement les mêmes, étant entendu toutefois que la conduite de guidage télescopique 3 présente une courbure de par sa position inclinée, conformément à la représentation de lafigure 6B , le dispositif de guidage 3 étant rendu solidaire de l'embase de forage au niveau du plan AA. - Dans la
figure 6B on a représenté, en vue de côté, un dispositif de guidage 3 courbé, constitué de trois éléments de conduite télescopiques 3a, 3b et 3c. L'élément de conduite télescopique 3a est encastrée au niveau du plan AA dans une structure supérieure externe rigide 20 décrite plus loin en liaison avec lafigure 17 . - Dans les
figures 7 à 19 on a représenté la conduite de guidage télescopique 3 dans le cadre d'un forage dévié c'est à dire en position inclinée et courbe d'une part, et d'autre part en position rétractée, c'est à dire avec les différents éléments de conduite télescopique 3a, 3b, 3c, les plus petits à l'intérieur des plus grands. C'est pourquoi dans la suite de la description lorsque l'on se réfère à ladite conduite de guidage, il s'agit d'une conduite de guidage télescopique en position rétractée, c'est à dire les éléments de conduite télescopique de plus petits diamètres étant tous coulissés à l'intérieur de l'élément de conduite télescopique externe. Lorsque l'on se réfère à des éléments coopérants avec ladite conduite de guidage télescopique, il s'agit de l'élément coopérant avec l'élément de conduite télescopique externe 3a, desfigures 1 à 5 . - La
figure 6A est une vue de côté d'un support de surface 1 de type DTU équipé d'un engin de forage et d'équipements de traitement. Un riser de forage 2 en configuration de chaînette, est connecté à une conduite de guidage 3 au moyen d'un connecteur automatique sous marin 21. La structure 34 schématise les moyens d'enfoncement contrôlé. Un ensemble de contrôle de puits sous-marin 22 est associé à cette entrée du puits et permet de fermer le puits en cas d'éruption. Le forage est effectué de manière conventionnelle depuis la surface à travers le riser de forage 2 et à travers le dispositif de guidage 3-34, jusqu'à atteindre le réservoir. - Ledit riser de forage 2 dévie progressivement depuis une position sensiblement verticale 2a au niveau dudit support flottant 1 jusqu'à une position sensiblement horizontale ou tangentielle à l'horizontale 2b au fond de la mer, le forage pouvant être réalisé depuis ledit support flottant 1 à travers ledit riser de forage 2 et ledit dispositif de guidage télescopique rétracté 3 de manière à ce que le puit de forage s'amorce dans le fond de la mer selon une inclinaison donnée α par rapport à l'horizontale, de préférence de 10 à 80°.
Les moyens d'enfoncement contrôlé 34, 51-53, 71-73, 8-9 ,13 décrits dans lesfigures 7 à 19 permettent l'enfoncement de ladite conduite de guidage télescopique rétractée 3 dans le fond de la mer lorsque ladite conduite de guidage 3 télescopique rétractée est tractée T au fond de la mer à son extrémité avant 31, - depuis une position initiale A1 où ladite conduite de guidage télescopique rétractée 3 repose entièrement par-dessus le fond de la mer dans une position sensiblement horizontale,
- jusqu'à une position enfoncée A2 dans le sous-sol du fond de la mer, position enfoncée dans laquelle ladite conduite de guidage télescopique rétractée 3 comprend successivement :
- une extrémité avant 31 reposant sensiblement horizontalement sur le fond de la mer,
- une portion intermédiaire courbe de conduite de guidage télescopique rétractée enfoncée dans le sous-sol du fond de la mer selon un grand rayon de courbure, de préférence un rayon de courbure supérieur à 500 m et,
- une portion arrière sensiblement linéaire inclinée 33 à l'extrémité arrière de ladite conduite de guidage télescopique rétractée 3 enfoncée dans le sous-sol du fond de la mer selon une dite inclinaison donnée α.
- Dans un premier mode préféré de l'invention, lesdits moyens d'enfoncement contrôlé comprennent :
- une semelle avant 51 posée sur le fond de la mer et supportant ladite extrémité avant 31 de la conduite de guidage télescopique rétractée et solidaire de celle-ci,
- au moins une semelle intermédiaire 52, 53 supportant ladite portion intermédiaire courbe 32 et/ou de la portion arrière 33 de ladite conduite de guidage télescopique rétractée et solidaire de celle-ci, dont la surface est plus petite que celle de ladite semelle avant 51, de préférence plusieurs dites semelles intermédiaires 52, 53 réparties le long desdites portion intermédiaire 32 et portion arrière 33 de ladite conduite de guidage télescopique rétractée 3 dont la surface est de plus en plus petite par rapport à ladite semelle avant au fur et à mesure qu'elles sont plus proches de ladite extrémité arrière 33 de la conduite de guidage, et
- une ancre 13 reliée 12 à ladite extrémité arrière 33 et apte à s'enfoncer dans le sol sous l'effet de ladite traction de ladite extrémité avant 31.
- On comprend que dans le premier mode préféré de réalisation décrit ci-dessus, en liaison avec la
figure 6B , lesdites semelles supportent en fait l'élément de conduite télescopique externe de plus grand diamètre 3a. - La
figure 7 illustre cette première version du dispositif de guidage selon l'invention, dans laquelle, le dispositif de guidage est remorqué sur site par l'intermédiaire d'un câble 10 relié à l'avant du dispositif de guidage par l'intermédiaire d'une tête de traction 11, l'arrière dudit dispositif de guidage étant relié par un second câble 12 à une ancre à très hautes performances 13 de type Stevpriss® ou Stevmanta® de la Société VRYHOFF (Hollande). La partie avant 31 du dispositif de guidage est solidaire d'une semelle 51 de surface importante et reposant sur le fond de la mer de manière à limiter la pénétration dans le sol. De la même manière des semelles 52, 53 de dimensions plus faibles sont réparties le long de la conduite de guidage télescopique rétractée, leur surface portante diminuant au fur et à mesure que l'on se rapproche de l'arrière 33 de ladite conduite de guidage. L'avant 31 est de plus stabilisée par une embase comprenant une charge 6 solidaire de la semelle 51 créant ainsi un encastrement du dispositif de guidage dans ladite embase 6, comme illustré dans lafigure 8 . - En exerçant une traction sur le câble de remorquage 10, l'ensemble entraîne l'ancre qui commence alors à s'enfoncer 25, entraînant 24 de ce fait l'extrémité arrière 33 de la conduite de guidage. La forme circulaire de la conduite de guidage ne freine que modérément la pénétration, alors que les semelles 52, 53 réparties sur la longueur s'opposent à la pénétration avec une force proportionnelle à leur surface. La semelle avant 51 étant quant à elle de grandes dimensions, l'avant du dispositif de guidage reste en surface et le corps-mort 6 stabilise l'ensemble de telle manière que l'axe du dispositif de guidage reste sensiblement horizontal, donc parallèle au fond de la mer 4.
- Un procédé de réalisation d'un dispositif de guidage de ce type consiste à réaliser une traction de l'extrémité avant 31 de ladite conduite de guidage télescopique rétractée 3 jusqu'à ce que lesdites semelle intermédiaires 52, 53 se retrouvent enfoncées dans le sol de plus en plus profond au fur et à mesure qu'elles sont plus proches de l'extrémité arrière 33 de conduite de guidage pour obtenir la courbure recherchée R, de préférence un rayon de courbure supérieur à 500 m de préférence encore entre 500 et 1000 m.
- Dans un autre mode de réalisation préféré de l'invention, illustré sur les
figures 11, 12 et 13 , lesdits moyens d'enfoncement contrôlé comprennent au moins un déflecteur 71',72',73 solidaire de l'élément de conduite télescopique externe de ladite conduite de guidage télescopique 3 dans ladite portion intermédiaire 32 ou ladite portion arrière 33 de l'élément de conduite externe télescopique de guidage comprenant des surfaces planes, de préférence symétriques par rapport au plan axial vertical XX', YY' de ladite conduite de guidage dans la direction longitudinale lorsque celle-ci est en position horizontale rectiligne, et lesdites surfaces planes des déflecteurs étant inclinées par rapport à un plan axial horizontale XX', ZZ' de ladite conduite de guidage lorsque celle-ci est en position horizontale sur le fond de la mer, ledit déflecteur 71, 72, 73 étant incliné d'un angle α1, α2, α3 de manière à créer un enfoncement de ladite conduite de guidage lorsque celle-ci est tractée depuis ladite position initiale A1 sensiblement horizontale jusqu'à une dite position enfoncée A2 dans le fond de la mer. - Ces déflecteurs 71, 72, 73 permettent de contrôler la courbure de la conduite de guidage télescopique rétractée enfoncée dans le fond de la mer car, une fois que lesdits déflecteurs sont en position horizontale, comme représenté sur la
figure 12 , ils empêchent l'enfoncement supplémentaire de la conduite et la stabilisent dans la position recherchée A2. On comprend que c'est l'espacement et l'inclinaison des déflecteurs qui déterminent la courbure et plus généralement la forme de la conduite de guidage télescopique rétractée en position enfoncée A2. - De préférence, le dispositif de guidage comprend une pluralité de déflecteurs 71',72',73 répartis le long de l'élément de conduite externe de ladite conduite de guidage télescopique, inclinés selon des angles α1, α2, α3, se réduisant au fur et à mesure que ledit déflecteur 71-73 est plus proche de ladite extrémité avant 31.
- La conduite de guidage est donc équipée de plusieurs déflecteurs 71-73 solidaires de la conduite de guidage et orientés α1-α3 par rapport à l'axe XX' de cette dernière. Le déflecteur 71-73 est par exemple une simple tôle plane, de préférence renforcée, de préférence symétrique selon les plans axiaux verticaux XX', YY' et horizontaux XX', ZZ' de la conduite de guidage, soudée sur la conduite de guidage dispositif de guidage comme illustré sur la
figure 12 . Cet angle est ajusté préalablement lors de la fabrication du dispositif de guidage, de manière à agir comme l'ancre 13 décrite dans lesfigures 7, 8 c'est à dire à créer un enfoncement de la conduite de guidage télescopique rétractée, cet enfoncement étant limité du fait de l'angle α. En effet, lors de la traction T exercée sur le câble 10 de remorquage, les déflecteurs 71-73 s'enfoncent, entraînant 24 localement la conduite de guidage, jusqu'à ce que le déflecteur soit sensiblement parallèle à l'effort de traction sur le câble 10, c'est à dire sensiblement parallèle au fond de la mer 4, ou encore sensiblement horizontal, position dans laquelle il n'exercera alors plus d'effort vertical vers le bas, tendant à faire descendre l'ensemble. - On disposera avantageusement le long du dispositif de guidage une multitude de déflecteurs 71-73, identiques ou non, chacun d'entre eux présentant un angle α1 - α3 se réduisant au fur et à mesure que l'on se rapproche de l'extrémité avant 31, comme illustré sur la
figure 11 . Lors de la pénétration 24 dans le sol, on obtient alors, dès que l'ensemble des déflecteurs 71-73 ont atteint une position sensiblement horizontale, la courbure recherchée, comme illustré sur lafigure 12 . - Un procédé de réalisation d'un dispositif de guidage selon ce deuxième mode de réalisation consiste à réaliser une traction T de l'extrémité avant 31 de ladite conduite de guidage télescopique rétractée 3 jusqu'à ce que lesdits déflecteurs 71, 72, 73 se retrouvent enfoncés dans le sol dans une position horizontale pour obtenir une dite courbure recherchée de préférence à un rayon de courbure supérieur à 500 m de préférence encore entre 500 et 1000 m.
- Les
figures 14 et 15 illustrent une autre version préférée de l'invention dans laquelle lesdits moyens d'enfoncement contrôlé comprennent : - des conduites secondaires 8 de lançage de fluide 18 solidaires de l'élément de conduite télescopique externe de ladite conduite de guidage 3, s'étendant parallèlement à celle-ci et en sous-face de celle-ci, et
- lesdites conduites secondaires 8 présentant un diamètre réduit par rapport à celui desdits éléments de ladite conduite de guidage télescopique 3 et comprenant des perforations 9 en sous-face permettant d'expulser un fluide 18 en direction du fond de la mer lorsque lesdites conduites secondaires 8 sont alimentées par un dit fluide 18 sous pression.
- De préférence, lesdites conduites secondaires 8 sont reliées par leurs extrémités 81, 82 aux extrémités avant et arrière 31, 33 dudit élément de conduite externe de ladite conduite de guidage télescopique et communiquent avec lesdites extrémités avant 31 et arrière 33 de sorte qu' il est possible de les alimenter par une même conduite d'alimentation 19 depuis ladite extrémité avant 31 de ladite conduite de guidage télescopique 3.
- Sur la
figure 15 , on a représenté deux conduites secondaires 8 disposées symétriquement par rapport à la conduite de guidage 3. - Sur la
figure 14 , la conduite secondaire 8 est reliée à leurs deux extrémités, à la conduite de guidage 3 par des clapets anti-retour 81,82. Ladite conduite de guidage 3 est elle-même hermétiquement fermée à ses deux extrémités, d'une part par la tête de traction 11 et d'autre part par un bouchon 14. Un orifice est relié par une conduite d'alimentation en eau 19, au navire de surface 1 disposant des moyens de pompage nécessaires. Ainsi, lors du remorquage, la conduite de guidage peut être allégée par remplissage de gaz sous pression à travers la conduite, l'excédent de pression s'échappant par les clapets anti-retour 81, 82, puis par les orifices 9 des conduites secondaires 8. Dès que l'ensemble est déposé sur le fond 4, on injecte, par les mêmes conduites 8, avantageusement de l'eau sous forte pression, ce qui aura pour effet d'alourdir l'ensemble par remplissage de la conduite de guidage 3, puis d'effectuer une dé-cohésion du sol en sous face, ce qui facilite l'enfoncement de la conduite de guidage. - Un procédé de réalisation d'un dispositif de guidage de ce type comprend des étapes dans lesquelles :
- on injecte un gaz sous pression dans lesdites conduites secondaires 8 lorsque l'on veut remorquer la conduite de guidage télescopique rétractée 3 sur le fond de la mer et
- on injecte un liquide sous pression de préférence de l'eau dans lesdites conduites secondaires 8 et de préférence dans ladite conduite de guidage télescopique 3 obturée à ces extrémités 31, 32 et communicant avec lesdites extrémités 81, 82 desdites conduites secondaires 8 lorsqu'on veut enfoncer ladite conduite de guidage télescopique rétractée 3.
- Dans une autre version préférée de l'invention illustrée sur les
figures 16 à 19 , on adjoint avantageusement à l'un quelconque des dispositifs selon lesfigures 7 à 15 , une structure supérieure externe rigide 20, encastrée sur l'avant 31 de l'élément de conduite externe télescopique de la conduite de guidage 3, l'ensemble reposant sur le sol par l'intermédiaire de semelles latérales 21, comme illustré sur lafigure 19 , détaillant la section selon le plan DD. - Plus précisément, le dispositif de guidage comprend :
- une structure supérieure externe rigide 20 recouvrant et maintenant rectiligne ladite conduite de guidage télescopique rétractée 3 lorsque celle-ci est sensiblement horizontale et repose sur le fond de la mer,
- ladite structure externe 20 présentant une ouverture centrale longitudinale en sous-face permettant à ladite conduite de guidage télescopique rétractée 3 de s'enfoncer dans le sol lorsque celle-ci est tractée T, et
- au moins un lien 171, 172, 173 reliant au moins la partie arrière 33 de l'élément de conduite télescopique externe de ladite conduite de guidage télescopique rétractée à ladite structure externe 20 de manière à empêcher un enfoncement de celle-ci au delà d'une profondeur donnée de manière à limiter la courbure R de ladite portion courbe, et
- ladite structure supérieure externe 20 reposant sur le sol au fond de la mer 4 de préférence par l'intermédiaire de semelles latérales 21 situées de part et d'autre de ladite ouverture centrale longitudinale 22, lesdites semelles latérales 21 empêchant l'enfoncement de ladite structure externe rigide 20, et
- ladite structure externe 20 étant solidaire de ladite embase 6 dans laquelle ladite portion avant 31 de l'élément de conduite télescopique externe de ladite conduite de guidage télescopique rétractée 3 est encastrée.
- La portion courante de la conduite de guidage est libre de se déplacer verticalement à travers l'ouverture centrale 22 de la structure 20, comme illustré sur la
figure 18 détaillant la section selon le plan CC, des éléments de structure 23 limitant les déplacements latéraux. - De préférence, le dispositif de guidage comprend :
- une pluralité de liens souples 171, 172, 173 répartis le long de l'élément de conduite télescopique externe de la conduite de guidage télescopique 3 et présentant une longueur croissante au fur et à mesure qu'ils sont plus proches de l'extrémité arrière 33 de la conduite de guidage 3 et dont la longueur est telle que ladite conduite de guidage présente une dite portion courbe à la courbure R voulue et une dite portion arrière 33 linéaire.
- Ces liens souples 171, 172, 173 sont par exemple des câbles ou des chaînes reliés d'une part sur la structure externe 20 en 26 et sur la conduite de guidage en 27. Lesdits points d'accrochage 26-27 sont représentés sur la
figure 17 . Ces liaisons souples 171-173 sont réparties le long de la conduite de guidage, de manière uniforme ou non, et présentent une longueur variable, décroissante lorsque l'on se rapproche de l'avant 31 de l'élément de conduite télescopique externe de la conduite de guidage. Leur position et leur longueur sont déterminées, de telle manière qu'en fin de pénétration dans le sol, lorsqu'elles sont toutes en tension, la courbe recherchée est obtenue comme illustré sur lafigure 17 . Pour éviter l'enfoncement dans le sol de la structure 20, une multitude de semelles latérales 21 est installée en sous-face, de manière à créer une assise suffisante. - Un procédé de réalisation d'un dispositif de guidage de ce type consiste essentiellement à réaliser une traction T de l'extrémité avant 31 de l'élément de conduite externe de ladite conduite de guidage télescopique 3 de ladite structure externe rigide 20 solidaire de ladite conduite de guidage jusqu'à ce que le ou lesdits liens 171-173 empêchent un enfoncement supplémentaire d'au moins ladite partie arrière 33 de ladite conduite de guidage télescopique rétractée pour obtenir la courbure recherchée R de préférence un rayon de courbure supérieur à 500 m, de préférence encore entre 500 et 1000 m.
- Tous ces moyens d'enfoncement contrôlé 51-53, 71-73, 13, 20, 171-173 selon l'invention décrits dans les différents modes de réalisation ci-dessus peuvent être mis en oeuvre, soit individuellement, soit en combinaison, la nature du sol nécessitant dans le cas de fortes cohésion des moyens extrêmement puissants.
- La structure externe 20 est de préférence continue le long de la conduite de guidage et représente une masse supplémentaire de 25 à 75 tonnes. Le lançage est effectué avec de l'eau pressurisé depuis la surface à des pressions de 20 à 100 bars dans des conduites secondaires 8.
- Dans le cas du dispositif de guidage télescopique, à titre d'illustration, les portions 3a-3b-3c ont un diamètre respectif de 0,55 m (21"), 0,45 m (18") et 0,40 m (16") et une longueur de 100 à 150m chacune.
- A titre d'exemple, dans le cas du dispositif de guidage pour forage à la verticale tel qu'explicité sur la
figure 20 , les éléments de conduite télescopique sont au nombre de cinq, de diamètre respectif 30", 24", 21"1/2, 18"3/4 et 16", chacun des éléments de conduite télescopique mesurant environ 200m, ce qui représente une longueur totale déployée de 1000m environ. Un ensemble de casings selon l'art antérieur présenterait un même diamètre interne de 16" et les diamètres respectif décroissants seraient alors 36", 30", 24", 20" et 16". L'ensemble mesurerait aussi 1000m environ, mais du fait que chaque élément de casing s'étend vers le bas depuis le niveau du fond de la mer, l'ensemble représente une longueur cumulée d'environ 3000m de conduite, ce qui représente alors un poids d'acier approximativement 2 à 2.5 fois supérieur au poids d'acier requis pour réaliser le casing télescopique selon l'invention.
Claims (24)
- Dispositif de guidage (3) d'une installation de forage en mer comprenant au moins un riser de forage (2) s'étendant depuis un support flottant (1) jusqu'au dit dispositif de guidage (3) au fond de la mer (4), ledit forage pouvant être réalisé depuis ledit support flottant, à l'aide d'un train de tige de forage (38) équipé à son extrémité d'outils de forage (36) passant à travers ledit riser de forage (2) et ledit dispositif de guidage (3), ledit dispositif de guidage (3) étant caractérisé en ce qu'il comprend une conduite de guidage télescopique (3) comprenant des éléments de conduite télescopiques (3a, 3b, 3c) coaxiaux (XX') et de diamètres décroissants, préassemblés les uns aux autres de manière à ce que lesdits éléments de conduite télescopiques soient aptes à coulisser dans la direction axiale (XX') les uns dans les autres, l'élément de conduite télescopique interne (3c) de plus petit diamètre étant équipé à son extrémité d'un moyen de décohésion (35) du sol apte à créer un enfoncement progressif dans le sol de ladite conduite de guidage télescopique (3) par coulissement vers l'extérieur desdits éléments de conduite télescopiques (3a, 3b, 3c) pour permettre ainsi de guider plus profondément dans le sol un outil de forage (36) à l'extrémité dudit train de tige (38).
- Dispositif de guidage selon la revendication 1 caractérisé en ce que ledit élément de conduite interne (3c) de plus petit diamètre présente un diamètre sensiblement identique à celui dudit riser de forage (2).
- Dispositif de guidage selon la revendication 1 ou 2 caractérisé en ce que lesdits moyens de décohésion du sol (35) sont constitués par un opercule multi-perforé permettant de le lançage d'eau ou de boue par injection sous très forte pression.
- Dispositif de guidage selon l'une des revendications 1 à 3 caractérisé en ce qu'il comprend au moins 3 éléments de conduite télescopique coaxiaux (3a, 3b, 3c).
- Dispositif selon l'un des revendication 1 à 4 caractérisé en ce que chacun desdits éléments de conduite coaxiaux-télescopiques (3a, 3b, 3c) présentent une longueur de 50 à 300 mètres, de préférence 100 à 200 mètres et ladite conduite de guidage déployée présente une longueur de 150 à 600 mètres de préférence 200 à 300 mètres.
- Dispositif de guidage (3) selon l'une des revendications 1 à 5 caractérisé en ce qu'il comprend une dite conduite de guidage télescopique (3) utile dans une installation de forage en mer dans laquelle au moins un riser de forage (2) s'étend depuis un support flottant (1) jusqu'audit dispositif de guidage (3) au fond de la mer (4), ledit riser de forage (2) déviant progressivement depuis une position sensiblement verticale (2a) au niveau dudit support flottant (1) jusqu'à une position sensiblement horizontale ou tangentielle à l'horizontale (2b) au fond de la mer (4), ledit forage pouvant être réalisé depuis ledit support flottant à travers ledit riser de forage (2) et ledit dispositif de guidage (3) de manière à ce que le puit de forage dans le fond de la mer soit amorcé selon une inclinaison donnée (α) par rapport à l'horizontale de préférence de 5 à 60°, de préférence encore de 25 à 45°, ledit dispositif de guidage (3) étant caractérisé en ce qu'il comprend une dite conduite de guidage télescopique (3) dans une position enfoncée (A2) dans laquelle ladite conduite de guidage télescopique en position rétractée (3) ou l'élément de conduite télescopique externe (3a) lorsque ladite conduite télescopique (3) est déployée, comprennent successivement :. une extrémité avant (31) reposant sensiblement horizontalement sur le fond de la mer,. une portion intermédiaire courbe (32) enfoncée dans le sous-sol du fond de la mer selon un grand rayon de courbure (R), de préférence un rayon de courbure supérieur à 500 m et,. une portion arrière (33), sensiblement linéaire, enfoncée dans le sous-sol du fond de la mer selon une dite inclinaison donnée (α),ladite conduite de guidage (3) télescopique ou ledit élément télescopique externe (3a) coopérant avec des moyens d'enfoncement contrôlé (34, 51-53, 71-73, 8-9, 13) permettant l'enfoncement de ladite conduite de guidage télescopique rétractée (3) dans le fond de la mer lorsque ladite conduite de guidage télescopique rétractée (3) est tractée (T) au fond de la mer à son extrémité avant (31), depuis une position initiale (A1) où ladite conduite de guidage télescopique rétractée (3) repose entièrement par-dessus le fond de la mer dans une position sensiblement horizontale, jusqu'à une dite position enfoncée (A2) dans le sous-sol du fond de la mer.
- Dispositif de guidage selon la revendication 6, caractérisé en ce que ladite conduite de guidage télescopique rétractée (3) présente une longueur de 100 à 600 m, de préférence 250 à 450 m avec dite inclinaison donnée (α) de la conduite de guidage d'environ 10 à 60°, de préférence 25 à 45°.
- Dispositif de guidage selon la revendication 6 ou 7, caractérisé en ce que ladite extrémité avant (31) est encastrée dans une embase (6) comprenant une charge reposant sur une semelle avant (51) de sorte que ladite embase (6) maintient ladite extrémité avant (31) sensiblement horizontalement sur le fond de la mer lorsque celle-ci est tractée (T).
- Dispositif de guidage selon l'une des revendications 6 à 8, caractérisé en ce que lesdits moyens d'enfoncement contrôlé comprennent :- une semelle avant (51) posée sur le fond de la mer et supportant ladite extrémité avant (31) et solidaire de celle-ci,- au moins une semelle intermédiaire (52, 53) supportant ladite portion intermédiaire courbe (32) et/ou de la portion arrière (33) et solidaire de celle-ci, dont la surface est plus petite que celle de ladite semelle avant (51), de préférence plusieurs dites semelles intermédiaires (52, 53) réparties le long desdites portion intermédiaire (32) et portion arrière (33) dont la surface est de plus en plus petite par rapport à ladite semelle avant au fur et à mesure qu'elles sont plus proches de ladite extrémité arrière (33), et- une ancre (13) reliée (12) à ladite portion arrière (33) et apte à s'enfoncer dans le sol sous l'effet de ladite traction de ladite extrémité avant (31).
- Dispositif de guidage suivant l'une des revendications 6 à 9, caractérisé en ce que lesdits moyens d'enfoncement contrôlé comprennent au moins un déflecteur (71',72',73) solidaire dudit élément de conduite télescopique externe (3a) de ladite conduite de guidage télescopique (3) dans ladite portion intermédiaire (32) ou ladite portion arrière (33) de la conduite de guidage télescopique rétractée, comprenant des surfaces planes de préférence symétriques par rapport au plan axial vertical (XX', YY') de ladite conduite de guidage dans la direction longitudinale lorsque celle-ci est en position horizontale rectiligne, et lesdites surfaces planes des déflecteurs étant inclinées par rapport à un plan axial horizontale (XX', ZZ') de ladite conduite de guidage lorsque celle-ci est en position horizontale sur le fond de la mer, ledit déflecteur (71,72,73) étant incliné d'un angle (α1, α2, α3) de manière à créer un enfoncement de ladite conduite de guidage télescopique rétractée (3) lorsque celle-ci est tractée depuis ladite position initiale (A1) sensiblement horizontale jusqu'à une dite position enfoncée (A2) dans le fond de la mer.
- Dispositif de guidage selon la revendication 10, caractérisé en ce qu' il comprend une pluralité de déflecteurs (71',72',73) répartis le long de l'élément de conduite télescopique externe (3a) de ladite conduite de guidage télescopique, lesdits déflecteurs étant inclinés selon des angles (α1, α2, α3) se réduisant au fur et à mesure que ledit déflecteur (71',72',73) est plus proche de ladite extrémité avant (31).
- Dispositif de guidage selon l'une des revendications 1 à 11, caractérisé en ce que lesdits moyens d'enfoncement contrôlé comprennent :- des conduites secondaires (8) de lançage de fluide (18) solidaires de ladite conduite de guidage télescopique (3), s'étendant parallèlement à celle-ci et en sous-face de celle-ci, et- lesdites conduites secondaires (8) présentant un diamètre réduit par rapport à celui de la conduite de guidage télescopique (3) et comprenant des perforations (9) en sous-face permettant d'expulser un fluide (18) en direction du fond de la mer lorsque lesdites conduites secondaires (8) sont alimentées par un dit fluide (18) sous pression.
- Dispositif de guidage selon la revendication 12, caractérisé en ce que lesdites conduites secondaires (8) sont reliées par leurs extrémités (81, 82) aux extrémités avant et arrière (31, 33) de ladite conduite de guidage télescopique rétractée (3) et communiquent avec lesdites extrémités avant (31) et arrière (33) de sorte qu' il est possible de les alimenter par une même conduite d'alimentation (19) depuis ladite extrémité avant (31) de ladite conduite de guidage (3).
- Dispositif selon l'une des revendications 1 à 13, caractérisé en ce que le dispositif de guidage comprend :- une structure supérieure externe rigide (20) recouvrant et maintenant rectiligne ladite conduite de guidage télescopique rétractée (3) lorsque celle-ci est sensiblement horizontale et repose sur le fond de la mer,- ladite structure externe (20) présentant une ouverture centrale longitudinale en sous-face permettant à ladite conduite de guidage télescopique rétractée (3) de s'enfoncer dans le sol lorsque celle-ci est tractée (T), et- au moins un lien (171, 172, 173) reliant au moins la partie arrière (33) de l'élément de conduite télescopique externe (3a) de la conduite de guidage télescopique (3) à ladite structure externe (20) de manière à empêcher un enfoncement de celle-ci au delà d'une profondeur donnée de manière à limiter la courbure (R) de ladite portion courbe, et- ladite structure supérieure externe (20) reposant sur le sol au fond de la mer (4) de préférence par l'intermédiaire de semelles latérales (21) situées de part et d'autre de ladite ouverture centrale longitudinale (22), lesdites semelles latérales (21) empêchant l'enfoncement de ladite structure externe rigide (20), et- ladite structure externe (20) étant solidaire de ladite embase (6) dans laquelle ladite portion avant (31) de la conduite de guidage (3) est encastrée.
- Dispositif de guidage selon la revendication 14, caractérisé en ce qu'il comprend une pluralité de liens souples (171, 172, 173) répartis le long de l'élément de conduite télescopique externe (3a) de ladite conduite de guidage télescopique (3) et présentant une longueur croissante au fur et à mesure qu'ils sont plus proches de l'extrémité arrière (33) de la conduite de guidage (3) et dont la longueur est telle que ladite conduite de guidage présente une dite portion courbe à la courbure (R) voulue et une dite portion arrière (33) linéaire.
- Procédé de réalisation d'un dispositif de guidage selon les revendication 6 à 15, caractérisé en ce qu'on réalise des étapes dans lesquelles :- on met en place une dite conduite de guidage télescopique en position rétractée (3) dans une dite position initiale (A1) reposant sensiblement horizontalement et de façon rectiligne sur le fond de la mer, ladite conduite de guidage télescopique (3) coopérant avec desdits moyens d'enfoncement contrôlé (34, 51-53, 71-73, 8-9, 13), et- on réalise une traction (T) au fond de la mer de ladite extrémité avant (31) de ladite conduite de guidage télescopique en position rétractée (3), de préférence dans la direction longitudinale axiale XX' de ladite conduite de guidage, depuis ladite position initiale (A1) jusqu'à une dite position enfoncée (A2).
- Procédé de réalisation d'un dispositif de guidage selon la revendication 16, caractérisé en ce qu'on utilise des dispositifs de guidage selon la revendication 8 ou 9 et on réalise une traction (T) de l'extrémité avant (31) de ladite conduite de guidage télescopique rétractée (3) jusqu'à ce que lesdites semelles intermédiaires (52, 53) se retrouvent enfoncées dans le sol de plus en plus profond au fur et à mesure qu'elles sont plus proches de l'extrémité arrière (33) de conduite de guidage pour obtenir la courbure recherchée (R), de préférence un rayon de courbure supérieur à 500 m de préférence encore entre 500 et 1000 m.
- Procédé de réalisation d'un dispositif de guidage selon la revendication 16 ou 17, caractérisé en ce qu'on utilise un dispositif de guidage selon la revendication 10 ou 11 et on réalise une traction (T) de l'extrémité avant (31) de ladite conduite de guidage télescopique rétractée (3) jusqu'à ce que lesdits déflecteurs (71',72',73) se retrouvent enfoncés dans le sol dans une position horizontale pour obtenir une dite courbure recherchée de préférence à un rayon de courbure supérieur à 500 m de préférence encore entre 500 et 1000 m.
- Procédé de réalisation d'un dispositif de guidage selon l'une des revendications 16 à 18, caractérisé en ce qu'on utilise un dispositif de guidage selon l'une des revendications 12 ou 13 et- on injecte un gaz sous pression dans lesdites conduites secondaires (8) lorsque l'on veut remorquer la conduite de guidage (3) sur le fond de la mer et- on injecte un liquide sous pression de préférence de l'eau dans lesdites conduites secondaires (8) et de préférence dans ladite conduite de guidage télescopique (3) obturée à ces extrémités (31, 32) et communicant avec lesdites extrémités (81, 82) desdites conduites secondaires (8) lorsqu'on veut enfoncer ladite conduite de guidage (3).
- Procédé de réalisation d'un dispositif de guidage selon l'une des revendications 16 à 19, caractérisé en ce qu'on utilise un dispositif de guidage selon l'une des revendications 14 ou 15 et on réalise une traction (T) de l'extrémité avant (31) de ladite conduite de guidage télescopique rétractée (3) de ladite structure externe rigide (20) solidaire de ladite conduite de guidage jusqu'à ce que le ou lesdits liens (171-173) empêchent un enfoncement supplémentaire d'au moins ladite partie arrière (33) de ladite conduite de guidage télescopique rétractée (3) pour obtenir la courbure recherchée (R) de préférence un rayon de courbure supérieur à 500 m, de préférence encore entre 500 et 1000 m.
- Installation de forage en mer comprenant un riser de forage (2) s'étendant depuis un support flottant jusqu'à un dit dispositif de guidage (3) selon l'une des revendications 1 à 15 auquel ledit riser de forage (2) est connecté.
- Installation de forage en mer selon la revendication 21, comprenant un riser de forage (2) s'étendant depuis un support flottant (1) jusqu'à un dispositif de guidage (3) selon l'une des revendications 6 à 15, auquel ledit riser de forage est connecté, ledit riser de forage (2) déviant progressivement depuis une position sensiblement verticale (2a) au niveau dudit support flottant (1) jusqu'à une position sensiblement horizontale ou tangentielle à l'horizontale (2b) au fond de la mer, le forage pouvant être réalisé depuis ledit support flottant (1) à travers ledit riser de forage (2) et ledit dispositif de guidage (3) de manière à ce que le puit de forage s'amorce dans le fond de la mer selon une inclinaison donnée (α) par rapport à l'horizontale, de préférence de 10 à 80°.
- Procédé de réalisation d'une installation de forage selon la revendication 21 ou 22 caractérisé en ce que on réalise des étapes dans lesquelles:- on réalise un dispositif de guidage selon un procédé selon l'une des revendications 16 à 20, et- on réalise la connexion d'au moins dudit riser de forage (2) à ladite extrémité avant (31) de la conduite de guidage reposant sur le fond de la mer (4).
- Procédé de forage à l'aide d'une installation de forage selon la revendication 21 ou 22, caractérisé en ce qu'on réalise des opérations de forage et on construit un puits de forage en déployant des trains de tiges coopérant avec des outils de forage et des colonnes de tubes ou de cuvelages, à travers un dit riser de forage (2) et un dit dispositif de guidage (3) enfoncé dans le fond de la mer (4).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0207537 | 2002-06-19 | ||
FR0207537A FR2841293B1 (fr) | 2002-06-19 | 2002-06-19 | Conduite de guidage telescopique de forage en mer |
PCT/FR2003/001867 WO2004001180A1 (fr) | 2002-06-19 | 2003-06-18 | Conduite de guidage telescopique de forage en mer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1525371A1 EP1525371A1 (fr) | 2005-04-27 |
EP1525371B1 true EP1525371B1 (fr) | 2008-03-19 |
Family
ID=29719854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03760741A Expired - Lifetime EP1525371B1 (fr) | 2002-06-19 | 2003-06-18 | Conduite de guidage telescopique de forage en mer |
Country Status (9)
Country | Link |
---|---|
US (1) | US20050152749A1 (fr) |
EP (1) | EP1525371B1 (fr) |
AT (1) | ATE389777T1 (fr) |
AU (1) | AU2003260605A1 (fr) |
BR (1) | BR0311923A (fr) |
DE (1) | DE60319833D1 (fr) |
FR (1) | FR2841293B1 (fr) |
NO (1) | NO20045161L (fr) |
WO (1) | WO2004001180A1 (fr) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7013997B2 (en) | 1994-10-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7040420B2 (en) | 1994-10-14 | 2006-05-09 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7147068B2 (en) | 1994-10-14 | 2006-12-12 | Weatherford / Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7036610B1 (en) | 1994-10-14 | 2006-05-02 | Weatherford / Lamb, Inc. | Apparatus and method for completing oil and gas wells |
US7108084B2 (en) | 1994-10-14 | 2006-09-19 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7228901B2 (en) | 1994-10-14 | 2007-06-12 | Weatherford/Lamb, Inc. | Method and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US7100710B2 (en) | 1994-10-14 | 2006-09-05 | Weatherford/Lamb, Inc. | Methods and apparatus for cementing drill strings in place for one pass drilling and completion of oil and gas wells |
US6868906B1 (en) | 1994-10-14 | 2005-03-22 | Weatherford/Lamb, Inc. | Closed-loop conveyance systems for well servicing |
US7509722B2 (en) | 1997-09-02 | 2009-03-31 | Weatherford/Lamb, Inc. | Positioning and spinning device |
US6742596B2 (en) | 2001-05-17 | 2004-06-01 | Weatherford/Lamb, Inc. | Apparatus and methods for tubular makeup interlock |
US7140445B2 (en) | 1997-09-02 | 2006-11-28 | Weatherford/Lamb, Inc. | Method and apparatus for drilling with casing |
US6536520B1 (en) | 2000-04-17 | 2003-03-25 | Weatherford/Lamb, Inc. | Top drive casing system |
GB9815809D0 (en) | 1998-07-22 | 1998-09-16 | Appleton Robert P | Casing running tool |
GB2340859A (en) | 1998-08-24 | 2000-03-01 | Weatherford Lamb | Method and apparatus for facilitating the connection of tubulars using a top drive |
GB2340857A (en) | 1998-08-24 | 2000-03-01 | Weatherford Lamb | An apparatus for facilitating the connection of tubulars and alignment with a top drive |
GB2340858A (en) | 1998-08-24 | 2000-03-01 | Weatherford Lamb | Methods and apparatus for facilitating the connection of tubulars using a top drive |
EP1582274A3 (fr) | 1998-12-22 | 2006-02-08 | Weatherford/Lamb, Inc. | Procédés et appareil de profilage et assemblage de tuyaux |
US7188687B2 (en) | 1998-12-22 | 2007-03-13 | Weatherford/Lamb, Inc. | Downhole filter |
GB2345074A (en) | 1998-12-24 | 2000-06-28 | Weatherford Lamb | Floating joint to facilitate the connection of tubulars using a top drive |
GB2347441B (en) | 1998-12-24 | 2003-03-05 | Weatherford Lamb | Apparatus and method for facilitating the connection of tubulars using a top drive |
US6896075B2 (en) | 2002-10-11 | 2005-05-24 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling with casing |
US6857487B2 (en) | 2002-12-30 | 2005-02-22 | Weatherford/Lamb, Inc. | Drilling with concentric strings of casing |
US7311148B2 (en) | 1999-02-25 | 2007-12-25 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
DE60030159D1 (de) | 1999-12-22 | 2006-09-28 | Weatherford Lamb | Bohrmeissel zum gleichzeitigen bohren und verrohren |
GB0008988D0 (en) | 2000-04-13 | 2000-05-31 | Bbl Downhole Tools Ltd | Drill bit nozzle |
US7334650B2 (en) | 2000-04-13 | 2008-02-26 | Weatherford/Lamb, Inc. | Apparatus and methods for drilling a wellbore using casing |
US7325610B2 (en) | 2000-04-17 | 2008-02-05 | Weatherford/Lamb, Inc. | Methods and apparatus for handling and drilling with tubulars or casing |
GB0010378D0 (en) | 2000-04-28 | 2000-06-14 | Bbl Downhole Tools Ltd | Expandable apparatus for drift and reaming a borehole |
GB2365463B (en) | 2000-08-01 | 2005-02-16 | Renovus Ltd | Drilling method |
GB0206227D0 (en) | 2002-03-16 | 2002-05-01 | Weatherford Lamb | Bore-lining and drilling |
US6994176B2 (en) | 2002-07-29 | 2006-02-07 | Weatherford/Lamb, Inc. | Adjustable rotating guides for spider or elevator |
WO2004018832A1 (fr) * | 2002-08-21 | 2004-03-04 | Hoeiland Oddgeir | Procede et dispositif pour outil de deplacement |
US7730965B2 (en) | 2002-12-13 | 2010-06-08 | Weatherford/Lamb, Inc. | Retractable joint and cementing shoe for use in completing a wellbore |
US6899186B2 (en) | 2002-12-13 | 2005-05-31 | Weatherford/Lamb, Inc. | Apparatus and method of drilling with casing |
US7303022B2 (en) | 2002-10-11 | 2007-12-04 | Weatherford/Lamb, Inc. | Wired casing |
US7128154B2 (en) | 2003-01-30 | 2006-10-31 | Weatherford/Lamb, Inc. | Single-direction cementing plug |
WO2004070159A2 (fr) * | 2003-01-31 | 2004-08-19 | Weatherford/Lamb Inc. | Appareil et procedes permettant de forer un puits utilisant un cuvelage |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
GB2414502B (en) | 2003-02-27 | 2007-10-17 | Weatherford Lamb | Drill shoe |
GB2416360B (en) | 2003-03-05 | 2007-08-22 | Weatherford Lamb | Drilling with casing latch |
US7503397B2 (en) | 2004-07-30 | 2009-03-17 | Weatherford/Lamb, Inc. | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
CA2677247C (fr) | 2003-03-05 | 2012-09-25 | Weatherford/Lamb, Inc. | Systeme d'exploitation et de forage avec cuvelage |
GB2433276B (en) | 2003-03-05 | 2007-10-17 | Weatherford Lamb | Full bore lined wellbores |
CA2520072C (fr) | 2003-04-04 | 2010-02-16 | Weatherford/Lamb, Inc. | Procede et appareil de manipulation de materiel tubulaire pour puits de forage |
US7650944B1 (en) | 2003-07-11 | 2010-01-26 | Weatherford/Lamb, Inc. | Vessel for well intervention |
US7264067B2 (en) | 2003-10-03 | 2007-09-04 | Weatherford/Lamb, Inc. | Method of drilling and completing multiple wellbores inside a single caisson |
US7757784B2 (en) | 2003-11-17 | 2010-07-20 | Baker Hughes Incorporated | Drilling methods utilizing independently deployable multiple tubular strings |
US7395882B2 (en) | 2004-02-19 | 2008-07-08 | Baker Hughes Incorporated | Casing and liner drilling bits |
US7624818B2 (en) | 2004-02-19 | 2009-12-01 | Baker Hughes Incorporated | Earth boring drill bits with casing component drill out capability and methods of use |
US7954570B2 (en) | 2004-02-19 | 2011-06-07 | Baker Hughes Incorporated | Cutting elements configured for casing component drillout and earth boring drill bits including same |
US7284617B2 (en) | 2004-05-20 | 2007-10-23 | Weatherford/Lamb, Inc. | Casing running head |
US7478686B2 (en) * | 2004-06-17 | 2009-01-20 | Baker Hughes Incorporated | One trip well drilling to total depth |
BRPI0512626B1 (pt) * | 2004-06-24 | 2015-12-08 | Baker Hughes Inc | sistemas de perfuração e métodos utilizando múltiplas colunas tubulares empregáveis independentemente |
CA2538196C (fr) | 2005-02-28 | 2011-10-11 | Weatherford/Lamb, Inc. | Forage en eau profonde avec tubage |
GB0510670D0 (en) * | 2005-05-25 | 2005-06-29 | Bp Exploration Operating | Apparatus and method for driving casing or conductor pipe |
GB2451784B (en) | 2006-05-12 | 2011-06-01 | Weatherford Lamb | Stage cementing methods used in casing while drilling |
US7621351B2 (en) | 2006-05-15 | 2009-11-24 | Baker Hughes Incorporated | Reaming tool suitable for running on casing or liner |
US8276689B2 (en) | 2006-05-22 | 2012-10-02 | Weatherford/Lamb, Inc. | Methods and apparatus for drilling with casing |
US7954571B2 (en) | 2007-10-02 | 2011-06-07 | Baker Hughes Incorporated | Cutting structures for casing component drillout and earth-boring drill bits including same |
US8245797B2 (en) | 2007-10-02 | 2012-08-21 | Baker Hughes Incorporated | Cutting structures for casing component drillout and earth-boring drill bits including same |
GB0814341D0 (en) * | 2008-08-06 | 2008-09-10 | Aws Ocean Energy Ltd | Pile system |
NO2366055T3 (fr) * | 2008-11-17 | 2018-01-20 | ||
CN102762796A (zh) * | 2009-09-14 | 2012-10-31 | 叶片离岸服务有限公司 | 用于连接锚构件至水体底面的方法、设备和系统 |
CA2798391C (fr) * | 2010-05-11 | 2017-07-18 | John Michael Ward | Systemes et procedes d'attenuation de bruit sous-marin |
FR2962715B1 (fr) * | 2010-07-13 | 2013-06-14 | Airbus Operations Sas | Systeme d'aeration pour aeronef. |
SG11201401714UA (en) * | 2011-10-05 | 2014-09-26 | Seahorse Equip Corp | Method and apparatus for drilling multiple subsea wells from an offshore platform at a single site |
NO20111534A1 (no) * | 2011-11-08 | 2012-09-24 | Agr Subsea As | Fremgangsmåte og anordning for stigerørløs borevæskegjenvinning |
CA2864149A1 (fr) | 2012-02-22 | 2013-08-29 | Weatherford/Lamb, Inc. | Systeme de forage a tubage sous-marin |
US9539948B1 (en) | 2016-03-22 | 2017-01-10 | Jac Products, Inc. | Telescoping step assist system and method |
US10723272B2 (en) | 2017-12-04 | 2020-07-28 | Jac Products, Inc. | Step rail system for vehicle |
CN110541418A (zh) * | 2019-10-17 | 2019-12-06 | 中国石油大学(华东) | 一种自锁嵌套式深水钻井表层导管及其安装方法 |
CN112761536B (zh) * | 2021-02-24 | 2024-12-03 | 中国石油大学(北京) | 一种减阻式海洋钻井导管柱 |
CN117569730B (zh) * | 2024-01-16 | 2024-04-02 | 浙江省水电建筑安装有限公司 | 抛石层钻孔灌注桩成孔装置及施工方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3405533A (en) * | 1964-10-26 | 1968-10-15 | Lubbock Mfg Company | Cable layer |
US3333432A (en) * | 1964-12-29 | 1967-08-01 | Bell Telephone Labor Inc | Adjustable depth submarine cable burier |
US3685479A (en) * | 1968-12-24 | 1972-08-22 | Peter Bruce | Anchor-cable systems |
FR2027067B1 (fr) * | 1968-12-24 | 1975-12-12 | Balt Corp | |
FR2122709A5 (fr) * | 1971-01-20 | 1972-09-01 | Minet Albert | |
US3824798A (en) * | 1971-11-15 | 1974-07-23 | Furukawa Co Ltd | Submarine cable-burying devices |
US3916632A (en) * | 1974-05-06 | 1975-11-04 | Interseas Associates | Telescopic caisson with intermediately positioned wellhead |
US4216835A (en) * | 1977-09-07 | 1980-08-12 | Nelson Norman A | System for connecting an underwater platform to an underwater floor |
US4223737A (en) * | 1979-03-26 | 1980-09-23 | Reilly Dale O | Method for well operations |
US4812079A (en) * | 1986-08-29 | 1989-03-14 | Casper Colosimo & Son, Inc. | Embedding cablelike members |
GB9109543D0 (en) * | 1991-05-02 | 1991-06-26 | Bp Exploration Operating | Drilling system |
US5184686A (en) * | 1991-05-03 | 1993-02-09 | Shell Offshore Inc. | Method for offshore drilling utilizing a two-riser system |
DE69834545D1 (de) | 1998-03-27 | 2006-06-22 | Cooper Cameron Corp | Verfahren und Vorrichtung zum Bohren eines Unterwasserbohrlochs |
DE69836261D1 (de) | 1998-03-27 | 2006-12-07 | Cooper Cameron Corp | Verfahren und Vorrichtung zum Bohren von mehreren Unterwasserbohrlöchern |
CA2273568C (fr) * | 1998-06-04 | 2007-08-14 | Philip Head | Methode pour installer un cuvelage dans un puits et appareil connexe |
GB2338009B (en) * | 1998-06-04 | 2000-06-21 | Philip Head | A method of installing the casing in a well and apparatus therefor |
-
2002
- 2002-06-19 FR FR0207537A patent/FR2841293B1/fr not_active Expired - Fee Related
-
2003
- 2003-06-18 AT AT03760741T patent/ATE389777T1/de not_active IP Right Cessation
- 2003-06-18 WO PCT/FR2003/001867 patent/WO2004001180A1/fr active IP Right Grant
- 2003-06-18 BR BR0311923-8A patent/BR0311923A/pt not_active IP Right Cessation
- 2003-06-18 AU AU2003260605A patent/AU2003260605A1/en not_active Abandoned
- 2003-06-18 EP EP03760741A patent/EP1525371B1/fr not_active Expired - Lifetime
- 2003-06-18 US US10/517,081 patent/US20050152749A1/en not_active Abandoned
- 2003-06-18 DE DE60319833T patent/DE60319833D1/de not_active Expired - Lifetime
-
2004
- 2004-11-25 NO NO20045161A patent/NO20045161L/no not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
EP1525371A1 (fr) | 2005-04-27 |
DE60319833D1 (de) | 2008-04-30 |
FR2841293B1 (fr) | 2006-03-03 |
ATE389777T1 (de) | 2008-04-15 |
AU2003260605A1 (en) | 2004-01-06 |
WO2004001180A1 (fr) | 2003-12-31 |
BR0311923A (pt) | 2005-03-29 |
US20050152749A1 (en) | 2005-07-14 |
FR2841293A1 (fr) | 2003-12-26 |
NO20045161L (no) | 2005-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1525371B1 (fr) | Conduite de guidage telescopique de forage en mer | |
EP0265344B1 (fr) | Procédé pour la réalisation d'un pieu dans le sol, machine de forage et dispositif pour la mise en oeuvre de ce procédé | |
EP1362161B1 (fr) | Installation de liaison fond-surface d'une conduite sous-marine installee a grande profondeur | |
EP2288789B1 (fr) | Dispositif d'extraction d'un materiau situe au fond d'une etendue d'eau, installation d'extraction, et procede associe | |
FR2782341A1 (fr) | Installation d'exploitation d'un gisement en mer et procede d'implantation d'une colonne montante | |
FR2957649A1 (fr) | Procede de depose d'une ligne sous-marine au fond de la mer | |
EP2156907A1 (fr) | Equipement de traitement de polluants dans le sol | |
EP1259792B1 (fr) | Procede et dispositif pour faire penetrer dans le sous-sol marin, en particulier a des profondeurs importantes, un outil tubulaire de prelevements d'echantillons du sol ou de mesure des caracteristiques de ce sol | |
CA2641395C (fr) | Systeme de forage autonome d'un trou de drainage | |
FR2890098A1 (fr) | Installation comprenant au moins deux liaisons fond-surface d'au moins deux conduites sous-marines reposant au fond de la mer | |
WO2016110617A1 (fr) | Dispositifs de lestage et/ou de protection pour lignes subaquatiques | |
EP0979921B1 (fr) | Procédé d'implantation d'une installation d'exploitation de pétrole | |
FR2831204A1 (fr) | Dispositif de guidage dans une installation de forage en mer et procede de realisation | |
WO1993020288A2 (fr) | Dispositif d'etancheite pour scellement de joints d'expansion coupes dans des barrages en beton et procede d'installation du dispositif | |
EP0165154A1 (fr) | Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales | |
EP0353152A1 (fr) | Dispositif d'évacuation des déblais pour la réalisation de tranchées de grande profondeur | |
WO2017137702A1 (fr) | Procede de fabrication d'un tirant d'ancrage et tirant d'ancrage. | |
WO2021048496A1 (fr) | Procédé et dispositif de forage grand diamètre ou de creusement de puits suivant plusieurs inclinaisons | |
WO2007006905A2 (fr) | Installation et procédé de découpage de structures sous-marines enfoncées dans le fond de la mer | |
FR2788557A1 (fr) | Procede et installation de forage mecanique a tirant precontraint | |
FR2660728A1 (fr) | Procede et dispositif d'elimination d'un tubage dispose dans un puits d'acces a une cavite saline de stockage de gaz. | |
FR3047510A1 (fr) | Dispositif de forage de roche en tranchee "forage revolver" | |
WO2013144529A2 (fr) | Dispositif de colmatage de puits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 60319833 Country of ref document: DE Date of ref document: 20080430 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080826 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080619 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080630 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
BERE | Be: lapsed |
Owner name: SAIPEM S.A. Effective date: 20080630 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080620 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20081222 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080619 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080619 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080618 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080620 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170628 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180630 |