[go: up one dir, main page]

EP1505047A2 - Use of a microjet reactor for manufacturing a primary explosive - Google Patents

Use of a microjet reactor for manufacturing a primary explosive Download PDF

Info

Publication number
EP1505047A2
EP1505047A2 EP04017847A EP04017847A EP1505047A2 EP 1505047 A2 EP1505047 A2 EP 1505047A2 EP 04017847 A EP04017847 A EP 04017847A EP 04017847 A EP04017847 A EP 04017847A EP 1505047 A2 EP1505047 A2 EP 1505047A2
Authority
EP
European Patent Office
Prior art keywords
reactor
use according
explosive
production
microjet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04017847A
Other languages
German (de)
French (fr)
Other versions
EP1505047A3 (en
Inventor
Ulrich Dr. Bley
Uwe Brede
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
DYNAMIT NOBEL AIS GMBHAUTOMOTI
Dynamit Nobel AiIS Automotive Ignition Systems GmbH
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DYNAMIT NOBEL AIS GMBHAUTOMOTI, Dynamit Nobel AiIS Automotive Ignition Systems GmbH, Delphi Technologies Inc filed Critical DYNAMIT NOBEL AIS GMBHAUTOMOTI
Publication of EP1505047A2 publication Critical patent/EP1505047A2/en
Publication of EP1505047A3 publication Critical patent/EP1505047A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0008Compounding the ingredient
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B41/00Compositions containing a nitrated metallo-organic compound

Definitions

  • the invention relates to the use of a microjet reactor for the production of initial explosive.
  • the object of the invention is to overcome the disadvantages of the prior art overcome and create a process for the production of initial explosive in particular very small crystals (for example in the range from 0.5 to 30 ⁇ m, preferably from 1 to 20 .mu.m, particularly preferably from 1 to 10 .mu.m), wherein the crystal size obtained by setting process parameters largely controllable and where in each case a narrow and defined grain spectrum should be adjustable.
  • very small crystals for example in the range from 0.5 to 30 ⁇ m, preferably from 1 to 20 .mu.m, particularly preferably from 1 to 10 .mu.m
  • microjet reactor for the Production of initial explosive, wherein the starting solutions for Explosives production in the microjet reactor through one nozzle at a time from a reactor housing enclosed reactor space on a Common collision point to be injected via an opening in the Reactor space, a gas is introduced and the resulting Initial explosive crystals along with the liquid and excess gas be removed through a further opening from the reactor housing.
  • One Microjet reactor is e.g. described in WO 00/61275, wherein on the entire disclosure content of this document here express reference is taken.
  • the size of the resulting explosive crystals in the precipitation can be through Varying the operating parameters reproducibly control. This can be the Diameter of the reactant supplying nozzles, the pump pressure, the Temperatures and concentrations of the starting solutions and the amount of Auxiliary gases are varied.
  • the nozzle diameter is preferably 10 to 1000 microns, more preferably 50 to 500 microns and most preferably 50 to 100 ⁇ m.
  • the total flow rate is preferably 10 to 1000 ml / minute, more preferably 50 to 500 ml / minute.
  • the use according to the invention makes it possible to prefer the following Make initial explosives: potassium dinitrobenzofuroxanate, lead azide, lead picrate, Leadrinitic resorcinate and cesium dinitrobenzofuroxanate.
  • Another advantage of the use according to the invention is that due to the defined crystal size of the initial explosive one fractionated (and dangerous) screening can be omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

A micro-jet reactor is used for preparing priming explosives (I), where: (a) the starting solutions for the production of (I) are injected into the reactor via individual nozzles into an enclosed reaction space in a reactor housing to a common collision point; (b) gas is introduced via an opening in the reactor space; and (c) the obtained (I) crystals are removed from the reactor, together with liquid and excess gas, via another opening in the reactor housing.

Description

Die Erfindung betrifft die Verwendung eines Mikrojetreaktors für die Herstellung von Initialsprengstoff.The invention relates to the use of a microjet reactor for the production of initial explosive.

Viele Initialsprengstoffe werden hergestellt, indem mindestens zwei Ausgangslösungen gemischt werden und der Sprengstoff aus dieser Mischung in kristalliner Form ausfällt. Dabei wird versucht, durch Wahl der Reaktionsparameter (Temperatur, Bewegung der Mischung) bestimmte, reproduzierbare Kristallgrößen bei der Fällung zu erhalten. Dies gestaltet sich jedoch problematisch, da es schwierig ist, die Temperatur und die Bewegungsführung eines Fällbades im großen Maßstab zu steuern. Innerhalb des Fällbehälters stellen sich Temperaturgradienten ein, und durch Rührbewegungen wird die Kristallisation zusätzlich beeinflusst. Oftmals wird nach einer festgelegten Fälldauer die Flüssigkeit abgelassen und das kristalline Material abgefiltert und fraktioniert gesiebt. Die Möglichkeiten, reproduzierbar eine bestimmte Korngrößenverteilung zu erhalten, sind mit diesem Fällverfahren sehr begrenzt. In der Regel liegen die erhaltenen Korngrößenverteilungen in einem Bereich von bis zu zwei Zehnerpotenzen.Many initial explosives are made by at least two Starting solutions are mixed and the explosives from this mixture in crystalline form fails. An attempt is made by choosing the Reaction parameter (temperature, movement of the mixture) determined to obtain reproducible crystal sizes in the precipitation. This is happening However, it is problematic because it is difficult to control the temperature and the Control the movement of a precipitation bath on a large scale. Within of the precipitation tank, temperature gradients set, and by Stirring movements, the crystallization is additionally influenced. Often it will after Drained the liquid and the crystalline Material filtered off and fractionated sieved. The possibilities, reproducible to obtain a certain particle size distribution, are with this precipitation method very limited. In general, the grain size distributions obtained are in a range of up to two powers of ten.

Für Anzünder im Kraftfahrzeugsicherheitsbereich werden Initialzündstoffe, bzw. Initialsprengstoffe benötigt, die sehr kleine und reproduzierbare Kristallabmessungen (typische Größen von < 30 µm) aufweisen, damit eine gute thermische Kopplung zwischen den elektrischen Heizwiderständen und den Kristallen erfolgen kann. Auch bei anderen Anwendungen von Initialsprengstoffen ist es erwünscht, dass viele kleine Kristalle Kontakt zu dem jeweiligen Zündwiderstand haben.For lighters in the automotive safety area are initial igniters, or Initial explosives needed that are very small and reproducible Crystal dimensions (typical sizes of <30 microns), thus a good thermal coupling between the electrical heating resistors and the Crystals can be made. Also with other applications of Initial explosives, it is desirable that many small crystals make contact with the have respective ignition resistance.

Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zu überwinden und ein Verfahren zur Herstellung von Initialsprengstoff zu schaffen, das insbesondere zu sehr kleinen Kristallen (z.B. im Bereich von 0,5 bis 30 µm, bevorzugt von 1 bis 20 µm, besonders bevorzugt von 1 bis 10 µm) führt, wobei die erhaltene Kristallgröße durch Einstellen von Verfahrensparametern weitgehend steuerbar und wobei jeweils ein enges und definiertes Kornspektrum einstellbar sein soll.The object of the invention is to overcome the disadvantages of the prior art overcome and create a process for the production of initial explosive in particular very small crystals (for example in the range from 0.5 to 30 μm, preferably from 1 to 20 .mu.m, particularly preferably from 1 to 10 .mu.m), wherein the crystal size obtained by setting process parameters largely controllable and where in each case a narrow and defined grain spectrum should be adjustable.

Gelöst wird die Aufgabe durch die Verwendung eines Mikrojetreaktors für die Herstellung von Initialsprengstoff, wobei die Ausgangslösungen zur Sprengstoffherstellung in dem Mikrojetreaktor durch jeweils eine Düse in einen von einem Reaktorgehäuse umschlossenen Reaktorraum auf einen gemeinsamen Kollisionspunkt gespritzt werden, über eine Öffnung in den Reaktorraum ein Gas eingeleitet wird und die entstehenden Initialsprengstoffkristalle zusammen mit der Flüssigkeit und überschüssigem Gas durch eine weitere Öffnung aus dem Reaktorgehäuse entfernt werden. Ein Mikrojetreaktor ist z.B. beschrieben in der WO 00/61275, wobei auf den gesamten Offenbarungsgehalt diese Druckschriftschrift hier ausdrücklich Bezug genommen wird.The problem is solved by the use of a microjet reactor for the Production of initial explosive, wherein the starting solutions for Explosives production in the microjet reactor through one nozzle at a time from a reactor housing enclosed reactor space on a Common collision point to be injected via an opening in the Reactor space, a gas is introduced and the resulting Initial explosive crystals along with the liquid and excess gas be removed through a further opening from the reactor housing. One Microjet reactor is e.g. described in WO 00/61275, wherein on the entire disclosure content of this document here express reference is taken.

Überraschend wurde gefunden, dass bei der Verwendung eines Mikrojetreaktors für die Herstellung von Initialsprengstoff dieser in einem engen, definierten und einstellbaren Kornspektrum gewonnen werden kann. Insbesondere ist es auf diese Weise möglich, einen Initialsprengstoff mit Kristallgrößen zwischen 0,5 bis 30 µm zu erhalten.Surprisingly, it has been found that when using a microjet reactor for the production of initial explosive this in a close, defined and adjustable grain spectrum can be obtained. In particular, it is up this way possible, an initial explosive with crystal sizes between 0.5 to To obtain 30 microns.

Die Größe der bei der Fällung entstehenden Sprengstoffkristalle lässt sich durch Variieren der Betriebsparameter reproduzierbar steuern. Dazu können der Durchmesser der reaktandenzuführenden Düsen, der Pumpendruck, die Temperaturen und Konzentrationen der Ausgangslösungen und die Menge des Hilfsgases variiert werden. Der Düsendurchmesser beträgt bevorzugt 10 bis 1000 µm, besonders bevorzugt 50 bis 500 µm und ganz besonders bevorzugt 50 bis 100 µm. Der Gesamtdurchfluss beträgt bevorzugt 10 bis 1000 ml/Minute, besonders bevorzugt 50 bis 500 ml/Minute. The size of the resulting explosive crystals in the precipitation can be through Varying the operating parameters reproducibly control. This can be the Diameter of the reactant supplying nozzles, the pump pressure, the Temperatures and concentrations of the starting solutions and the amount of Auxiliary gases are varied. The nozzle diameter is preferably 10 to 1000 microns, more preferably 50 to 500 microns and most preferably 50 to 100 μm. The total flow rate is preferably 10 to 1000 ml / minute, more preferably 50 to 500 ml / minute.

Durch die erfindungsgemäße Verwendung lassen sich bevorzugt folgende Initialsprengstoffe herstellen: Kaliumdinitrobenzofuroxanat, Bleiazid, Bleipikrat, Bleitrinitroresorcinat und Cäsiumdinitrobenzofuroxanat.The use according to the invention makes it possible to prefer the following Make initial explosives: potassium dinitrobenzofuroxanate, lead azide, lead picrate, Leadrinitic resorcinate and cesium dinitrobenzofuroxanate.

Ein weiterer Vorteil der erfindungsgemäßen Verwendung besteht darin, dass bedingt durch die definierte Kristallgröße des Initialsprengstoffes eine fraktionierte (und gefährliche) Siebung unterbleiben kann.Another advantage of the use according to the invention is that due to the defined crystal size of the initial explosive one fractionated (and dangerous) screening can be omitted.

Der Gegenstand der Erfindung wird anhand des folgenden Beispiels näher erläutert:The object of the invention will become more apparent from the following example explains:

Beispiel 1: Herstellung von Kaliumdinitrobenzofuroxanat im MikrojetreaktorExample 1: Preparation of potassium dinitrobenzofuroxanate in the microjet reactor

In einem Mikrojetreaktor mit einem Reaktorraum von 2 mm Durchmesser und 50 mm Länge wurden über 2 Düsen mit einem Düsendurchmesser von 100 µm eine Natriumdibenzofuroxanatlösung mit einer Temperatur von 23 °C und mit einer Konzentration von 20 g/l und eine Kaliumnitratlösung mit einer Temperatur von 23 °C und mit einer Konzentration von 30 g/l bei einem jeweiligen Düsendruck von 100 bar zusammengegeben. Als Transportgas wurde Luft verwendet. Nach 2-minütiger Reaktion wurden ca. 1 l Reaktionsflüssigkeit mit einem Gehalt von ca. 5 g feinverteiltem Kaliumdinitrobenzofuroxanat erhalten.In a microjet reactor with a reactor space of 2 mm diameter and 50 mm length were via 2 nozzles with a nozzle diameter of 100 microns a Natriumdibenzofuroxanatlösung with a temperature of 23 ° C and with a Concentration of 20 g / l and a potassium nitrate solution with a temperature of 23 ° C and with a concentration of 30 g / l at a respective nozzle pressure of 100 bar combined. Air was used as transport gas. To 2 minutes of reaction were about 1 l of reaction liquid containing about 5 g of finely divided potassium dinitrobenzofuroxanate obtained.

Claims (6)

Verwendung eines Mikrojetreaktors für die Herstellung von Initialsprengstoff, wobei die Ausgangslösungen zur Sprengstoffherstellung in dem Mikrojetreaktor durch jeweils eine Düse in einen von einem Reaktorgehäuse umschlossenen Reaktorraum auf einen gemeinsamen Kollisionspunkt gespritzt werden, über eine Öffnung in den Reaktorraum ein Gas eingeleitet wird und die entstehenden Initialsprengstoffkristalle zusammen mit der Flüssigkeit und überschüssigem Gas durch eine weitere Öffnung aus dem Reaktorgehäuse entfernt werden.Use of a microjet reactor for the production of initial explosive, wherein the starting solutions for explosive production in the Microjet reactor through each nozzle into one of a reactor housing enclosed reactor space on a common collision point be injected, introduced via an opening in the reactor chamber, a gas and the resulting initial explosive crystals together with the Liquid and excess gas through another opening from the Reactor housing are removed. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass der Düsendurchmesser 10 bis 1000 µm beträgt.Use according to claim 1, characterized in that the nozzle diameter is 10 to 1000 microns. Verwendung nach Anspruch 2, dadurch gekennzeichnet, dass der Düsendurchmesser 50 bis 100 µm beträgt.Use according to claim 2, characterized in that the nozzle diameter is 50 to 100 microns. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Gesamtdurchfluss 10 bis 1000 ml/Minute beträgt.Use according to one of claims 1 to 3, characterized in that the total flow is 10 to 1000 ml / minute. Verwendung nach Anspruch 4, dadurch gekennzeichnet, dass der Gesamtdurchfluss 50 bis 500 ml/Minute beträgt.Use according to claim 4, characterized in that the total flow is 50 to 500 ml / minute. Verwendung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erhaltene Initialsprengstoff Kaliumdinitrobenzofuroxanat, Bleiazid, Bleipikrat, Bleitrinitroresorcinat oder Cäsiumdinitrobenzofuroxanat ist.Use according to any one of Claims 1 to 5, characterized in that the initial explosive obtained is potassium dinitrobenzofuroxanate, lead azide, lead picrate, lead nitrite orresinate or cesium dinitrobenzofuroxanate.
EP04017847A 2003-07-31 2004-07-28 Use of a microjet reactor for manufacturing a primary explosive Withdrawn EP1505047A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10334992 2003-07-31
DE10334992A DE10334992A1 (en) 2003-07-31 2003-07-31 Use of a microjet reactor for the production of initial explosive

Publications (2)

Publication Number Publication Date
EP1505047A2 true EP1505047A2 (en) 2005-02-09
EP1505047A3 EP1505047A3 (en) 2006-11-15

Family

ID=33547045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04017847A Withdrawn EP1505047A3 (en) 2003-07-31 2004-07-28 Use of a microjet reactor for manufacturing a primary explosive

Country Status (3)

Country Link
US (1) US20050188874A1 (en)
EP (1) EP1505047A3 (en)
DE (1) DE10334992A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114089A1 (en) * 2010-03-16 2011-09-22 Qinetiq Limited Mems detonator
CN108752150A (en) * 2018-07-09 2018-11-06 山西壶化集团股份有限公司 A kind of preparation method of KBKG detonating agents

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741756A (en) * 1953-02-24 1955-12-14 Secr Defence Brit Method for producing fine crystals of controlled particle size
FR2363536A1 (en) * 1976-09-07 1978-03-31 Imp Metal Ind Kynoch Ltd Explosive esp. styphnate, for detonating ammunition, prodn. - in separate small quantities corresponding to specific requirements of weapon
US5156779A (en) * 1989-04-27 1992-10-20 E. I. Du Pont De Nemours And Company Process and apparatus for producing ultrafine explosive particles
DE19501889A1 (en) * 1994-01-24 1995-07-27 Nof Corp Prodn. of primer granulate useful in gas generator e.g. for car airbag
WO2000061275A2 (en) * 1999-04-08 2000-10-19 Bernd Penth Method and device for carrying out chemical and physical processes
WO2001038264A1 (en) * 1999-11-23 2001-05-31 Technanogy, Llc Composition and method for preparing oxidizer matrix containing dispersed metal particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2265230A (en) * 1938-11-25 1941-12-09 Western Cartridge Co Basic lead styphnate and a process of making it
US2395860A (en) * 1943-11-05 1946-03-05 American Cyanamid Co Preparation of crystalline materials
DE3926466C2 (en) * 1989-08-10 1996-12-19 Christoph Dipl Ing Caesar Microreactor for carrying out chemical reactions of two chemical substances with strong heat
US20020119079A1 (en) * 1999-12-10 2002-08-29 Norbert Breuer Chemical microreactor and microreactor made by process
DE10049200A1 (en) * 2000-10-05 2002-04-11 Clariant Gmbh Process for the production of azo colorants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741756A (en) * 1953-02-24 1955-12-14 Secr Defence Brit Method for producing fine crystals of controlled particle size
FR2363536A1 (en) * 1976-09-07 1978-03-31 Imp Metal Ind Kynoch Ltd Explosive esp. styphnate, for detonating ammunition, prodn. - in separate small quantities corresponding to specific requirements of weapon
US5156779A (en) * 1989-04-27 1992-10-20 E. I. Du Pont De Nemours And Company Process and apparatus for producing ultrafine explosive particles
DE19501889A1 (en) * 1994-01-24 1995-07-27 Nof Corp Prodn. of primer granulate useful in gas generator e.g. for car airbag
WO2000061275A2 (en) * 1999-04-08 2000-10-19 Bernd Penth Method and device for carrying out chemical and physical processes
WO2001038264A1 (en) * 1999-11-23 2001-05-31 Technanogy, Llc Composition and method for preparing oxidizer matrix containing dispersed metal particles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114089A1 (en) * 2010-03-16 2011-09-22 Qinetiq Limited Mems detonator
GB2491225A (en) * 2010-03-16 2012-11-28 Qinetiq Ltd Method of preparing explosives
GB2491225B (en) * 2010-03-16 2013-05-01 Qinetiq Ltd MEMS detonator
EP2687811A1 (en) * 2010-03-16 2014-01-22 QinetiQ Limited MEMS detonator
CN108752150A (en) * 2018-07-09 2018-11-06 山西壶化集团股份有限公司 A kind of preparation method of KBKG detonating agents

Also Published As

Publication number Publication date
US20050188874A1 (en) 2005-09-01
EP1505047A3 (en) 2006-11-15
DE10334992A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
DE2850271C3 (en) Device for intensive mixing of liquids
DE69607847T2 (en) DEVICE AND METHOD FOR COATING A SOLID PARTICLE
DE1496434A1 (en) Method and device for the production of glass beads
DE69119099T2 (en) METHOD AND DEVICE FOR PRODUCING ULTRAFINE EXPLOSIVE PARTICLES
EP1505047A2 (en) Use of a microjet reactor for manufacturing a primary explosive
EP1256558A2 (en) Method for producing crystals from propellants, explosives and oxidizers dissolved in a solvent
EP0923985A1 (en) Device for vaporising liquid feed and for making gas vapour mixtures
DE19738085C1 (en) Simple, economical precipitation of high quality solid with definite pore size, particle size and optionally phase
EP4023408B1 (en) Method for the production of a foamed extrudate
EP2315627A1 (en) Process for producing nanoscale organic solid particles
CH642642A5 (en) METHOD FOR PRODUCING A SUSPENSION OF CYANURCHLORIDE IN WATER.
EP1284965B1 (en) Method for producing indols
DE1200183B (en) Process for the production of explosive, organic explosives
EP0039478B1 (en) Process and apparatus for the production of technical lead oxide
EP1641769B1 (en) Method for producing melamine in a single-phase tubular reactor
EP1555256A2 (en) Process for preparing finely dispersed, crystalline propellants, explosives and oxidizers
WO2003045541A2 (en) Device and method for producing foam
DE10015520A1 (en) Process for 1,3-dipolar cycloaddition of organic compounds
WO1999047567A1 (en) Method for metering a mixture of liquid ammonia and an additive into a solid and corresponding metering device
EP0056491B1 (en) Process for the preparation of coarse-grained triaminotrinitrobenzene
WO2018050678A1 (en) Method for operating a burner and burner device
EP3372308A1 (en) Focusing device, droplet generator and method for creating a multiplicity of droplets
EP1414749A1 (en) Method for the precipitation of poorly-soluble materials such as barium sulphate for example and precipitation capsule
CH642641A5 (en) METHOD FOR PRODUCING A SUSPENSION OR SOLUTION OF CYANURCHLORIDE IN AQUATIC ORGANIC SOLVENT.
DE102020006355A1 (en) Method of performing flame spray pyrolysis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DELPHI TECHNOLOGIES, INC.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: C06B 41/00 20060101ALI20061012BHEP

Ipc: C06C 7/00 20060101ALI20061012BHEP

Ipc: C06B 21/00 20060101AFI20041129BHEP

17P Request for examination filed

Effective date: 20061114

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080909

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150203