[go: up one dir, main page]

EP1500639A2 - Substance pyrotechnique et procédé de fabrication d'une telle substance - Google Patents

Substance pyrotechnique et procédé de fabrication d'une telle substance Download PDF

Info

Publication number
EP1500639A2
EP1500639A2 EP04291798A EP04291798A EP1500639A2 EP 1500639 A2 EP1500639 A2 EP 1500639A2 EP 04291798 A EP04291798 A EP 04291798A EP 04291798 A EP04291798 A EP 04291798A EP 1500639 A2 EP1500639 A2 EP 1500639A2
Authority
EP
European Patent Office
Prior art keywords
nanometric
binder
pyrotechnic
aluminum
substance according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04291798A
Other languages
German (de)
English (en)
Other versions
EP1500639A3 (fr
EP1500639B1 (fr
Inventor
Luc Brunet
Christophe Coulouarn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KNDS Ammo France SA
Original Assignee
Giat Industries SA
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries SA, Nexter Munitions SA filed Critical Giat Industries SA
Publication of EP1500639A2 publication Critical patent/EP1500639A2/fr
Publication of EP1500639A3 publication Critical patent/EP1500639A3/fr
Application granted granted Critical
Publication of EP1500639B1 publication Critical patent/EP1500639B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0083Treatment of solid structures, e.g. for coating or impregnating with a modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/30Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers

Definitions

  • the technical field of the invention is that of pulverulent substances and more particularly pyrotechnic substances incorporating a primary explosive.
  • Such pyrotechnic substances are commonly used for the manufacture of primers or detonators.
  • Patent FR2599361 thus describes a priming substance combining 40 to 70% by mass of lead trinitroresorcinate and 60 to 30% aluminum with less than 1% of a binder formed by gum arabic.
  • Aluminum is used in this component of allow the evacuation of the calories generated by heating of the primer filament under the effect of electromagnetic fields. This avoids a warm-up inopportune that may lead to the initiation of the composition and thus increases the security of the component.
  • the explosive and aluminum powders are associated under the form of a homogeneous mixture maintained by a binder.
  • the granulometry of the primary explosive and powder are of the same order of magnitude and less than 40 micrometers.
  • This pyrotechnic substance has the drawback to require a significant amount of aluminum for reduce the susceptibility of the component to radiation electromagnetic.
  • the relative percentage of primary explosive is correlatively reduced and the detonation efficiency of the component is therefore also reduced, except to increase the mass of primary explosive so the volume of the component.
  • the homogeneity of the explosive / aluminum mixture is difficult to ensure in a reproducible way. It results from variable performance from one batch to another of the point of view of sensitivity to electrostatic discharge or friction.
  • the object of the invention is to propose a substance pulverulent material having processing properties (especially improved flowability).
  • the object of the invention is more particularly to propose a pyrotechnic substance that retains its effectiveness while having reduced sensitivity, particularly to electric shocks and friction.
  • the subject of the invention is a powdery substance and in particular a pyrotechnic substance which is characterized in that it comprises at least a first material formed of grains coated with a binder layer incorporating granules of a second nanoscale material.
  • the second material may be made of aluminum or silicon.
  • Nanometric materials and in particular aluminum are known. It has already been proposed to implement them in the pyrotechnic components.
  • the US5717159 patent thus proposes a primer comprising 45% by weight of nanometric aluminum and 55% by weight of nanometric molybdenum trioxide.
  • the invention proposes instead to associate a material, in particular a pyrotechnic material, with granulometric classical micrometer (of the order of 100 micrometers) with a material with nanometric granulometry (from 0.05 to 0.1 microns).
  • nanoscale material granules surround the grains of the micrometric material.
  • a binder ensures the binding of granules and grains.
  • micrometric material So every grain of micrometric material has its surface externally practically covered (more than 90%) by nanoscale granules. There is no more segregation of materials despite their very different grain sizes and the micrometric material is protected.
  • the coating of a material pyrotechnics by a nanometric metal, in particular by aluminum makes the whole pyrotechnic substance conducted, both heat and electricity, which makes it easier to evacuate calories and therefore increases the resistance of the substance pyrotechnic to self ignition.
  • This pyrotechnic substance also sees its sensitivity to electrostatic discharge and friction diminished, which makes the industrial implementation of the safer pyrotechnic substance.
  • the coating also facilitates industrial implementation of the substance by reducing including sensitivity to friction and facilitating flowability.
  • nitrocellulose polyvinylidene fluoride (PVDF), vinyl chloroacetate (CVA) copolymer, copolymer of chlorofluoroethylene, polytetrafluoroethylene, polyvinyl alcohol (better known under the trademark "Rhodoviol”).
  • PVDF polyvinylidene fluoride
  • CVA vinyl chloroacetate copolymer
  • copolymer of chlorofluoroethylene polytetrafluoroethylene
  • polyvinyl alcohol better known under the trademark "Rhodoviol”
  • the nitrocellulose has the advantage of being an active binder which participate in the pyrotechnic reaction by bringing Energy.
  • the other binders mentioned are inert binders.
  • the proportion chosen for the binder will preferably be less than 3% of the total mass (that of the coated material plus that of the nanoscale material).
  • This will advantageously produce a substance pyrotechnic powder comprising from 95% to 60% by weight a first pyrotechnic material, 5 to 40% by weight of nanoscale aluminum and a binder in a proportion of 0.5% to 3% of the overall mass of the material mixture pyrotechnics / nanoscale aluminum.
  • the first pyrotechnic material may be an oxidant (such as copper oxide CuO, potassium nitrate or potassium perchlorate) or a secondary explosive (such as Octogen, or Hexogen).
  • oxidant such as copper oxide CuO, potassium nitrate or potassium perchlorate
  • secondary explosive such as Octogen, or Hexogen.
  • a secondary explosive is a explosive that requires significant activation energy to detonate (energy brought for example by an explosive primary).
  • the first pyrotechnic material can also be a detonating or explosive primary explosive.
  • An explosive says primary is an explosive material that is characterized by a great sensitivity under at least one of the solicitations following: shock, friction, flame, electric spark.
  • the primary explosive detonators have a decomposition that goes very quickly to the same detonation without confinement. Explosive primary explosives have a decomposition regime that only detonates in certain conditions of confinement or initiation.
  • the first pyrotechnic material primary explosive from the following materials: dinitrobenzofuroxane, lead azide, silver azide, diazodinitrophenol (DDNP), lead styphnate.
  • KDNBF potassium salt
  • RbDNBF Sodium
  • CsDNBF Cesium
  • BaDNBF Barium
  • a substance can be made combining: 79% by weight of dinitrobenzofuroxane potassium (KDNBF), 18% of nanometric aluminum, and 3% mass of nitrocellulose.
  • KDNBF dinitrobenzofuroxane potassium
  • the subject of the invention is also a method of preparation of a powdery substance, in particular a pyrotechnic substance, comprising at least a first material formed of grains coated with a layer of binder incorporating granules of a second material of nanometric particle size.
  • a powdery substance in particular a pyrotechnic substance
  • the process according to the invention making it easy and safe to prepare such substance.
  • the carrier liquid may be silicone oil, binding being nitrocellulose and the first solvent being the methyl ethyl ketone.
  • the surfactant may be a sugar ester.
  • the first micrometric material can then be a detonating or explosive primary explosive and the second nanometric material be made of aluminum.
  • This particle 1 is formed by a grain 2 of a first material which is coated with a binder layer 3 incorporating granules 4 of a second granulometry material nanometric (for example nanometric aluminum).
  • Nanoscale materials are easy to obtain commercially. These materials can be obtained for example from the company Technanogy (2146 Michelson Drive Irvine California USA).
  • nanometric material having a particle size between 50 and 100 nanometers (or between 0.05 micrometers and 0.1 micrometers).
  • the granules 4 thus surround virtually the entire external surface of the grains 2 of the first material.
  • the different particles 1 thus constituted and which form the powdery substance are therefore always in contact mutually with each other through the intermediary of granules 4.
  • the contact between the granules makes the conductive pyrotechnic substance.
  • the first material coated with aluminum may be a pyrotechnic material such as a primary explosive.
  • a pyrotechnic material such as a primary explosive.
  • the starting pyrotechnic powdery substance obtained will have improved behavior. She will be more resistant to electrostatic discharge, friction and heating.
  • the first pyrotechnic material may be an explosive secondary such as hexogen or octogen.
  • the coating of the grains of explosives may, in addition to conductivity of the composition, give a breath effect complementary to the explosive charge that will be made with such a substance.
  • the first pyrotechnic material may be an oxidant (such as copper oxide, potassium nitrate or potassium perchlorate).
  • an oxidant such as copper oxide, potassium nitrate or potassium perchlorate.
  • a suitable nanoscale reducer such as aluminum for copper oxide, boron for nitrate of potassium or Zirconium for perchlorate potassium, will ensure a more intimate contact between oxidizing and reducing agent.
  • a coating of a material micrometric with nanometric silica will allow improve the flowability of the powdery substance.
  • the coating of grains with a granulometry material micrometric with nanoscale granules is a operation a priori delicate.
  • the very fine granules disperse in suspension in air during a dry implementation. They can also be charge in static electricity and stick to the tools of loading.
  • nanometric aluminum powder reacts strongly in the presence of moisture and is therefore dangerous To manipulate.
  • the invention also aims to propose a method to ensure in a safe and reproducible way that coating.
  • the material according to the invention is thus produced by a coating process in emulsion.
  • the first material is suspended micrometric and the second nano material within a liquid carrier.
  • An adjustment of the temperature of the liquid support will allow to control the size of the droplets of the emulsion. More the temperature will be high plus the droplets will be fines.
  • the first solvent is then extracted by adding to the emulsion a second solvent.
  • the latter is chosen from so that the first solvent has a higher affinity great with him than he has for the binding material.
  • This operation has the effect of removing the solvent from the binding, so harden the one that traps the granules nanoscale around the grains of the first material micrometer.
  • the substance obtained will be implemented in a conventional manner in a pyrotechnic component, for example a component to hot wire, exploded wire or percussion wire ...
  • the first pyrotechnic material is an explosive secondary school, it will be implemented later conventional loading techniques (casting, compression, polymerization).
  • the invention adds to the solvent / binder emulsion in the carrier liquid a surfactant for stabilizing it.
  • surfactant molecules reduce surface tension between two liquids.
  • the surfactant for role of creating binder bubbles / volume solvent equivalent In the process according to the invention, the surfactant for role of creating binder bubbles / volume solvent equivalent.
  • the surfactant makes it possible to stabilize this step before hardening of the grains by the addition of the second solvent.
  • This control also makes it possible to control the quantity of granules of nanoscale material present in each bubble of binder / solvent, so also to control the coating of the grains of the first material with the material nanoscale.
  • surfactant will depend on the nature of the solvents as well as that of the carrier liquid.
  • a surfactant comprising a polar head soluble in the first solvent and a fatty carbon chain soluble in the carrier liquid.
  • the advantage of the process according to the invention is that it avoids dry mixing of the powders. This increases the security implementation. If the first material is an explosive primary, it is phlegmatized by the liquid support. By besides the nano aluminum which is highly reactive to the open air (because of the humidity of the air) is mixed safely in the carrier liquid (for example silicone oil).
  • the carrier liquid for example silicone oil
  • binder according to the nature of the material to coat and so that it is not miscible in the liquid carrier.
  • a binder such as nitrocellulose methyl ethyl ketone will be used as the first solvent and will adopt Heptane as the second solvent harden the grains.
  • the carrier liquid chosen is the oil of silicone and the appropriate surfactant is a sugar ester.
  • Such an ester has a long carbon chain which has more affinity with silicone oil than with the methyl ethyl ketone. It has a polar head formed by many OH groups that form hydrogen bonds with the C-Os of methyl ethyl ketone.
  • the sugar ester is so has the interphase between the first solvent and silicone oil, ensuring the stabilization of droplets.
  • PVDF formamide polyvinyl
  • polyvinyl alcohol we can choose as the first solvent acetone.
  • the method according to the invention can also be used to coat a non-pyrotechnic material with granules nanoscale.
  • the skilled person will easily choose the different solvents depending on the materials used.
  • a substance has been produced powdery pyrotechnics associating 78% of potassium dinitrobenzofuroxane (KDNBF) (granulometry) average 85 micrometers), 19% of nanometric aluminum (particle size between 50 nanometers and 100 nanometers) and 3% nitrocellulose.
  • KDNBF potassium dinitrobenzofuroxane
  • a solution of the binder is first prepared in a first solvent.
  • a first solvent for this purpose, between 0.1 g and 0.25 g is mixed of nitrocellulose in 40 to 60 ml of methyl ethyl ketone.
  • the temperature of the silicone oil bath is maintained between 18 ° C and 30 ° C.
  • An agitator is present in the beaker.
  • the mixture is stirred for 5 minutes.
  • the binder solution is then introduced into the beaker. previously prepared, then 1 to 5 ml of a surfactant solution (sugar ester).
  • Heptane rinsing can be repeated once or twice time then we recover the composition on a buchner. We squeeze a few minutes then we recover the composition coated which can be stored.
  • Tests have been conducted to compare the pyrotechnic substance thus obtained with the KDNBF alone, and with a coated composition associating the KDNBF with micrometric aluminum (particle size between 40 microns and 80 microns).
  • This last composition was prepared by putting into the same process as that described above.
  • the KDNBF can not be coated with micrometric aluminum.
  • the composition obtained is rather close to a dry mix of both products in which there are no conductive paths through aluminum particles.
  • This classic test is conducted according to the procedure following: a quantity of pyrotechnic substance of approximately 15 mm3 is disposed in a conductive cup. A needle is placed above the substance (without contact). We applied between the bucket containing the pyrotechnic substance and the needle discharging a capacitor with a capacitance 1000 pF charged at 25 kV with a resistance of 10 kilo Ohms serial.
  • the pyrotechnic substance the invention has a higher initiation threshold. His sensitivity to electric shocks is therefore less.
  • the pyrotechnic substance implementing micrometric aluminum is not homogeneous from one batch to the other. The results are not reproducible for a such substance.
  • the threshold varies from 2.88 kV (KDNBF only) to non-initiationn (aluminum only).
  • a sample of the order of 10 mg of the pyrotechnic substance to be tested is deposited in the form a small pile in the middle of a ceramic plate rough. This plate is then fixed on the carriage mobile device that can print a movement linear reproducible speed and amplitude.
  • the pyrotechnic substance the invention is much more resistant to friction than the KDNBF alone. Indeed it takes a force greater than 1.2 kg for get initiation. Such behavior is due to a improvement of the external surface of the grain (assured smoothing by the nanometric material).
  • the pyrotechnic substance implementing micrometric aluminum is not homogeneous from one batch to the other, the results of the friction tests are very variables. Such a composition is not reproducible.
  • compositions can be made with the same process teaming up :

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Air Bags (AREA)
  • Glanulating (AREA)

Abstract

L'invention a pour objet une substance pulvérulente, notamment une substance pyrotechnique, caractérisée en ce qu'elle comporte au moins un premier matériau formé de grains (2) enrobés par une couche de liant (3) incorporant des granules (4) d'un second matériau de granulométrie nanométrique.
L'invention a également pour objet un procédé permettant de fabriquer une telle substance.

Description

Le domaine technique de l'invention est celui des substances pulvérulentes et plus particulièrement des substances pyrotechniques incorporant un explosif primaire.
De telles substances pyrotechniques sont couramment mises en oeuvre pour la fabrication d'amorces ou de détonateurs.
Elles comprennent le plus souvent un explosif primaire associé à un liant et à un ou plusieurs additifs.
Le brevet FR2599361 décrit ainsi une substance d'amorçage associant 40 à 70 % en masse de trinitroresorcinate de plomb et 60 à 30% d'aluminium avec moins de 1% d'un liant formé par de la gomme arabique.
L'aluminium a pour fonction dans ce composant de permettre l'évacuation des calories engendrées par l'échauffement du filament de l'amorce sous l'effet des champs électromagnétiques. On évite ainsi un échauffement intempestif pouvant conduire à l'initiation de la composition et on augmente donc la sécurité du composant.
Les poudres d'explosif et d'aluminium sont associées sous la forme d'un mélange homogène maintenu par un liant. Les granulométries de l'explosif primaire et de la poudre d'aluminium sont du même ordre de grandeur et inférieures à 40 micromètres.
Cette substance pyrotechnique présente pour inconvénient de nécessiter une quantité non négligeable d'aluminium pour réduire la susceptibilité du composant aux rayonnements électromagnétiques.
Le pourcentage relatif d'explosif primaire est corrélativement réduit et l'efficacité détonique du composant se trouve donc également réduite, sauf à augmenter la masse d'explosif primaire donc le volume du composant.
Par ailleurs, l'homogénéité du mélange explosif/aluminium est difficile à assurer d'une façon reproductible. Il en résulte des performances variables d'un lot à l'autre du point de vue de la sensibilité aux décharges électrostatiques ou bien à la friction.
L'invention a pour but de proposer une substance pulvérulente ayant des propriétés de mise en oeuvre (notamment de coulabilité améliorée).
L'invention vise plus particulièrement à proposer une substance pyrotechnique qui conserve toute son efficacité tout en présentant une sensibilité réduite, notamment aux décharges électriques et à la friction.
Ainsi l'invention a pour objet une substance pulvérulente et notamment une substance pyrotechnique qui est caractérisée en ce qu'elle comporte au moins un premier matériau formé de grains enrobés par une couche de liant incorporant des granules d'un second matériau de granulométrie nanométrique.
Le second matériau pourra être constitué par l'aluminium ou bien le silicium.
Les matériaux nanométriques et notamment l'aluminium sont connus. Il a déjà été proposé de les mettre en oeuvre dans les composants pyrotechniques. Le brevet US5717159 propose ainsi une amorce comprenant 45% en masse d'aluminium nanométrique et 55% en masse de trioxyde de Molybdène nanométrique.
Cependant dans un tel composant tous les matériaux mis en oeuvre sont nanométriques et forment un mélange homogène.
L'invention propose au contraire d'associer un matériau, notamment un matériau pyrotechnique, à granulométrique micrométrique classique (de l'ordre de 100 micromètres) avec un matériau à granulométrie nanométrique (de 0,05 à 0,1 micromètres).
De façon à assurer un mélange intime et homogène de ces matériaux, les granules de matériau nanométrique entourent les grains du matériau micrométrique. Un liant assure la liaison des granules et des grains.
Ainsi chaque grain du matériau micrométrique a sa surface externe pratiquement recouverte (à plus de 90 %) par les granules nanométriques. Il n'y a plus de ségrégation des matériaux malgré leurs granulométries très différentes et le matériau micrométrique se trouve protégé.
Plus particulièrement l'enrobage d'un matériau pyrotechnique par un métal nanométrique, notamment par l'aluminium, rend l'ensemble de la substance pyrotechnique réalisée conductrice, à la fois de la chaleur et de l'électricité, ce qui permet d'évacuer plus facilement les calories et augmente donc la résistance de la substance pyrotechnique à l'auto inflammation.
Cette substance pyrotechnique voit également ses sensibilités aux décharges électrostatiques et à la friction diminuées, ce qui rend la mise en oeuvre industrielle de la substance pyrotechnique plus sûre.
Dans le cas d'un enrobage d'un matériau micrométrique par du silicium nanométrique, l'enrobage facilite également la mise en oeuvre industrielle de la substance en réduisant notamment la sensibilité à la friction et en facilitant la coulabilité.
Comme liant on pourra choisir parmi les matériaux suivants : nitrocellulose, polyfluorure de vinylidène (PVDF), copolymère chloroacétate de vinyle (CVA), copolymère de chlorofluoroéthylène, polytétrafluoréthylène, alcool polyvinylique (plus connu sous la marque déposée "Rhodoviol"). La nitrocellulose présente l'avantage d'être un liant actif qui participera à la réaction pyrotechnique en apportant de l'énergie. Les autres liants cités sont des liants inertes.
La proportion choisie pour le liant sera de préférence inférieure à 3% de la masse globale (celle du matériau enrobé plus celle du matériau nanométrique).
On réalisera ainsi avantageusement une substance pulvérulente pyrotechnique comprenant de 95% à 60% en masse d'un premier matériau pyrotechnique, de 5 à 40 % en masse d'aluminium nanométrique et un liant dans une proportion de 0,5% à 3% de la masse globale du mélange matériau pyrotechnique / aluminium nanométrique.
Le premier matériau pyrotechnique pourra être un oxydant (tel que l'oxyde de cuivre CuO, le nitrate de potassium ou le perchlorate de potassium) ou bien un explosif secondaire (tel que l'Octogène, ou l'Hexogène). Un explosif secondaire est un explosif qui nécessite une énergie d'activation importante pour détoner (énergie apportée par exemple par un explosif primaire).
Le premier matériau pyrotechnique pourra également être un explosif primaire détonant ou déflagrant. Un explosif dit primaire est un matériau explosif qui est caractérisé par une grande sensibilité sous l'une au moins des sollicitations suivantes : choc, friction, flamme, étincelle électrique.
Les explosifs primaires détonants ont un régime de décomposition qui passe très rapidement à la détonation même sans confinement. Les explosifs primaires déflagrants ont un régime de décomposition qui ne passe à la détonation que dans certaines conditions de confinement ou d'initiation.
On pourra ainsi choisir le premier matériau pyrotechnique explosif primaire parmi les matériaux suivants : sels de dinitrobenzofuroxane, azoture de plomb, azoture d'argent, diazodinitrophénol (DDNP), styphnate de plomb.
Comme sels de dinitrobenzofuroxane on pourra mettre en oeuvre le sel de potassium (KDNBF) ou bien les sels de Rubidium (RbDNBF), de Sodium (NaDNBF), de Césium (CsDNBF) ou de Baryum (BaDNBF).
La substance pulvérulente selon l'invention pourra ainsi comprendre :
  • 60 à 95 % en masse de dinitrobenzofuroxane de potassium (KDNBF),
  • 5 à 40% d'aluminium nanométrique,
  • un liant dans une proportion de 0,5 à 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique de la composition.
On pourra plus particulièrement réaliser une substance associant : 79 % en masse de dinitrobenzofuroxane de potassium (KDNBF), 18% d'aluminium nanométrique, et 3% en masse de nitrocellulose.
L'invention a également pour objet un procédé de préparation d'une substance pulvérulente, notamment d'une substance pyrotechnique, comportant au moins un premier matériau formé de grains enrobés par une couche de liant incorporant des granules d'un second matériau de granulométrie nanométrique. Le procédé selon l'invention permettant de préparer aisément et en toute sécurité une telle substance.
Ainsi le procédé selon l'invention est caractérisé par la succession des étapes suivantes :
  • on prépare une solution du liant dans un premier solvant de ce dernier,
  • on prépare par ailleurs un bain de liquide support non miscible avec le premier solvant,
  • on introduit dans le bain un premier matériau à enrober tout en agitant pour assurer une répartition homogène des grains de ce matériau dans le bain,
  • on introduit un second matériau de granulométrie nanométrique dans le bain tout en maintenant l'agitation,
  • on introduit la solution de liant dans le bain,
  • on introduit un tensioactif dans le bain,
  • après agitation on lave au moins une fois avec un deuxième solvant approprié permettant d'éliminer le premier solvant du liant,
  • on essore et/ou sèche la substance pulvérulente obtenue.
Le liquide support pourra être l'huile de silicone, le liant être la nitrocellulose et le premier solvant être le méthyléthylcétone.
Le tensioactif pourra être est un ester de sucre.
Le premier matériau micrométrique pourra alors être un explosif primaire détonant ou déflagrant et le deuxième matériau nanométrique être constitué par de l'aluminium.
L'invention sera mieux comprise à la lecture de la description qui va suivre de différents modes de réalisation, description faite en référence au dessin annexé qui représente schématiquement, en coupe et fortement grossie, une particule de la substance pulvérulente selon l'invention.
Cette particule 1 est formée par un grain 2 d'un premier matériau qui est enrobé par une couche de liant 3 incorporant des granules 4 d'un second matériau de granulométrie nanométrique (par exemple de l'aluminium nanométrique).
Les matériaux nanométriques (et notamment l'aluminium) sont faciles à obtenir dans le commerce. Ces matériaux peuvent être par exemple obtenus auprès de la société Technanogy (2146 Michelson Drive Irvine Californie USA).
On choisira un matériau nanométrique ayant une granulométrie comprise entre 50 et 100 nanomètres (soit entre 0,05 micromètres et 0,1 micromètres).
Les granules 4 entourent ainsi pratiquement toute la surface externe des grains 2 du premier matériau. Les différentes particules 1 ainsi constituées et qui forment la substance pulvérulente se trouvent donc toujours en contact mutuel les unes avec les autres par l'intermédiaire des granules 4.
Lorsque les granules sont formées d'un métal, et notamment d'aluminium, le contact entre les granules rend la substance pyrotechnique conductrice.
Le premier matériau enrobé d'aluminium pourra être un matériau pyrotechnique tel un explosif primaire. Dans ce cas la substance pulvérulente pyrotechnique d'amorçage obtenue aura un comportement amélioré. Elle sera notamment plus résistante aux décharges électrostatiques, à la friction et à l'échauffement.
Le premier matériau pyrotechnique pourra être un explosif secondaire tel que l'hexogène ou l'octogène. Dans ce cas l'enrobage des grains d'explosifs pourra, en plus de la conductivité de la composition, conférer un effet de souffle complémentaire au chargement explosif qui sera réalisé avec une telle substance.
Le premier matériau pyrotechnique pourra être un oxydant (tel que l'oxyde de cuivre, le nitrate de potassium ou le perchlorate de potassium). Dans ce cas l'enrobage des grains d'oxydant avec un réducteur nanométrique approprié (tel que l'aluminium pour l'oxyde de cuivre, le bore pour le nitrate de potassium ou le Zirconium pour le perchlorate de potassium), permettra d'assurer un contact plus intime entre oxydant et réducteur.
D'une façon générale, un enrobage d'un matériau micrométrique avec de la silice nanométrique permettra d'améliorer la coulabilité de la substance pulvérulente.
On pourra également pour améliorer la mise en oeuvre d'une composition pyrotechnique oxydoréductrice enrober un réducteur avec de la silice nanométrique et mélanger ce réducteur enrobé avec un oxydant également enrobé de silice.
L'enrobage des grains d'un matériau de granulométrie micrométrique avec des granules nanométriques est une opération a priori délicate.
Les granules très fines se dispersent en suspension dans l'air lors d'une mise en oeuvre à sec. Elles peuvent aussi se charger en électricité statique et coller aux outillages de chargement.
Par ailleurs, la poudre d'aluminium nanométrique réagit fortement en présence d'humidité et se trouve donc dangereuse à manipuler.
L'invention a également pour but de proposer un procédé permettant d'assurer d'une façon sûre et reproductible cet enrobage.
On réalise ainsi le matériau selon l'invention par un procédé d'enrobage en émulsion.
Selon ce procédé on met en suspension le premier matériau micrométrique et le second matériau nanométrique au sein d'un liquide support.
Puis, on ajoute dans ce liquide un liant, lui-même dissous dans un premier solvant. Il en résulte une émulsion de gouttelettes de liant/solvant dans le liquide support.
Par agitation de l'émulsion on emprisonne au sein de chaque goutte de liant/solvant des grains du mélange en suspension (premier matériau micrométrique et granules nanométriques).
Un réglage de la température du liquide support permettra de maítriser la taille des gouttelettes de l'émulsion. Plus la température sera élevée plus les gouttelettes seront fines.
On extrait ensuite le premier solvant en ajoutant à l'émulsion un deuxième solvant. Ce dernier est choisi de telle sorte que le premier solvant ait une affinité plus grande avec lui qu'il n'en a pour le matériau liant.
Cette opération a pour effet d'éliminer le solvant du liant, donc de durcir celui ci qui emprisonne les granules nanométriques autour des grains du premier matériau micrométrique.
Il suffit ensuite de filtrer et sécher la substance pulvérulente obtenue.
Si le premier matériau est un matériau pyrotechnique, la substance obtenue sera mise en oeuvre d'une façon classique dans un composant pyrotechnique, par exemple un composant à fil chaud, à fil explosé ou à percussion ...
Si le premier matériau pyrotechnique est un explosif secondaire il sera mis en oeuvre ultérieurement suivant les techniques de chargement classiques (coulée, compression, polymérisation).
Selon une caractéristique essentielle de l'invention on ajoute à l'émulsion solvant/liant dans le liquide support un tensioactif permettant de la stabiliser.
D'une façon classique les molécules tensioactives permettent de diminuer les tensions de surface entre deux liquides.
Dans le procédé selon l'invention le tensioactif aura pour rôle de créer des bulles de liant/solvant de volume équivalent.
En effet, lorsque l'on arrête l'agitation d'une émulsion, chaque élément de celle ci a une forte tendance à récupérer son état d'équilibre. Il y a au bout d'un certain temps une séparation des deux phases liquides. Il n'est donc pas possible dans ce cas de contrôler précisément la taille des grains réalisés.
Le tensioactif permet de stabiliser cette étape avant le durcissement des grains par l'addition du deuxième solvant.
Ces bulles de liant/solvant sont donc stabilisées, le phénomène de floculation sera diminué par les forces de répulsion entre les gouttes de liant/solvant. La stabilisation de la taille des bulles permet de maítriser et d'homogénéiser la taille finale des grains de la substance pulvérulente.
Cette maítrise permet également de contrôler la quantité de granules de matériau nanométrique présents dans chaque bulle de liant/solvant, donc également de maítriser l'enrobage des grains du premier matériau avec le matériau nanométrique.
Le choix du tensioactif dépendra de la nature des solvants en présence ainsi que de celle du liquide support.
On choisira un tensioactif comportant une tête polaire soluble dans le premier solvant et une chaíne carbonée grasse soluble dans le liquide support.
L'avantage du procédé selon l'invention est qu'il évite le mélange à sec des poudres. On augmente ainsi la sécurité de mise en oeuvre. Si le premier matériau est un explosif primaire, il se trouve flegmatisé par le liquide support. Par ailleurs l'aluminium nanométrique qui est fortement réactif à l'air libre (à cause de l'humidité de l'air) se trouve mélangé sans danger au sein du liquide support (par exemple l'huile de silicone).
On choisira le liant en fonction de la nature du matériau à enrober et de façon à ce qu'il ne soit pas miscible dans le liquide support.
On choisira alors ensuite le premier solvant en fonction de la nature du liant choisi et enfin le deuxième solvant en fonction de la nature du premier solvant.
A titre d'exemple pour un liant tel que la nitrocellulose on utilisera comme premier solvant la méthyléthylcétone et on adoptera l'Heptane comme deuxième solvant permettant de durcir les grains. Le liquide support choisi est l'huile de silicone et le tensioactif approprié est un ester de sucre.
Ce tensioactif aura une formule générale : R1 - COO - R2
  • Avec R1 : chaíne alcane CnH2n+1 avec n = 4 à 12.
  • Avec R2 : glucose (C6H12O6) ou saccharose (C12H22O11) ou fructose (C6H12O6) ou tout autre sucre possédant des groupements OH.
  • Un tel ester comporte une longue chaíne carbonée qui a plus d'affinité avec l'huile de silicone qu'avec la méthyléthylcétone. Il comporte une tête polaire formée par de nombreux groupements OH qui forment des liaisons hydrogène avec les C-O de la méthyléthylcétone. L'ester de sucre se dispose donc à l'interphase entre le premier solvant et l'huile de silicone, assurant la stabilisation des gouttelettes.
    Pour un liant tel que le polyvinyle de formamide (PVDF) ou l'alcool polyvinylique on pourra choisir comme premier solvant l'acétone.
    Le procédé selon l'invention peut également être utilisé pour enrober un matériau non pyrotechnique avec des granules nanométriques. L'Homme du Métier choisira aisément les différents solvants en fonction des matériaux mis en oeuvre.
    Exemple 1
    A titre d'exemple on a réalisé une substance pyrotechnique pulvérulente associant 78% de dinitrobenzofuroxane de potassium (KDNBF) (granulométrie moyenne 85 micromètres), 19% d'aluminium nanométrique (granulométrie comprise entre 50 nanomètres et 100 nanomètres) et 3% de nitrocellulose.
    Pour réaliser l'enrobage souhaité et pour 10 grammes de substance pyrotechnique préparée on a procédé de la façon suivante :
    On prépare tout d'abord une solution du liant dans un premier solvant. Pour cela on mélange entre 0,1 g et 0,25 g de nitrocellulose dans 40 à 60 ml de Méthyléthylcétone.
    On introduit par ailleurs dans un Becher thermostaté entre 150 et 300 ml d'huile de silicone.
    La température du bain d'huile de silicone est maintenue entre 18°C et 30°C. Un agitateur est présent dans le becher.
    On introduit entre 6 et 8 g de KDNBF, on laisse la poudre de matériau pyrotechnique se répartir dans le Becher, puis on introduit entre 2 et 4 g d'aluminium nanométrique.
    On laisse sous agitation pendant 5 minutes.
    On introduit ensuite dans le Becher la solution de liant préalablement préparée, puis on ajoute de 1 à 5 ml d'une solution de tensioactif (ester de sucre).
    On agite pendant 5 minutes.
    On ajoute enfin de 10 à 60 ml du deuxième solvant (l'heptane), on agite puis on évacue les eaux-mères.
    On pourra recommencer le rinçage à l'heptane une ou deux fois puis on récupère la composition sur un buchner. On essore quelques minutes puis on récupère la composition enrobée qui peut être stockée.
    On a conduit des essais permettant de comparer la substance pyrotechnique ainsi obtenue avec le KDNBF seul, et avec une composition enrobée et associant le KDNBF avec de l'aluminium micrométrique (granulométrie comprise entre 40 microns et 80 microns).
    Cette dernière composition a été préparée en mettant en oeuvre le même procédé que celui décrit ci dessus.
    On a ainsi tout d'abord vérifié que le KDNBF enrobé d'aluminium nanométrique était conducteur alors que le KDNBF associé à l'aluminium micrométrique était isolant (tout comme le KDNBF seul).
    Cela s'explique par le fait que le KDNBF ne peut pas être enrobé par l'aluminium micrométrique. La composition obtenue est plutôt proche d'un mélange à sec des deux produits dans lequel il n'y a pas de chemins conducteurs au travers des particules d'aluminium.
    On a également réalisé des essais de comportement des substances pyrotechniques aux décharges électriques.
    On a pour cela réalisé des décharges capacitives à l'aide d'un montage associant une capacité et une résistance.
    Ce test classique est conduit suivant le mode opératoire suivant : une quantité de substance pyrotechnique d'environ 15 mm3 est disposée dans un godet conducteur. Une aiguille est disposée au-dessus de la substance (sans contact). On applique entre le godet contenant la substance pyrotechnique et l'aiguille la décharge d'un condensateur d'une capacité de 1000 pF chargé sous 25 kV avec une résistance de 10 kilo Ohms en série.
    On a mesuré la tension à laquelle différents échantillons de la substance pyrotechnique se trouvaient initiés. Le tableau ci dessous résume les résultats des essais :
    Substance testée Tension du seuil d'initiation moyen (kilo Volts)
    KDNBF seul pulvérulent    2,88 k V
    KDNBF (79%) alu nanométrique (18%) liant (3%)    3,41 k V
    KDNBF (79%) alu micrométrique (18%) liant (3%)    Les lots ne sont pas homogènes
       Valeur variable de 2,88 kV à non initiation (on a que de l'aluminium)
    On constate que la substance pyrotechnique selon l'invention a un seuil initiation plus élevé. Sa sensibilité aux décharges électriques est donc moindre.
    La substance pyrotechnique mettant en oeuvre de l'aluminium micrométrique n'est pas homogène d'un lot à l'autre. Les résultats ne sont pas reproductibles pour une telle substance. Le seuil varie de 2,88 kV (KDNBF seul) à la non-initiationn (aluminium seul).
    On a également réalisé des essais de comportement des substances pyrotechniques à la friction.
    On a pour cela réalisé des essais de friction avec l'appareil Julius Peters (cet essai est décrit dans le mode opératoire GEMO FA-500- A-1).
    D'une façon classique, un échantillon de l'ordre de 10 mg de la substance pyrotechnique à tester est déposé sous forme d'un petit tas au milieu d'une plaquette de céramique rugueuse. Cette plaquette est alors fixée sur le chariot mobile de l'appareil qui pourra lui imprimer un mouvement linéaire de vitesse et d'amplitude reproductibles.
    Sur la plaquette vient frotter un poinçon cylindrique à extrémité bombée (réalisé dans la même céramique que la plaquette). Ce poinçon reçoit par l'intermédiaire d'un fléau de balance une force verticale connue qui peut prendre un certain nombre de valeurs. C'est l'expression de la force appliquée qui provoque une réaction certaine de l'échantillon qui caractérisera la sensibilité de la substance à la friction linéaire. On a déterminé ainsi l'effort minimal conduisant au non-fonctionnementt de dix échantillons.
    Le tableau ci dessous résume les résultats des essais :
    Substance testée Sensibilité à la friction
    KDNBF seul pulvérulent    10 non-fonctionnements pour un effort de 600 g
    KDNBF (79%) alu nanométrique (18%) liant (3%)    10 non-fonctionnements pour un effort de 1,2 kg
    KDNBF (79%) alu micrométrique (18%) liant (9%)    Les lots ne sont pas homogènes
       Résultats non exploitables. Du fonctionnement à 600 g au non-fonctionnement (uniquement de l'aluminium
    On constate que la substance pyrotechnique selon l'invention résiste beaucoup mieux à la friction que le KDNBF seul. En effet il faut un effort supérieur à 1,2 kg pour obtenir l'initiation. Un tel comportement est dû à une amélioration de la surface externe du grain (lissage assuré par le matériau nanométrique).
    La substance pyrotechnique mettant en oeuvre de l'aluminium micrométrique n'étant pas homogène d'un lot à l'autre, les résultats des essais de friction sont très variables. Une telle composition n'est pas reproductible.
    Par ailleurs on a pu vérifier que les caractéristiques détoniques de la substance pyrotechnique selon l'invention ne sont pas dégradées par l'enrobage avec l'aluminium nanométrique.
    On pourra réaliser avec le même procédé des compositions associant :
    Exemple 2
    • 80 % en masse d'azoture d'argent,
    • 20% d'aluminium nanométrique,
    • de la nitrocellulose dans une proportion de 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique.
    Exemple 3
    • 70 % en masse de styphnate de plomb,
    • 30% d'aluminium nanométrique,
    • de la nitrocellulose dans une proportion de 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique.

    Claims (21)

    1. Substance pulvérulente, et notamment substance pyrotechnique, caractérisée en ce qu' elle comporte au moins un premier matériau formé de grains (2) enrobés par une couche de liant (3) incorporant des granules (4) d'un second matériau de granulométrie nanométrique.
    2. Substance pulvérulente selon la revendication 1, caractérisé en ce que la granulométrie du matériau nanométrique est comprise entre 50 et 100 nanomètres.
    3. Substance pulvérulente selon une des revendications 1 ou 2, caractérisé en ce que le second matériau est constitué par l'aluminium.
    4. Substance pulvérulente selon une des revendications 1 ou 2, caractérisé en ce que le second matériau est constitué par le silicium.
    5. Substance pulvérulente selon une des revendications 1 à 4, caractérisé en ce que le liant est choisi parmi les matériaux suivants : nitrocellulose, polyfluorure de vinylidène (PVDF), alcool polyvinylique, copolymère de chlorofluoroéthylène, polytétrafluoréthylène, copolymère chloroacétate de vinyle (CVA).
    6. Substance pulvérulente selon une des revendications 1 à 5, caractérisé en ce qu'elle comprend de 95% à 60% en masse d'un premier matériau pyrotechnique, de 5 à 40 % en masse d'aluminium nanométrique et un liant dans une proportion de 0,5% à 3% de la masse globale du mélange matériau pyrotechnique / aluminium nanométrique.
    7. Substance pulvérulente selon une des revendications 1 à 6, caractérisé en ce le premier matériau pyrotechnique est un oxydant.
    8. Substance pulvérulente selon une des revendications 1 à 6, caractérisé en ce le premier matériau pyrotechnique est un explosif secondaire.
    9. Substance pulvérulente selon une des revendications 1 à 6, caractérisé en ce le premier matériau pyrotechnique est un explosif primaire.
    10. Substance pulvérulente selon la revendication 9, caractérisé en ce le premier matériau pyrotechnique est choisi parmi les matériaux suivants : sels de dinitrobenzofuroxane (sels de sodium, de potassium, de Césium, de Baryum ou de Rubidium), azoture de plomb, azoture d'argent, diazodinitrophénol, styphnate de plomb.
    11. Substance pulvérulente selon la revendication 10, caractérisé en ce qu'elle comprend :
      60 à 95 % en masse de dinitrobenzofuroxane de potassium (KDNBF),
      5 à 40% en masse d'aluminium nanométrique,
      un liant dans une proportion de 0,5 à 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique.
    12. Substance pulvérulente selon la revendication 11, caractérisé en ce qu'elle comprend :
      79% en masse de dinitrobenzofuroxane de potassium (KDNBF),
      18% en masse d'aluminium nanométrique,
      3% en masse de nitrocellulose.
    13. Substance pulvérulente selon la revendication 10, caractérisé en ce qu'elle comprend :
      60 à 95 % en masse d'azoture d'argent,
      5 à 40% d'aluminium nanométrique,
      un liant dans une proportion de 0,5 à 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique.
    14. Substance pulvérulente selon la revendication 13, caractérisé en ce qu'elle comprend :
      80 % en masse d'azoture d'argent,
      20% d'aluminium nanométrique,
      de la nitrocellulose dans une proportion de 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique.
    15. Substance pulvérulente selon la revendication 10, caractérisé en ce qu'elle comprend :
      60 à 95 % en masse de styphnate de plomb,
      5 à 40% d'aluminium nanométrique,
      un liant dans une proportion de 0,5 à 3% de la masse globale du mélange matériau pyrotechnique/aluminium nanométrique.
    16. Substance pulvérulente selon la revendication 15, caractérisé en ce qu'elle comprend :
      70 % en masse de styphnate de plomb,
      30% d'aluminium nanométrique,
      de la nitrocellulose dans une proportion de 3% de la masse globale du mélange matériau pyrotechnique / aluminium nanométrique.
    17. Procédé de préparation d'une substance pulvérulente, notamment d'une substance pyrotechnique, comportant au moins un premier matériau formé de grains enrobés par une couche de liant incorporant des granules d'un second matériau de granulométrie nanométrique, procédé caractérisé par les étapes suivantes :
      on prépare une solution du liant dans un premier solvant de ce dernier,
      on prépare par ailleurs un bain de liquide support non miscible avec le premier solvant,
      on introduit dans le bain un premier matériau à enrober tout en agitant pour assurer une répartition homogène des grains de ce matériau dans le bain,
      on introduit un second matériau de granulométrie nanométrique dans le bain tout en maintenant l'agitation,
      on introduit la solution de liant dans le bain,
      on introduit un tensioactif dans le bain,
      après agitation on lave au moins une fois avec un deuxième solvant approprié permettant d'éliminer le premier solvant du liant,
      on essore et/ou sèche la substance pulvérulente obtenue.
    18. Procédé de préparation selon la revendication 17, caractérisé en ce que le liquide support est l'huile de silicone, le liant est la nitrocellulose et le premier solvant le méthyléthylcétone.
    19. Procédé de préparation selon la revendication 18, caractérisé en ce que le tensioactif est un ester de sucre.
    20. Procédé de préparation selon une des revendications 17 à 19, caractérisé en ce que le premier matériau est un explosif primaire détonant ou déflagrant.
    21. Procédé de préparation selon une des revendications 17 à 20, caractérisé en ce que le deuxième matériau nanométrique est constitué par de l'aluminium.
    EP04291798.9A 2003-07-25 2004-07-15 Substance pyrotechnique et procédé de fabrication d'une telle substance Expired - Lifetime EP1500639B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0309260A FR2857963B1 (fr) 2003-07-25 2003-07-25 Substance pulverulente et procede de fabrication d'une telle substance.
    FR0309260 2003-07-25

    Publications (3)

    Publication Number Publication Date
    EP1500639A2 true EP1500639A2 (fr) 2005-01-26
    EP1500639A3 EP1500639A3 (fr) 2011-11-30
    EP1500639B1 EP1500639B1 (fr) 2014-03-26

    Family

    ID=33484710

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP04291798.9A Expired - Lifetime EP1500639B1 (fr) 2003-07-25 2004-07-15 Substance pyrotechnique et procédé de fabrication d'une telle substance

    Country Status (2)

    Country Link
    EP (1) EP1500639B1 (fr)
    FR (1) FR2857963B1 (fr)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2905882A1 (fr) * 2006-09-14 2008-03-21 Saint Louis Inst Procede de fabrication de micro et/ou nanothermites et nanothermites associees.
    WO2009081048A2 (fr) * 2007-12-19 2009-07-02 Snpe Materiaux Energetiques Desensibilisation par enrobage de cristaux de substances energetiques explosives; cristaux de telles substances enrobes; materiaux energetiques.

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2019143865A1 (fr) * 2018-01-18 2019-07-25 Armtec Defense Products Co. Procédé de fabrication de matériaux pyrotechniques et technologie associée

    Citations (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1105784B (de) * 1960-02-06 1961-04-27 Deutsch Franz Forsch Inst Verfahren zur Herstellung leitfaehiger Initialsprengstoffe fuer elektrische Zuender
    FR2031677A5 (en) * 1969-02-04 1970-11-20 France Etat Explosive mixtures contg metals prepn
    US3652350A (en) * 1969-06-23 1972-03-28 Hi Shear Corp Method of blending pyrotechnic mixtures
    US3834955A (en) * 1972-03-10 1974-09-10 Ici Australia Ltd Coated ammonium nitrate
    EP0220617A2 (fr) * 1985-10-25 1987-05-06 MERCK PATENT GmbH Pigments floconneux colorés
    US4994125A (en) * 1989-05-08 1991-02-19 Olin Corporation Electric primer with intrinsic conductive mix
    FR2664160A1 (fr) * 1990-07-06 1992-01-10 Pola Chem Ind Inc Produit cosmetique contenant un agent colorant de base, agent colorant de base et son procede de production.
    DE4117718C1 (en) * 1991-05-30 1992-07-02 Dynamit Nobel Ag, 5210 Troisdorf, De Surface coating prim. and/or sec. explosives with flame extinguishable material - by homogeneously treating with nonionic surfactant liq., contacting with material and blending
    EP0800118A1 (fr) * 1996-04-01 1997-10-08 Fuji Xerox Co., Ltd. Particules de support pour révélateurs pour le développement d'images latentes électrostatiques, procédé pour sa préparation, agent de développement, et procédé de production d'image latente, électrostatique et dispositif de formation d'images
    US5750921A (en) * 1997-07-07 1998-05-12 Chan; May L. Waste-free method of making molding powder
    US5879079A (en) * 1997-08-20 1999-03-09 The United States Of America As Represented By The Administrator, Of The National Aeronautics And Space Administration Automated propellant blending
    WO2000044689A2 (fr) * 1999-01-29 2000-08-03 Cordant Technologies, Inc. Preparation anhydre de granules allumeurs destinee aux processus d'extrusion sans eau
    US20020053377A1 (en) * 1999-11-23 2002-05-09 Joe A. Martin Variable burn-rate propellant
    DE10142726A1 (de) * 2000-09-01 2002-05-29 Trw Inc Selbstzündungsmaterial für eine Fahrzeuginsassenschutzvorrichtung

    Patent Citations (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1105784B (de) * 1960-02-06 1961-04-27 Deutsch Franz Forsch Inst Verfahren zur Herstellung leitfaehiger Initialsprengstoffe fuer elektrische Zuender
    FR2031677A5 (en) * 1969-02-04 1970-11-20 France Etat Explosive mixtures contg metals prepn
    US3652350A (en) * 1969-06-23 1972-03-28 Hi Shear Corp Method of blending pyrotechnic mixtures
    US3834955A (en) * 1972-03-10 1974-09-10 Ici Australia Ltd Coated ammonium nitrate
    EP0220617A2 (fr) * 1985-10-25 1987-05-06 MERCK PATENT GmbH Pigments floconneux colorés
    US4994125A (en) * 1989-05-08 1991-02-19 Olin Corporation Electric primer with intrinsic conductive mix
    FR2664160A1 (fr) * 1990-07-06 1992-01-10 Pola Chem Ind Inc Produit cosmetique contenant un agent colorant de base, agent colorant de base et son procede de production.
    DE4117718C1 (en) * 1991-05-30 1992-07-02 Dynamit Nobel Ag, 5210 Troisdorf, De Surface coating prim. and/or sec. explosives with flame extinguishable material - by homogeneously treating with nonionic surfactant liq., contacting with material and blending
    EP0800118A1 (fr) * 1996-04-01 1997-10-08 Fuji Xerox Co., Ltd. Particules de support pour révélateurs pour le développement d'images latentes électrostatiques, procédé pour sa préparation, agent de développement, et procédé de production d'image latente, électrostatique et dispositif de formation d'images
    US5750921A (en) * 1997-07-07 1998-05-12 Chan; May L. Waste-free method of making molding powder
    US5879079A (en) * 1997-08-20 1999-03-09 The United States Of America As Represented By The Administrator, Of The National Aeronautics And Space Administration Automated propellant blending
    WO2000044689A2 (fr) * 1999-01-29 2000-08-03 Cordant Technologies, Inc. Preparation anhydre de granules allumeurs destinee aux processus d'extrusion sans eau
    US20020053377A1 (en) * 1999-11-23 2002-05-09 Joe A. Martin Variable burn-rate propellant
    DE10142726A1 (de) * 2000-09-01 2002-05-29 Trw Inc Selbstzündungsmaterial für eine Fahrzeuginsassenschutzvorrichtung

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2905882A1 (fr) * 2006-09-14 2008-03-21 Saint Louis Inst Procede de fabrication de micro et/ou nanothermites et nanothermites associees.
    WO2009081048A2 (fr) * 2007-12-19 2009-07-02 Snpe Materiaux Energetiques Desensibilisation par enrobage de cristaux de substances energetiques explosives; cristaux de telles substances enrobes; materiaux energetiques.
    WO2009081048A3 (fr) * 2007-12-19 2010-04-08 Snpe Materiaux Energetiques Desensibilisation par enrobage de cristaux de substances energetiques explosives; cristaux de telles substances enrobes; materiaux energetiques.
    JP2011506262A (ja) * 2007-12-19 2011-03-03 エスエヌペーウー マテリオー エネルジェティク 爆発エネルギー材の複数の結晶にコーティングを施すことにより感度を抑制する方法、このような物質のコーティングが施された結晶、及びエネルギー材

    Also Published As

    Publication number Publication date
    FR2857963A1 (fr) 2005-01-28
    EP1500639A3 (fr) 2011-11-30
    EP1500639B1 (fr) 2014-03-26
    FR2857963B1 (fr) 2006-09-08

    Similar Documents

    Publication Publication Date Title
    US9399602B2 (en) Processing explosives
    FR2584066A1 (fr) Utilisation du 5-oxo 3-nitro, 1,2,4-triazole comme substance explosive et compositions pyrotechniques contenant du 5-oxo 3-nitro 1,2,4-triazole.
    EP0180488A1 (fr) Générateur de gaz ultrarapide à sécurité renforcée
    US3181463A (en) Explosive device containing charge of elongated crystals and an exploding bridgewire
    EP1500639B1 (fr) Substance pyrotechnique et procédé de fabrication d'une telle substance
    EP0125166A1 (fr) Composition explosive moulable à froid et son procédé de préparation
    JP3860534B2 (ja) 水性接着剤の使用による電気火工イニシエータの製造方法
    EP2819776A1 (fr) Procédé de fabrication de nanoparticules par détonation
    Kohga Burning characteristics of AP/HTPB composite propellants prepared with fine porous or fine hollow ammonium perchlorate
    FR2665894A1 (fr) Alpha- et beta-octogenes sous forme granulee et stabilisee.
    IL202673A (en) Pyrotechnic priming containing porous material
    EP0814069B1 (fr) Composition explosive fusionnable / coulable et à vulnérabilité réduite
    EP2231317A2 (fr) Desensibilisation par enrobage de cristaux de substances energetiques explosives; cristaux de telles substances enrobes; materiaux energetiques.
    EP0076210B1 (fr) Initiateur pyrotechnique électrique à effet Joule
    RU2637016C1 (ru) Способ изготовления термостойких светочувствительных взрывчатых составов и светодетонатор на их основе
    EP1101076B1 (fr) Procede de mise en oeuvre d'une substance pyrotechnique et initiateur pyrotechnique obtenu avec un tel procede
    CA1187705A (fr) Composition pyrotechnique coulable du type fumigene a flamme coloree ou non comprenant un liant chlore
    EP1584610A2 (fr) Composition explosive
    EP3953317B1 (fr) Nouveau matériau energétique composite et son procédé de fabrication
    WO2010040946A1 (fr) Compositions explosives denses, chargements explosifs denses et munitions les renfermant
    EP4479364A1 (fr) Procédé d'obtention de pâtes d'allumage en mélangeur à résonance acoustique
    EP4098642B1 (fr) Composition explosive fusible/coulable et son procede de fabrication
    Xu et al. Effect of purity on the properties of ultrafine HNS
    WO2024062199A1 (fr) Chargements combustibles adherant a la paroi interne d'une structure combustible contenant un chargement propulsif
    WO2022008852A1 (fr) Combinaison détonante, relais pour détonateur comprenant une telle combinaison détonante et détonateur comprenant un tel relais

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    17P Request for examination filed

    Effective date: 20050525

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: NEXTER MUNITIONS

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    RIC1 Information provided on ipc code assigned before grant

    Ipc: C06B 45/30 20060101ALI20111025BHEP

    Ipc: C06B 21/00 20060101ALI20111025BHEP

    Ipc: C06B 45/20 20060101AFI20111025BHEP

    Ipc: C06C 7/00 20060101ALI20111025BHEP

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20130516

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    INTG Intention to grant announced

    Effective date: 20131018

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: REF

    Ref document number: 658882

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20140415

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 602004044675

    Country of ref document: DE

    Effective date: 20140508

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MK05

    Ref document number: 658882

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20140326

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: VDEP

    Effective date: 20140326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140626

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    Ref country code: PL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140728

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 602004044675

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140715

    26N No opposition filed

    Effective date: 20150106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 602004044675

    Country of ref document: DE

    Effective date: 20150106

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20140715

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140627

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140731

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

    Effective date: 20040715

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20140326

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20200623

    Year of fee payment: 17

    Ref country code: CH

    Payment date: 20200623

    Year of fee payment: 17

    Ref country code: CZ

    Payment date: 20200626

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20200624

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20200622

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 602004044675

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20210715

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210731

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210715

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20220201

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210731

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20210715