[go: up one dir, main page]

EP1490013B1 - Methods for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising hydroxyurea - Google Patents

Methods for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising hydroxyurea Download PDF

Info

Publication number
EP1490013B1
EP1490013B1 EP03716412A EP03716412A EP1490013B1 EP 1490013 B1 EP1490013 B1 EP 1490013B1 EP 03716412 A EP03716412 A EP 03716412A EP 03716412 A EP03716412 A EP 03716412A EP 1490013 B1 EP1490013 B1 EP 1490013B1
Authority
EP
European Patent Office
Prior art keywords
cell
oligonucleotide
cells
nucleic acid
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03716412A
Other languages
German (de)
French (fr)
Other versions
EP1490013A4 (en
EP1490013A2 (en
Inventor
Eric B. Kmiec
Hetal Parekh-Olmedo
Erin E. Brachman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Delaware
Original Assignee
University of Delaware
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Delaware filed Critical University of Delaware
Publication of EP1490013A2 publication Critical patent/EP1490013A2/en
Publication of EP1490013A4 publication Critical patent/EP1490013A4/en
Application granted granted Critical
Publication of EP1490013B1 publication Critical patent/EP1490013B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This invention relates to oligonucleotide-directed repair or alteration of genetic information and methods, for enhancing the efficiency of such alteration.
  • oligonucleotides and reasonably short polynucleotides have been described for use in the targeted sequence alteration of DNA, including (i) internally duplexed chimeric RNA-DNA oligonucleotides that fold into a double-stranded, double hairpin conformation, (ii) bifunctional oligonucleotides that include a triplexing domain tethered to a repair domain, and (iii) chemically modified, single-stranded oligonucleotides that have an internally unduplexed DNA correction domain and lack both hairpins and triplexing domains.
  • Various of these oligonucleotides have been shown to effect targeted alteration of single base pairs as well as to introduce frameshift alterations in cells and cell-free extracts from a variety of host organisms, including bacteria, fungi, plants, and animals.
  • HDAC histone deacetylase
  • HDAC inhibitors have also been suggested to affect gene therapy agents.
  • WO 00/23567 discloses methods of promoting stem cell self-renewal that include exposure of a population of stem cells, particularly hematopoietic stem cells, to an effective dose of an HDAC inhibitor, particularly trichostatin A, trapoxin, or chlamydocin.
  • an HDAC inhibitor particularly trichostatin A, trapoxin, or chlamydocin.
  • at least one transgene is introduced using retroviral mediated transfer into cells treated with an HDAC inhibitor.
  • stem cells are genetically modified using a polynucleotide and treatment with an HDAC inhibitor.
  • WO 00/51424 discloses methods of homologous recombination in cultured non-embryonic stem cells for use as nuclear donors to produce genetically modified animals.
  • the technique was used to insert genes, e.g., a marker gene and a transgene, at different loci using 5' and 3' regions that contain between 1.8 and 12 kb of homology at the flanking regions of an insert locus in the chromosome.
  • Agents inhibiting histone deacetylation or factors otherwise stimulating transcription at the target locus are suggested to enhance this homologous recombination process.
  • WO 00/24917 discloses modification of cellular DNA in vertebrate cells by homologous pairing at preselected locations using parvoviral vectors, including vectors based on adeno-associated virus (AAV).
  • the vectors of this technique include a DNA sequence that is substantially identical to a target locus and all or part of at least one parvoviral inverted terminal repeated (ITR) sequence or equivalent.
  • ITR parvoviral inverted terminal repeated
  • agents disclosed to treat target cells are histone deacetylase inhibitors, such as sodium butyrate and trichostatin A.
  • HDAC inhibitors have not, however, been suggested or disclosed to increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • Redo encodes an exonuclease (exo) that binds to the broken ends of double-stranded DNA and degrades one of the strands in the 5' to 3' direction, leaving a 3' single-stranded overhang.
  • Red ⁇ encodes a single-stranded DNA binding protein (bet) that, in combination with the bacterial RecA protein, melts duplex DNA at a site containing sequence complementary to the exposed 3' end and promotes strand invasion and annealing of the single-strand overhang into the complementary duplex.
  • Red recombination is facilitated by the lambda protein called "Gam” which inhibits the bacterial RecBCD exonuclease, an enzyme that degrades duplex DNA with exposed ends.
  • WO 02/14495 discloses methods for cloning DNA molecules and altering eukaryotic genes in cells having DNA encoding beta protein under the control of a derepressible promoter.
  • the induced beta protein promotes homologous recombination between nucleic acids in the cell, which nucleic acids may be intrachromosomal or extrachromosomal.
  • This publication also discloses methods for inducing homologous recombination using single-stranded DNA molecules by introducing into a cell DNA capable of undergoing homologous recombination and beta protein.
  • the application further discloses bacterial cells that promote efficient homologous recombination, which bacteria contain one or more genes from a defective lambda prophage.
  • the this publication states that at least one of the experiments used to describe the invention did not work.
  • references and international patent publication demonstrate that lambda Red gene products, and in particular beta protein, can be used in bacteria to efficiently alter DNA sequences by homologous recombination using double-stranded and single-stranded oligonucleotides.
  • the references neither demonstrate nor suggest that DNA can be altered efficiently using single- or double-stranded oligonucleotides by mechanisms other than homologous recombination, and do not suggest that lambda phage proteins can be used to increase the efficiency of nucleic acid sequence alteration in non-bacterial cells by any mechanism.
  • HU Hydroxyurea
  • HU has been used to increase the efficiency of retroviral-mediated gene transfer into hematopoietic stem cells. Retroviral integration is most efficient in actively cycling cells. The efficiency of this retroviral transduction is enhanced by the presence of HU in the growth medium used to prepare the target cells. See, e.g., Uchida et al., U.S. Pat. No. 5,928,638 . It is believed that the effect of HU is due to its ability to switch quiescent, GO phase, cells into the more active G1/S/G2 and M phases, giving a population enriched in actively cycling cells.
  • HU also has been used with adeno-associated virus (AAV) vectors. Alexander et al., U.S. Pat. No. 5,834,182 . Like retroviral vectors, AAV vectors act by stably integrating into target cell's chromosome. Tal, J., J. Biomed. Sci. 7:279-291 (2000 ). As with retroviral transduction; AAV transduction is reported to be more efficient when target cells are pre-treated with HU.
  • AAV adeno-associated virus
  • HU has been used to increase the efficiency of nuclear transfer in transgenesis approaches in which cultured cells are first targeted by homologous recombination, and the altered nucleus than transferred. HU is used to synchronize cells prior to donor nucleus isolation, increasing the efficiency of the nuclear transfer process. Colman et al., WO 00/51424 .
  • HU has not, however, been suggested or disclosed to be useful in increasing the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • methods, compositions, and kits that can be used to increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in eukaryotic cells, such as yeast and mammalian cells, and particularly human cells.
  • the present invention solves these and other needs in the art by providing, in a first aspect, improved ex vivo or in vitro methods of oligonucleotide-mediated targeted nucleic acid sequence alteration.
  • the methods which increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration, comprise combining a target nucleic acid in the presence of cellular repair proteins with a sequence-altering targeting oligonucleotide, and first contacting the cells having said cellular repair proteins with hydroxyurea.
  • the target nucleic acid and sequence-altering oligonucleotide may be combined ex vivo or in vivo.
  • one or more of the cellular repair proteins is a purified protein, wherein purified intends that the protein is at a higher concentration relative to nonrepair proteins than is found naturally in the cell from which it is drawn.
  • purified cellular repair proteins may be separately purified, or purified collectively,
  • the cellular repair proteins are present in a cell-free protein extract.
  • the cellular repair proteins are present within an intact cell, either cultured ex vivo or within a living organism.
  • the cellular repair proteins may be from a prokaryotic or eukaryotic cell, including E. coli cell, yeast cell, such as Saccharomyces cerevisiae, Ustilago maydis, or Candida albicans, a plant cell, or an animal cell, such as a mammalian cell, including mouse, hamster, rat, and monkey cell, and further including human cells.
  • the human cell may be selected, for example, from the group consisting of liver cell, lung cell, colon cell, cervical cell, kidney cell, epithelial cell, cancer cell, stem cell, hematopoietic stem cell, hematopoietic committed progenitor cell, and non-human embryonic stem cell, but is not so limited.
  • the sequence altering oligonucleotide is a chemically modified, nonhairpin, internally unduplexed oligonucleotide.
  • the oligonucleotide may, for example, be fully complementary in sequence to the sequence of a first strand of the nucleic acid target, but for one or more mismatches as between the sequences of the oligonucleotide and its complement on the target nucleic acid first strand, and possess at least one terminal modification.
  • the oligonucleotide has an internally unduplexed domain of at least 8 contiguous deoxyribonucleotides, and the one or more mismatches are positioned exclusively in the oligonucleotide DNA domain and at least 8 nucleotides from the oligonucleotide's 5' and 3' termini.
  • the terminal modification is selected from the group consisting of at least one terminal locked nucleic acid (LNA), at least one terminal 2'-O-Me base analog, and at least one, two, three or more terminal phosphorothioate linkages, and the oligonucleotide is 17 -121 nucleotides in length, often no more than 74 nucleotides in length.
  • LNA terminal locked nucleic acid
  • the oligonucleotide is 17 -121 nucleotides in length, often no more than 74 nucleotides in length.
  • the target may be double-stranded DNA, such as genomic DNA, including genomic DNA in a chromosome.
  • the chromosome may be a natural or artificial chromosome.
  • the DNA target is episomal.
  • the target nucleic acid is the nontranscribed strand of a double-stranded genomic DNA. In others, the target nucleic acid is the transcribed strand.
  • compositions for oligonucleotide-mediated targeted nucleic acid sequence alteration are also described in here.
  • compositions comprise a sequence-altering oligonucleotide which is capable, when combined in the presence of cellular repair proteins with a substantially complementary target nucleic acid, of effecting targeted sequence alteration wherein; and either (i) cellular repair proteins, the cellular proteins derived from a cell prior-contacted with an HDAC inhibitor or hydroxyurea, or (ii) lambda beta protein.
  • the cellular repair proteins of the composition may be purified, present in a cell-free protein extract, or present within an intact cell, either cells present in culture or within an intact animal.
  • composition may additionally, or in the alternative, comprise trichostatin A, cellular repair proteins, or hydroxyurea.
  • the kit may comprise an oligonucleotide, particularly a sequence-altering oligonucleotide, such as a chemically modified, internal unduplexed, nonhairpin oligonucleotide, and one or more of trichostatin A, lambda beta protein, or hydroxyurea, separately packaged therefrom.
  • a sequence-altering oligonucleotide such as a chemically modified, internal unduplexed, nonhairpin oligonucleotide, and one or more of trichostatin A, lambda beta protein, or hydroxyurea, separately packaged therefrom.
  • the kit may comprise an oligonucleotide, particularly a sequence-altering oligonucleotide, such as a chemically modified, internally unduplexed, nonhairpin oligonucleotide, and cellular repair proteins, the cellular proteins derived from a cell prior-contacted with an HDAC inhibitor or hydroxyurea and packaged separately therefrom.
  • oligonucleotide particularly a sequence-altering oligonucleotide, such as a chemically modified, internally unduplexed, nonhairpin oligonucleotide, and cellular repair proteins, the cellular proteins derived from a cell prior-contacted with an HDAC inhibitor or hydroxyurea and packaged separately therefrom.
  • kits may further comprise lambda beta protein.
  • Kits may comprise at least one protein from the-RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group and may additionally comprise trichostatin A, lambda beta protein, or hydroxyurea, optionally with an oligonucleotide having sequence alteration activity.
  • kits to preparing sequence altering oligonucleotides having one or more locked nucleic acid (LNA) residues may comprise a template-independent single-strand polymerise, such as calf thymus terminal deoxynucleotidyl transferase; LNA monomers having 5'-triphosphates; and trichostatin A, lambda beta protein, or hydroxyurea.
  • the kits may comprise a water soluble carbodiimide composition; an imidazole composition; LNA monomers having a nucleophilic group; and Trichostatin A, lambda beta protein, or hydroxyurea.
  • FIG. 1 Genetic readout system for correction of a point mutation in plasmid pK s m4021.
  • a mutant kanamycin gene harbored in plasmid pK s m4021 is the target for correction by oligonucleotides.
  • the mutant G is converted to a C by the action of the oligonucleotide.
  • Corrected plasmids confer resistance to kanamycin in E. coli (DH10B) after electroporation leading to the genetic readout and colony counts.
  • the sequence of chimeric, RNA-DNA double-hairpin oligonucleotide KanGG is shown (SEQ ID NO: 1).
  • FIG. 2 Hygromycin-eGFP target plasmids.
  • Plasmid pAURHYG(rep)eGFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds).
  • Plasmid pAURHYG(ins)eGFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter.
  • Plasmid pAURHYG( ⁇ )eGFP contains a deletion mutation removing a single nucleotide at codon 46, of the Hygromycin B coding sequence (cds). The sequence of the normal allele, the target (existing mutant), and desired alteration is shown for each o the three plasmids.
  • FIG. 3 Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG.
  • the sequence of HygE3T/25 corresponds to SEQ ID NO: 7
  • the sequence of HygE3T/74T corresponds to SEQ ID NO: 8
  • the sequence of HygE3T/74NT corresponds to SEQ ID NO: 9
  • the sequence of HygGG/Rev corresponds to SEQ ID NO: 10
  • the sequence of Kan70T corresponds to SEQ ID NO: 11
  • the sequence of Hyg10 corresponds to SEQ ID NO: 20.
  • FIG. 4 pAURNeo(-)FIAsH TMplasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the nucleic acid sequence alteration event by fluorescence.
  • the sequences of the Neo/Kan target mutant and its complement correspond to SEQ ID NO: 12 and SEQ ID NO: 13, the converted sequence and its complement correspond to SEQ ID NO: 14 and SEQ ID NO: 15 and the FIAsHTM peptide sequence corresponds to SEQ ID NO: 16.
  • FIG. 5 Fluorescent microscopy of targeting in the FIAsHTM system. This figure shows confocal microscopy of yeast strains before and after transfection by DNA/RNA chimeric oligonucleotide kanGGrv. Converted yeast cells are indicated by bright green fluorescence.
  • A Upper left: wild type, nontargeted. Upper right: ⁇ rad52, nontargeted.
  • C Lower left: wild type, targeted.
  • D Lower right: ⁇ rad52, targeted.
  • FIG. 6 pYESHyg(x)eGFP plasmid.
  • This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7 , except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.
  • FIG. 7 pYN132 plasmid. This figure shows the plasmid structure including the constitutive promoter from the TPL1 gene, which directs expression of the cDNA cloned downstream.
  • FIGS. 8A and 8B Construction of pAUR101-HYG(x)eGFP plasmid.
  • FIGS. 8A and 8B illustrate the construction scheme for the pAUR101-HYG(x)eGFP integrational plasmid.
  • FIG. 9 Dual targeting protocol.
  • A Schematic diagram of the generalized strategy for dual targeting.
  • B Sequences of the hygromycin-resistance gene and its mutation. The wild-type (“wt") (SEQ ID NO: 23), mutant (SEQ ID NO: 24), and converted (SEQ ID NO: 25) sequences are shown, together with the sequence-altering oligonucleotide used to generate the conversion (“Hyg3S/74NT”) (SEQ ID NO: 9)
  • C Schematic of the YAC containing the human ⁇ -globin locus, the segment of the ⁇ -globin gene in which the alterations are made (SEQ ID NO: 26) and the oligonucleotides used to generate the nonselectable alterations: " ⁇ Thal1" (SEQ ID NO: 27) and " ⁇ Thal2" (SEQ ID NO: 28).
  • FIG.10 Dual targeting results.
  • A Efficiency of gene editing of hygromycin mutation using the dual targeting protocol. For these experiments, YAC-containing LSY678IntHyg(rep) ⁇ cells are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA.
  • B Gene editing of the human ⁇ -globin gene directed by the ⁇ Thal1 oligonucleotide, including the sequence of the altered segment before (SEQ ID NO: 29) and after (SEQ ID NO: 30) the conversion.
  • FIG. 11 Dual targeting and Rad51.
  • A Efficiency of gene editing of hygromycin mutation using the dual targeting protocol in combination with overexpression of yeast Rad51. For these experiments, YAC-containing LSY678IntHyg(rep) ⁇ cells are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA.
  • B Gene editing of the human ⁇ -globin gene directed by the ⁇ Thal2 oligonucleotide, including the sequence of the altered segment before (SEQ ID NO: 31) and after (SEQ ID NO: 32) the conversion.
  • the present invention provides in vitro or ex vivo methods for increasing the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • the methods comprise administering to a cell or tissue from a bacterium, a fungus, a plant, or an animal, including mammals, a composition comprising hydroxyurea, and concurrently, or at some time thereafter, administering to the treated cell or tissue an oligonucleotide having nucleic acid sequence alteration activity.
  • HDAC inhibitors have been used to facilitate homologous recombination and viral-mediated gene transfer
  • lambda beta protein has been shown to facilitate homologous recombination between nucleic acids in E. coli cells, which nucleic acids may be intrachromosomal or extrachromosomal
  • HU has been used to enhance the efficiency of gene targeting by viral transduction and nuclear transfer, prior to the invention described herein it was unknown and could not be predicted whether these agents could be used to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • Oligonucleotide-mediated nucleic acid sequence alteration is mediated by cellular proteins different from those that mediate homologous recombination.
  • the oligonucleotides used for oligonucleotide-mediated gene alteration typically lack structures, such as long stretches of sequence complementarity to the target, that are required for homologous recombination. And oligonucleotide-mediated nucleic acid sequence alteration does not involve the intermediation of viral proteins.
  • the genetic products resulting from oligonucleotide-mediated sequence alteration differ from those resulting from either homologous recombination or virally-mediated transduction, on the other.
  • Homologous recombination results in the replacement of large stretches of the chromosomal DNA of the target cell with sequences from a transgene supplied on an episomal DNA construct, utilizing the target cell's homologous recombination machinery to effect the required double strand breakage and rejoining.
  • Flanking sequence on the 3' and 5' regions of the transgene, designed to match sequences flanking the target insertion site, are usually extensive, e.g., between about 1.5 to 15 kb.
  • Retroviral and adeno-associated virus transduction involve infection of target cells with recombinant viral vectors, often relying on virally encoded proteins to effect integration of the virus into the host's chromosome. Robbins & Ghivizzani, Pharmacol. Ther. 80:35-47 (1998 ). Moreover, the chromosome of the target cell after such viral transduction contains an insertion of the entire, or substantial portions of the, recombinant virus, including viral vector sequences. Viral integration may be multiplicative with tandem or multiple copies of integrated virus. Integration occurs at a random spot in the host chromosome, or at a known and predetermined viral integration site. The variation in insertion site and number results in variation in transgene expression. The viral remnants inserted in the chromosome potentially can lead to adverse immune responses to expressed viral proteins and may also, depending on their site of alteration, cause neoplastic changes.
  • oligonucleotide-mediated nucleic acid sequence alteration uses different reagents and produces results different from those used in homologous recombination and viral transduction.
  • Oligonucleotide-mediated nucleic acid sequence alteration involves the use of relatively short oligonucleotides, rather than exogenously supplied genes or viral vectors, to modify genes within the target cell.
  • the host chromosomal DNA sequence is altered at only one or a few bases, at precisely defined locations within the target gene. No viral sequences or episomal remnants are introduced into the host chromosome, and no virally encoded proteins are required.
  • episomal vectors containing entire genes (or at least long portion of genes) as is required for gene targeting by homologous recombination.
  • Oligonucleotide-mediated gene alteration is mechanistically distinct from homologous recombination and viral transduction as well. Oligonucleotide-mediated gene alteration is dependent on the cellular DNA mismatch repair mechanism, a cellular pathway distinct from homologous recombination and viral transduction, involving separate genes and gene products. Lanzov, Molecular Genetics and Metabolism 68:276-282 (1999 ). For example, while homologous recombination requires the RAD52 gene product ( Kuzminov, Proc. Natl. Acad. Sci. USA 98 (15): 8461-8468 (2001 )), oligonucleotide-mediated gene alteration is more efficient in the absence of RAD52.
  • lambda beta protein could be used to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in cells other than the natural host of the lambda phage.
  • the invention provides in vitro or ex vivo methods for increasing the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • the methods comprise treating a cell or tissue from a bacterium, a fungus, a plant, or an animal with hydroxyurea, and then administering to the treated cell or tissue an oligonucleotide having nucleic acid sequence alteration activity, or treating a cell or tissue from a bacterium, a fungus, a plant.
  • the methods of the present invention can be used with any oligonucleotide having nucleic acid sequence alteration activity. All such oligonucleotides comprise at least a portion that is fully complementary in sequence to the sequence of a portion of a nucleic acid target, except for noncomplementary bases designed to direct nucleic acid sequence alteration. Thus, the oligonucleotides used in the methods of the invention have at least one base pair different from the sequence of a target gene, or have at least one base pair different from the complement of the DNA sequence of a target gene.
  • the methods of the present invention can be used with bifunctional oligonucleotides having both a triplex forming domain and repair domain, as described in Culver et al., Nat. Biotechnol. 1999 Oct;17(10):989-93 , and other types of sequence-altering triplexing oligonucleotides such as those described in U.S. Patent Nos. 6,303,376 , 5,962,426 , and 5,776,744 , the disclosures of which are incorporated herein by reference in their entireties. See also Knauert et al., Hum Mol Genet. 2001 Oct 1;10(20):2243-51 .
  • triplexing oligonucleotides bind to DNA using Hoogstein or reverse Hoogstein base-pairing rules, rather than Watson-Crick base-pairing rules
  • triplexing oligonucleotides used for oligonucleotide-mediated sequence alteration typically include one or more Watson-Crick mismatches, as compared to the target desired to be altered, within 8 nucleotides, often within 7, 6, 5, 4, 3, 2 or even 1 nucleotides of one or both of the oligonucleotide's termini.
  • the methods of the present invention can also be used with chimeric RNA-DNA double hairpin oligonucleotides, as are described, inter alia , in U.S. Patent Nos. 5,945,339 , 5,888,983 , 5,871,984 , 5,795,972 , 5,780,296 , 5,760,012 , 5,756,325 , 5,731,181 , and 5,565,350 . See also Ye et al., Mol Med Today 1998 Oct;4(10):431-7 and Richardson et al., Curr. Opin Mol Ther. 2001 Aug;3(4):327-37 for review.
  • sequence-altering chimeric oligonucleotide leads to folding of the single-stranded oligonucleotide into an internally self-duplexed form that includes two hairpins. Mismatches as compared to target are within a duplexed region.
  • the sequence-altering chimeric oligonucleotides comprise both deoxyribose and ribose containing bases, and thus contain regions of both DNA and RNA; the 2'-hydroxyl of the ribonucleotides of the oligonucleotide may be methylated.
  • Nonnatural nucleobases can be present within such chimeric oligonucleotides (and in the single-stranded, chemically modified, internally unduplexed oligonucleotides further described herein below).
  • nucleobase covers naturally occurring nucleobases as well as non-naturally occurring nucleobases.
  • nucleobases which previously have been considered “nonnaturally” occurring have subsequently been found in nature.
  • “nucleobase” includes not only the known purine and pyrimidine heterocycles, but also heterocyclic analogues and tautomers thereof.
  • nucleobases are adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N 6 -methyladenine, 7-deazaxanthine, 7-deazaguanine, N 4 ,N 4 -ethanocytosine, N 6 ,N 6 -ethano-2,6-diaminopurine, 5-methylcytosine, 5-(C 3 -C 6 )-alkynylcytosine, 5-fluorouracil; 5-bromouracil, pseudoisocytosine, 2-hydroxy-S-methyl-4-triazolopyridine, isocytosine, isoguanine, inosine and the "non-naturally occurring" nucleobases described in US Pat. No. 5,432,272 .
  • the term "nucleobase" is intended to cover each of these examples as well as analogues and
  • the methods of the present invention can also be used to increase the frequency and efficiency of oligonucleotide-mediated nucleic acid sequence alteration using chemically-modified, single-stranded, internally unduplexed oligonucleotides, as are described, inter alia, in U.S. Patent No. 6,271,360 ; international patent publications nos. WO 01/73002 , WO 01/92512 , and WO 02/10364 ; Pierce et al., Gene Ther. 10(1):24-33 (2003 ); Parekh-Olmedo et al., Chem Biol. 9(10):1073-84 (2002 ); Uu et al., Nucleic Acids Res. 30(13):2742-50 (2002 ); and Gamper et al., Nucleic Acids Res. 28(21):4332-9 (2000 ).
  • Particularly useful single-stranded chemically modified oligonucleotides are those that are 17-121 nucleotides in length and that have an internal unduplexed deoxyribonucleotide "alteration" domain, which domain is typically, but not invariably, at least 8 nucleotides in length. Mismatches as between the sequence of the oligonucleotide and its target are positioned within the internally unduplexed DNA domain, and are typically, although not invariably, at least 8 nucleotides from the oligonucleotide's 5' and 3' termini.
  • the oligonucleotide is fully complementary in sequence to the sequence of a first strand of the nucleic acid target, but for one or more mismatches as between the sequences of the deoxyribonucleotide alteration domain and its complement on the target nucleic acid first strand. Additionally, the oligonucleotide has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2'-O-Me base analog, and at least one terminal phosphorothioate linkages. Typically, at least one of the at least one modification is located at a terminus of the oligonucleotide. Often, a plurality of such modifications are present, such as 2, 3, 4 or more phosphorothioate linkages at one or both termini.
  • LNA terminal locked nucleic acid
  • 2'-O-Me base analog at least one terminal phosphorothioate linkages
  • the single-stranded chemically modified oligonucleotides differ from the "chimeric" oligonucleotides above-described by positioning the mismatch, as compared to target, within an internally unduplexed DNA domain. Furthermore, the single-stranded chemically modified oligonucleotides lack the hairpin structures found in the sequence altering chimeric oligonucleotides above-described (i.e., they are "nonhairpin" molecules).
  • LNAs locked nucleic acids
  • LNAs are bicyclic and tricyclic nucleoside and nucleotide analogues and the oligonucleotides that contain such analogues.
  • the basic structural and functional characteristics of LNAs and related analogues are disclosed in various publications and patents, including WO 99/14226 , WO 00/56748 , WO 00/66604 , WO 98/39352 , US Pat. No. 6,043,060 , and US Pat. No. 6,268,490 .
  • the general LNA structure may be described by the following formula: wherein X is selected from -O-, -S-, -N(R N *)-, -C(R 6 R 6 *)-, -O-C(R 7 R 7 *)-, -C(R 6 R 6 *)-O-, -S-C(R 7 R 7 *)-, -C(R 6 R 6 *)-S-, -N(RN*)-C(R 7 R 7 *)-, -C(R 6 R 6 *)N(R N *)-, and -C(R 6 R 6 *)-C(R 7 R 7 *)-;
  • B is selected from hydrogen, hydroxy, optionally substituted C 1-4 -alkoxy, optionally substituted C 1-4 -alkyl, optionally substituted C 1-4 -acyloxy, and the nucleobases;
  • P designates an internucleoside linkage to an adjacent monomer, or a 5'-terminal group, such
  • oligomers used in the present invention are intended to include all stereoisomers arising from the presence of any and all isomers of the individual monomer fragments as well as mixtures thereof, including racemic mixtures. Also included within the scope of the invention are variants of the general formula where B is in the ⁇ -configuration.
  • an oligomer may comprise one or more LNA(s) (which may be identical or different from one another, both with respect to the selection of substituent and with respect to selection of covalent bridging moiety) and one or more nucleosides and/or nucleoside analogues.
  • oligonucleotide means a successive chain of nucleosides connected via internucleoside linkages, however, it should be understood that a nucleobase in one or more nucleotide units (monomers) in an oligomer (oligonucleotide) may have been modified with a substituent B as defined above.
  • the oligonucleotide contains at least one LNA analog at the 3' hydroxy terminus of the oligonucleotide.
  • the internucleoside linkage may be chiral.
  • the oligomers used in the present invention are intended to include all stereoisomers arising from the presence of any and all isomers of the individual internucleoside linkages as well as mixtures thereof, including racemic mixtures.
  • LNAs contain a methylene bridge connecting the 2'-oxygen of the ribose with the 4'-carbon according to the following formula: where B is a nucleobase, and X and Y are internucleoside linkages.
  • B is a nucleobase
  • X and Y are internucleoside linkages.
  • the 2'-oxygen position is substituted with nitrogen or sulfur as shown in the following structures: where B is a nucleobase, and X and Y are internucleoside linkages.
  • the covalent bridging moiety may include more than one carbon atom and may span other positions within the ribose ring according to the following structures: where B is a nucleobase, and X and Y are internucleoside linkages.
  • oligonucleotides used for sequence alteration in the methods, compositions, and kits of the present invention may include oligomers comprising at least one nucleoside having a xylo-LNA structure as disclosed in WO 00/56748 and having the general formula: where the internucleoside linkages are designated by P and P*, and the other groups may be the substituents disclosed in WO 00/56748 .
  • Specific examples of this analogue are disclosed in WO 00/50748 with the following structural framework: where B is a nucleobase, and X and Y are internucleoside linkages.
  • nucleoside analogues that contain linkages between the 2' and 5' carbons of the ribose ring: where B is a nucleobase, and X and Y are internucleoside linkages.
  • oligomers comprising at least one nucleoside having an L-Ribo-LNA structure as disclosed in WO 00/66604 and having the general formula: where the internucleoside linkages are designated by P and P*, and the other groups may be the substituents disclosed in WO 00/66604 .
  • Specific examples of this analogue are disclosed in WO 00/66604 with the following structural framework: where B is a nucleobase, and X and Y are internucleoside linkages.
  • oligonucleotides that contain the nucleoside analogues disclosed in US Pat. No. 6,043,060 . These analogues are represented by monomer units of the general formula: where B is a pyrimidine or purine nucleic acid base, or a derivative thereof, and where, within an oligomer, the plurality of B substituents may be identical to or different from one antoher.
  • nucleosides and nucleoside analogues useful in the practice of the present invention can be performed as disclosed in WO 99/14226 , WO 00/56748 , WO 00/66604 , WO 98/39352 , US Pat. No. 6,043,060 , and US Pat. No. 6,268,490 .
  • Certain of the analogues, and synthesis services, are available commercially (Proligo, Boulder, CO, USA).
  • the invention provides an improved in vitro or ex vivo method for oligonucleotide-mediated nucleic acid sequence alteration, in which the sequence alteration is effected by combining the targeted nucleic acid in the presence of cellular repair proteins with a sequence-altering targeting oligonucleotide.
  • the improvement comprises first contacting the cells having the cellular repair proteins with hydroxyurea.
  • the method thus comprises combining the targeted nucleic acid, in the presence of cellular repair proteins, with a sequence-altering targeting oligonucleotide, and first contacting the cells having the cellular proteins with hydroxyurea.
  • sequence-altering oligonucleotide and target may be combined ex vivo, with the cellular repair proteins present within selectively enriched cells, cells in culture, or cell-free extracts.
  • the methods of the invention can be used to enhance the alteration mediated by an oligonucleotide directing any kind of alteration, including, for example, deletion, insertion or replacement of 1, 2 or 3 nucleotides in the target sequence. These altered nucleotides may be contiguous or non-contiguous to each other. Further, nucleic acid sequence alteration by oligonucleotides targeting 1, 2, or 3 multiple sequence alterations is also enhanced using the kits described herein and the methods of the instant invention. Each of such multiple mutations can include, for example, deletion, insertion or replacement of 1, 2 or 3 nucleotides in the target sequence. These altered nucleotides may be contiguous or non-contiguous to each other.
  • the multiple alterations can be directed by a single oligonucleotide or by 1, 2 or 3 separate oligonucleotides.
  • the multiple alterations are directed by a single oligonucleotide, and the multiple alterations are within 1 to 10 nucleotides of each other.
  • the methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration directed by an oligonucleotide that targets either strand of a double-stranded target nucleic acid.
  • these methods are used to enhance the efficiency of an oligonucleotide targeting actively transcribed sequences.
  • these methods are used to enhance the efficiency of an oligonucleotide targeting the non-transcribed strand of the target sequence.
  • the methods of the invention can be used to enhance the efficiency of nucleic acid sequence alteration directed by an oligonucleotide that targets genomic DNA, including nuclear and organelle chromosomal DNA, and artificial chromosomal DNA, such as yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PIACs), binary-bacterial artificial chromosomes (BiBACS), and human artificial chromosomes (HACs).
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PIACs plant artificial chromosomes
  • BiBACS binary-bacterial artificial chromosomes
  • HACs human artificial chromosomes
  • the methods of the instant invention can be used to enhance the efficiency of oligo-directed sequence alteration of other types of targets, such as isolated episomal targets, including, for example, plasmids, cosmids, phagemids, and nonintegrated viruses
  • the methods of the invention can be used to enhance the efficiency of oligonucleotide-directed targeted sequence alteration targeted to any part of a gene including, for example, an exon, an intron, a promoter, an enhancer or a 3'- or 5'-untranslated region. Further, the methods of the invention can be used to enhance the efficiency of an oligonucleotide mediated targeted sequence alteration of intragenic or intergenic sequences.
  • the methods of the present invention can be used to increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in a wide variety of cell types, or within protein extracts derived from such cell types, drawn from a wide variety of species, including both prokaryotic and eukaryotic species.
  • the methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells drawn from lower eukaryotes, such as fungal cells, including yeast cells, or within extracts from such cells, including Saccharomyces cerevisiae , Schizosaccharomyces pombe , Pichia species, such as methanolica, Ustilago maydis , and Candida species, including Candida albicans ; within insect cells or extracts thereof, such as cells (or extracts) from Drosophila melanogaster and Anopheles species; and roundworms, such as Caenorhabditis elegans.
  • lower eukaryotes such as fungal cells, including yeast cells, or within extracts from such cells, including Saccharomyces cerevisiae , Schizosaccharomyces pombe , Pichia species, such as methanolica, Ustilago maydis , and Candida species, including Candida albicans ; within insect cells or extracts thereof
  • the methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells (or extracts thereof) drawn from higher eukaryotes, including plants, such as cells (or extracts thereof) drawn from experimental model plants such as Chlamydomonas reinhardtii, Physcomitrella patens, and Arabidopsis thaliana in addition to crop plants such as cauliflower (Brassica oleracea ), artichoke ( Cynara scolymus ), fruits such as apples ( Malus, e.g. domesticus ), mangoes ( Mangifera, e.g. indica ) , banana ( Musa, e.g.
  • berries such as currant, Ribes, e.g. rubrum ), kiwifruit ( Actinidia, e.g. chinensis ), grapes ( Vitis, e.g. viniera ) , bell peppers ( Capsicum, e.g. annuum ) , cherries (such as the sweet cherry, Prunus, e.g. avium ), cucumber ( Cucumis, e.g. sativus ), melons ( Cucumis, e.g. melo ), nuts (such as walnut, Juglans, e.g. regia; peanut, Arachis hypogeae ) , orange ( Citrus , e.g.
  • peach Prunus, e.g. persica
  • pear Pyra , e.g. communis
  • plum Prunus, e.g. domestica
  • strawberry Fragaria, e.g. moschata or vesca
  • tomato Lycopersicon, e.g. esculentum
  • leaves and forage such as alfalfa ( Medicago, e.g. sativa or truncatula ) , cabbage (e.g. Brassica oleracea ) , endive ( Cichoreum, e.g. endivia ), leek ( Allium, e.g.
  • lettuce Lactuca, e.g. sativa
  • spinach Spinacia, e.g. oleraceae
  • tobacco Nicotiana, e.g. tabacum
  • roots such as arrowroot ( Maranta, e.g. arundinacea ), beet ( Beta , e.g. vulgaris ), carrot ( Daucus, e.g. carota ), cassava ( Manihot, e.g. esculenta ), turnip ( Brassica, e.g. rapa ) , radish ( Raphanus, e.g. safivus ), yam ( Dioscorea, e.g.
  • oilseeds such as beans ( Phaseolus, e.g. vulgaris ), pea ( Pisum, e.g. sativum ), soybean ( Glycine , e.g. max ), cowpea ( Vigna unguiculata ), mothbean ( Vigna aconitifolia ), wheat ( Triticum, e.g. aestivum ), sorghum ( Sorghum e.g. bicolor ), barley ( Hordeum, e.g. vulgare ), com (Zea, e.g. mays ), rice ( Oryza , e.g.
  • sativa sativa
  • rapeseed Brassica napus
  • millet Panicum sp.
  • sunflower Helianthus annuus
  • oats Avena sativa
  • chickpea Cicer, e.g. arietinum
  • tubers such as kohlrabi (Brassica, e.g. oleraceae
  • potato Solanum, e.g. tuberosum
  • fiber and wood plants such as flax ( Linum e.g. usitatissimum ), cotton ( Gossypium e.g.
  • hirsutum pine ( Pinus sp.), oak ( Quercus sp.), eucalyptus ( Eucalyptus sp.), and the like and ornamental plants such as turfgrass ( Lolium , e.g. rigidum ), petunia ( Petunia, e.g. x hybrida ), hyacinth ( Hyacinthus orientalis ), carnation ( Dianthus e.g. caryophyllus ), delphinium ( Delphinium, e.g.
  • the methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells (or extracts thereof) drawn from animals, including, for example, domestic and wild fowl, such as chickens, geese, ducks, turkeys, pheasant, ostrich and pigeon; mammals, including domestic livestock, such as horses, cattle, sheep, pigs, goats, bison; fish such as salmon, tilapia, catfish, trout and bass; mammals, including model experimental animals such as mice, rats, guinea pigs, and rabbits; domestic pets such as dogs and cats; and human beings.
  • domestic and wild fowl such as chickens, geese, ducks, turkeys, pheasant, ostrich and pigeon
  • mammals including domestic livestock, such as horses, cattle, sheep, pigs, goats, bison; fish such as salmon, tilapia, catfish, trout and bass
  • mammals including model experimental animals such as mice, rats, guin
  • the methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells (or extracts thereof) drawn from a wide variety of tissues and cell types, including somatic cells such as cells of liver, lung, colon, cervix, kidney, and epithelia, germ cells, pluripotent stem or committed progenitor cells, such as CD34 + hematopoietic stem cells (including CD34 + CD38 - cells), and non-human embryonic stem cells (ES cells).
  • somatic cells such as cells of liver, lung, colon, cervix, kidney, and epithelia
  • germ cells pluripotent stem or committed progenitor cells
  • pluripotent stem or committed progenitor cells such as CD34 + hematopoietic stem cells (including CD34 + CD38 - cells), and non-human embryonic stem cells (ES cells).
  • the invention may be practiced in all cell types except human embryonic stem cells. No such prohibitions exist at present for culture and/or genetic manipulation of murine embryonic stem cells or stem cells from other animals, and the present invention may thus be used without restriction to increase the efficiency of sequence alteration in embryonic stem cells from species other than human beings, including mice, rats, cows, sheep, goats, monkeys, apes, and cattle.
  • Each of the methods of the present invention can be combined with one or more of the other methods of the present invention, further to increase efficiency of sequence alteration.
  • the methods of the present invention can be used in conjunction with other methods for increasing the efficiency of oligo-mediated nucleic acid sequence alteration.
  • the methods of the present invention can be used to introduce sequence alterations into cells that have altered nucleic acid sequence alteration efficiency based upon increased or decreased levels or activity of at least one protein from the RAD52 epistasis group, the mismatch repair group or the nucleotide excision repair group.
  • Members of these groups include: RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, RAD59, MRE11 and XRS1 in the RAD52 epistasis group; MSH2, MSH3, MSH6 and PMS1 in the mismatch repair group; and RAD1, RAD2, RAD10, RAD23 and EXO1 in the nucleotide excision repair group.
  • RAD52 epistasis group is taken from the yeast (Saccharomyces cerevisiae) designation, but it is understood that homologs, orthologs and paralogs from other organisms, including bacteria, plants, animals and other fungi can be used in the methods of the instant invention.
  • the methods of the present invention can be used to introduce sequence alterations into cells that have reduced levels or activity of at least one protein selected from the group consisting of a homolog, ortholog or paralog of RAD1, RAD51, RAD52, RAD57 and PMS1.
  • RAD1, RAD51, RAD52, RAD57 and PMS1 a homolog, ortholog or paralog of RAD1, RAD51, RAD52, RAD57 and PMS1.
  • the methods of the present invention can be used to introduce sequence alterations into cells (or extracts thereof) that have altered nucleic acid sequence alteration efficiency based upon increased levels of at least one of the normal allelic RAD10, RAD51, RAD52, RAD54, RAD55, MRE11, PMS1 or XRS2 proteins, or with increased activity of one of these proteins. See commonly owned and copending U.S. patent application U.S. 2003/0199091 filed September 27, 2002 .
  • the methods of the present invention may also be used with methods that enhance oligonucleotide-rected nucleic acid sequence alteration by reducing the number of target nucleic acid molecules required to be screened during oligonucleotide-directed targeted nucleic acid sequence alteration.
  • such methods involve using at least a first and a second oligonucleotide, each of which is capable of directing alteration in at least a first and a second nucleic acid target, respectively.
  • At least the second oligonucleotide directs an alteration that produces a selectable phenotype, which is thereafter selected.
  • the first oligonucleotide may direct an alteration that produces a selectable phenotype
  • the first oligonucleotide directs an alteration that must be identified by screening, e.g., determining the corresponding nucleic acid sequence or assaying a non-selectable phenotype that is generated by the alteration event.
  • the dual targeting approach reduces the number of nucleic acid molecules required to be screened by at least about two-fold relative to the number that must be screened in a composition that has not previously been selected for an oligonucleotide-directed nucleic acid sequence alteration that confers a selectable phenotype.
  • the reduction can be by at least about two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold.
  • Sequence alteration by the second oligonucleotide may confer any selectable phenotype known in the art, choice of which will depend, in part, upon the host cell chosen and whether the selection is to be effected in vitro or in vivo.
  • selectable phenotypes include, e.g., antibiotic or other chemical resistance, ability to use a nutrient source, expression of a fluorescent protein, presence of an epitope or resistance to an apoptotic signal.
  • the methods of the present invention may be used in dual targeting methods, as above-described, further comprising administration of at least one purified protein in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group.
  • the method comprises administering the two oligonucleotides to a cell in which two distinct proteins are manipulated - for example, by knockout of one chromosomal gene and complementation or supplementation of a second gene product to produce increased or altered levels of the second protein.
  • the targeted cell has a knock-out mutation in the chromosomal RAD52 gene and the cell is complemented or supplemented with the RAND51 gene product expressed in trans under control of a promoter, e.g. a constitutive promoter.
  • the methods of the present invention are used in conjunction with a cell (or extract thereof) in a particular phase of the growth cycle, developmental state or cell cycle position that exhibits altered nucleic acid sequence alteration efficiency.
  • a particular phase of growth that particularly favors nucleic acid sequence alteration may be easily determined by sampling cells at multiple points during the growth cycle, for example over the course of a growth curve, and monitoring sequence alteration in those cells using the assays described herein.
  • Phases of the growth cycle that might particularly favor nucleic acid sequence alteration include, for example, lag phase, early log phase, log phase, late log phase, the transition between log and stationary phase, early stationary phase and late stationary phase.
  • these may be the S phase, M phase, G1 phase or G2 phase of the cell cycle or transition points between the phases.
  • Particular developmental phases can be similarly assayed with cells that have been induced to differentiate by, for example, hormone or other treatments, or differentiated cells isolated from a particular tissue.
  • oligonucleotides including oligonucleotide-containing compositions, used in the methods of the present invention can be introduced into cells or tissues by any technique known to one of skill in the art. Such techniques include, for example, electroporation, liposome transfer, naked nucleic acid insertion, particle bombardment and calcium phosphate precipitation.
  • the transfection is performed with a liposomal transfer compound, for example, DOTAP (N-1-(2,3-Dioleoyloxy)propyl-N,N,N-trimethylammonium methylsulfate, Boehringer-Mannheim) or an equivalent, such as LIPOFECTIN®.
  • the transfection technique uses cationic lipids.
  • transfection is performed with LipofectamineTM 2000 (Invitrogen).
  • the methods of the invention can be used with a wide range of concentration of oligonucleotides. For example, good results can be achieved with 10 nM/10 5 cells. A ratio of about 500 ng of oligonucleotide in 3 ⁇ g of DOTAP per 10 5 cells can be used.
  • the transfected cells may be cultured in different media, (including, for example, in serum-free media, media supplemented with human serum albumin, or human serum.
  • the methods of the instant invention comprising HU typically increase nucleic acid sequence alteration efficiency by at least two fold relative to the same method respectively lacking HU.
  • the increase in nucleic acid sequence alteration efficiency can also be about three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold.
  • cells may be first contacted with hydroxyurea, then the oligonucleotide combined with the target in the presence of cellular repair proteins.
  • the hydroxyurea may be contacted to the cells concurrently with combining of the oligonucleotide with the target.
  • hydroxyurea may be contacted to the cells after the oligonucleotide is combined with the target.
  • the dosage to be administered and the timing of administration will depend on various factors, including cell type.
  • treatment may be with 100 mM, 75 mM, 50 mM, 40 mM, 20 mM, 10 mM, 2 mM, 1 mM, 100 ⁇ M, 10 ⁇ M, 1 ⁇ M, 100 nM, 10 nM or lower.
  • the dosage is preferably from about 4 mM to 100 mM for yeast cells and from about 0.05 mM to 3 mM for mammalian cells.
  • the dosage may be at least 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM, 0.25 mM, 0.30 mM, 0.35 mM, 0.40 mM, 0.50 mM or more, including at least 0.55 mM, 0.60 mM, 0.65 mM ; 0.70 mM, 0.75 mM, 0.80 mM, 0.85 mM, 0.90 mM, 0.95 mM or even 1 mM, 1.1 mM,1.2 mM,1.3 mM,1.4 mM,1.4 mM,1.5 mM,1.6 mM,1.7 mM, 1.8 mM, 1.9 mM, 2.0 mM, 2.5 mM, 3 mM, or more.
  • the dosage for mammalian cells is less than about 3.0 mM, and can be less than 2.5 mM, 2.0 mM, 1.5 mM, 1.0 mM, even less than 0.90 mM, 0.85 mM, 0.80 mM, 0.75 mM, 0.70 mM, 0.65 mM, 0.60 mM, 0.55 mM, 0.50 mM, 0.45 mM, 0.40 mM, and even less than about 0.35 mM or 0.30 mM.
  • Cells may be grown in the presence of HU, and cell extracts may be treated with HU, for various times prior to combination with a sequence-altering oligonucleotide. Growth or treatment may be as long as 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h, 20 h, or even longer, including up to 28 days, 14 days, 7 days, or shorter, or as short as 12 h, 8 h, 6 h, 4 h, 3 h, 2 h, 1 h, or even shorter.
  • treatment of cells or cell extracts with HU and the sequence-altering oligonucleotide may occur simultaneously, or HU, may be added after oligonucleotide addition.
  • Cells may further be allowed to recover from treatment with HU by growth in the absence of HU for various times prior to treatment with a sequence-altering oligonucleotide. Recovery may be as long as 10 min, 20 min, 40 min, 60 min, 90 min, 2 h, 4 h, or even longer, or as short as 90 min, 60 min, 40 min, 20 min, 10 min, or even shorter. Cells may also be allowed to recover following their treatment with a sequence-altering oligonucleotide. This recovery period may be as long as 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, or even longer, or as short as 8 h, 6 h, 4 h, 2 h, 1 h, or even shorter. HU may either be present in or absent from the cell medium during the recovery period.
  • Optimum dosages and the timing and duration of administration of HU to cells or cell extracts can be determined by routine experimentation.
  • Cultured cells (such as yeast cells) are treated with varying concentrations of HDAC inhibitor for a varying number of hours prior to electroporation with the sequence altering oligonucleotide. After recovery for varying periods, the cells are plated and tested for efficiency of sequence alteration. Parameters are then selected that provide the highest efficiency of correction. The method may then be repeated, as necessary, further to optimize dosage, duration of pretreatment, duration of recovery period, if any, and the like.
  • Such assays, or apparent variants thereof, may be performed to optimize conditions for any chosen cell type.
  • vectors are derived from virus, plasmid, prokaryotic or eukaryotic chromosomal elements, or some combination thereof, and include at least one origin of replication, at least one site for insertion of heterologous nucleic acid, typically in the form of a polylinker with multiple, tightly clustered, single cutting restriction sites, and at least one selectable marker, although some integrative vectors will lack an origin that is functional in the host to be chromosomally modified, and some vectors will lack selectable markers.
  • origin of replication and selectable markers are chosen based upon the desired host cell or host cells; the host cells, in turn, are selected based upon the desired application.
  • vector replication is predicated on the replication strategies of coliform-infecting phage — such as phage lambda, M13, T7, T3 and P1 — or on the replication origin of autonomously replicating episomes, notably the ColE1 plasmid and later derivatives, including pBR322 and the pUC series plasmids.
  • coliform-infecting phage such as phage lambda, M13, T7, T3 and P1
  • the replication origin of autonomously replicating episomes notably the ColE1 plasmid and later derivatives, including pBR322 and the pUC series plasmids.
  • selectable markers are, analogously, chosen for selectivity in Gram negative bacteria: e.g., typical markers confer resistance to antibiotics, such as ampicillin, tetracycline, chloramphenicol, kanamycin, streptomycin, zeocin; auxotrophic markers can also be used.
  • vectors of the present invention for use in yeast will typically, but not invariably, contain an origin of replication suitable for use in yeast and a selectable marker that is functional in yeast.
  • Integrative Ylp vectors do not replicate autonomously, but integrate, typically in single copy, into the yeast genome at low frequencies and thus replicate as part of the host cell chromosome; these vectors lack an origin of replication that is functional in yeast, although they typically have at least one origin of replication suitable for propagation of the vector in bacterial cells.
  • YEp vectors in contrast, replicate episomally and autonomously due to presence of the yeast 2 micron plasmid origin (2 ⁇ m ori).
  • the YCp yeast centromere plasmid vectors are autonomously replicating vectors containing centromere sequences, CEN, and autonomously replicating sequences, ARS; the ARS sequences are believed to correspond to the natural replication origins of yeast chromosomes.
  • YACs are based on yeast linear plasmids, denoted YLp, containing homologous or heterologous DNA sequences that function as telomeres (TEL) in vivo, as well as containing yeast ARS (origins of replication) and CEN (centromeres) segments.
  • TEL telomeres
  • CEN centromeres
  • Selectable markers in yeast vectors include a variety of auxotrophic markers, the most common of which are (in Saccharomyces cerevisiae) URA3, HIS3, LEU2, TRP1 and LYS2, which complement specific auxotrophic mutations, such as ura3-52, his3-D1, leu2-D1, trp1-D1 and lys2-201.
  • the URA3 and LYS2 yeast genes further permit negative selection based on specific inhibitors, 5-fluoro-orotic acid (FOA) and ⁇ -aminoadipic acid ( ⁇ AA), respectively, that prevent growth of the prototrophic strains but allows growth of the ura3 and lys2 mutants, respectively.
  • Other selectable markers confer resistance to, e.g., zeocin.
  • the vector replicative strategy is typically based upon the baculovirus life cycle.
  • vectors intended for autonomous extrachromosomal replication will typically include a viral origin, such as the SV40 origin (for replication in cell lines expressing the large T-antigen, such as COS1 and COS7 cells), the papillomavirus origin, or the EBV origin for long term episomal replication (for use, e.g., in 293-EBNA cells, which constitutively express the EBV EBNA-1 gene product and adenovirus E1A).
  • Vectors intended for integration, and thus replication as part of the mammalian chromosome can, but need not, include an origin of replication functional in mammalian cells, such as the SV40 origin.
  • Vectors based upon viruses, such as adenovirus, adeno-associated virus, vaccinia virus, and various mammalian retroviruses will typically replicate according to the viral replicative strategy.
  • Selectable markers for use in mammalian cells include resistance to neomycin (G418), blasticidin, hygromycin and to zeocin, and selection based upon the purine salvage pathway using HAT medium.
  • the vector replicon is typically derived from a plant virus (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) and selectable markers chosen for suitability in plants.
  • a plant virus e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV
  • selectable markers chosen for suitability in plants.
  • the BAC system is based on the well-characterized E. coli F-factor, a low copy plasmid that exists in a supercoiled circular form in host cells.
  • the structural features of the F-factor allow stable maintenance of individual human DNA clones as well as easy manipulation of the cloned DNA. See Shizuya et al., Keio J. Med. 50(1):26-30 (2001 ); Shizuya et al., Proc. Natl. Acad. Sci. USA 89(18):8794-7 (1992 ).
  • YACs are based on yeast linear plasmids, denoted YLp, containing homologous or heterologous DNA sequences that function as telomeres (TEL) in vivo, as well as containing yeast ARS (origins of replication) and CEN (centromeres) segments.
  • TEL telomeres
  • CEN centromeres
  • HACs are human artificial chromosomes. Kuroiwa et al., Nature Biotechnol. 18(10):1086-90 (2000 ); Henning et al., Proc. Natl. Acad. Sci. USA 96(2):592-7 (1999 ); Harrington et al., Nature Genet. 15(4):345-55 (1997 ).
  • long synthetic arrays of alpha satellite DNA are combined with telomeric DNA and genomic DNA to generate linear microchromosomes that are mitotically and cytogenetically stable in the absence of selection.
  • PACs are P1-derived artificial chromosomes. Sternberg, Proc. Natl. Acad. Sci. USA 87(1):103-7 (1990 ); Sternberg et al., New Biol. 2(2):151-62 (1990 ); Pierce et al., Proc. Natl Acad. Sci. USA 89(6):2056-60 (1992 ).
  • Vectors will also often include elements that permit in vitro transcription of RNA from the inserted heterologous nucleic acid.
  • Such vectors typically include a phage promoter, such as that from T7, T3, or SP6, flanking the nucleic acid insert. Often two different such promoters flank the inserted nucleic acid, permitting separate in vitro production of both sense and antisense strands.
  • Host cells can be prokaryotic or eukaryotic.
  • appropriate host cells include, but are not limited to, bacterial cells, such as E. coli, Caulobacter crescentus, Streptomyces species, and Salmonella typhimurium; yeast cells, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris , Pichia methanolica ; insect cell lines, such as those from Spodoptera frugiperda — e.g., Sf9 and Sf21 cell lines, and expresSF TM cells (Protein Sciences Corp., Meriden, CT, USA) — Drosophila S2 cells, and Trichoplusia ni High Five® Cells (Invitrogen, Carlsbad, CA, USA); and mammalian cells.
  • bacterial cells such as E. coli, Caulobacter crescentus, Streptomyces species, and Salmonella typhimurium
  • yeast cells such as Sac
  • Typical mammalian cells include COS1 and COS7 cells, Chinese hamster ovary (CHO) cells, NIH 3T3 cells, 293 cells, HEPG2 cells, HeLa cells, L cells, murine ES cell lines (e.g., from strains 129/SV, C57/BL6, DBA-1, 129/SVJ), K562, Jurkat cells, and BW5147.
  • Other mammalian cell lines are well known and readily available from the American Type Culture Collection (ATCC) (Manassas, VA, USA) and the National Institute of General medical Sciences (NIGMS) Human Genetic Cell Repository at the Coriell Cell Repositories (Camden, NJ, USA).
  • phage lambda vectors will typically be packaged using a packaging extract (e.g., Gigapack® packaging extract, Stratagene, La Jolla, CA, USA), and the packaged virus used to infect E. coli.
  • Plasmid vectors will typically be introduced into chemically competent or electrocompetent bacterial cells.
  • E . coli cells can be rendered chemically competent by treatment, e.g., with CaCl 2 , or a solution of Mg 2+ , Mn 2+ , Ca 2+ , Rb + or K + , dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III), Hanahan, J. Mol. Biol. 166(4):557-80 (1983 ), and vectors introduced by heat shock.
  • CaCl 2 or a solution of Mg 2+ , Mn 2+ , Ca 2+ , Rb + or K + , dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III), Hanahan, J. Mol. Biol. 166(4):557-80 (1983 ), and vectors introduced by heat shock.
  • a wide variety of chemically competent strains are also available commercially (e.g., Epicurian Coli® XL10-Gold® Ultracompetent Cells (Stratagene, La Jolla, CA, USA); DH5 ⁇ competent cells (Clontech Laboratories, Palo Alto, CA, USA); TOP10 Chemically Competent E. coli Kit (Invitrogen, Carlsbad, CA, USA)).
  • Bacterial cells can be rendered electrocompetent — that is, competent to take up exogenous DNA by electroporation — by various pre-pulse treatments; vectors are introduced by electroporation followed by subsequent outgrowth in selected media.
  • An extensive series of protocols is provided online in "Electroprotocols Online: Collection of Protocols for Gene Transfer” (BioRad, Richmond, CA, USA) (available at the BioRad web site).
  • Vectors can be introduced into yeast cells by spheroplasting, treatment with lithium salts, electroporation, or protoplast fusion.
  • Spheroplasts are prepared by the action of hydrolytic enzymes — a snail-gut extract, usually denoted Glusulase, or Zymolyase, an enzyme from Arthrobacter luteus - to remove portions of the cell wall in the presence of osmotic stabilizers, typically 1 M sorbitol.
  • DNA is added to the spheroplasts, and the mixture is co-precipitated with a solution of polyethylene glycol (PEG) and Ca 2+ . Subsequently, the cells are resuspended in a solution of sorbitol, mixed with molten agar and then layered on the surface of a selective plate containing sorbitol.
  • PEG polyethylene glycol
  • yeast cells are treated with lithium acetate, which apparently permeabilizes the cell wall, DNA is added and the cells are co-precipitated with PEG. The cells are exposed to a brief heat shock, washed free of PEG and lithium acetate, and subsequently spread on plates containing ordinary selective medium. Increased frequencies of transformation are obtained by using specially-prepared single-stranded carrier DNA and certain organic solvents. Schiestl et al., Curr. Genet. 16(5-6):339-46 (1989 ). For electroporation, freshly-grown yeast cultures are typically washed, suspended in an osmotic protectant, such as sorbitol, mixed with DNA, and the cell suspension pulsed in an electroporation device.
  • an osmotic protectant such as sorbitol
  • Mammalian and insect cells can be directly infected by packaged viral vectors, or transfected by chemical or electrical means.
  • DNA can be coprecipitated with CaPO 4 or introduced using liposomal and nonliposomal lipid-based agents.
  • kits are available for CaPO 4 transfection (CalPhos TM Mammalian Transfection Kit, Clontech Laboratories, Palo Alto, CA, USA), and lipid-mediated transfection can be practiced using commercial reagents, such as LIPOFECTAMINE TM 2000, LIPOFECTAMINE Reagent, CELLFECTIN® Reagent, and LIPOFECTIN® Reagent (Invitrogen, Carlsbad, CA, USA), DOTAP Liposomal Transfection Reagent, FuGENE TM 6, X-tremeGENE Q2, DOSPER, (Roche Molecular Biochemicals, Indianapolis, IN USA), Effectene TM , PolyFect ® , Superfect ® (Qiagen, Inc., Valencia, CA, USA). Protocols for electroporating mammalian cells can be found online in "Electroprotocols Online
  • Transfection techniques include transfection by particle embardment. See, e.g., Cheng et al., Proc. Natl. Acad. Sci. USA 90(10):4455-9 (1993 ); Yang et al., Proc. Natl. Acad. Sci. USA 87(24):9568-72 (1990 ).
  • compositions to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration are also described herein.
  • the composition can comprise at least one sequence-altering oligonucleotide — such as a chimeric oligonucleotide, a bifunctional oligonucleotide, or a single-stranded, chemically modified oligonucleotide — and an HDAC inhibitor, such as trichostatin A.
  • the composition can comprise at least one sequence-altering oligonucleotide and beta protein.
  • compositions may be formulated as pharmaceutical compositions adapted for ex vivo or in vivo use, such as for bathing cells in culture, for microinjection into cells in culture, or for intravenous administration to human beings or animals.
  • compositions for cellular administration or for intravenous administration into animals, including humans are solutions in sterile isotonic aqueous buffer.
  • the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
  • the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate.
  • compositions may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units.
  • a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units.
  • the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade "water for injection” or saline.
  • an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration.
  • Pharmaceutical compositions can comprise a sequence-altering oligonucleotide, any one or more of an HDAC inhibitor, beta protein, or HU and pharmaceutically acceptable salts thereof, and any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.
  • compositions adapted for in vivo use are preferably administered to the subject in the form of an injectable composition.
  • the composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly.
  • Pharmaceutical compositions can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents.
  • the dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 ⁇ g/kg, preferably between 1 to 250 ⁇ g/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.
  • dosage to be administered and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the animal and genetic factors, and will ultimately be decided by veterinary personnel subsequent to experimental determinations of varying dosage as described herein.
  • dosage required for correction and therapeutic efficacy will range from about 0.001 to 1000 mg/kg of body mass, preferably between 10 and 200 mg/kg, and most preferably 50 to 100 mg/kg.
  • dosage can be in the nanomolar to micromolar concentrations, often about 100 - 200 ⁇ M.
  • compositions of the present invention can, comprise a cell or cell-free extract and an HDAC inhibitor, beta protein, or HU.
  • Cells for use in the compositions (or kits), either intact or in the form of cell extracts that include cellular repair proteins, include cells from any organism including bacteria, fungi, plants, and animals, including humans or other mammals.
  • Cells for use in the kits include, for example, cultured cells of human liver, lung, colon, cervix, kidney, epithelium, COS-1 and COS-7 cells (African green monkey), CHO-K1 cells (Chinese hamster ovary), H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C1271 (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma cancer cells as well as PC12 cells (rat pheochromocytoma) and mammalian ES cells (excluding human embryonic stem
  • Cells for use in compositions and kits - intact or as extracts that include cellular repair proteins - can also include mammalian non-human embryonic stem (ES) cells.
  • ES mammalian non-human embryonic stem
  • the cells for use in the compositions and kits can be yeast or other fungal cells, or cells from a plant, including, for example, maize, rice, wheat, barley, soybean, cotton, and potato. Other exemplary plants include those described elsewhere herein.
  • kits for targeted sequence alteration are also described herein.
  • the kit can comprises at least one sequence-altering oligonucleotide — such as a chimeric oligonucleotide, a bifunctional oligonucleotide, or a single-stranded, chemically modified oligonucleotide — and one or more separately packaged reagents selected from the group consisting of an HDAC inhibitor, such as trichostatin A, HU, and beta protein.
  • the kit optionally further includes instructions for use.
  • the kit can include a nucleic acid encoding beta proteins.
  • the nucleic acid may be DNA or RNA, such as a beta protein expression vector.
  • the expression vector can be one that resides as an episome within a cell, or alternatively one that integrates into a cell's chromosome or chromosomes.
  • the expression vector can be controlled by an inducible promoter or alternatively by a constitutively active promoter.
  • a kit can include a sequence-altering oligonucleotide and a host cell containing a beta protein expression vector.
  • Kits may further advantageously include: means for introducing into a cell the sequence-altering oligonucleotide; means for introducing into a cell beta protein; means for introducing into a cell a nucleic acid encoding beta protein; means for introducing into a cell a beta protein expression construct; cells into which it is desired to introduce a sequence altering oligonucleotide and beta protein; and/or instructions sufficient to direct a skilled artisan how to practice the methods of the present invention. Additional kit components may be provided according to the knowledge and needs of the skilled artisan.
  • Kits may additionally include reagents for appending LNAs to either or both of the 5' and 3' termini of oligonucleotides, which oligonucleotides are then suitable for use in the gene repair methods of the present invention.
  • kits can include the oligonucleotide to be terminally modified. Then, the sequence of the oligonucleotide will typically have been chosen to effect a nucleic acid sequence alteration that is frequently desired. More typically, however, the kits will not include such an oligonucleotide. In the latter case, the user will provide an oligonucleotide the sequence of which is designed to effect a user-desired nucleic acid sequence alteration. In both alternatives, the kit can optionally include one or more oligonucleotides to serve as controls for the terminal modification reactions and/or, optionally, for the subsequent nucleic acid sequence alteration process
  • the terminal modification kits include reagents sufficient to append at least one monomeric LNA, often sufficient to append two, three, or more monomeric LNAs, to either or both of the 3' termini of an oligonucleotide or the 5' terminus of an oligonucleotide.
  • the reagents will include, as separately packaged compositions, LNA monomers having nucleobases that are separately complementary to each of A, G, T, and C, permitting the user to extend the oligonucleotide at one or both termini without introducing bases noncomplementary to the target, ensuring that the resulting oligonucleotide is complementary to the target nucleic acid at all positions except those desired to be modified by the gene repair process
  • LNA monomers intended for the 5' terminus may differ in chemistry from those intended for the 3' terminus; in such cases, the monomers respectively intended for 5' and 3' modification will typically be separately packaged from one another.
  • Kits that permit 3' terminal modification will typically include a template-independent single-strand polymerase, such as calf thymus terminal deoxynucleotidyl transferase, and LNA monomers that have 5'-triphosphates.
  • Calf thymus terminal deoxynucleotidyl transferase catalyzes the non-specific, template-independent polymerization of nucleoside triphosphates to the 3' terminus of single-stranded DNA.
  • kits can usefully include such dideoxy LNA monomers, either to the exclusion of, or typically in addition to, LNA monomers that permit further polymerization.
  • kits can optionally include a reaction buffer and instructions for performing the enzymatic reaction.
  • the kits can include means for terminating the reaction, such as a stop buffer compositions, and means for removing reactants to prepare the oligonucleotide for further modification or for use in the nucleic acid sequence alteration methods of the present invention, such as a size-selecting spin column.
  • kits intended for 5' modification can usefully include a kinase, such as bacteriophage T4 polynucleotide kinase, and adenosine triphosphate, thus permitting an oligonucleotide that presents a 5' hydroxyl group to be phosphorylated.
  • a kinase such as bacteriophage T4 polynucleotide kinase
  • adenosine triphosphate thus permitting an oligonucleotide that presents a 5' hydroxyl group to be phosphorylated.
  • kits will not include a kinase and ATP.
  • the 5'-phosphorylated oligonucleotide is then activated using a water-soluble carbodiimide in the presence of imidazole to form the 5'-phosphorimidazolide.
  • a water soluble carbodiimide such as 1-ethyl-3,3-dimethylaminopropylcarbodiimide
  • an imidazole to be combined with the 5'-phosphorylated oligonucleotide at the time of reaction.
  • the 5'-phosphorimidazolide oligonucleotide can then further be reacted with an LNA monomer having a nucleophilic group, such as an amine, causing extension of the oligonucleotide with the LNA monomer at its 5' terminus.
  • Kits employing this chemistry for 5' modification will thus typically further include such nucleophilic LNA monomer, such as amino-LNA monomers.
  • a terminally unmodified oligonucleotide can be modified directly at the 5' terminus using an LNA that is activated for reaction with a 5'-hydroxyl group.
  • activated LNA monomers are provided in the kit.
  • LNA phosphoramidites can be reacted with the 5' terminus of an oligonucleotide that is "protected" at all the nucleobases.
  • oligonucleotides can be obtained using standard solid phase synthesis techniques, by cleaving the oligonucleotide from the synthesis support without deprotecting the nucleobases. Such oligonucleotides can readily be so ordered from commercial vendors or core facilities.
  • the extended oligonucleotide is oxidized and deprotected prior to use in the gene repair methods of the present invention.
  • LNA monomers can be provided that have protecting groups to prevent undesirable side reactions, permitting additional chemistries to be used.
  • Appropriate protecting groups for these purposes are well known in the art See, for example, Protocols for Oligonucleotides and Analogs: Synthesis and Properties, vol 20, (Agrawal, ed.), Humana Press, 1993 ; Totowa et al. (1993) Tetrahedron 49, 6123 ; Beaucage and lyer (1992) Tetrahedron 48, 2223 ; and Uhlmann and Peyman (1990) Chem. Rev. 90, 543 .
  • Removal of these protecting groups prior to further modification of the LNA-modified oligonucleotide or use of the LNA-modfied oligonucleotide in gene repair may be a necessary additional step as well, and reagents for effecting such removal can be included in such kits or provided by the user.
  • kits of the present invention can further comprise a cell or cell-free extract, one or more reagents selected from the group consisting of HDAC inhibitor, beta protein, and HU, and optionally a sequence-altering oligonucleotide and/or instructions for use.
  • the cell or cell-free extract for the kit may be derived from any organism and may be directly supplemented with a protein or preparation from the same organism or from a different organism.
  • a protein may, for example, be from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group.
  • the cell or cell-free extract is or is derived from a eukaryotic cell or tissue, in particular, a yeast cell.
  • the kits include, packaged from the cell or cell-free extract, at least one protein from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group and an HDAC inhibitor, beta protein, or HU.
  • an assay to identify additional chemical compounds that increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • Such assay methods comprise contacting a sample with a chemical compound and a sequence altering oligonucleotide in a system known to provide for nucleic acid sequence alteration, and measuring whether the amount of nucleic acid sequence alteration is less, more, or the same as in the absence of the chemical compound.
  • antibiotic resistance e.g. tetracycline, kanamycin or hygromycin
  • GFP and FlAsHTM systems disclosed herein and in International Patent Application published as WO 01/73002 .
  • the methods of the present invention may be used to alter the genomic sequence of a nonhuman cell, from which nonhuman cell an entire nonhuman animal or plant is then regenerated. Also described herein are the non-human animals and the plants produced thereby.
  • oligonucleotides in this example, we use chemically modified, nonhairpin, internally unduplexed single-stranded oligonucleotides or chimeric double-hairpin oligonucleotides to measure nucleic acid sequence alteration of episomal target sequences in cell-free extracts from cells with increased or decreased expression of DNA repair genes.
  • target sequences encode, for example, a kanamycin resistance gene (pKan s m4021), a tetracycline resistance gene, and a fusion between a hygromycin resistance gene and eGFP.
  • the target gene is non-functional due to at least one point mutation in the coding region.
  • reaction mixtures comprising 10-30 ⁇ g protein of cell-free extract from either a wild-type yeast strain or a yeast strain having a mutation in a gene from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group; about 1.5 ⁇ g chimeric double-hairpin oligonucleotide (KanGG, see FIG.
  • oligonucleotide concentration on nucleic acid sequence alteration in cell-free extract as follows.
  • Nucleic acid sequence alteration in cell-free extracts from yeast We use the kanamycin plasmid assay system to test cell-free extracts from the yeast strain LSY678. As shown in Table 1, we observe that the reaction depends on all reaction components. We also generally observe that increasing the amount of oligonucleotide or the amount of extract in the reaction increases the relative correction efficiency. We then analyze the efficiency of nucleic acid sequence alteration in yeast strains deficient for at least one protein from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group.
  • Chimeric oligonucleotides at varying levels are incubated with plasmid pK S m4021 and the indicated amounts of cell-free extracts from Saccharomyces cerevisiae (LSY678) for 45 minutes at 30°C.
  • LSY678 The indicated amounts of cell-free extracts from Saccharomyces cerevisiae
  • Oligonucleotide KanCG has the same sequence as KanGG except there is no mismatch and KanCG does not correct the mutation. Each data point is presented as the average of 5 independent experiments.
  • Reaction mixtures (20 ⁇ l) containing 1 ⁇ g plasmid pK S m4021 and 1 ⁇ g oligonucleotide KanGG are mixed with 10 ⁇ g of a cell-free extract from the indicated yeast strains. After a 45 minute incubation at 30°C, we isolate the plasmid DNA and electroporate into E . coli (DH10B). We count kanamycin resistant colonies on agar plates containing 50 ⁇ g/ml kanamycin. Plasmids from duplicate reaction mixtures are also electroporated into E. coli (DH10B) and plated on ampicillin containing plates. We determine relative activity by dividing Kan r by Amp r colony numbers. These numbers reflect an average of five reactions.
  • Plasmid Oligonucleotide Source of First Extract Source of Second Extract Relative Correction Efficiency pK S m4021 - - - 0.0 - KanGG - - 0.0 pK S m4021 KanGG - - 0.003 pK S m4021 KanGG LSY678(wild type) - 1.08 pK S m4021 KanGG LSY386( ⁇ rad52 ) - 26.7 pK S m4021 KanGG LSY386(2 ⁇ g) LSY678(8 ⁇ g) 2.91 pK S m4021 KanGG LSY386(4 ⁇ g) LSY678(6 ⁇ g) 5.45 pK S m4021 KanGG LSY386(6 ⁇ g) LSY678(4 ⁇ g) 10.47 pK S m4021 KanGG LSY386(8 ⁇
  • Reaction mixtures and processing for colonies are as described in the legend to Table 1 with the following exceptions.
  • LSY678 wild type
  • LSY386 ⁇ rad52
  • YELO37C ⁇ rad23
  • the reactions identified as LSY386 ⁇ p52 contain a cell-free extract from a ⁇ rad52 strain (LSY386) harboring a plasmid which expresses RAD52 protein.
  • the reactions identified as LSY678 • p52 contain a cell-free extract from wild-type strain (LSY678) harboring a plasmid which expresses RAD52 protein.
  • target nucleic acid sequences encode, for example, a fusion between a hygromycin resistance gene and eGFP which is non-functional due to at least one point mutation in the coding region.
  • the target sequences may be either episomal or chromosomal (including, e.g., nuclear, mitochondrial or plastidic).
  • Nucleic acid sequence alteration of episomal targets is generally slightly more efficient (less than two-fold) than nucleic acid sequence alteration of chromosomal targets.
  • Modifications to the oligonucleotides and construction of target vectors are disclosed in the copending International Patent Application WO 01/73002 of Kmiec et al. entitled “Targeted Chromosomal Genomic Alterations with Modified Single Stranded Oligonucleotides,” filed March 27, 2001, the disclosure of which is hereby incorporated by reference.
  • plasmids are collectively designated pAURHYG(x)eGFP. These plasmids also contain an aureobasidinA resistance gene.
  • pAURHYG(rep)eGFP hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, in codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region.
  • pAURHYG(ins)eGFP hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, in codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene.
  • pAURHYG( ⁇ )eGFP hygromycin resistance gene function and green fluorescence from eGFP are restored when a C is inserted at the site of the single nucleotide deletion.
  • yeast system in which we monitor chromosomal genes such as CYC1 or we use integrational plasmids such as those designated pAUR101-HYG(x)eGFP. These plasmids do not replicate in yeast. These plasmids comprise the HYG(x)eGFP fusion proteins used in the pAURHYG(x)eGFP episomal plasmid system (shown in FIG. 2 ) and an aureobasidinA resistance gene. Therefore, like pAURHYG(x)eGFP, these constructs can also be used to monitor all types of nucleic acid sequence alterations, i.e. replacements, insertions and deletions. In addition to this construct, we monitor nucleic acid sequence alteration of specific yeast genes including, for example, CYC1.
  • pAUR101-HYG(x)eGFP plasmids as diagrammed in FIG. 8 . Briefly, we digest 10 ⁇ g pAUR101 (PanVera ® Corp.) with Sal I and Kpn I and ligate a linker comprising a unique Bcl I restriction site. We then digest 10 ⁇ g of the resulting plasmid (" pAUR101-linker ”) with Bcl I and ligate in a 1 kb BamHI fragment from pAUR123. The Bam HI fragment from pAUR123 comprises a multiple-cloning site as well as the ADH1 promoter and terminator regions.
  • the plasmids into the genome of wild-type yeast cells as well as yeast strains with mutations in a variety of genes, including, for example, genes of the RAD52 epistasis group, the mismatch repair group, and the nucleotide excision repair group.
  • We integrate the plasmids into the yeast genome by linearizing 10 ⁇ g of the plasmid by digestion with Stu I and electroporating the linearized plasmid into the yeast cells.
  • the plasmid integrates by homologous recombination at the wild-type AUR-C (aureobasidinA) locus.
  • aureobasidinA to identify clones in which the plasmid has integrated.
  • oligonucleotides shown in FIG. 3
  • These oligonucleotides direct correction of the mutation in pAURHYG(rep)eGFP as well as the mutation in pAURHYG(ins)eGFP or pAURHYG( ⁇ )eGFP.
  • the first of these oligonucleotides, HygE3T/74 is a 74-base oligonucleotide with the sequence directing nucleic acid sequence alteration centrally positioned.
  • the second oligonucleotide designated HygE3T/74NT
  • HygE3T/74NT is the complement of HygE3T/74.
  • the third oligonucleotide designated Kan70T
  • Kan70T is a non-specific, control oligonucleotide which is not complementary to the target sequence.
  • an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely phosphorothioate-modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide or a completely LNA-modified oligonucleotide may be used as a control.
  • Oligonucleotide synthesis and cells We synthesize and purify the oligonucleotides using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39: 5808-5816 (2000 ). We determine the concentration of the oligonucleotides spectrophotometrically (33 or 40 ⁇ g/ml per A 260 unit of single-stranded or hairpin oligomer, respectively).
  • Plasmids used for assay are maintained stably at low copy number under aureobasidin selection in yeast ( Saccharomyces cerevisiae ) strain LSY678 (wild type) which optionally may contain additional gene mutations or may be engineered to express additional protein(s).
  • Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30°C until the OD 600 is between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water.
  • Nucleic acid sequence alteration to repair different mutations in wild-type Saccharomyces cerevisiae We test the ability of oligonucleotides shown in FIG. 3 to alter all three target plasmids in vivo using wild-type yeast strain LSY678. These target plasmids contain a point mutation (pAURHYG(rep)eGFP), a deletion mutation (pAURHYG( ⁇ )eGFP) or an insertion mutation (pAURHYG(ins)eGFP).
  • pAURHYG(rep)eGFP a point mutation
  • pAURHYG( ⁇ )eGFP a deletion mutation
  • pAURHYG(ins)eGFP an insertion mutation
  • We also test oligonucleotides targeting opposite strands of the target DNA to identify any strand-specific effects and we test the oligonucleotide at a range of concentration to determine the optimum concentration for gene repair.
  • HygE3T/74NT the oligonucleotide with sequence complementary to the sense strand of the target DNA, HygE3T/74NT, repairs all three types of target mutations more effectively than the complementary oligonucleotide, HygE3T/74.
  • the fold difference in repair efficiency using HygE3T/74NT relative to using HygE3T/74 is indicated in the final column of Table 4.
  • oligonucleotides targeting either strand direct correction of the point mutation in the integrated pAUR101-HYG(rep)eGFP plasmid and that the optimal oligonucleotide concentration for nucleic acid sequence alteration with this chromosomal target is 7.5 ⁇ g.
  • the oligonucleotides are capable of effecting repair over a wide range of concentrations.
  • the oligonucleotide with sequence complementary to the sense strand of the target DNA, HygE3T/74NT repairs the chromosomal target mutation more effectively than the complementary oligonucleotide, HygE3T/74, at all concentrations tested.
  • the fold difference in correction efficiency using HygE3T/74NT relative to using HygE3T/74 is indicated in the final column of Table 14.
  • Nucleic acid sequence alteration in strains with mutation(s) in gene(s) of the RAD52 epistasis group was tested the ability of oligonucleotides shown in FIG. 3 to alter a nucleic acid sequence in vivo using yeast strains with additional mutation(s) in gene(s) of the RAD52 epistasis group. In these experiments we use derivatives of LSY678 (wild type) with a mutation in one or more of the genes of the RAD52 epistasis group and containing the target plasmid pAURHYG(rep)eGFP, pAURHYG(ins)eGFP or pAUR HYG( ⁇ )eGFP.
  • nucleic acid sequence alteration using pAURHYG(rep)eGFP as the target is reduced in yeast strains with mutations in RAD54 or RAD55.
  • yeast strains with mutations in RAD54 or RAD55 We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)eGFP. With this strain we observe that even without added oligonucleotides, there are too many hygromycin resistant colonies to count.
  • yeast strains with mutations in both single genes in the RAD52 epistasis group as well as yeast strains with mutations in two or more of the genes. We test the ability of these yeast strains to correct all of the pAURHYG(x)eGFP mutations.
  • nucleic acid sequence alteration occurs at a reduced efficiency in strains with mutations in RAD10, RAD2, or RAD23.
  • the efficiency of nucleic acid sequence alteration observed in these experiments in a strain with a mutation in RAD1 is reduced when using either pAURHYG(ins)eGFP or pAUR HYG( ⁇ )eGFP as the target plasmid, but increased when using pAURHYG(rep)eGFP as the target.
  • nucleic acid sequence alteration is reduced in a yeast strain with a mutation in EXO1 using pAURHYG(rep)eGFP or pAURHYG(ins)eGFP as the target.
  • Nucleic acid sequence alteration in yeast strains expressing DNA repair gene(s) from plasmids We test the effect on nucleic acid sequence alteration efficiency of increasing expression of DNA repair genes, including genes in the RAD52 epistasis group, mismatch repair genes and nucleotide excision repair genes. We test the effect of expression of these genes both individually and in groups of two or more.
  • plasmids with constitutive promoters to direct expression of DNA repair genes, for example, the plasmids described in FIGs 1 , 2 and 4 .
  • strains also contain one of the plasmids pAURHYG(rep)eGFP, pAURHYG(ins)eGFP or pAURHYG(del)eGFP as a reporter for monitoring nucleic acid sequence alteration.
  • these strains comprise the one or more copies of the integrational plasmid pAUR101-HYG(x)eGFP as a reporter for monitoring nucleic acid sequence alteration.
  • plasmids expressing RAD10, RAD51, RAD52, RAD54, RAD55, MRE11, PMS1, REC2 or XRS2 into LSY678 (wild type) and monitor the ability of the single-stranded oligonucleotide vector, Hyg3S/74NT, to direct nucleic acid sequence alteration in the pAURHYG(ins)eGFP plasmid.
  • yeast strains further comprising mutation(s) in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group.
  • pYN132-derived plasmids expressing RAD10, RAD51, RAD52, RAD54, RAD55, MRE11, PMS1, REC2 or XRS2 into LSY678 strains with mutations in RAD51, RAD52, MRE11 or PMS1.
  • oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid contained in yeast strains with altered expression or activity of gene(s) in the RAD52 epistasis group, the mismatch repair group and/or the nucleotide excision repair group.
  • oligonucleotides shown in FIG. 1 to alter a nucleic acid sequence in vivo using yeast strains containing the plasmid pAURNeo(x)FIAsHTM ( FIG. 4 ) and which also have altered expression or activity of gene(s) in the RAD52 epistasis group, the mismatch repair group and/or the nucleotide excision repair group.
  • This plasmid is constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsHTM ligand into the pAUR123 shuttle vector (PanVera ® Corp., Madison, WI).
  • the translated fusion protein binds a ligand (FIAsHTM-EDT2) imparting a green fluorescence onto the cells. Additional constructs using any target gene fused to the FIAsHTM peptide may be made using this model system to test additional nucleic acid sequence alteration events.
  • FIAsHTM ligand To detect the presence of the Neo(+)FIAsHTM fusion product in yeast cells, we prepare loading buffer by mixing FIAsHTM ligand into YPD containing 1M sorbitol and 20 ⁇ M Disperse 3. The ligand molecules are mixed into the YPD at 1 ⁇ M FIAsHTM-EDT2 and 10 ⁇ M 1,2 ethanedithiol (EDT) (Sigma). We then mix 100 ⁇ l of cells with an equal volume of wash buffer comprising HBS, 1 mM sodium pyruvate, 10 ⁇ M EDT, 1 M sorbitol and 20 ⁇ M Disperse 3.
  • Oligonucleotides targeting the sense strand direct nucleic acid sequence alteration more efficiently in yeast mutants.
  • the results of an experiment performed with yeast strains having mutations in RAD1 and RAD10 are presented in Table 8. The data from this experiment indicate that an oligonucleotide, HygE3T/74NT, with sequence complementary to the sense strand (i.e.
  • the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the strand that serves as the template for the synthesis of RNA.
  • an oligonucleotide HygE3T/74
  • the oligonucleotides are clearly still able to target either strand of the target sequence.
  • the role of transcription of the target gene is investigated using plasmids with inducible promoters such as that described in FIG. 6 .
  • a reporter-gene assay system for example, kanamycin resistance, hygromycin resistance or GFP expression.
  • kanamycin resistance for example, kanamycin resistance, hygromycin resistance or GFP expression.
  • we assay the ability of an oligonucleotide to direct nucleic acid sequence alteration of a target present in the genome of the target cell for example, we monitor conversion of the sickle T ( ⁇ S) mutation in the ⁇ -globin gene to the normal A ( ⁇ A) allele or vice-versa.
  • the mutations used in these experiments are generally knockout mutations.
  • Table 6 Nucleic acid sequence alteration directing correction of the mutation in pAURHYG(ins)eGFP Yeast Strain* Colonies on Hygromycin Colonies on Aureobasidin(/10 5 ) Correction Efficiency Fold wild type 256 74 3.46 1x RAD52 Epistasis Group Mutants rad51 19 32 0.59 0.17x rad52 31 36 0.86 0.24x rad51 / 52 3 86 0.3 0.01x rad54 0 170 0 0x rad55 0 32 0 0X rad57 34 103 0.33 0.10x rad59 116 47 2.47 0.71x mre11 3 34 0.09 0.03x rad50 1 17 0.06 0.02x xrs2 6 168 0.04 0.01x Mismatch Repair Group Mutants msh2 0 51 0 0x msh3 1 18 0.05 0.02x msh6 0 49 0 0x pm
  • the mutations used in these experiments are generally knockout mutations.
  • Mononuclear cells are isolated from human umbilical cord blood, bone marrow or peripheral blood of normal donors using Ficoll Paque Plus (Amersham Biosciences, Piscataway, NJ) density centrifugation.
  • CD34 + cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, CA).
  • Lin-CD38- cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection.
  • S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 ⁇ g/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 ⁇ g/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 ⁇ g/ml low-density lipoprotein (LDL; Sigma, St. Louis, MO), 50 mM HEPEs buffer and 50 ⁇ M 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
  • IMDM Iscoves' Modified Dulbecco's Medium without phenol red
  • 35 mm dishes are coated overnight at 4°C with 50 ⁇ g/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, PanVera ® , Madison, WI) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37°C prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 ⁇ to 0.3 ⁇ outer tip diameter are used.
  • FN Fibronectin
  • Cells are visualized with a microscope equipped with a temperature controlled stage set at 37°C and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are fluorescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
  • Malik For in vitro erythropoiesis from Lin - CD38- cells, the procedure of Malik can be used ( Malik et al., Blood 91:2664-71 (1998 )). Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny.
  • CD34 + cells can convert a normal A( ⁇ A ) to sickle T ( ⁇ S ) mutation in the ⁇ -globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene.
  • stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
  • non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
  • PEI polyethylenimine
  • kits and methods of the invention can be used, for example, in therapeutic approaches when the target cell is a stem cell.
  • These approaches can be used with a variety of pluripotent stem cells, including, for example, any of the stem cell lines in the National Institutes of Health list which are described elsewhere herein, embryonic stem cells, and hematopoietic stem cells.
  • Such an approach with any of these cell types is particularly advantageous because the target cell can be manipulated ex vivo allowing for correction of the mutation and selection of a clone with the desired alteration.
  • the cells are then reintroduced into the patient resulting in repopulation in whole or in part with progeny from the genetically corrected stem cell.
  • the cells may be reintroduced after the patient's bone marrow has been ablated, although complete eradication of host hematopoiesis is not required to achieve therapeutic effects (see, e.g., Blau, Baillieres Clin. Haematol 11:257-275 (1998 )).
  • Many diseases of blood such as sickle cell anemia, thallassemias, immunological and clotting disorders, can be treated using the compositions and methods of the invention to correct mutations into the chromosomal DNA of hematopoietic stem cells and transplanting these cells into a patient.
  • viral vectors e.g. retroviral vectors, portions of adenovirus (Ad) or adeno-associated virus (AAV), to deliver nucleic acid sequences encoding partial or complete portions of a particular protein.
  • Ad adenovirus
  • AAV adeno-associated virus
  • the protein is expressed in the cell which results in the desired phenotype. See, for example, U.S. Patents 5,700,470 and 5,139,941 .
  • the use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency.
  • the gene which was originally present in the genome which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host.
  • the methods of the inventions described herein produce a legacy-free, precise nucleic acid sequence alteration of the target DNA and lack the immune response produced in viral vector gene therapy.
  • mice We purify hematopoietic stem cells from mice, correct the sickle allele, reintroduce into mice and monitor sickling phenotype.
  • HIV-1 Entry of HIV-1 into target cells is known to require cell surface CD4 as well as additional host cell cofactors.
  • the principal cofactor for entry mediated by the envelope glycoproteins of primary macrophage-tropic strains of HIV-1 is CC-CKR5. See, for example, United States Patent 6,057,102 .
  • Individuals who are homozygous for a mutation of the CKR-5 receptor which results in complete suppression of CKR-5 expression are resistant to HIV infection.
  • An individual who is heterozygous for a CKR-5 mutation may be more resistant to HIV infection and an individual who is homozygous for a CKR-5 mutation may be more resistant than heterozygous individuals.
  • the sequence of the human CKR-5 gene is known and there are no apparent adverse effects resulting from a mutation in CKR-5. Accordingly, individuals infected with HIV-1 can be treated by removing hematopoietic stem cells and introducing a mutation in the CKR-5.
  • Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Paque Plus (Amersham Biosciences, Piscataway, NJ) density centrifugation.
  • CD34 + cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, CA).
  • Lin - CD38 - cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA).
  • S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 ⁇ g/ml glutamine/penicillin/streptomycin, 50 ⁇ g/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM, 40 ⁇ g/ml low-density lipoprotein (LDL; Sigma, St.
  • IMDM Iscoves' Modified Dulbecco's Medium without phenol red
  • LDL low-density lipoprotein
  • HEPEs Eagle's medium
  • 2-mercaptoethanol 20 ng/ml each of thrombopoietin, flt-3 ligand, kit ligand, and may contain 50 mg/ml fetal bovine serum albumin, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ).
  • serum-free medium is QBSF60 from Quality Biological in Gaithersburg, Maryland. Cells are cultured in medium containing 170 ⁇ M trichostatin A for the 16 hours immediately prior to treatment with the oligonucleotide of the invention. After treatment, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
  • FN Fibronectin
  • CH-296 Relaminonectin fragment CH-296 (Retronectin; TaKaRa Biomedicals, PanVera ® , Madison, WI) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37°C prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 ⁇ to 0.3 ⁇ outer tip diameter are used.
  • Cells are visualized with a microscope equipped with a temperature controlled stage set at 37°C and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are fluorescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
  • cells are diluted to 2.5 x 10 5 cells/ml in Iscove's medium containing 10% FCS and TPO (50 ng/ml), Kit Ligand and FLT3 ligand (100 ng/ml) and analyzed by flow cytometry. Cells are allowed to recover for about 12 hours following treatment and dead cells are removed. Cells are then maintained in culture. Frequencies of nucleic acid sequence alteration are determined on cell samples at various times using, e.g., sequencing of PCR samples of cellular DNA, to determine nucleic acid sequence alteration efficiencies. Nucleic acid sequence alteration of hematopoietic stem cells is indicated by nucleic acid sequence alteration in cell populations maintained for at least four weeks after electroporation. It is expected that mature cells will die over time leaving a population of immature cells capable of differentiation.
  • CD34 + cells can convert a normal A ( ⁇ A ) to sickle T ( ⁇ S ) mutation in the ⁇ -globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene.
  • stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
  • non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
  • PEI polyethylenimine
  • trichostatin A is used to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in a system employing single-stranded oligonucleotides with modified backbones.
  • an episomal target such as pAURHYG(x)eGFP ( FIG. 2 )
  • an integrated copy of the same target to monitor chromosomal gene alteration are described in Example 2.
  • both the episomal and integrational plasmids also contain an aureobasidinA resistance gene.
  • aureobasidinA resistance gene For example, in pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region.
  • Oligonucleotide Hyg74T (HygE3T/74T) is a 74-base oligonucleotide with the base targeted for alteration centrally positioned.
  • the second oligonucleotide, designated Hyg74NT (HygE3T/74NT), is the complement of Hyg74T.
  • the third oligonucleotide, designated Hyg10 is a 24 base oligonucleotide with the base targeted for alteration centrally positioned.
  • Hyg74T and Hyg74NT are single-stranded DNA oligonucleotides with three phosphorothioate linkages at each end.
  • Hyg10 has one LNA on each end.
  • a non-specific, control oligonucleotide that is not complementary to the target sequence may be used as a control.
  • an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2'-O-methylated modified oligonucleotide may be used as a control.
  • Oligonucleotide synthesis and cells We synthesize and purify single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 2. Plasmids used for assay are maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MATa at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C.
  • Trichostatin A increases the efficiency of oligonucleotide-mediated gene alteration.
  • the cells are then allowed to grow for 20 or 40 minutes and prepared and electroporated with 1.62 ⁇ g of the Hyg10 oligonucleotide, as described above.
  • the cells are allowed to recover and plated as described above and we determine the conversion per 105 cells.
  • beta protein The effect of expression of beta protein on the efficiency of gene correction by modified single-stranded gene repair targeting vectors in Saccharomyces cerevisiae is studied.
  • the CYC1 gene in yeast is chosen as an experimental system in which to study gene repair and the effect of beta protein on gene repair efficiency.
  • the diploid yeast strain YMH51 contains a wild-type copy of CYC1 and diploid yeast strains YMH52, YMH53, YMH54 and YMH55 contain a mutated version of the CYC1 gene in hemizygous state. These strains are derived from the yeast strain MAT ⁇ cyc1-706::CYH2 cyc7-67 ura3-52 leu2-3 112 cyh2.
  • codon 22 of CYC1 is the wild-type TGC (Cys) sequence; in YMH52, codon 22 is CGC (Arg); in YMH53, codon 22 is AGC (Ser); in YMH54, codon 22 is GGC (Gly); and in YMH55, codon 22 is TCC (Ser).
  • the gene product of the mutated gene possesses a different amino acid in place of a cysteine residue at position 22 of the primary sequence.
  • the phenotype associated with this mutation is inability to grow using glycerol as the sole carbon source. Reversion of the CYC1 gene mutation to the wild-type sequence, e.g., as mediated by a sequence altering oligonucleotide, confers upon the yeast the ability to grow on glycerol only.
  • Cyc1/70T (70T) and Cyc1/70NT (70NT) are modified single-stranded gene repair targeting vectors used in these experiments.
  • the 70T vector is complementary to, and therefore targets, the transcribed strand of the mutant CYC1 gene, whereas the 70NT vector is complementary to, and therefore targets, the nontranscribed strand.
  • the targeting vectors contain wild-type sequence, such that there exists a single base mismatch between the targeting vectors and mutated CYC1 gene sequence.
  • Both 70T and 70NT vectors contain three phosphorothioated linkages at each of their 5' and 3' termini (indicated by the "*" symbols in Table 19, below).
  • Hyg3S/74T serves as a negative control and is not complementary to the sequence of either strand of the CYC1 gene.
  • the sequence of these vectors appears as follows in Table 19. All the oligonucleotide vectors are synthesized and purified according to standard techniques in the art, or as discussed elsewhere in this specification. TABLE 19 Cyc1/70T SEQ ID NO.:21 Cyc1/70NT SEQ ID NO.:22 Hyg3S/74T SEQ ID NO.: 8
  • each CYC1 oligonucleotide Five micrograms of each CYC1 oligonucleotide are electroporated into a yeast strain with a mutation in the CYC1 gene, such as YMH52, YMH53, YMH54 and YMH55, and the YMH51 diploid wild-type strain according to methods well known to the skilled artisan. Selection for nucleic acid sequence alteration is carried out by spreading 1 ml of yeast cells, without dilution, on YPG plates (1% yeast extract, 2% peptone, 3% glycerol, 2% agar).
  • Growth without selection is analyzed by spreading a separate 0.1 ml of yeast cells, diluted 1 x10 -4 , on YPD plates, which contain dextrose rather than glycerol as the carbon source.
  • YPG plates are incubated at 30°C for 7 days and YPD plates are incubated at 30°C for 3 days.
  • Colony counts of selected (grown on YPG) and nonselected yeast (grown on YPD) are determined using an AccuCount TM 1000 (BioLogics, Inc.). Correction efficiency (C.E.) is calculated by dividing the number of YPG colonies by the number of YPD colonies; this value normalizes for variability in transformation frequency and survival.
  • yeast selected on YPG plates is confirmed by PCR amplification of the exon of the CYC1 gene containing codon 22 and then sequencing the gene product. Selected colonies are picked at random from a YPG plate and diluted in 50 ⁇ l of distilled water. One microliter of yeast cell solution is added to a PCR reaction mixture containing 1x PCR amplification buffer, 300 ⁇ M dNTP, OJW-24 primer, ORB-27 primer, and Taq polymerase.
  • Sequences for the OJW-24 primer and the ORB-27 primer may be found, for example, in Hampsey, "A tester system for detecting each of the six base-pair substitutions in Saccharomyces cerevisiae by selecting for an essential cysteine in iso-1-cytochrome c," Genetics 128: 59-67 (1991 ). Samples are preheated at 92°C for 4 min., followed by 35 cycles of 92°C for 10 sec., 52°C for 30 sec., 60°C for 1 min., with a final single elongation step of 68°C for 8 min., followed by incubation at 4°C. PCR products are analyzed by gel electrophoresis through a 1% agarose gel to confirm the presence of the 422 basepair CYC1 exon band. The sequence of PCR products is confirmed by automated sequencing using an ABI 373 Sequencer.
  • results from these types of experiments are presented below in Table 20.
  • the wild-type strain YMH51 grows well on YPG plates because the-wild type CYC1 gene is capable of metabolizing glycerol.
  • the mutant strains containing a hemizygous mutated CYC1 gene, are unable to grow on YPG plates when electroporated with the negative control 74T vector which does not target the CYC1 gene.
  • Electroporation of the mutant strains with either oligonucleotide, 70T or 70NT results in reversion of the mutated version of the CYC1 gene to the wild-type sequence, as evidenced by the ability of treated cells to grow into colonies on YPG plates.
  • the frequency of gene repair is much higher for 70NT, the vector that binds to and targets the non-template strand of the CYC1 gene, as compared to 70T.
  • beta protein and other proteins in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group are then tested for their effect on efficiency of gene repair of the CYC1 gene in yeast.
  • vectors overexpressing genes in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group as described elsewhere herein.
  • yeast beta expression vector as follows. Coding sequence for the beta protein is amplified by PCR from a plasmid containing the gene, after which the PCR product is digested with Hind III and Xho l restriction enzymes, and ligated into the yeast expression vector pYN132, which contains the constitutively active yeast promoter TPI.
  • a sample of the ligation reaction is used to transform DH10B cells after which transformed cells are selected and positive colonies are analyzed for the presence of the expression construct, called pYNT ⁇ , using standard techniques familiar to the skilled artisan.
  • YMH51, YMH52, YMH53, YMH54 and YMH55 cells are electroporated with 5 ⁇ g of the pYNT ⁇ construct or a plasmid overexpressing a gene from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group, or pYN132 (as a negative control), after which transformed cells are selected by growth on SC URA3- plates (minimal media lacking uracil and supplemented with all amino acids) for 3 days.
  • SC URA3- plates minimal media lacking uracil and supplemented with all amino acids
  • YMH55 yeast grow in the presence of glycerol indicating that gene repair is effected, although the growth of the yeast containing the empty pYN132 vector (negative control) is much diminished compared to YMH55 lacking pYN132 (see Table 20, above), an effect that may be attributable to double selection in glycerol and growth medium lacking uracil.
  • HYDROXYUREA ENHANCES TARGETED SEQUENCE ALTERATION IN YEAST CELLS
  • HU is used to enhance the efficiency of gene repair in a system employing single-stranded oligonucleotides with modified backbones to measure gene repair using plasmid pAURHYG(rep)eGFP, with plasmid pAURHYG(wt)eGFP as a control, as described in Example 2.
  • plasmid pAURHYG(rep)eGFP with plasmid pAURHYG(wt)eGFP as a control, as described in Example 2.
  • Oligonucleotides HygE3T/74 and HygE3T/74NT, and control oligonucleotides are described in Example 2.
  • the third oligonucleotide is a 24 base oligonucleotide with the base targeted for alteration centrally positioned, with the sequence 5'-ACC CGC AGG ACG TAT CCA CGC CCT- 3' (SEQ ID NO: 20).
  • the Hyg10 oligonucleotide has one LNA modification on each end. Oligonucleotides are synthesized as described in Example 2.
  • Plasmids used for assay are maintained stably in yeast ( Saccharomyces cerevisiae ) strain LSY678 MATa at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media, with or without 20 mM HU, to the overnight cultures and continue shaking at 30 C until the OD 600 is approximately 0.5 (4 hours).
  • Hydroxyurea increases the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • HU treatment enhances the efficiency of nucleic acid sequence alteration at 10, 20, 40 and 60 minutes also.
  • Table 23 shows that HU pre-treatment enhances nucleic acid sequence alteration efficiency for all oligonucleotides tested, whether they target the sense (nontranscribed) strand (HygE3T/74NT; SEQ ID NO: 9) or the transcribed strand (HygE3T/74T; SEQ ID NO: 8), and whether the oligonucleotides are 74 bases long (HygE3T/74NT) or 24 bases long (Hyg10; SEQ ID NO: 20).
  • Yeast cultures are grown for 4 hours in the presence or in the absence of 20 mM HU, as indicated. The cells are then washed, resuspended in fresh YPD medium, and grown for 10, 20, 40, 60 or 90 minutes, to the OD 600 indicated, prior to electroporation with 5 ⁇ g of oligonucleotide HygE3T/74NT or HygE3T/74, or 1.62 ⁇ g of Hyg10. The cells are then plated onto selective media containing hygromycin or aureobasidinA. The efficiency of gene correction is reported as "Correction efficiency," which represents the number of hygromycin resistant colonies observed per 10 5 aureobasidinA resistant colonies.
  • the efficiency of targeted alteration can be increased and the cost decreased by using at least two unrelated oligonucleotides simultaneously in dual targeting experiments.
  • alteration by a first oligonucleotide confers a selectable phenotype that is selected for.
  • Alterations directed by a second oligonucleotide are then screened for from within this selected population. See, e.g., commonly owned and copending United States patent application No. 60/416,983 "Methods And Compositions For Reducing Screening In Oligonucleotide-Directed Nucleic Acid Sequence Alteration," filed October 7, 2002, which is hereby incorporated by reference in its entirety.
  • the approach is useful as a method, termed gene editing, for rapidly and efficiently introducing a single nucleotide polymorphism of choice into virtually any gene at any desired location using modified single-stranded oligonucleotides.
  • the dual targeting strategy is illustrated in FIG. 9A .
  • the LSY678lntHyg(rep) ⁇ strain (Table 24) contains a 240 kb human ⁇ S -globin YAC and a cassette containing a chromosomal hygromycin-resistance gene inactivated by a single base mutation and a functional aureobasidin-resistance gene. See Liu et al., Nucleic Acids Res. 31:2742-2750 (2002 ); Parekh-Olmedo et al., Chem. Biol. 9:1073-1084 (2002 ); and Liu et al., Mol. Cell Biol. 22:3852-3863 (2002 ).
  • FIG. 9B shows the oligonucleotide that is used to direct editing of the chromosomal hygromycin mutant gene.
  • Hyg3S/74NT (SEQ ID NO: 9) is a 74-mer that is specific for binding to the nontranscribed strand and contains three terminal phosphorothioate linkages. Id. Also shown is the target sequence of the mutant, which contains a TAG stop codon.
  • FIG. 9C illustrates the structure of the ⁇ -globin YAC and nucleotides targeted for editing are specified. The two nonselectable changes are directed by different oligonucleotides, ⁇ Thal1 (SEQ ID NO: 27) and ⁇ Thal2 (SEQ ID NO: 28), in separate experiments.
  • the YAC contains approximately 230 kb of genomic DNA from human chromosome 11, indicated by the shaded region.
  • the unshaded regions represent the yeast sequences that are on either end of the YAC (not drawn to scale). Yu et al., Proc. Natl. Acad. Sci. USA 97:5978-5983 (2000 ). A portion of the ⁇ -globin sequence is shown, beginning with the start codon.
  • ⁇ Thal1 directs a change from a G to an A while ⁇ Thal2 directs a change from a T to a C.
  • sequences of the oligonucleotides having nucleic acid sequence alteration activity are shown and are designed to bind to the non-transcribed strand, relative to human transcription of the ⁇ -globin locus. Both changes result in single-base substitutions that have been documented to result in ⁇ -thalassemia in humans.
  • YAC-containing LSY678IntHyg(rep) ⁇ cells (Table 24) are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA ( FIG. 9A ).
  • TSA TSA
  • FIG. 10A The results of dual targeting experiments are presented in FIG. 10A .
  • Hygromycin-resistant colonies are observed when the oligonucleotide, Hyg3S/74NT, is used.
  • the ratio of hygromycin-resistant colonies to aureobasidin-resistant colonies is referred to as the correction efficiency (C.E.).
  • HU and TSA leads to an increase in the C.E. of the hygromycin mutation, here about 4- to 6-fold.
  • hygromycin-resistant colonies are found at roughly 1 per 3000 aureobasidin-resistant colonies.
  • Hygromycin-resistant colonies are then analyzed for second-site editing in the YAC ⁇ -globin gene.
  • the ⁇ Thal1 oligonucleotide is designed to direct the replacement of a G in TGG codon 16 of exon 1 with an A, giving the stop codon TGA ( FIG. 9C ).
  • 10B shows an ABI SNaPshot (middle panels) and direct DNA sequence (bottom panel) of a region of the ⁇ -globin gene in a corrected colony from this experiment; in both, the G to A change is evident.
  • 1 in 325 also contain the second change in the YAC ⁇ -globin sequence.
  • approximately 10% of the cells with the corrected hygromycin-resistance gene also contain the edited ⁇ -globin gene.
  • FIG. 11 shows results of dual targeting in this strain and, as expected, expression of RAD51 increases the hygromycin C.E. of oligonucleotide Hyg3S/74NT (compare with FIG. 10 ).
  • YAC-containing LSY678InHyg(rep) ⁇ cells (Table 24) are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA ( FIG. 9A ).
  • addition of a second oligonucleotide, ⁇ Thal2 increases the correction efficiency further, to roughly 1 hygromycin-resistant colony per 800 aureobasidin-resistant colonies.
  • the ⁇ Thal2 oligonucleotide is designed to direct the replacement of a T in the initiator ATG codon of exon 1 with a C, giving the non-initiator codon ACG ( FIG. 9 ).
  • FIG. 11B shows an ABI SNaPshot (middle panels) and direct DNA sequence (bottom panel) of the ⁇ -globin gene from a corrected Hyg r colony; the T to C change is evident in both analytical panels.
  • 1 in 70 also contain the second single-base change in the YAC ⁇ -globin sequence.
  • the dual targeting approach is again successful; approximately 10% of the cells bearing the corrected hygromycin also contain the edited ⁇ -globin gene.
  • ⁇ -globin YAC is isolated from a preparative pulsed-field gel as described in Gnirke et al., Genomics 15:659-667 (1993 ). Briefly, concentrated chromosomal DNA from the ⁇ S-YAC strain (AB1380 background, see Chang et al., Proc. Natl. Acad. Sci. USA 95:14886-14890 (1998 )) is prepared and resolved on a 1% low-melt agarose pulsed-field gel at 200V, 14°C, 20-50s, 33 hours.
  • the YAC is isolated, equilibrated with a modified agarase buffer (10mM BisTris-HCl pH6.5, 1mM EDTA, 100mM NaCl), treated with ⁇ -agarase I (New England Biolabs), and concentrated to a final volume of -200 ⁇ l. Thirty ⁇ l of the purified YAC are introduced into competent LSY678IntHyg(rep) cells by spheroplast transformation and selection on agar/sorbitol plates lacking tryptophan. Transformants are restreaked and confirmed by pulsed-field gel electrophoresis, PCR, and sequence analysis for a fragment of the human ⁇ -globin gene.
  • a modified agarase buffer 10mM BisTris-HCl pH6.5, 1mM EDTA, 100mM NaCl
  • ⁇ -agarase I New England Biolabs
  • the pYNARad51 episomal expression plasmid is constructed by replacing the TRP1 gene of pYNRad51 (see Liu et al., Nucleic Acids Res. 31, 2742-2750 (2002 )) with the ADE2 gene.
  • pYNARad51 is introduced into LSY678IntHyg(rep) ⁇ by electroporation and selection on agar plates lacking adenine.
  • Hyg3S/74NT (SEQ ID NO: 9), ⁇ Thal1 (SEQ ID NO: 27), and ⁇ Thal2 (SEQ ID NO: 28) are ordered from IDT with HPLC purification.
  • Hyg3S/74NT is a 74mer and both ⁇ Thal1 and ⁇ Thal2 are 71 mers; all three oligonucleotides have three phosphorothioate linkages at the 5' and 3' ends ( FIG. 9 ).
  • the dual targeting protocol is outlined in FIG. 9A .
  • LSY678IntHyg(rep) ⁇ cells are grown overnight in 10 ml YPD media at 30°C.
  • the culture is diluted to OD 600 ⁇ 0.15-0.20 in 40 ml YPD media and grown for one doubling time to OD 600 ⁇ 0.3-0.4.
  • 100mM HU is added to the culture and the cells are grown for one doubling time to OD 600 ⁇ 0.6-0.8.
  • Cells are harvested and resuspended in 1 ml YPD containing 25 ⁇ l 1M DTT and grown for an additional 20 minutes at 30°C.
  • the cells are washed twice with 25 ml cold dH 2 O and once with 25 ml cold 1 M sorbitol.
  • the cells are resuspended gently in 1 ml cold 1 M sorbitol, spun for 5 minutes at 5000 rpm in a microcentrifuge, and resuspended in 120 ⁇ l 1M sorbitol.
  • Forty microliters of cells are electroporated with 30 ⁇ g of each oligonucleotides in a 2 mm gap cuvette using a Bio-Rad Gene Pulser apparatus (Richmond, CA) with 1.5 kV, 25 ⁇ F, 200 ⁇ , 1 pulse, 5s/pulsed length.
  • the cells are immediately resuspended in 3 ml YPD with 0.8 ⁇ g/ml aureobasidin A and 50 ⁇ g/ml TSA and recovered overnight at 30°C.
  • the cells are spun down and resuspended in 1 ml fresh YPD. Dilutions are plated on YPD agar plates containing either hygromycin (300 ⁇ g/ml) or aureobasidin A (0.5 ⁇ g/ml). C.E.s are determined based on the number of hygromycin-resistant colonies per aureobasidin-resistant colonies.
  • the PCR reactions are performed by adding 8 pmoles of each primer and 2,5 ⁇ l yeast cell culture into pre-aliquoted PCR reaction mixes (Marsh/Abgene).
  • the PCR reactions use an annealing temperature of 45.8°C and an extension time of 1 min for 35 cycles.
  • the PCR reactions are purified using a QiaQuick PCR 96-well purification kit (Qiagen) and eluted in a volume of 80 ⁇ l.
  • QiaQuick PCR 96-well purification kit Qiagen
  • One microliter of the purified PCR product is used as a template for the ABI SNaPshot reaction.
  • the sequence of the SNaPshot primer used to screen for the ⁇ Thal1 conversion is: 5'-CCCCCCCCCCCCCCCAAGTCTGCCGTTACTGCCCTGTG-3' (SEQ ID NO: 31).
  • the sequence of the SNaPshot primer used to screen for the ⁇ Thal2 conversion is: 5'-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCACAGGAGTCAGGTGCACC-3' (SEQ ID NO: 32).
  • the SNaPshot reactions are performed using an ABI Prism SNaPshot Multiplex Kit, as specified by the manufacturer, and analyzed on an ABI 3100 Genetic Analyzer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The invention is directed to oligonucleotide-mediated repair or alteration of genetic information, such as nucleic acid sequence alteration, and methods, compositions and kits for enhancing the efficiency of such alteration. Specifically, the invention incorporates the use of factors such as Histone Deacetylase Inhibitor (HDAC), Lambda phage beta protein, or hydroxyurea to achieve such enhanced efficiency.

Description

    FIELD OF THE INVENTION
  • This invention relates to oligonucleotide-directed repair or alteration of genetic information and methods, for enhancing the efficiency of such alteration.
  • BACKGROUND OF THE INVENTION
  • A number of different types of oligonucleotides (and reasonably short polynucleotides) have been described for use in the targeted sequence alteration of DNA, including (i) internally duplexed chimeric RNA-DNA oligonucleotides that fold into a double-stranded, double hairpin conformation, (ii) bifunctional oligonucleotides that include a triplexing domain tethered to a repair domain, and (iii) chemically modified, single-stranded oligonucleotides that have an internally unduplexed DNA correction domain and lack both hairpins and triplexing domains. Various of these oligonucleotides have been shown to effect targeted alteration of single base pairs as well as to introduce frameshift alterations in cells and cell-free extracts from a variety of host organisms, including bacteria, fungi, plants, and animals.
  • The influence of factors such as growth phase, developmental state, cell cycle position, and the contribution of particular cellular proteins to the efficiency of oligonucleotide-mediated nucleic acid sequence alteration, in either cells or cell-free extracts, is not well understood. Although several cellular pathways and gene groups are known to be involved in mediating in vivo repair of DNA lesions resulting from radiation or chemical mutagenesis (including the RAD52 epistasis group of proteins, the mismatch repair group of proteins, and the nucleotide excision repair group of proteins), and although the role of these proteins in homologous recombination and maintaining genome integrity has been extensively studied (reviewed, for example, in Heyer, Experientia 50(3), 223-233 (1994); Thacker, Trends in Genetics 15(5),166-168 (1999); Paques & Haber, Microbiol. and Molec. Biol. Rev. 63(2), 349-404 (1999); and Thompson & Schild, Mutation Res. 477, 131-153 (2001)), the specific function of these and related proteins in oligonucleotide-directed nucleic acid sequence alteration is not well understood.
  • Inhibitors of histone deacetylase (HDAC) induce cultured tumor cells to undergo growth arrest, differentiation, and/or apoptosis. Marks et al., J. Natl. Canc. Inst. 92(15), 1210-1216 (2000). For example, treatment with trichostatin A (TSA), an antibiotic from Streptomyces, results in inhibition of enzymatic activity of partially purified HDAC and accumulation of acetylated histones in various cell types, and can cause induction of Friend cell differentiation and specific inhibition of the cell cycle of normal rat fibroblasts in the G1 and G2 phases at very low concentrations. Yoshida et al., J. Biol. Chem. 265,17174-17179 (1990).
  • HDAC inhibitors have also been suggested to affect gene therapy agents. WO 00/23567 discloses methods of promoting stem cell self-renewal that include exposure of a population of stem cells, particularly hematopoietic stem cells, to an effective dose of an HDAC inhibitor, particularly trichostatin A, trapoxin, or chlamydocin. In one embodiment, at least one transgene, either homologous or heterologous to the origin of the recipient DNA, is introduced using retroviral mediated transfer into cells treated with an HDAC inhibitor. In another embodiment, stem cells are genetically modified using a polynucleotide and treatment with an HDAC inhibitor.
  • WO 00/51424 discloses methods of homologous recombination in cultured non-embryonic stem cells for use as nuclear donors to produce genetically modified animals. The technique was used to insert genes, e.g., a marker gene and a transgene, at different loci using 5' and 3' regions that contain between 1.8 and 12 kb of homology at the flanking regions of an insert locus in the chromosome. Agents inhibiting histone deacetylation or factors otherwise stimulating transcription at the target locus are suggested to enhance this homologous recombination process.
  • WO 00/24917 discloses modification of cellular DNA in vertebrate cells by homologous pairing at preselected locations using parvoviral vectors, including vectors based on adeno-associated virus (AAV). The vectors of this technique, all of which are at least 2.7 kb in length, include a DNA sequence that is substantially identical to a target locus and all or part of at least one parvoviral inverted terminal repeated (ITR) sequence or equivalent. Among the agents disclosed to treat target cells are histone deacetylase inhibitors, such as sodium butyrate and trichostatin A.
  • HDAC inhibitors have not, however, been suggested or disclosed to increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • Recombination by bacteriophage lambda in E. coli bacteria during lambda's lytic cycle is mediated by the so-called "Red" recombination pathway which comprises two genes. Redo encodes an exonuclease (exo) that binds to the broken ends of double-stranded DNA and degrades one of the strands in the 5' to 3' direction, leaving a 3' single-stranded overhang. Redβ encodes a single-stranded DNA binding protein (bet) that, in combination with the bacterial RecA protein, melts duplex DNA at a site containing sequence complementary to the exposed 3' end and promotes strand invasion and annealing of the single-strand overhang into the complementary duplex. Red recombination is facilitated by the lambda protein called "Gam" which inhibits the bacterial RecBCD exonuclease, an enzyme that degrades duplex DNA with exposed ends.
  • Various references describe the use of the Red recombination system to mediate or facilitate homologous recombination in E. coli of linear double stranded DNA of non-lambda phage origin. K.C. Murphy, "Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli," J. Bacteriol., 180(8):2063-2071 (Apr. 1998); Yu et al., "An efficient recombination system for chromosome engineering in Escherichia coli," Proc. Natl. Acad. Sci. USA, 97(11):5978-5983 (2000); Ellis et al., "High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides," Proc. Natl. Acad. Sci. USA, 98(12):6742-6746 (2001).
  • WO 02/14495 discloses methods for cloning DNA molecules and altering eukaryotic genes in cells having DNA encoding beta protein under the control of a derepressible promoter. The induced beta protein promotes homologous recombination between nucleic acids in the cell, which nucleic acids may be intrachromosomal or extrachromosomal. This publication also discloses methods for inducing homologous recombination using single-stranded DNA molecules by introducing into a cell DNA capable of undergoing homologous recombination and beta protein. The application further discloses bacterial cells that promote efficient homologous recombination, which bacteria contain one or more genes from a defective lambda prophage. However, the this publication states that at least one of the experiments used to describe the invention did not work.
  • Collectively, the references and international patent publication demonstrate that lambda Red gene products, and in particular beta protein, can be used in bacteria to efficiently alter DNA sequences by homologous recombination using double-stranded and single-stranded oligonucleotides. However, the references neither demonstrate nor suggest that DNA can be altered efficiently using single- or double-stranded oligonucleotides by mechanisms other than homologous recombination, and do not suggest that lambda phage proteins can be used to increase the efficiency of nucleic acid sequence alteration in non-bacterial cells by any mechanism.
  • Hydroxyurea (HU) is known to inhibit the M2 subunit of ribonucleotide reductase, depleting dNTP pools and impairing DNA replication, Zhou et al., Cancer Res. 55:1328-1333 (1995), which causes cells to arrest at the G1/S border of the cell cycle. HU's ability to inhibit DNA replication has lead to its use as an antiretroviral and as an antineoplastic agent. Hanft et al., Blood 95:3589-3593 (2000); Arbiser et al., Endocrinology 128:972-978 (1991); Tamura et al., J. Investig. Med. 45:160-167 (1997); Lisziewicz, U.S. Pat. No. 6,130,089 . HU's ability to arrest the cell cycle at the G1/S checkpoint has been exploited to synchronize cultures of cells prior to genetic manipulations. Hadlaczky et al., WO 97/40183 . HU has been shown to stimulate the expression of fetal hemoglobin and has been used to treat sickle cell disease. Steinberg & Rodgers, Medicine (Baltimore) 80:328-344 (2001).
  • HU has been used to increase the efficiency of retroviral-mediated gene transfer into hematopoietic stem cells. Retroviral integration is most efficient in actively cycling cells. The efficiency of this retroviral transduction is enhanced by the presence of HU in the growth medium used to prepare the target cells. See, e.g., Uchida et al., U.S. Pat. No. 5,928,638 . It is believed that the effect of HU is due to its ability to switch quiescent, GO phase, cells into the more active G1/S/G2 and M phases, giving a population enriched in actively cycling cells.
  • HU also has been used with adeno-associated virus (AAV) vectors. Alexander et al., U.S. Pat. No. 5,834,182 . Like retroviral vectors, AAV vectors act by stably integrating into target cell's chromosome. Tal, J., J. Biomed. Sci. 7:279-291 (2000). As with retroviral transduction; AAV transduction is reported to be more efficient when target cells are pre-treated with HU.
  • HU has been used to increase the efficiency of nuclear transfer in transgenesis approaches in which cultured cells are first targeted by homologous recombination, and the altered nucleus than transferred. HU is used to synchronize cells prior to donor nucleus isolation, increasing the efficiency of the nuclear transfer process. Colman et al., WO 00/51424 .
  • HU has not, however, been suggested or disclosed to be useful in increasing the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • A need exists in the art for methods, compositions, and kits to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration, particularly nucleic acid sequence alteration effected by other than homologous recombination. There particularly exists a need in the art for methods, compositions, and kits that can be used to increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in eukaryotic cells, such as yeast and mammalian cells, and particularly human cells.
  • SUMMARY OF THE INVENTION
  • The present invention solves these and other needs in the art by providing, in a first aspect, improved ex vivo or in vitro methods of oligonucleotide-mediated targeted nucleic acid sequence alteration. The methods, which increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration, comprise combining a target nucleic acid in the presence of cellular repair proteins with a sequence-altering targeting oligonucleotide, and first contacting the cells having said cellular repair proteins with hydroxyurea.
  • The target nucleic acid and sequence-altering oligonucleotide may be combined ex vivo or in vivo.
  • In some ex vivo embodiments, one or more of the cellular repair proteins is a purified protein, wherein purified intends that the protein is at a higher concentration relative to nonrepair proteins than is found naturally in the cell from which it is drawn. Such purified cellular repair proteins may be separately purified, or purified collectively, In other ex vivo embodiments, the cellular repair proteins are present in a cell-free protein extract.
  • In other embodiments, the cellular repair proteins are present within an intact cell, either cultured ex vivo or within a living organism.
  • The cellular repair proteins may be from a prokaryotic or eukaryotic cell, including E. coli cell, yeast cell, such as Saccharomyces cerevisiae, Ustilago maydis, or Candida albicans, a plant cell, or an animal cell, such as a mammalian cell, including mouse, hamster, rat, and monkey cell, and further including human cells. The human cell may be selected, for example, from the group consisting of liver cell, lung cell, colon cell, cervical cell, kidney cell, epithelial cell, cancer cell, stem cell, hematopoietic stem cell, hematopoietic committed progenitor cell, and non-human embryonic stem cell, but is not so limited.
  • In one series of embodiments, the sequence altering oligonucleotide is a chemically modified, nonhairpin, internally unduplexed oligonucleotide.
  • The oligonucleotide may, for example, be fully complementary in sequence to the sequence of a first strand of the nucleic acid target, but for one or more mismatches as between the sequences of the oligonucleotide and its complement on the target nucleic acid first strand, and possess at least one terminal modification. In particularly useful embodiments, the oligonucleotide has an internally unduplexed domain of at least 8 contiguous deoxyribonucleotides, and the one or more mismatches are positioned exclusively in the oligonucleotide DNA domain and at least 8 nucleotides from the oligonucleotide's 5' and 3' termini.
  • Usefully, the terminal modification is selected from the group consisting of at least one terminal locked nucleic acid (LNA), at least one terminal 2'-O-Me base analog, and at least one, two, three or more terminal phosphorothioate linkages, and the oligonucleotide is 17 -121 nucleotides in length, often no more than 74 nucleotides in length.
  • The target may be double-stranded DNA, such as genomic DNA, including genomic DNA in a chromosome. The chromosome may be a natural or artificial chromosome. In other embodiments, the DNA target is episomal.
  • In some embodiments of the methods of the present invention, the target nucleic acid is the nontranscribed strand of a double-stranded genomic DNA. In others, the target nucleic acid is the transcribed strand.
  • Also described in here are compositions for oligonucleotide-mediated targeted nucleic acid sequence alteration.
  • The compositions comprise a sequence-altering oligonucleotide which is capable, when combined in the presence of cellular repair proteins with a substantially complementary target nucleic acid, of effecting targeted sequence alteration wherein; and either (i) cellular repair proteins, the cellular proteins derived from a cell prior-contacted with an HDAC inhibitor or hydroxyurea, or (ii) lambda beta protein.
  • As in the methods above-described, the cellular repair proteins of the composition may be purified, present in a cell-free protein extract, or present within an intact cell, either cells present in culture or within an intact animal.
  • The composition may additionally, or in the alternative, comprise trichostatin A, cellular repair proteins, or hydroxyurea.
  • Also described in here is a kit.
  • The kit may comprise an oligonucleotide, particularly a sequence-altering oligonucleotide, such as a chemically modified, internal unduplexed, nonhairpin oligonucleotide, and one or more of trichostatin A, lambda beta protein, or hydroxyurea, separately packaged therefrom.
  • The kit may comprise an oligonucleotide, particularly a sequence-altering oligonucleotide, such as a chemically modified, internally unduplexed, nonhairpin oligonucleotide, and cellular repair proteins, the cellular proteins derived from a cell prior-contacted with an HDAC inhibitor or hydroxyurea and packaged separately therefrom. Such kits may further comprise lambda beta protein.
  • Kits may comprise at least one protein from the-RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group and may additionally comprise trichostatin A, lambda beta protein, or hydroxyurea, optionally with an oligonucleotide having sequence alteration activity.
  • Particularly suited kits to preparing sequence altering oligonucleotides having one or more locked nucleic acid (LNA) residues, may comprise a template-independent single-strand polymerise, such as calf thymus terminal deoxynucleotidyl transferase; LNA monomers having 5'-triphosphates; and trichostatin A, lambda beta protein, or hydroxyurea. The kits may comprise a water soluble carbodiimide composition; an imidazole composition; LNA monomers having a nucleophilic group; and Trichostatin A, lambda beta protein, or hydroxyurea.
  • Further aspects and embodiments of the instant invention are summarized in the following numbered items:
    1. 1. An in vitro or ex vivo method of oligonucleotide-mediated targeted nucleic acid sequence alteration, the method comprising:
      • combining a target nucleic acid in the presence of cellular repair proteins with a sequence-altering targeting oligonucleotide; and
      • first contacting the cells having said cellular repair proteins with hydroxyurea.
    2. 2. The method of item 1, wherein said cellular repair proteins are purified.
    3. 3. The method of item 1, wherein said cellular repair proteins are present in a cell-free protein extract.
    4. 4. The method of item 1, wherein said cellular repair proteins are present within an intact cell.
    5. 5. The method of item 4, wherein said cell is cultured ex vivo.
    6. 6. The method of item 1, wherein said cellular repair proteins are of a cell selected from the group consisting of: prokaryotic cells and eukaryotic cells.
    7. 7. The method of item 6, wherein said cell is a prokaryotic cell.
    8. 8. The method of item 7, wherein said prokaryotic cell is a bacterial cell.
    9. 9. The method of item 8, wherein said bacterial cell is an E. coli cell.
    10. 10. The method of item 6, wherein said cell is a eukaryotic cell.
    11. 11.The method of item 10, wherein said eukaryotic cell is a yeast cell, plant cell, mammalian cell, or human cell.
    12. 12. The method of item 11, wherein said eukaryotic cell is a yeast cell.
    13. 13. The method of item 12, wherein said yeast is Saccharomyces cerevisiae, Ustilago maydis, or Candida albicans.
    14. 14. The method of item 11, wherein said eukaryotic cell is a plant cell.
    15. 15. The method of item 11, wherein said eukaryotic cell is a human cell.
    16. 16. The method of item 15, wherein said human cell is selected from the group consisting of liver cell, lung cell, colon cell, cervical cell, kidney cell, epithelial cell, cancer cell, stem cell, hematopoietic stem cell, hematopoietic committed progenitor cell, and" non-human embryonic stem cell.
    17. 17. The method of item 11, wherein said eukaryotic cell is a mammalian cell.
    18. 18. The method of item 17, wherein said mammal is selected from the group consisting of: mouse, hamster, rat, and monkey.
    19. 19. The method of any one of items 1-18, wherein said oligonucleotide is fully complementary in sequence to the sequence of a first strand of the nucleic acid target, but for one or more mismatches as between the sequences of said oligonucleotide and its complement on said target nucleic acid first strand, and wherein said oligonucleotide has at least one terminal modification.
    20. 20. The method of item 19, wherein said at least one terminal modification is selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2'-O-Me base analog, and at least one terminal phosphorothioate linkage.
    21. 21. The method of item 20, wherein said oligonucleotide is a single-stranded oligonucleotide 17-121 nucleotides in length, has an internally unduplexed domain of at least 8 contiguous deoxyribonucleotides, and wherein said one or more mismatches are positioned exclusively in said oligonucleotide DNA domain and at least 8 nucleotides from said oligonucleotide's 5' and 3' termini.
    22. 22. The method of item 20, wherein said oligonucleotide has at least one terminal locked nucleic acid (LNA).
    23. 23. The method of item 1, wherein said oligonucleotide is at least 25 nucleotides in length.
    24. 24. The method of item 1, wherein said oligonucleotide is no more than 74 nucleotides in length.
    25. 25.The method of item 1, wherein said oligonucleotide is no more than 121 nucleotides in length.
    26. 26. The method of item 1, wherein said target nucleic acid is DNA.
    27. 27. The method of item 26, wherein said DNA is double-stranded DNA.
    28. 28. The method of item 27, wherein said double-stranded DNA is genomic DNA.
    29. 29. The method of item 28, wherein said genomic DNA is in a chromosome.
    30. 30. The method of item 29, wherein said chromosome is an artificial chromosome.
    31. 31. The method of item 28, wherein said genomic DNA is episomal.
    32. 32. The method of item 1, wherein said target nucleic acid is the nontranscribed strand of a double-stranded genomic DNA.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description taken in conjunction with the accompanying drawings, in which like characters refer to like parts throughout.
  • FIG. 1. Genetic readout system for correction of a point mutation in plasmid pKsm4021. A mutant kanamycin gene harbored in plasmid pKsm4021 is the target for correction by oligonucleotides. The mutant G is converted to a C by the action of the oligonucleotide. Corrected plasmids confer resistance to kanamycin in E. coli (DH10B) after electroporation leading to the genetic readout and colony counts. The sequence of chimeric, RNA-DNA double-hairpin oligonucleotide KanGG is shown (SEQ ID NO: 1).
  • FIG. 2. Hygromycin-eGFP target plasmids. Diagram of plasmid pAURHYG(x)eGFP. Plasmid pAURHYG(rep)eGFP contains a base substitution mutation introducing a G at nucleotide 137, at codon 46, of the Hygromycin B coding sequence (cds). Plasmid pAURHYG(ins)eGFP contains a single base insertion mutation between nucleotides 136 and 137, at codon 46, of the Hygromycin B coding sequence (cds) which is transcribed from the constitutive ADH1 promoter. Plasmid pAURHYG(Δ)eGFP contains a deletion mutation removing a single nucleotide at codon 46, of the Hygromycin B coding sequence (cds). The sequence of the normal allele, the target (existing mutant), and desired alteration is shown for each o the three plasmids.
  • FIG. 3. Oligonucleotides for correction of hygromycin resistance gene. The sequence of the oligonucleotides used in experiments to assay correction of a hygromycin resistance gene are shown. DNA residues are shown in capital letters, RNA residues are shown in lowercase and nucleotides with a phosphorothioate backbone are capitalized and underlined. In FIG. 3, the sequence of HygE3T/25 corresponds to SEQ ID NO: 7, the sequence of HygE3T/74T (also known as HygE3T/74 and Hyg3S/74T) corresponds to SEQ ID NO: 8, the sequence of HygE3T/74NT (also known as HygE3T/74α and Hyg3S/74NT) corresponds to SEQ ID NO: 9, the sequence of HygGG/Rev corresponds to SEQ ID NO: 10 and the sequence of Kan70T corresponds to SEQ ID NO: 11; the sequence of Hyg10 corresponds to SEQ ID NO: 20.
  • FIG. 4. pAURNeo(-)FIAsH™plasmid. This figure describes the plasmid structure, target sequence, oligonucleotides, and the basis for detection of the nucleic acid sequence alteration event by fluorescence. The sequences of the Neo/Kan target mutant and its complement correspond to SEQ ID NO: 12 and SEQ ID NO: 13, the converted sequence and its complement correspond to SEQ ID NO: 14 and SEQ ID NO: 15 and the FIAsH™ peptide sequence corresponds to SEQ ID NO: 16.
  • FIG. 5. Fluorescent microscopy of targeting in the FIAsH™ system. This figure shows confocal microscopy of yeast strains before and after transfection by DNA/RNA chimeric oligonucleotide kanGGrv. Converted yeast cells are indicated by bright green fluorescence. (A) Upper left: wild type, nontargeted. Upper right: Δrad52, nontargeted. (C) Lower left: wild type, targeted. (D) Lower right: Δrad52, targeted.
  • FIG. 6. pYESHyg(x)eGFP plasmid. This plasmid is a construct similar to the pAURHyg(x)eGFP construct shown in FIG. 7, except the promoter is the inducible GAL1 promoter. This promoter is inducible with galactose, leaky in the presence of raffinose, and repressed in the presence of dextrose.
  • FIG. 7. pYN132 plasmid. This figure shows the plasmid structure including the constitutive promoter from the TPL1 gene, which directs expression of the cDNA cloned downstream.
  • FIGS. 8A and 8B. Construction of pAUR101-HYG(x)eGFP plasmid. FIGS. 8A and 8B illustrate the construction scheme for the pAUR101-HYG(x)eGFP integrational plasmid.
  • FIG. 9. Dual targeting protocol. (A) Schematic diagram of the generalized strategy for dual targeting. (B) Sequences of the hygromycin-resistance gene and its mutation. The wild-type ("wt") (SEQ ID NO: 23), mutant (SEQ ID NO: 24), and converted (SEQ ID NO: 25) sequences are shown, together with the sequence-altering oligonucleotide used to generate the conversion ("Hyg3S/74NT") (SEQ ID NO: 9) (C) Schematic of the YAC containing the human β-globin locus, the segment of the β-globin gene in which the alterations are made (SEQ ID NO: 26) and the oligonucleotides used to generate the nonselectable alterations: "βThal1" (SEQ ID NO: 27) and "βThal2" (SEQ ID NO: 28).
  • FIG.10. Dual targeting results. (A) Efficiency of gene editing of hygromycin mutation using the dual targeting protocol. For these experiments, YAC-containing LSY678IntHyg(rep)β cells are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA. (B) Gene editing of the human β-globin gene directed by the βThal1 oligonucleotide, including the sequence of the altered segment before (SEQ ID NO: 29) and after (SEQ ID NO: 30) the conversion.
  • FIG. 11. Dual targeting and Rad51. (A) Efficiency of gene editing of hygromycin mutation using the dual targeting protocol in combination with overexpression of yeast Rad51. For these experiments, YAC-containing LSY678IntHyg(rep)β cells are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA. (B) Gene editing of the human β-globin gene directed by the βThal2 oligonucleotide, including the sequence of the altered segment before (SEQ ID NO: 31) and after (SEQ ID NO: 32) the conversion.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides in vitro or ex vivo methods for increasing the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • The methods comprise administering to a cell or tissue from a bacterium, a fungus, a plant, or an animal, including mammals, a composition comprising hydroxyurea, and concurrently, or at some time thereafter, administering to the treated cell or tissue an oligonucleotide having nucleic acid sequence alteration activity.
  • Although HDAC inhibitors have been used to facilitate homologous recombination and viral-mediated gene transfer, and although lambda beta protein has been shown to facilitate homologous recombination between nucleic acids in E. coli cells, which nucleic acids may be intrachromosomal or extrachromosomal, and although HU has been used to enhance the efficiency of gene targeting by viral transduction and nuclear transfer, prior to the invention described herein it was unknown and could not be predicted whether these agents could be used to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • Oligonucleotide-mediated nucleic acid sequence alteration is mediated by cellular proteins different from those that mediate homologous recombination. The oligonucleotides used for oligonucleotide-mediated gene alteration typically lack structures, such as long stretches of sequence complementarity to the target, that are required for homologous recombination. And oligonucleotide-mediated nucleic acid sequence alteration does not involve the intermediation of viral proteins.
  • The genetic products resulting from oligonucleotide-mediated sequence alteration, on the one hand, differ from those resulting from either homologous recombination or virally-mediated transduction, on the other.
  • Homologous recombination results in the replacement of large stretches of the chromosomal DNA of the target cell with sequences from a transgene supplied on an episomal DNA construct, utilizing the target cell's homologous recombination machinery to effect the required double strand breakage and rejoining. Flanking sequence on the 3' and 5' regions of the transgene, designed to match sequences flanking the target insertion site, are usually extensive, e.g., between about 1.5 to 15 kb.
  • Retroviral and adeno-associated virus transduction involve infection of target cells with recombinant viral vectors, often relying on virally encoded proteins to effect integration of the virus into the host's chromosome. Robbins & Ghivizzani, Pharmacol. Ther. 80:35-47 (1998). Moreover, the chromosome of the target cell after such viral transduction contains an insertion of the entire, or substantial portions of the, recombinant virus, including viral vector sequences. Viral integration may be multiplicative with tandem or multiple copies of integrated virus. Integration occurs at a random spot in the host chromosome, or at a known and predetermined viral integration site. The variation in insertion site and number results in variation in transgene expression. The viral remnants inserted in the chromosome potentially can lead to adverse immune responses to expressed viral proteins and may also, depending on their site of alteration, cause neoplastic changes.
  • In contrast, oligonucleotide-mediated nucleic acid sequence alteration uses different reagents and produces results different from those used in homologous recombination and viral transduction. Oligonucleotide-mediated nucleic acid sequence alteration involves the use of relatively short oligonucleotides, rather than exogenously supplied genes or viral vectors, to modify genes within the target cell. The host chromosomal DNA sequence is altered at only one or a few bases, at precisely defined locations within the target gene. No viral sequences or episomal remnants are introduced into the host chromosome, and no virally encoded proteins are required. Thus, there is no need to introduce episomal vectors containing entire genes (or at least long portion of genes), as is required for gene targeting by homologous recombination.
  • Oligonucleotide-mediated gene alteration is mechanistically distinct from homologous recombination and viral transduction as well. Oligonucleotide-mediated gene alteration is dependent on the cellular DNA mismatch repair mechanism, a cellular pathway distinct from homologous recombination and viral transduction, involving separate genes and gene products. Lanzov, Molecular Genetics and Metabolism 68:276-282 (1999). For example, while homologous recombination requires the RAD52 gene product (Kuzminov, Proc. Natl. Acad. Sci. USA 98 (15): 8461-8468 (2001)), oligonucleotide-mediated gene alteration is more efficient in the absence of RAD52.
  • It was further unknown and could not be predicted whether lambda beta protein could be used to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in cells other than the natural host of the lambda phage.
  • We have now discovered, surprisingly, that despite the difference in mechanisms as between oligonucleotide-mediated sequence alteration, on the one hand, and homologous recombination and viral transduction on the other, that prior or contemporaneous treatment of cells with the HDAC inhibitor trichostatin A or with hydroxyurea increases the efficiency of oligonucleotide-mediated sequence alteration. We have further discovered that despite the difference in mechanisms as between oligonucleotide-mediated sequence alteration, on the one hand, and homologous recombination on the other, and despite the difference in proteins and intracellular milieu as between E. coli, on the one hand, and eukaryotic cells, on the other, that lambda beta protein surprisingly increases the efficiency of oligonucleotide-mediated sequence alteration in all cells tested.
  • Accordingly, the invention provides in vitro or ex vivo methods for increasing the efficiency of oligonucleotide-mediated nucleic acid sequence alteration. The methods comprise treating a cell or tissue from a bacterium, a fungus, a plant, or an animal with hydroxyurea, and then administering to the treated cell or tissue an oligonucleotide having nucleic acid sequence alteration activity, or treating a cell or tissue from a bacterium, a fungus, a plant.
  • The methods of the present invention can be used with any oligonucleotide having nucleic acid sequence alteration activity. All such oligonucleotides comprise at least a portion that is fully complementary in sequence to the sequence of a portion of a nucleic acid target, except for noncomplementary bases designed to direct nucleic acid sequence alteration. Thus, the oligonucleotides used in the methods of the invention have at least one base pair different from the sequence of a target gene, or have at least one base pair different from the complement of the DNA sequence of a target gene.
  • For example, the methods of the present invention can be used with bifunctional oligonucleotides having both a triplex forming domain and repair domain, as described in Culver et al., Nat. Biotechnol. 1999 Oct;17(10):989-93, and other types of sequence-altering triplexing oligonucleotides such as those described in U.S. Patent Nos. 6,303,376 , 5,962,426 , and 5,776,744 , the disclosures of which are incorporated herein by reference in their entireties. See also Knauert et al., Hum Mol Genet. 2001 .
  • Because triplexing oligonucleotides bind to DNA using Hoogstein or reverse Hoogstein base-pairing rules, rather than Watson-Crick base-pairing rules, triplexing oligonucleotides used for oligonucleotide-mediated sequence alteration typically include one or more Watson-Crick mismatches, as compared to the target desired to be altered, within 8 nucleotides, often within 7, 6, 5, 4, 3, 2 or even 1 nucleotides of one or both of the oligonucleotide's termini.
  • The methods of the present invention can also be used with chimeric RNA-DNA double hairpin oligonucleotides, as are described, inter alia, in U.S. Patent Nos. 5,945,339 , 5,888,983 , 5,871,984 , 5,795,972 , 5,780,296 , 5,760,012 , 5,756,325 , 5,731,181 , and 5,565,350 . See also Ye et al., Mol Med Today 1998 Oct;4(10):431-7 and Richardson et al., Curr. Opin Mol Ther. 2001 Aug;3(4):327-37 for review.
  • Internal sequence complementarity within the sequence-altering chimeric oligonucleotide leads to folding of the single-stranded oligonucleotide into an internally self-duplexed form that includes two hairpins. Mismatches as compared to target are within a duplexed region. The sequence-altering chimeric oligonucleotides comprise both deoxyribose and ribose containing bases, and thus contain regions of both DNA and RNA; the 2'-hydroxyl of the ribonucleotides of the oligonucleotide may be methylated.
  • Nonnatural nucleobases can be present within such chimeric oligonucleotides (and in the single-stranded, chemically modified, internally unduplexed oligonucleotides further described herein below). In the present context, the term "nucleobase" covers naturally occurring nucleobases as well as non-naturally occurring nucleobases. As would be apparent, various nucleobases which previously have been considered "nonnaturally" occurring have subsequently been found in nature. Thus, "nucleobase" includes not only the known purine and pyrimidine heterocycles, but also heterocyclic analogues and tautomers thereof. Illustrative examples of nucleobases are adenine, guanine, thymine, cytosine, uracil, purine, xanthine, diaminopurine, 8-oxo-N6-methyladenine, 7-deazaxanthine, 7-deazaguanine, N4,N4-ethanocytosine, N6,N6-ethano-2,6-diaminopurine, 5-methylcytosine, 5-(C3-C6)-alkynylcytosine, 5-fluorouracil; 5-bromouracil, pseudoisocytosine, 2-hydroxy-S-methyl-4-triazolopyridine, isocytosine, isoguanine, inosine and the "non-naturally occurring" nucleobases described in US Pat. No. 5,432,272 . The term "nucleobase" is intended to cover each of these examples as well as analogues and tautomers thereof.
  • The methods of the present invention can also be used to increase the frequency and efficiency of oligonucleotide-mediated nucleic acid sequence alteration using chemically-modified, single-stranded, internally unduplexed oligonucleotides, as are described, inter alia, in U.S. Patent No. 6,271,360 ; international patent publications nos. WO 01/73002 , WO 01/92512 , and WO 02/10364 ; Pierce et al., Gene Ther. 10(1):24-33 (2003); Parekh-Olmedo et al., Chem Biol. 9(10):1073-84 (2002); Uu et al., Nucleic Acids Res. 30(13):2742-50 (2002); and Gamper et al., Nucleic Acids Res. 28(21):4332-9 (2000).
  • Particularly useful single-stranded chemically modified oligonucleotides are those that are 17-121 nucleotides in length and that have an internal unduplexed deoxyribonucleotide "alteration" domain, which domain is typically, but not invariably, at least 8 nucleotides in length. Mismatches as between the sequence of the oligonucleotide and its target are positioned within the internally unduplexed DNA domain, and are typically, although not invariably, at least 8 nucleotides from the oligonucleotide's 5' and 3' termini. The oligonucleotide is fully complementary in sequence to the sequence of a first strand of the nucleic acid target, but for one or more mismatches as between the sequences of the deoxyribonucleotide alteration domain and its complement on the target nucleic acid first strand. Additionally, the oligonucleotide has at least one terminal modification selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2'-O-Me base analog, and at least one terminal phosphorothioate linkages. Typically, at least one of the at least one modification is located at a terminus of the oligonucleotide. Often, a plurality of such modifications are present, such as 2, 3, 4 or more phosphorothioate linkages at one or both termini.
  • Although 2'-O-methyl residues are ribonucleic acids, the single-stranded chemically modified oligonucleotides differ from the "chimeric" oligonucleotides above-described by positioning the mismatch, as compared to target, within an internally unduplexed DNA domain. Furthermore, the single-stranded chemically modified oligonucleotides lack the hairpin structures found in the sequence altering chimeric oligonucleotides above-described (i.e., they are "nonhairpin" molecules).
  • A particularly useful chemical modification to be included when the methods of the present invention are used to enhance or increase the frequency of sequence alteration by single-stranded chemically modified oligonucleotides, is the inclusion of one or more monomers from the class of synthetic molecules known as locked nucleic acids (LNAs). LNAs are bicyclic and tricyclic nucleoside and nucleotide analogues and the oligonucleotides that contain such analogues. The basic structural and functional characteristics of LNAs and related analogues are disclosed in various publications and patents, including WO 99/14226 , WO 00/56748 , WO 00/66604 , WO 98/39352 , US Pat. No. 6,043,060 , and US Pat. No. 6,268,490 .
  • The general LNA structure may be described by the following formula:
    Figure imgb0001
    wherein X is selected from -O-, -S-, -N(RN*)-, -C(R6R6*)-, -O-C(R7R7*)-, -C(R6R6*)-O-, -S-C(R7R7*)-, -C(R6R6*)-S-, -N(RN*)-C(R7R7*)-, -C(R6R6*)N(RN*)-, and -C(R6R6*)-C(R7R7*)-;
    B is selected from hydrogen, hydroxy, optionally substituted C1-4-alkoxy, optionally substituted C1-4-alkyl, optionally substituted C1-4-acyloxy, and the nucleobases;
    P designates an internucleoside linkage to an adjacent monomer, or a 5'-terminal group, such internucleoside linkage or 5'-terminal group optionally including the substituent R5;
    one of the substituents R2, R2*, R3, and R3* is a group P* which designates an internucleoside linkage to an adjacent monomer, or a 3'-terminal group;
    one or two pairs of non-geminal substituents selected from the present substituents of R1*, R4*, R5, R5*, R6, R6*, R7, R7*, RN*, and the ones of R2, R2*, R3, and R3* not designating P* each designates a covalent bridging moiety consisting of one or more of the following substituents: -C(RaRb)-, -C(Ra)=C(Rb)-, -C(Ra) = N-, -O-, -Si(RaRb)-, -S-, -SO2-, -N(Ra)-, and > C=Z,
    wherein Z is selected from -O-, -S-, and -N(Ra)-, and Ra and Rb each is independently selected from hydrogen, optionally substituted C1-12-alkyl, optionally substituted C2-12-alkenyl, optionally substituted C2-12-alkynyl, hydroxy, C1-12-alkoxy, C2-12-alkenyloxy, carboxy, C1-12-alkoxycarbonyl, C1-12-alkylcarbonyl, formyl, aryl, aryloxycarbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxycarbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di-(C1-6-alkyl)amino, carbamoyl, mono- and di-(C1-6-alkyl)aminocarbonyl, amino-C1-6-alkylaminocarbonyl, mono- and di-(C1-6-alkyl)amino-C1-6-alkylaminocarbonyl, C1-6-alkylcarbonylamino, carbamido, C1-6-alkanoyloxy, sulphono, C1-6-alkylsulphonyloxy, nitro, azido, sulphanyl, C1-6-alkylthio, and the halogens, where aryl and heteroaryl may be optionally substituted, and where two geminal substituents Ra and Rb together may designate optionally substituted methylene (=CH2), and wherein two non-geminal or geminal substitutents selected from Ra, Rb, and any of the substituents R1*, R2, R2*, R3, R3*, R4*, R5, R5*, R6 and R6*, R7, and R7* which are present and not involved in P, P*, or the covalent bridging moiety or moieties together may form an associated bridging moiety selected from substituents of the same kind as defined before;
    the pair(s) of non-geminal substituents thereby forming a mono- or bicyclic entity together with (i) the atoms to which the non-geminal substituents are bound and (ii) any intervening atoms; and
    each of the substituents R1*, R2, R2*, R3, R4*, R5, R5*, R6 and R6*, R7, and R7* which are present and not involved in P, P*, or the covalent bridging moiety or moieties is independently selected from hydrogen, optionally substituted C1-12-alkyl, optionally substituted C2-12-alkenyl, optionally substituted C2-12-alkynyl, hydroxy, C1-12-alkoxy, C2-12-alkenyloxy, carboxy, C1-12-alkoxycarbonyl, C1-12-alkylcarbonyl, formyl, aryl, aryloxycarbonyl, aryloxy, arylcarbonyl, heteroaryl, heteroaryloxycarbonyl, heteroaryloxy, heteroarylcarbonyl, amino, mono- and di(C1-6-alkyl)amino, carbamoyl, mono- and di(C1-6-alkyl)aminocarbonyl, amino-C1-6-alkylaminocarbonyl, mono- and di(C1-6-alkyl)amino-C1-6-alkylaminocarbonyl, C1-6-alkylcarbonylamino, carbamido, C1-6-alkanoyloxy, sulphono, C1-6-alkylsulphonyloxy, nitro, azido, sulphanyl, C1-6-alkylthio, and halogens, where aryl and heteroaryl may be optionally substituted, and where two geminal substituents together may designate oxo, thioxo, imino, or optionally substituted methylene, or together may form a spiro bridging moiety consisting of a 1-5 carbon atom(s) alkylene chain which is optionally interrupted and/or terminated by one or more substituents selected from -O-, -S-, and -(NRN)- where RN is selected from hydrogen and C1-4-alkyl, and where two adjacent (non-geminal) substituents may designate an additional bond resulting in a double bond;
    and RN*, when present and not involved in a covalent bridging moiety, is selected from hydrogen and C1-4-alkyl; and basic salts and acid addition salts thereof.
  • As is evident from the general formula above, and the definitions associated therewith, there may be one or several asymmetric carbon atoms present in the oligomers, depending on the nature of the substituents and possible covalent bridging moieties. The oligomers used in the present invention are intended to include all stereoisomers arising from the presence of any and all isomers of the individual monomer fragments as well as mixtures thereof, including racemic mixtures. Also included within the scope of the invention are variants of the general formula where B is in the α-configuration.
  • When considering the definitions and the known nucleosides (naturally occurring and non-naturally occurring) and nucleoside analogues (including known bi- and tricyclic analogues), it is clear that an oligomer may comprise one or more LNA(s) (which may be identical or different from one another, both with respect to the selection of substituent and with respect to selection of covalent bridging moiety) and one or more nucleosides and/or nucleoside analogues. In the present context "oligonucleotide" means a successive chain of nucleosides connected via internucleoside linkages, however, it should be understood that a nucleobase in one or more nucleotide units (monomers) in an oligomer (oligonucleotide) may have been modified with a substituent B as defined above. Preferably the oligonucleotide contains at least one LNA analog at the 3' hydroxy terminus of the oligonucleotide.
  • As described above, the monomeric nucleosides and nucleoside analogues of an oligomer are connected with other monomers via an internucleoside linkage. In the present context, the term "internucleoside linkage" means a linkage consisting of 2 to 4, preferably 3, substituents selected from
    -CH2-, -O-, -S-, -NRH-, > C=0, > C = NRH, > C = S, -Si(R")2-, -SO-, -S(O)2-, -P(O)2- - PO(BH3)-, -P(O,S)-,
    -P(S)2-, -PO(R")-, -PO(OCH3)-, and -PO(NHRH)-, where RH is selected from hydrogen and C1-4-alkyl, and R" is selected from C1-6-alkyl and phenyl. In some cases, the internucleoside linkage may be chiral. The oligomers used in the present invention are intended to include all stereoisomers arising from the presence of any and all isomers of the individual internucleoside linkages as well as mixtures thereof, including racemic mixtures.
  • In one series of useful embodiments, as disclosed in WO 99/14226 and US Pat. No. 6,268,490 , LNAs contain a methylene bridge connecting the 2'-oxygen of the ribose with the 4'-carbon according to the following formula:
    Figure imgb0002
    where B is a nucleobase, and X and Y are internucleoside linkages. Without intending to be bound by theory, the covalent bridging moiety of these analogues is believed to reduce the conformational flexibility of the ribose ring by locking it in a 3'-endo conformation and to thereby increase the local organization of the phosphate backbone.
  • In other useful embodiments of this structure, the 2'-oxygen position is substituted with nitrogen or sulfur as shown in the following structures:
    Figure imgb0003
    where B is a nucleobase, and X and Y are internucleoside linkages.
  • In other useful embodiments of the basic LNA structure, as disclosed in WO 99/14226 , the covalent bridging moiety may include more than one carbon atom and may span other positions within the ribose ring according to the following structures:
    Figure imgb0004
    where B is a nucleobase, and X and Y are internucleoside linkages.
  • Alternatively, oligonucleotides used for sequence alteration in the methods, compositions, and kits of the present invention may include oligomers comprising at least one nucleoside having a xylo-LNA structure as disclosed in WO 00/56748 and having the general formula:
    Figure imgb0005
    where the internucleoside linkages are designated by P and P*, and the other groups may be the substituents disclosed in WO 00/56748 . Specific examples of this analogue are disclosed in WO 00/50748 with the following structural framework:
    Figure imgb0006
    where B is a nucleobase, and X and Y are internucleoside linkages. Also disclosed in WO 00/56748 and considered within the scope of the current invention are nucleoside analogues that contain linkages between the 2' and 5' carbons of the ribose ring:
    Figure imgb0007
    where B is a nucleobase, and X and Y are internucleoside linkages.
  • Other embodiments of the invention may include oligomers comprising at least one nucleoside having an L-Ribo-LNA structure as disclosed in WO 00/66604 and having the general formula:
    Figure imgb0008
    where the internucleoside linkages are designated by P and P*, and the other groups may be the substituents disclosed in WO 00/66604 . Specific examples of this analogue are disclosed in WO 00/66604 with the following structural framework:
    Figure imgb0009
    where B is a nucleobase, and X and Y are internucleoside linkages.
  • Other embodiments considered within the scope of the present invention include oligonucleotides that contain the nucleoside analogues disclosed in US Pat. No. 6,043,060 . These analogues are represented by monomer units of the general formula:
    Figure imgb0010
    where B is a pyrimidine or purine nucleic acid base, or a derivative thereof, and where, within an oligomer, the plurality of B substituents may be identical to or different from one antoher.
  • Synthesis of the nucleosides and nucleoside analogues useful in the practice of the present invention, and the oligomers that contain them, can be performed as disclosed in WO 99/14226 , WO 00/56748 , WO 00/66604 , WO 98/39352 , US Pat. No. 6,043,060 , and US Pat. No. 6,268,490 . Certain of the analogues, and synthesis services, are available commercially (Proligo, Boulder, CO, USA).
  • In a first aspect, the invention provides an improved in vitro or ex vivo method for oligonucleotide-mediated nucleic acid sequence alteration, in which the sequence alteration is effected by combining the targeted nucleic acid in the presence of cellular repair proteins with a sequence-altering targeting oligonucleotide. The improvement comprises first contacting the cells having the cellular repair proteins with hydroxyurea. The method thus comprises combining the targeted nucleic acid, in the presence of cellular repair proteins, with a sequence-altering targeting oligonucleotide, and first contacting the cells having the cellular proteins with hydroxyurea.
  • The sequence-altering oligonucleotide and target may be combined ex vivo, with the cellular repair proteins present within selectively enriched cells, cells in culture, or cell-free extracts.
  • The methods of the invention can be used to enhance the alteration mediated by an oligonucleotide directing any kind of alteration, including, for example, deletion, insertion or replacement of 1, 2 or 3 nucleotides in the target sequence. These altered nucleotides may be contiguous or non-contiguous to each other. Further, nucleic acid sequence alteration by oligonucleotides targeting 1, 2, or 3 multiple sequence alterations is also enhanced using the kits described herein and the methods of the instant invention. Each of such multiple mutations can include, for example, deletion, insertion or replacement of 1, 2 or 3 nucleotides in the target sequence. These altered nucleotides may be contiguous or non-contiguous to each other. Where nucleic acid sequence alteration of multiple sequence targets is enhanced, the multiple alterations can be directed by a single oligonucleotide or by 1, 2 or 3 separate oligonucleotides. Usefully, the multiple alterations are directed by a single oligonucleotide, and the multiple alterations are within 1 to 10 nucleotides of each other.
  • The methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration directed by an oligonucleotide that targets either strand of a double-stranded target nucleic acid. In a particularly useful embodiment, these methods are used to enhance the efficiency of an oligonucleotide targeting actively transcribed sequences. In another useful embodiment, these methods are used to enhance the efficiency of an oligonucleotide targeting the non-transcribed strand of the target sequence.
  • The methods of the invention can be used to enhance the efficiency of nucleic acid sequence alteration directed by an oligonucleotide that targets genomic DNA, including nuclear and organelle chromosomal DNA, and artificial chromosomal DNA, such as yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), plant artificial chromosomes (PIACs), binary-bacterial artificial chromosomes (BiBACS), and human artificial chromosomes (HACs). The methods of the instant invention can be used to enhance the efficiency of oligo-directed sequence alteration of other types of targets, such as isolated episomal targets, including, for example, plasmids, cosmids, phagemids, and nonintegrated viruses.
  • The methods of the invention can be used to enhance the efficiency of oligonucleotide-directed targeted sequence alteration targeted to any part of a gene including, for example, an exon, an intron, a promoter, an enhancer or a 3'- or 5'-untranslated region. Further, the methods of the invention can be used to enhance the efficiency of an oligonucleotide mediated targeted sequence alteration of intragenic or intergenic sequences.
  • The methods of the present invention can be used to increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in a wide variety of cell types, or within protein extracts derived from such cell types, drawn from a wide variety of species, including both prokaryotic and eukaryotic species.
  • Thus, the methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells drawn from lower eukaryotes, such as fungal cells, including yeast cells, or within extracts from such cells, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia species, such as methanolica, Ustilago maydis, and Candida species, including Candida albicans; within insect cells or extracts thereof, such as cells (or extracts) from Drosophila melanogaster and Anopheles species; and roundworms, such as Caenorhabditis elegans.
  • The methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells (or extracts thereof) drawn from higher eukaryotes, including plants, such as cells (or extracts thereof) drawn from experimental model plants such as Chlamydomonas reinhardtii, Physcomitrella patens, and Arabidopsis thaliana in addition to crop plants such as cauliflower (Brassica oleracea), artichoke (Cynara scolymus), fruits such as apples (Malus, e.g. domesticus), mangoes (Mangifera, e.g. indica), banana (Musa, e.g. acuminata), berries (such as currant, Ribes, e.g. rubrum), kiwifruit (Actinidia, e.g. chinensis), grapes (Vitis, e.g. viniera), bell peppers (Capsicum, e.g. annuum), cherries (such as the sweet cherry, Prunus, e.g. avium), cucumber (Cucumis, e.g. sativus), melons (Cucumis, e.g. melo), nuts (such as walnut, Juglans, e.g. regia; peanut, Arachis hypogeae), orange (Citrus, e.g. maxima), peach (Prunus, e.g. persica), pear (Pyra, e.g. communis), plum (Prunus, e.g. domestica), strawberry (Fragaria, e.g. moschata or vesca), tomato (Lycopersicon, e.g. esculentum); leaves and forage, such as alfalfa (Medicago, e.g. sativa or truncatula), cabbage (e.g. Brassica oleracea), endive (Cichoreum, e.g. endivia), leek (Allium, e.g. porrum), lettuce (Lactuca, e.g. sativa), spinach (Spinacia, e.g. oleraceae), tobacco (Nicotiana, e.g. tabacum); roots, such as arrowroot (Maranta, e.g. arundinacea), beet (Beta, e.g. vulgaris), carrot (Daucus, e.g. carota), cassava (Manihot, e.g. esculenta), turnip (Brassica, e.g. rapa), radish (Raphanus, e.g. safivus), yam (Dioscorea, e.g. esculenta), sweet potato (Ipomoea batatas); seeds, including oilseeds, such as beans (Phaseolus, e.g. vulgaris), pea (Pisum, e.g. sativum), soybean (Glycine, e.g. max), cowpea (Vigna unguiculata), mothbean (Vigna aconitifolia), wheat (Triticum, e.g. aestivum), sorghum (Sorghum e.g. bicolor), barley (Hordeum, e.g. vulgare), com (Zea, e.g. mays), rice (Oryza, e.g. sativa), rapeseed (Brassica napus), millet (Panicum sp.), sunflower (Helianthus annuus), oats (Avena sativa), chickpea (Cicer, e.g. arietinum); tubers, such as kohlrabi (Brassica, e.g. oleraceae), potato (Solanum, e.g. tuberosum) and the like; fiber and wood plants, such as flax (Linum e.g. usitatissimum), cotton (Gossypium e.g. hirsutum), pine (Pinus sp.), oak (Quercus sp.), eucalyptus (Eucalyptus sp.), and the like and ornamental plants such as turfgrass (Lolium, e.g. rigidum), petunia (Petunia, e.g. x hybrida), hyacinth (Hyacinthus orientalis), carnation (Dianthus e.g. caryophyllus), delphinium (Delphinium, e.g. ajacis), Job's tears (Coix lacryma-jobi), snapdragon (Antirrhinum majus), poppy (Papaver, e.g. nudicaule), lilac (Syringa, e.g. vulgaris), hydrangea (Hydrangea e.g. macrophylla), roses (including Gallicas, Albas, Damasks, Damask Perpetuals, Cenfifolias, Chinas, Teas and Hybrid Teas) and ornamental goldenrods (e.g. Solidago spp.). Generally, isolated plant cells are treated with a composition described herein and/or according to a method of the invention and then used to regenerate whole plants according to any method known in the art.
  • The methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells (or extracts thereof) drawn from animals, including, for example, domestic and wild fowl, such as chickens, geese, ducks, turkeys, pheasant, ostrich and pigeon; mammals, including domestic livestock, such as horses, cattle, sheep, pigs, goats, bison; fish such as salmon, tilapia, catfish, trout and bass; mammals, including model experimental animals such as mice, rats, guinea pigs, and rabbits; domestic pets such as dogs and cats; and human beings.
  • The methods of the instant invention can be used to enhance the efficiency of nucleic acid sequence alteration in cells (or extracts thereof) drawn from a wide variety of tissues and cell types, including somatic cells such as cells of liver, lung, colon, cervix, kidney, and epithelia, germ cells, pluripotent stem or committed progenitor cells, such as CD34+ hematopoietic stem cells (including CD34+CD38-cells), and non-human embryonic stem cells (ES cells).
  • Currently, some jurisdictions have prohibitions on the culture and/or genetic manipulation of human stem cells. Thus, the invention may be practiced in all cell types except human embryonic stem cells. No such prohibitions exist at present for culture and/or genetic manipulation of murine embryonic stem cells or stem cells from other animals, and the present invention may thus be used without restriction to increase the efficiency of sequence alteration in embryonic stem cells from species other than human beings, including mice, rats, cows, sheep, goats, monkeys, apes, and cattle.
  • Each of the methods of the present invention can be combined with one or more of the other methods of the present invention, further to increase efficiency of sequence alteration.
  • Additionally, the methods of the present invention can be used in conjunction with other methods for increasing the efficiency of oligo-mediated nucleic acid sequence alteration.
  • For example, the methods of the present invention can be used to introduce sequence alterations into cells that have altered nucleic acid sequence alteration efficiency based upon increased or decreased levels or activity of at least one protein from the RAD52 epistasis group, the mismatch repair group or the nucleotide excision repair group. Members of these groups include: RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, RAD59, MRE11 and XRS1 in the RAD52 epistasis group; MSH2, MSH3, MSH6 and PMS1 in the mismatch repair group; and RAD1, RAD2, RAD10, RAD23 and EXO1 in the nucleotide excision repair group. The designation "RAD52 epistasis group" is taken from the yeast (Saccharomyces cerevisiae) designation, but it is understood that homologs, orthologs and paralogs from other organisms, including bacteria, plants, animals and other fungi can be used in the methods of the instant invention.
  • In particular, the methods of the present invention can be used to introduce sequence alterations into cells that have reduced levels or activity of at least one protein selected from the group consisting of a homolog, ortholog or paralog of RAD1, RAD51, RAD52, RAD57 and PMS1. See, for example, International Patent Application PCT/US01/23770 , published as WO 02/10364 , and commonly owned, copending, U.S. patent application U.S. 2003/0215947 filed January 24,2003 .
  • Alternatively, or in addition, the methods of the present invention can be used to introduce sequence alterations into cells (or extracts thereof) that have altered nucleic acid sequence alteration efficiency based upon increased levels of at least one of the normal allelic RAD10, RAD51, RAD52, RAD54, RAD55, MRE11, PMS1 or XRS2 proteins, or with increased activity of one of these proteins. See commonly owned and copending U.S. patent application U.S. 2003/0199091 filed September 27, 2002 .
  • The methods of the present invention may also be used with methods that enhance oligonucleotide-rected nucleic acid sequence alteration by reducing the number of target nucleic acid molecules required to be screened during oligonucleotide-directed targeted nucleic acid sequence alteration.
  • As further described and illustrated in Examples herein below, such methods involve using at least a first and a second oligonucleotide, each of which is capable of directing alteration in at least a first and a second nucleic acid target, respectively. At least the second oligonucleotide directs an alteration that produces a selectable phenotype, which is thereafter selected. Although the first oligonucleotide may direct an alteration that produces a selectable phenotype, generally the first oligonucleotide directs an alteration that must be identified by screening, e.g., determining the corresponding nucleic acid sequence or assaying a non-selectable phenotype that is generated by the alteration event.
  • The dual targeting approach reduces the number of nucleic acid molecules required to be screened by at least about two-fold relative to the number that must be screened in a composition that has not previously been selected for an oligonucleotide-directed nucleic acid sequence alteration that confers a selectable phenotype. The reduction can be by at least about two, three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold.
  • Sequence alteration by the second oligonucleotide may confer any selectable phenotype known in the art, choice of which will depend, in part, upon the host cell chosen and whether the selection is to be effected in vitro or in vivo. Exemplary selectable phenotypes include, e.g., antibiotic or other chemical resistance, ability to use a nutrient source, expression of a fluorescent protein, presence of an epitope or resistance to an apoptotic signal.
  • In yet a further alternative, the methods of the present invention may be used in dual targeting methods, as above-described, further comprising administration of at least one purified protein in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group. In certain embodiments, the method comprises administering the two oligonucleotides to a cell in which two distinct proteins are manipulated - for example, by knockout of one chromosomal gene and complementation or supplementation of a second gene product to produce increased or altered levels of the second protein. In one such embodiment, the targeted cell has a knock-out mutation in the chromosomal RAD52 gene and the cell is complemented or supplemented with the RAND51 gene product expressed in trans under control of a promoter, e.g. a constitutive promoter.
  • In yet a further embodiment, the methods of the present invention are used in conjunction with a cell (or extract thereof) in a particular phase of the growth cycle, developmental state or cell cycle position that exhibits altered nucleic acid sequence alteration efficiency. A particular phase of growth that particularly favors nucleic acid sequence alteration may be easily determined by sampling cells at multiple points during the growth cycle, for example over the course of a growth curve, and monitoring sequence alteration in those cells using the assays described herein. Phases of the growth cycle that might particularly favor nucleic acid sequence alteration include, for example, lag phase, early log phase, log phase, late log phase, the transition between log and stationary phase, early stationary phase and late stationary phase. Alternatively, these may be the S phase, M phase, G1 phase or G2 phase of the cell cycle or transition points between the phases. Particular developmental phases can be similarly assayed with cells that have been induced to differentiate by, for example, hormone or other treatments, or differentiated cells isolated from a particular tissue.
  • The oligonucleotides, including oligonucleotide-containing compositions, used in the methods of the present invention can be introduced into cells or tissues by any technique known to one of skill in the art. Such techniques include, for example, electroporation, liposome transfer, naked nucleic acid insertion, particle bombardment and calcium phosphate precipitation. In one embodiment the transfection is performed with a liposomal transfer compound, for example, DOTAP (N-1-(2,3-Dioleoyloxy)propyl-N,N,N-trimethylammonium methylsulfate, Boehringer-Mannheim) or an equivalent, such as LIPOFECTIN®. In another embodiment, the transfection technique uses cationic lipids. In a preferred embodiment, transfection is performed with Lipofectamine™ 2000 (Invitrogen). The methods of the invention can be used with a wide range of concentration of oligonucleotides. For example, good results can be achieved with 10 nM/105 cells. A ratio of about 500 ng of oligonucleotide in 3 µg of DOTAP per 105 cells can be used. The transfected cells may be cultured in different media, (including, for example, in serum-free media, media supplemented with human serum albumin, or human serum.
  • The methods of the instant invention comprising HU typically increase nucleic acid sequence alteration efficiency by at least two fold relative to the same method respectively lacking HU. The increase in nucleic acid sequence alteration efficiency can also be about three, four, five, six, seven, eight, nine, ten, twelve, fifteen, twenty, thirty, and fifty or more fold.
  • In embodiments of the methods of the present invention that utilize HU, cells may be first contacted with hydroxyurea, then the oligonucleotide combined with the target in the presence of cellular repair proteins. Alternatively, the hydroxyurea may be contacted to the cells concurrently with combining of the oligonucleotide with the target. In yet other alternatives, hydroxyurea may be contacted to the cells after the oligonucleotide is combined with the target.
  • When administering HU to cells or cell extracts, the dosage to be administered and the timing of administration will depend on various factors, including cell type.
  • In the case of HU, treatment may be with 100 mM, 75 mM, 50 mM, 40 mM, 20 mM, 10 mM, 2 mM, 1 mM, 100 µM, 10 µM, 1 µM, 100 nM, 10 nM or lower. The dosage is preferably from about 4 mM to 100 mM for yeast cells and from about 0.05 mM to 3 mM for mammalian cells. The dosage may be at least 0.05 mM, 0.10 mM, 0.15 mM, 0.20 mM, 0.25 mM, 0.30 mM, 0.35 mM, 0.40 mM, 0.50 mM or more, including at least 0.55 mM, 0.60 mM, 0.65 mM; 0.70 mM, 0.75 mM, 0.80 mM, 0.85 mM, 0.90 mM, 0.95 mM or even 1 mM, 1.1 mM,1.2 mM,1.3 mM,1.4 mM,1.4 mM,1.5 mM,1.6 mM,1.7 mM, 1.8 mM, 1.9 mM, 2.0 mM, 2.5 mM, 3 mM, or more. Typically, the dosage for mammalian cells is less than about 3.0 mM, and can be less than 2.5 mM, 2.0 mM, 1.5 mM, 1.0 mM, even less than 0.90 mM, 0.85 mM, 0.80 mM, 0.75 mM, 0.70 mM, 0.65 mM, 0.60 mM, 0.55 mM, 0.50 mM, 0.45 mM, 0.40 mM, and even less than about 0.35 mM or 0.30 mM.
  • Cells may be grown in the presence of HU, and cell extracts may be treated with HU, for various times prior to combination with a sequence-altering oligonucleotide. Growth or treatment may be as long as 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h, 20 h, or even longer, including up to 28 days, 14 days, 7 days, or shorter, or as short as 12 h, 8 h, 6 h, 4 h, 3 h, 2 h, 1 h, or even shorter. Alternatively, treatment of cells or cell extracts with HU and the sequence-altering oligonucleotide may occur simultaneously, or HU, may be added after oligonucleotide addition.
  • Cells may further be allowed to recover from treatment with HU by growth in the absence of HU for various times prior to treatment with a sequence-altering oligonucleotide. Recovery may be as long as 10 min, 20 min, 40 min, 60 min, 90 min, 2 h, 4 h, or even longer, or as short as 90 min, 60 min, 40 min, 20 min, 10 min, or even shorter. Cells may also be allowed to recover following their treatment with a sequence-altering oligonucleotide. This recovery period may be as long as 1 h, 2 h, 4 h, 6 h, 8 h, 12 h, or even longer, or as short as 8 h, 6 h, 4 h, 2 h, 1 h, or even shorter. HU may either be present in or absent from the cell medium during the recovery period.
  • Optimum dosages and the timing and duration of administration of HU to cells or cell extracts can be determined by routine experimentation.
  • Cultured cells (such as yeast cells) are treated with varying concentrations of HDAC inhibitor for a varying number of hours prior to electroporation with the sequence altering oligonucleotide. After recovery for varying periods, the cells are plated and tested for efficiency of sequence alteration. Parameters are then selected that provide the highest efficiency of correction. The method may then be repeated, as necessary, further to optimize dosage, duration of pretreatment, duration of recovery period, if any, and the like.
  • A similar approach for HU can be determined using the assay system set forth in Example 8 below.
  • Such assays, or apparent variants thereof, may be performed to optimize conditions for any chosen cell type.
  • Vectors are by now well known in the art, and are described, inter alia, in Jones et al. (eds.), Vectors: Cloning Applications : Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd 1998 (ISBN: 047196266X); Jones et al. (eds.), Vectors: Expression Systems: Essential Techniques (Essential Techniques Series), John Wiley & Son Ltd, 1998 (ISBN:0471962678); Gacesa et al., Vectors: Essential Data, John Wiley & Sons, 1995 (ISBN: 0471948411); Cid-Arregui (eds.), Viral Vectors: Basic Science and Gene Therapy, Eaton Publishing Co., 2000 (ISBN: 188129935X); Sambrook et al., Molecular Cloning: A Laboratory Manual (3rd ed.), Cold Spring Harbor Laboratory Press, 2001 (ISBN: 0879695773); Ausubel et al. (eds.), Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (4th ed.), John Wiley & Sons, 1999 (ISBN: 047132938X). Furthermore, an enormous variety of vectors are available commercially. Use of existing vectors and modifications thereof being well within the skill in the art, only basic features need be described here.
  • Typically, vectors are derived from virus, plasmid, prokaryotic or eukaryotic chromosomal elements, or some combination thereof, and include at least one origin of replication, at least one site for insertion of heterologous nucleic acid, typically in the form of a polylinker with multiple, tightly clustered, single cutting restriction sites, and at least one selectable marker, although some integrative vectors will lack an origin that is functional in the host to be chromosomally modified, and some vectors will lack selectable markers.
  • Where present, the origin of replication and selectable markers are chosen based upon the desired host cell or host cells; the host cells, in turn, are selected based upon the desired application.
  • In the case of prokaryotic cells, typically E. coli, vector replication is predicated on the replication strategies of coliform-infecting phage — such as phage lambda, M13, T7, T3 and P1 — or on the replication origin of autonomously replicating episomes, notably the ColE1 plasmid and later derivatives, including pBR322 and the pUC series plasmids. Where E. coli is used as host, selectable markers are, analogously, chosen for selectivity in Gram negative bacteria: e.g., typical markers confer resistance to antibiotics, such as ampicillin, tetracycline, chloramphenicol, kanamycin, streptomycin, zeocin; auxotrophic markers can also be used.
  • In the case of yeast cells, typically S. cerevisiae, vectors of the present invention for use in yeast will typically, but not invariably, contain an origin of replication suitable for use in yeast and a selectable marker that is functional in yeast.
  • Integrative Ylp vectors do not replicate autonomously, but integrate, typically in single copy, into the yeast genome at low frequencies and thus replicate as part of the host cell chromosome; these vectors lack an origin of replication that is functional in yeast, although they typically have at least one origin of replication suitable for propagation of the vector in bacterial cells. YEp vectors, in contrast, replicate episomally and autonomously due to presence of the yeast 2 micron plasmid origin (2 µm ori). The YCp yeast centromere plasmid vectors are autonomously replicating vectors containing centromere sequences, CEN, and autonomously replicating sequences, ARS; the ARS sequences are believed to correspond to the natural replication origins of yeast chromosomes. YACs are based on yeast linear plasmids, denoted YLp, containing homologous or heterologous DNA sequences that function as telomeres (TEL) in vivo, as well as containing yeast ARS (origins of replication) and CEN (centromeres) segments.
  • Selectable markers in yeast vectors include a variety of auxotrophic markers, the most common of which are (in Saccharomyces cerevisiae) URA3, HIS3, LEU2, TRP1 and LYS2, which complement specific auxotrophic mutations, such as ura3-52, his3-D1, leu2-D1, trp1-D1 and lys2-201. The URA3 and LYS2 yeast genes further permit negative selection based on specific inhibitors, 5-fluoro-orotic acid (FOA) and α-aminoadipic acid (αAA), respectively, that prevent growth of the prototrophic strains but allows growth of the ura3 and lys2 mutants, respectively. Other selectable markers confer resistance to, e.g., zeocin.
  • In the case of insect cells where the host cells are from Spodoptera frugiperda - e.g., Sf9 and Sf21 cell lines, and expresSF cells (Protein Sciences Corp., Meriden, CT, USA) — the vector replicative strategy is typically based upon the baculovirus life cycle.
  • In the case of mammalian cells, vectors intended for autonomous extrachromosomal replication will typically include a viral origin, such as the SV40 origin (for replication in cell lines expressing the large T-antigen, such as COS1 and COS7 cells), the papillomavirus origin, or the EBV origin for long term episomal replication (for use, e.g., in 293-EBNA cells, which constitutively express the EBV EBNA-1 gene product and adenovirus E1A). Vectors intended for integration, and thus replication as part of the mammalian chromosome, can, but need not, include an origin of replication functional in mammalian cells, such as the SV40 origin. Vectors based upon viruses, such as adenovirus, adeno-associated virus, vaccinia virus, and various mammalian retroviruses, will typically replicate according to the viral replicative strategy.
  • Selectable markers for use in mammalian cells include resistance to neomycin (G418), blasticidin, hygromycin and to zeocin, and selection based upon the purine salvage pathway using HAT medium.
  • In the case of plant cells, the vector replicon is typically derived from a plant virus (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) and selectable markers chosen for suitability in plants.
  • The BAC system is based on the well-characterized E. coli F-factor, a low copy plasmid that exists in a supercoiled circular form in host cells. The structural features of the F-factor allow stable maintenance of individual human DNA clones as well as easy manipulation of the cloned DNA. See Shizuya et al., Keio J. Med. 50(1):26-30 (2001); Shizuya et al., Proc. Natl. Acad. Sci. USA 89(18):8794-7 (1992).
  • YACs are based on yeast linear plasmids, denoted YLp, containing homologous or heterologous DNA sequences that function as telomeres (TEL) in vivo, as well as containing yeast ARS (origins of replication) and CEN (centromeres) segments.
  • HACs are human artificial chromosomes. Kuroiwa et al., Nature Biotechnol. 18(10):1086-90 (2000); Henning et al., Proc. Natl. Acad. Sci. USA 96(2):592-7 (1999); Harrington et al., Nature Genet. 15(4):345-55 (1997). In one version, long synthetic arrays of alpha satellite DNA are combined with telomeric DNA and genomic DNA to generate linear microchromosomes that are mitotically and cytogenetically stable in the absence of selection.
  • PACs are P1-derived artificial chromosomes. Sternberg, Proc. Natl. Acad. Sci. USA 87(1):103-7 (1990); Sternberg et al., New Biol. 2(2):151-62 (1990); Pierce et al., Proc. Natl Acad. Sci. USA 89(6):2056-60 (1992).
  • Vectors will also often include elements that permit in vitro transcription of RNA from the inserted heterologous nucleic acid. Such vectors typically include a phage promoter, such as that from T7, T3, or SP6, flanking the nucleic acid insert. Often two different such promoters flank the inserted nucleic acid, permitting separate in vitro production of both sense and antisense strands.
  • Host cells can be prokaryotic or eukaryotic. Representative examples of appropriate host cells include, but are not limited to, bacterial cells, such as E. coli, Caulobacter crescentus, Streptomyces species, and Salmonella typhimurium; yeast cells, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia pastoris, Pichia methanolica; insect cell lines, such as those from Spodoptera frugiperda — e.g., Sf9 and Sf21 cell lines, and expresSF cells (Protein Sciences Corp., Meriden, CT, USA) — Drosophila S2 cells, and Trichoplusia ni High Five® Cells (Invitrogen, Carlsbad, CA, USA); and mammalian cells. Typical mammalian cells include COS1 and COS7 cells, Chinese hamster ovary (CHO) cells, NIH 3T3 cells, 293 cells, HEPG2 cells, HeLa cells, L cells, murine ES cell lines (e.g., from strains 129/SV, C57/BL6, DBA-1, 129/SVJ), K562, Jurkat cells, and BW5147. Other mammalian cell lines are well known and readily available from the American Type Culture Collection (ATCC) (Manassas, VA, USA) and the National Institute of General medical Sciences (NIGMS) Human Genetic Cell Repository at the Coriell Cell Repositories (Camden, NJ, USA).
  • Methods for introducing the vectors and nucleic acids of the present invention into the host cells are well known in the art; the choice of technique will depend primarily upon the specific vector to be introduced and the host cell chosen.
  • For example, phage lambda vectors will typically be packaged using a packaging extract (e.g., Gigapack® packaging extract, Stratagene, La Jolla, CA, USA), and the packaged virus used to infect E. coli. Plasmid vectors will typically be introduced into chemically competent or electrocompetent bacterial cells.
  • E. coli cells can be rendered chemically competent by treatment, e.g., with CaCl2, or a solution of Mg2+, Mn2+, Ca2+, Rb+ or K+, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III), Hanahan, J. Mol. Biol. 166(4):557-80 (1983), and vectors introduced by heat shock. A wide variety of chemically competent strains are also available commercially (e.g., Epicurian Coli® XL10-Gold® Ultracompetent Cells (Stratagene, La Jolla, CA, USA); DH5α competent cells (Clontech Laboratories, Palo Alto, CA, USA); TOP10 Chemically Competent E. coli Kit (Invitrogen, Carlsbad, CA, USA)).
  • Bacterial cells can be rendered electrocompetent — that is, competent to take up exogenous DNA by electroporation — by various pre-pulse treatments; vectors are introduced by electroporation followed by subsequent outgrowth in selected media. An extensive series of protocols is provided online in "Electroprotocols Online: Collection of Protocols for Gene Transfer" (BioRad, Richmond, CA, USA) (available at the BioRad web site).
  • Vectors can be introduced into yeast cells by spheroplasting, treatment with lithium salts, electroporation, or protoplast fusion.
  • Spheroplasts are prepared by the action of hydrolytic enzymes — a snail-gut extract, usually denoted Glusulase, or Zymolyase, an enzyme from Arthrobacter luteus - to remove portions of the cell wall in the presence of osmotic stabilizers, typically 1 M sorbitol. DNA is added to the spheroplasts, and the mixture is co-precipitated with a solution of polyethylene glycol (PEG) and Ca2+. Subsequently, the cells are resuspended in a solution of sorbitol, mixed with molten agar and then layered on the surface of a selective plate containing sorbitol. For lithium-mediated transformation, yeast cells are treated with lithium acetate, which apparently permeabilizes the cell wall, DNA is added and the cells are co-precipitated with PEG. The cells are exposed to a brief heat shock, washed free of PEG and lithium acetate, and subsequently spread on plates containing ordinary selective medium. Increased frequencies of transformation are obtained by using specially-prepared single-stranded carrier DNA and certain organic solvents. Schiestl et al., Curr. Genet. 16(5-6):339-46 (1989). For electroporation, freshly-grown yeast cultures are typically washed, suspended in an osmotic protectant, such as sorbitol, mixed with DNA, and the cell suspension pulsed in an electroporation device. Subsequently, the cells are spread on the surface of plates containing selective media. Becker et al., Methods Enzymol. 194:182-7 (1991). The efficiency of transformation by electroporation can be increased over 100-fold by using PEG, single-stranded carrier DNA and cells that are in late log-phase of growth. Larger constructs, such as YACs, can be introduced by protoplast fusion.
  • Mammalian and insect cells can be directly infected by packaged viral vectors, or transfected by chemical or electrical means.
  • For chemical transfection, DNA can be coprecipitated with CaPO4 or introduced using liposomal and nonliposomal lipid-based agents. Commercial kits are available for CaPO4 transfection (CalPhos Mammalian Transfection Kit, Clontech Laboratories, Palo Alto, CA, USA), and lipid-mediated transfection can be practiced using commercial reagents, such as LIPOFECTAMINE 2000, LIPOFECTAMINE Reagent, CELLFECTIN® Reagent, and LIPOFECTIN® Reagent (Invitrogen, Carlsbad, CA, USA), DOTAP Liposomal Transfection Reagent, FuGENE 6, X-tremeGENE Q2, DOSPER, (Roche Molecular Biochemicals, Indianapolis, IN USA), Effectene, PolyFect®, Superfect® (Qiagen, Inc., Valencia, CA, USA). Protocols for electroporating mammalian cells can be found online in "Electroprotocols Online: Collection of Protocols for Gene Transfer" (Bio-Rad, Richmond, CA, USA) (available at the BioRad web site).
  • See also, Norton et al. (eds.), Gene Transfer Methods: Introducing DNA into Living Cells and Organisms, BioTechniques Books, Eaton Publishing Co. (2000) (ISBN 1-881299-34-1).
  • Other Transfection techniques include transfection by particle embardment. See, e.g., Cheng et al., Proc. Natl. Acad. Sci. USA 90(10):4455-9 (1993); Yang et al., Proc. Natl. Acad. Sci. USA 87(24):9568-72 (1990).
  • Also described herein are compositions to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration.
  • The composition can comprise at least one sequence-altering oligonucleotide — such as a chimeric oligonucleotide, a bifunctional oligonucleotide, or a single-stranded, chemically modified oligonucleotide — and an HDAC inhibitor, such as trichostatin A. The composition can comprise at least one sequence-altering oligonucleotide and beta protein.
  • The described compositions may be formulated as pharmaceutical compositions adapted for ex vivo or in vivo use, such as for bathing cells in culture, for microinjection into cells in culture, or for intravenous administration to human beings or animals. Typically, compositions for cellular administration or for intravenous administration into animals, including humans, are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients will be supplied either separately or mixed together in unit dosage form, for example, as a dry, lyophilized powder or water-free concentrate. The composition may be stored in a hermetically sealed container such as an ampule or sachette indicating the quantity of active agent in activity units. Where the composition is administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade "water for injection" or saline. Where the composition is to be administered by injection, an ampule of sterile water for injection or saline may be provided so that the ingredients may be mixed prior to administration. Pharmaceutical compositions can comprise a sequence-altering oligonucleotide, any one or more of an HDAC inhibitor, beta protein, or HU and pharmaceutically acceptable salts thereof, and any pharmaceutically acceptable ingredient, excipient, carrier, adjuvant or vehicle.
  • The described pharmaceutical compositions adapted for in vivo use are preferably administered to the subject in the form of an injectable composition. The composition is preferably administered parenterally, meaning intravenously, intraarterially, intrathecally, interstitially or intracavitarilly. Pharmaceutical compositions can be administered to mammals including humans in a manner similar to other diagnostic or therapeutic agents. The dosage to be administered, and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the subject and genetic factors, and will ultimately be decided by medical personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 50,000 µg/kg, preferably between 1 to 250 µg/kg of host cell or body mass, and most preferably at a concentration of between 30 and 60 micromolar.
  • When administering an HDAC inhibitor or HU to animals, the dosage to be administered and the mode of administration will depend on a variety of factors including age, weight, sex, condition of the animal and genetic factors, and will ultimately be decided by veterinary personnel subsequent to experimental determinations of varying dosage as described herein. In general, dosage required for correction and therapeutic efficacy will range from about 0.001 to 1000 mg/kg of body mass, preferably between 10 and 200 mg/kg, and most preferably 50 to 100 mg/kg. When administering an HDAC inhibitor in vitro, dosage can be in the nanomolar to micromolar concentrations, often about 100 - 200 µM.
  • The compositions of the present invention (and in a further aspect, kits can, comprise a cell or cell-free extract and an HDAC inhibitor, beta protein, or HU.
  • Cells for use in the compositions (or kits), either intact or in the form of cell extracts that include cellular repair proteins, include cells from any organism including bacteria, fungi, plants, and animals, including humans or other mammals. Cells for use in the kits include, for example, cultured cells of human liver, lung, colon, cervix, kidney, epithelium, COS-1 and COS-7 cells (African green monkey), CHO-K1 cells (Chinese hamster ovary), H1299 cells (human epithelial carcinoma, non-small cell lung cancer), C1271 (immortal murine mammary epithelial cells), MEF (mouse embryonic fibroblasts), HEC-1-A (human uterine carcinoma), HCT15 (human colon cancer), HCT116 (human colon carcinoma), LoVo (human colon adenocarcinoma), and HeLa (human cervical carcinoma cancer cells as well as PC12 cells (rat pheochromocytoma) and mammalian ES cells (excluding human embryonic stem cells).
  • Cells for use in compositions and kits - intact or as extracts that include cellular repair proteins - can also include mammalian non-human embryonic stem (ES) cells.
  • The cells for use in the compositions and kits can be yeast or other fungal cells, or cells from a plant, including, for example, maize, rice, wheat, barley, soybean, cotton, and potato. Other exemplary plants include those described elsewhere herein.
  • Also described herein are kits for targeted sequence alteration.
  • The kit can comprises at least one sequence-altering oligonucleotide — such as a chimeric oligonucleotide, a bifunctional oligonucleotide, or a single-stranded, chemically modified oligonucleotide — and one or more separately packaged reagents selected from the group consisting of an HDAC inhibitor, such as trichostatin A, HU, and beta protein. The kit optionally further includes instructions for use.
  • The kit can include a nucleic acid encoding beta proteins. The nucleic acid may be DNA or RNA, such as a beta protein expression vector. The expression vector can be one that resides as an episome within a cell, or alternatively one that integrates into a cell's chromosome or chromosomes. The expression vector can be controlled by an inducible promoter or alternatively by a constitutively active promoter.
  • A kit can include a sequence-altering oligonucleotide and a host cell containing a beta protein expression vector.
  • Kits may further advantageously include: means for introducing into a cell the sequence-altering oligonucleotide; means for introducing into a cell beta protein; means for introducing into a cell a nucleic acid encoding beta protein; means for introducing into a cell a beta protein expression construct; cells into which it is desired to introduce a sequence altering oligonucleotide and beta protein; and/or instructions sufficient to direct a skilled artisan how to practice the methods of the present invention. Additional kit components may be provided according to the knowledge and needs of the skilled artisan.
  • Kits may additionally include reagents for appending LNAs to either or both of the 5' and 3' termini of oligonucleotides, which oligonucleotides are then suitable for use in the gene repair methods of the present invention.
  • The kits can include the oligonucleotide to be terminally modified. Then, the sequence of the oligonucleotide will typically have been chosen to effect a nucleic acid sequence alteration that is frequently desired. More typically, however, the kits will not include such an oligonucleotide. In the latter case, the user will provide an oligonucleotide the sequence of which is designed to effect a user-desired nucleic acid sequence alteration. In both alternatives, the kit can optionally include one or more oligonucleotides to serve as controls for the terminal modification reactions and/or, optionally, for the subsequent nucleic acid sequence alteration process
  • The terminal modification kits include reagents sufficient to append at least one monomeric LNA, often sufficient to append two, three, or more monomeric LNAs, to either or both of the 3' termini of an oligonucleotide or the 5' terminus of an oligonucleotide.
  • Typically, the reagents will include, as separately packaged compositions, LNA monomers having nucleobases that are separately complementary to each of A, G, T, and C, permitting the user to extend the oligonucleotide at one or both termini without introducing bases noncomplementary to the target, ensuring that the resulting oligonucleotide is complementary to the target nucleic acid at all positions except those desired to be modified by the gene repair process In kits that permit modification of both 5' and 3' termini, the LNA monomers intended for the 5' terminus may differ in chemistry from those intended for the 3' terminus; in such cases, the monomers respectively intended for 5' and 3' modification will typically be separately packaged from one another.
  • Kits that permit 3' terminal modification will typically include a template-independent single-strand polymerase, such as calf thymus terminal deoxynucleotidyl transferase, and LNA monomers that have 5'-triphosphates. Calf thymus terminal deoxynucleotidyl transferase catalyzes the non-specific, template-independent polymerization of nucleoside triphosphates to the 3' terminus of single-stranded DNA. Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 9.60-9.61. If 2', 3'-dideoxynucleoside triphosphates are used in the polymerization reaction, a single nucleotide is added to the 3' terminus of the oligonucleotide. Thus, the kit can usefully include such dideoxy LNA monomers, either to the exclusion of, or typically in addition to, LNA monomers that permit further polymerization.
  • These kits can optionally include a reaction buffer and instructions for performing the enzymatic reaction. Optionally, the kits can include means for terminating the reaction, such as a stop buffer compositions, and means for removing reactants to prepare the oligonucleotide for further modification or for use in the nucleic acid sequence alteration methods of the present invention, such as a size-selecting spin column.
  • 5' modification is readily performed on an oligonucleotide that presents a 5' phosphate. Thus, kits intended for 5' modification can usefully include a kinase, such as bacteriophage T4 polynucleotide kinase, and adenosine triphosphate, thus permitting an oligonucleotide that presents a 5' hydroxyl group to be phosphorylated. Sambrook, J. and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 9.66-9.69.
  • Because such reagents are commonly found in molecular biology laboratories, and because oligonucleotides can be ordered from commercial vendors or core facilities already possessing a 5' phosphate, in other embodiments the kits will not include a kinase and ATP.
  • The 5'-phosphorylated oligonucleotide is then activated using a water-soluble carbodiimide in the presence of imidazole to form the 5'-phosphorimidazolide. Chu et al. (1983) Nucleic Acids. Res.11(18) 6513-6529. The kit will thus typically include, as two separate compositions, a water soluble carbodiimide, such as 1-ethyl-3,3-dimethylaminopropylcarbodiimide, and an imidazole, to be combined with the 5'-phosphorylated oligonucleotide at the time of reaction.
  • The 5'-phosphorimidazolide oligonucleotide can then further be reacted with an LNA monomer having a nucleophilic group, such as an amine, causing extension of the oligonucleotide with the LNA monomer at its 5' terminus. Kits employing this chemistry for 5' modification will thus typically further include such nucleophilic LNA monomer, such as amino-LNA monomers.
  • In an alternative approach, a terminally unmodified oligonucleotide can be modified directly at the 5' terminus using an LNA that is activated for reaction with a 5'-hydroxyl group. In such embodiments, activated LNA monomers are provided in the kit.
  • An example of such an activated form of an LNA monomer is an LNA phosphoramidite. LNA phosphoramidites can be reacted with the 5' terminus of an oligonucleotide that is "protected" at all the nucleobases. Such oligonucleotides can be obtained using standard solid phase synthesis techniques, by cleaving the oligonucleotide from the synthesis support without deprotecting the nucleobases. Such oligonucleotides can readily be so ordered from commercial vendors or core facilities.
  • Following the reaction of the oligonucleotide with the activated, such as phosphoramidite, LNA monomer, the extended oligonucleotide is oxidized and deprotected prior to use in the gene repair methods of the present invention.
  • LNA monomers can be provided that have protecting groups to prevent undesirable side reactions, permitting additional chemistries to be used. Appropriate protecting groups for these purposes are well known in the art See, for example, Protocols for Oligonucleotides and Analogs: Synthesis and Properties, vol 20, (Agrawal, ed.), Humana Press, 1993; Totowa et al. (1993) Tetrahedron 49, 6123; Beaucage and lyer (1992) Tetrahedron 48, 2223; and Uhlmann and Peyman (1990) Chem. Rev. 90, 543. Removal of these protecting groups prior to further modification of the LNA-modified oligonucleotide or use of the LNA-modfied oligonucleotide in gene repair may be a necessary additional step as well, and reagents for effecting such removal can be included in such kits or provided by the user.
  • The kits of the present invention can further comprise a cell or cell-free extract, one or more reagents selected from the group consisting of HDAC inhibitor, beta protein, and HU, and optionally a sequence-altering oligonucleotide and/or instructions for use.
  • The cell or cell-free extract for the kit may be derived from any organism and may be directly supplemented with a protein or preparation from the same organism or from a different organism. Such a protein may, for example, be from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group. The cell or cell-free extract is or is derived from a eukaryotic cell or tissue, in particular, a yeast cell. Alternatively, the kits include, packaged from the cell or cell-free extract, at least one protein from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group and an HDAC inhibitor, beta protein, or HU.
  • Also described herein is an assay to identify additional chemical compounds that increase the efficiency of oligonucleotide-mediated nucleic acid sequence alteration. Such assay methods comprise contacting a sample with a chemical compound and a sequence altering oligonucleotide in a system known to provide for nucleic acid sequence alteration, and measuring whether the amount of nucleic acid sequence alteration is less, more, or the same as in the absence of the chemical compound. Many suitable assay systems will be apparent to one of skill in the art, including antibiotic resistance (e.g. tetracycline, kanamycin or hygromycin), GFP and FlAsH™ systems disclosed herein and in International Patent Application published as WO 01/73002 .
  • The methods of the present invention may be used to alter the genomic sequence of a nonhuman cell, from which nonhuman cell an entire nonhuman animal or plant is then regenerated. Also described herein are the non-human animals and the plants produced thereby.
  • The non-limiting examples set forth herein below further demonstrate methods, compositions, kits, and assay systems, to identify other compounds that enhance nucleic acid sequence alteration efficiency and to select and optimize the concentration required to achieve enhanced nucleic acid sequence alteration efficiency by an oligonucleotide that introduces one or more desired target nucleic acid sequence alterations. One of skill in the art could readily modify one of these systems to assay correction of any desired target to optimize the conditions for introduction of desired nucleic acid sequence alterations using the teachings set forth herein.
  • EXAMPLE 1 DNA REPAIR GENES INFLUENCE THE ABILITY TO DIRECT NUCLEIC ACID SEQUENCE ALTERATION IN VITRO
  • In this example, we use chemically modified, nonhairpin, internally unduplexed single-stranded oligonucleotides or chimeric double-hairpin oligonucleotides to measure nucleic acid sequence alteration of episomal target sequences in cell-free extracts from cells with increased or decreased expression of DNA repair genes. These target sequences encode, for example, a kanamycin resistance gene (pKansm4021), a tetracycline resistance gene, and a fusion between a hygromycin resistance gene and eGFP. In each case, the target gene is non-functional due to at least one point mutation in the coding region.
  • Preparation and use of cell-free extracts for nucleic acid sequence alteration experiments. We grow yeast cells, for example, into log phase (OD600=0.5-0.8) in 2L YPD medium at 30°C. We then centrifuge the cultures at 5000xg, resuspend the pellets in a 10% sucrose, 50 mM Tris, 1 mM EDTA lysis solution and freeze them on dry ice. After thawing, we add KCI, spermidine and lyticase to final concentrations of 0.25 mM, 5 mM and 0.1 mg/ml, respectively. We incubate the suspension on ice for 60 minutes, add PMSF and Triton X100 to final concentrations of 0.1 mM and 0.1 %, respectively, and continue to incubate on ice for 20 minutes. We centrifuge the lysate at 3000xg for 10 minutes to remove larger debris. We then remove the supernatant and clarify it by centrifuging at 30000xg for 15 minutes. We then add glycerol to the clarified extract to a concentration of 10% (v/v) and freeze aliquots at -80°C. We determine the protein concentration of the extract by the Bradford assay.
  • To assay nucleic acid sequence alteration activity, we use 50 µl reaction mixtures comprising 10-30 µg protein of cell-free extract from either a wild-type yeast strain or a yeast strain having a mutation in a gene from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group; about 1.5 µg chimeric double-hairpin oligonucleotide (KanGG, see FIG. 1) or 0.55 µg single-stranded molecule (3S/25G or 6S/25G, 25-mer oligonucleotides directing the same alteration as KanGG and having 3 or 6 phosphorothioate linkages at each end, respectively); and about 1 µg of plasmid DNA (see FIG. 1) in a reaction buffer comprising 20 mM Tris pH 7.4,15 mM MgCl2, 0.4 mM DTT, and 1.0 mM ATP. We initiate the reactions by adding cell-free extract and incubating at 30°C for 45 min. We stop the reaction by placing the tubes on ice and then immediately deproteinize them with two phenol/chloroform (1:1) extractions. We then ethanol precipitate the samples and pellet the nucleic acid at 15,000 r.p.m. at 4°C for 30 min; wash the pellet with 70% ethanol; resuspend the nucleic acid in 50 µl H2O; and store it at -20°C.
  • We measure the effect of oligonucleotide concentration on nucleic acid sequence alteration in cell-free extract as follows. We use about 1 µg of plasmid pKsm4021 and varying amounts of oligonucleotide in a 100 µl reaction mixtures comprising 20 mM Tris pH 7.6; 15 mM MgCl2; 1 mM DTT; 0.2 mM spermidine; 2.5 mM ATP; 0.1 mM each CTP, GTP, UTP; 0.01 mM each dATP, dCTP, dGTP and dTTP; 0.1 mM NAD; and 10 µg/ml BSA. We start the reactions by adding 10-80 µg of cell-free extract and incubate the reactions at 30°C for 30 min. We stop the reactions on ice and isolate the plasmid DNA with two phenol and one chloroform extraction followed by ethanol precipitation on dry ice for 1 hr and centrifugation at 4° for 30 min. We then wash the pellet with 70% ethanol, resuspend in 50 µl H2O and store at -20°C.
  • Quantification of nucleic acid sequence alteration. We then electroporate 5 µl of plasmid from the resuspension (~100 ng) into 20 µl of DH10B cells in a Cell-Porator apparatus with settings of 400 V, 300 µF, 4 kΩ (Life Technologies). After electroporation, we transfer cells to a 14 ml Falcon snap-cap tube with 1 or 2 ml SOC and shake at 37°C for 1 h. To enhance the final kanamycin resistant colony counts, we amplify plasmids with altered sequence by adding kanamycin (50 µg/ml) or 3 ml SOC with 10 µg/ml kanamycin and shake the cell suspension for 2 or 3 h more at 37°C. We then directly plate 100 µl aliquots of undiluted cultures on LB agar plates with 50 µg/ml kanamycin and 100 µl aliquots of a 104 dilution on LB agar plates with 100 µg/ml ampicillin. Alternatively, we first centrifuge the cells at 3750xg and resuspend the pellet in 500 µl SOC. We add 200 µl of the resuspension (undiluted) to kanamycin (50 µg/ml) agar plates and 200 µl of a 105 dilution to ampicillin (100 µg/ml) plates. After overnight 37°C incubation, we count bacterial colonies using an AccuCount 1000 (BioLogics). We measure nucleic acid sequence alteration efficiency as the ratio of the kanamycin resistant colonies to the ampicillin resistant colonies corrected for the dilution.
  • Alternatively, we use the following procedure. We transform 5 µl of resuspended reaction mixtures (total volume 50 µl) into 20 µl aliquots of electro-competent DH10B bacteria using a Cell-Porator apparatus (Life Technologies). We allow the mixtures to recover in 1 ml SOC at 37°C for 1 hour at which time we add 50 µg/ml kanamycin or 12 µg/ml tetracycline (for kanamycin or tetracycline plasmids, respectively) and incubate for an additional 3 hours. Prior to plating, we pellet the bacteria and resuspend in 200 µl of SOC. We plate 100 µl aliquots on kanamycin or tetracycline agar plates and 100 µl of a 10-4 dilution of the cultures on agar plates containing 100 µg/ml of ampicillin. We determine colony counts using an AccuCount 1000 plate reader (BioLogics).
  • For both plating procedures we generally plate in duplicate or triplicate. Each plate contains 200-500 ampicillin resistant colonies or 0-500 tetracycline or kanamycin resistant colonies. We then select resistant colonies for plasmid isolation and DNA sequencing using an ABI Prism kit on an ABI 310 capillary sequencer (PE Biosystems).
  • Nucleic acid sequence alteration in cell-free extracts from yeast. We use the kanamycin plasmid assay system to test cell-free extracts from the yeast strain LSY678. As shown in Table 1, we observe that the reaction depends on all reaction components. We also generally observe that increasing the amount of oligonucleotide or the amount of extract in the reaction increases the relative correction efficiency. We then analyze the efficiency of nucleic acid sequence alteration in yeast strains deficient for at least one protein from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group. We find that extracts produced from an msh2 mutant yeast strain (LSY814) show a significant reduction in repair activity similar to the lower gene repair that we see in mammalian cells deficient in MSH2p (Table 2). We observe that cell-free extracts from rad57 or rad59 mutant strains show little change in nucleic acid sequence alteration activity and that cell-free extracts from rad23 or rad54 mutant strains show a slight increase in nucleic acid sequence alteration activity relative to a strain with functional copies of these genes. However, we observe elevated nucleic acid sequence alteration frequencies using cell-free extracts from rad51 or rad52 mutant strains. In particular, we observe that the Δrad52 (LSY386) strain exhibits about 5-fold to about 25-fold higher repair frequency. In all samples, the range of ampicillin resistance colonies is 500-600 per plate with kanamycin colonies between 10 and 300.
  • Gene repair depends on the dose of repair proteins. We examine the activity of an extract lacking RAD52 in more detail. First, we observe that repair of pKsm4021 depends on the addition of all three components: plasmid, oligonucleotide and extract (Table 3). We also observe that the repair is dose-dependent and proportional to the amount of LSY386 (Δrad52) extract present in a reaction where two extracts are mixed (Table 3). We confirm that RAD52 is present in these extracts by western blot analyses. We observe a similar effect on repair in cell-free extract when a rad52 mutant strain lacking RAD52 is mixed with a rad23 mutant strain (YELO37C) instead of LSY678.
  • Finally, we analyze nucleic acid sequence alteration efficiency of cell-free extracts from LSY386 or LSY678 containing a plasmid expressing RAD52. We observe that the expression of RAD52 reduces the level of nucleic acid sequence alteration activity in extracts made from either LSY386 or LSY678. In LSY386, the level of repair drops to near wild-type levels while the level in LSY678 is reduced to 4-fold below wild-type levels (Table 3). We perform western blot analysis on these strains and the level of RAD52 protein expression in these strains is approximately equal. These results indicate that expression of the RAD52 gene suppresses oligonucleotide-directed nucleic acid sequence alteration. We also analyze the DNA sequence of the target plasmid from three colonies and observe that the targeted base is precisely changed even in samples in which the extract came from Δrad51 or Δrad23. Hence, target specificity is maintained despite the mutations and the differences in nucleic acid sequence alteration frequency. Table 1
    Gene repair using Saccharomyces cerevisiae extracts
    Plasmid (1µg) Chimeric Oligonucleotide (µg) Extract (µg) Relative Frequency kanr/ampr(x 10-5)
    pKSm4021 1 (Kan GG) - 0.002
    pKSm4021 - 20 0.0
    - 1 (Kan GG) 20 0.0
    - - - 0.0
    pKSm4021 1 (Kan GG) 1 0.32
    pKSm4021 1 (Kan GG) 10 3.66
    pKSm4021 1 (Kan GG) 20 7.601
    pKSm4021 0.5 (Kan GG) 10 1.89
    pKSm4021 1.0 (Kan GG) 10 2.78
    pKSm4021 2.0 (Kan GG) 10 4.005
    pKSm4021 1 (Kan CG) - 0.0
    pKSm4021 1 (Kan CG) 20 0.003
  • Chimeric oligonucleotides at varying levels are incubated with plasmid pKSm4021 and the indicated amounts of cell-free extracts from Saccharomyces cerevisiae (LSY678) for 45 minutes at 30°C. We isolate, purify and electroporate the plasmids into E. coli (DH10B) and quantify resistant colonies using an automatic plate reader. Relative frequency is presented as kanamycin resistant colonies divided by ampicillin resistant colonies (x 10-5). Oligonucleotide KanCG has the same sequence as KanGG except there is no mismatch and KanCG does not correct the mutation. Each data point is presented as the average of 5 independent experiments. Table 2
    Gene repair using mutant strains of Saccharomyces cerevisiae
    Plasmid Oligonucleotide Source of Extract Relative Correction Efficiency
    pKSm4021 KanGG - 0.0
    pKSm4021 - LSY678 0.002
    pKSm4021 KanGG LSY678 (wild type) 1.17
    pKSm4021 KanGG LSY814 (Δmsh2) 0.79
    pKSm4021 KanGG LSY402 (Δrad51) 5.15
    pKSm4021 KanGG LSY386 (Δrads2) 25.7
    pKSm4021 KanGG XS827-18C (Δrad54) 1.36
    pKSm4021 KanGG YDR076W (Δrad55) 1.27
    pKSm4021 KanGG LSY407 (Δrad57) 2.13
    pKSm4021 KanGG LSY837 (Δrad59) 0.35
    pKSm4021 KanGG YELO37C (Δrad23) 1.04
  • Reaction mixtures (20µl) containing 1 µg plasmid pKSm4021 and 1 µg oligonucleotide KanGG are mixed with 10 µg of a cell-free extract from the indicated yeast strains. After a 45 minute incubation at 30°C, we isolate the plasmid DNA and electroporate into E. coli (DH10B). We count kanamycin resistant colonies on agar plates containing 50µg/ml kanamycin. Plasmids from duplicate reaction mixtures are also electroporated into E. coli (DH10B) and plated on ampicillin containing plates. We determine relative activity by dividing Kanr by Ampr colony numbers. These numbers reflect an average of five reactions. Table 3
    Extracts from LSY386(Δrad52) exhibit higher levels of gene repair.
    Plasmid Oligonucleotide Source of First Extract Source of Second Extract Relative Correction Efficiency
    pKSm4021 - - - 0.0
    - KanGG - - 0.0
    pKSm4021 KanGG - - 0.003
    pKSm4021 KanGG LSY678(wild type) - 1.08
    pKSm4021 KanGG LSY386(Δrad52) - 26.7
    pKSm4021 KanGG LSY386(2µg) LSY678(8µg) 2.91
    pKSm4021 KanGG LSY386(4µg) LSY678(6µg) 5.45
    pKSm4021 KanGG LSY386(6µg) LSY678(4µg) 10.47
    pKSm4021 KanGG LSY386(8µg) LSY678(2µg) 14.36
    pKSm4021 KanGG LSY386(2µg) YELO37C(8µg) 1.85
    pKSm4021 KanGG LSY386(4µg) YELO37C(6µg) 3.71
    pKSm4021 KanGG LSY386(6µg) YELO37C(4µg) 9.22
    pKSm4021 KanGG LSY386(8µg) YELO37C(2µg) 16.95
    pKSm4021 KanGG LSY386 - 19.9
    pKSm4021 KanGG LSY386 · p52 - 2.31
    pKSm4021 KanGG LSY678 - 1.63
    pKSm4021 KanGG LSY678 · p52 - 0.41
  • Reaction mixtures and processing for colonies are as described in the legend to Table 1 with the following exceptions. We use cell-free extracts from yeast strains containing mutations as follows: LSY678 (wild type), LSY386 (Δrad52), and YELO37C (Δrad23). We use either 10µg of extract or the amounts indicated. The reactions identified as LSY386 ·p52 contain a cell-free extract from a Δrad52 strain (LSY386) harboring a plasmid which expresses RAD52 protein. The reactions identified as LSY678 • p52 contain a cell-free extract from wild-type strain (LSY678) harboring a plasmid which expresses RAD52 protein.
  • EXAMPLE 2 DNA REPAIR GENES INFLUENCE THE ABILITY TO DIRECT NUCLEIC ACID SEQUENCE ALTERATION IN VIVO
  • In this example, we use chemically modified, internally unduplexed, single-stranded oligonucleotides or double-hairpin chimeric oligonucleotides and measure nucleic acid sequence alteration of target nucleic acid sequences in cells with increased or decreased expression of DNA repair genes. These target nucleic acid sequences encode, for example, a fusion between a hygromycin resistance gene and eGFP which is non-functional due to at least one point mutation in the coding region. The target sequences may be either episomal or chromosomal (including, e.g., nuclear, mitochondrial or plastidic). Nucleic acid sequence alteration of episomal targets is generally slightly more efficient (less than two-fold) than nucleic acid sequence alteration of chromosomal targets. Modifications to the oligonucleotides and construction of target vectors are disclosed in the copending International Patent Application WO 01/73002 of Kmiec et al. entitled "Targeted Chromosomal Genomic Alterations with Modified Single Stranded Oligonucleotides," filed March 27, 2001, the disclosure of which is hereby incorporated by reference.
  • In vivo assay systems. To monitor nucleic acid sequence alteration of episomal targets, we employ a yeast system using the plasmids pAURHYG(rep)eGFP, which contains a point mutation in the hygromycin resistance gene, pAURHYG(ins)eGFP, which contains a single-base insertion in the hygromycin resistance gene and pAURHYG(Δ)eGFP which has a single base deletion (shown in FIG. 2). We also use the same plasmid containing a functional copy of the hygromycin-eGFP fusion gene, designated pAURHYG(wt)eGFP, as a control. These plasmids are collectively designated pAURHYG(x)eGFP. These plasmids also contain an aureobasidinA resistance gene. In pAURHYG(rep)eGFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, in codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region. In pAURHYG(ins)eGFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when an A inserted between nucleotide positions 136 and 137, in codon 46 of the hygromycin B coding sequence, is deleted and a C is substituted for the T at position 137, thus correcting a frameshift mutation and restoring the reading frame of the hygromycin-eGFP fusion gene. In pAURHYG(Δ)eGFP, hygromycin resistance gene function and green fluorescence from eGFP are restored when a C is inserted at the site of the single nucleotide deletion.
  • We synthesize the set of three yeast expression constructs pAURHYG(rep)eGFP, pAURHYG(Δ)eGFP, pAURHYG(ins)eGFP, that contain a point mutation at nucleotide 137 of the hygromycin-B coding sequence as follows: (rep) indicates a T137→4G replacement, (Δ) represents a deletion of G137 and (ins) represents an A insertion between nucleotides 136 and 137. We construct this set of plasmids by excising the respective expression cassettes by restriction digest from pHyg(x)eGFP and ligation into pAUR123 (PanVera®, CA). We digest 10 µg pAUR123 vector DNA as well as 10 µg of each pHyg(x)eGFP construct with KpnI and SalI (NEB). We gel purify each of the DNA fragments and prepare them for enzymatic ligation. We ligate each mutated insert into pAUR123 vector at a 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm by Sanger dideoxy chain termination sequencing and purify plasmid DNA using a Qiagen® maxiprep kit.
  • To monitor nucleic acid sequence alteration of chromosomal targets, we typically employ a yeast system in which we monitor chromosomal genes such as CYC1 or we use integrational plasmids such as those designated pAUR101-HYG(x)eGFP. These plasmids do not replicate in yeast. These plasmids comprise the HYG(x)eGFP fusion proteins used in the pAURHYG(x)eGFP episomal plasmid system (shown in FIG. 2) and an aureobasidinA resistance gene. Therefore, like pAURHYG(x)eGFP, these constructs can also be used to monitor all types of nucleic acid sequence alterations, i.e. replacements, insertions and deletions. In addition to this construct, we monitor nucleic acid sequence alteration of specific yeast genes including, for example, CYC1.
  • We construct the pAUR101-HYG(x)eGFP plasmids as diagrammed in FIG. 8. Briefly, we digest 10 µg pAUR101 (PanVera® Corp.) with SalI and KpnI and ligate a linker comprising a unique BclI restriction site. We then digest 10 µg of the resulting plasmid ("pAUR101-linker") with BclI and ligate in a 1 kb BamHI fragment from pAUR123. The BamHI fragment from pAUR123 comprises a multiple-cloning site as well as the ADH1 promoter and terminator regions. We then digest 10 µg of this plasmid ("pAUR101-romoter") with SalI and KpnI and ligate in a 1.8kb SalI/KpnI fragment from pAURHYG(x)eGFP which contains the HYG(x)eGFP fusion protein. The resulting plasmid is pAUR101-HYG(x)eGFP. All DNA fragments are gel purified after restriction enzyme digestion to prepare them for enzymatic ligation. All ligations are performed using T4 DNA ligase (Roche). Clones are screened by restriction digest and confirmed by Sanger dideoxy chain termination sequencing.
  • We integrate the plasmids into the genome of wild-type yeast cells as well as yeast strains with mutations in a variety of genes, including, for example, genes of the RAD52 epistasis group, the mismatch repair group, and the nucleotide excision repair group. We integrate the plasmids into the yeast genome by linearizing 10 µg of the plasmid by digestion with StuI and electroporating the linearized plasmid into the yeast cells. The plasmid integrates by homologous recombination at the wild-type AUR-C (aureobasidinA) locus. We then select on aureobasidinA to identify clones in which the plasmid has integrated. We confirm that the plasmid has integrated by PCR analysis and by performing Southern blots. We obtain yeast strains with single as well as multiple integrated copies of the plasmid.
  • We also synthesize a set of yeast expression plasmids to express genes from the RAD52 epistasis group, the mismatch repair group, and the nucleotide excision repair group. We use the plasmid pYN132 which has the promoter from the TPL1 gene, which directs high-level constitutive expression of genes cloned downstream (Alber et al. J. Mol. Appl. Genet. 1: 419-34 (1982)). We construct the expression plasmids by digesting 10 µg pYN132 DNA as well as 10 µg of a PCR product containing one of the DNA repair protein with NdeI and XhoI (NEB). We gel purify each of the DNA fragments and prepare them for ligation. We ligate the PCR product into the pYN132 vector at a 3:1 molar ratio using T4 DNA ligase (Roche). We screen clones by restriction digest, confirm the clone by Sanger dideoxy chain termination sequencing and purify plasmid DNA using a Qiagen® maxiprep kit.
  • We use this system to assay the ability of modified oligonucleotides (shown in FIG. 3) to support nucleic acid sequence alteration in a variety of host cell backgrounds including wild-type, mutants and cells expressing additional gene(s). These oligonucleotides direct correction of the mutation in pAURHYG(rep)eGFP as well as the mutation in pAURHYG(ins)eGFP or pAURHYG(Δ)eGFP. The first of these oligonucleotides, HygE3T/74, is a 74-base oligonucleotide with the sequence directing nucleic acid sequence alteration centrally positioned. The second oligonucleotide, designated HygE3T/74NT, is the complement of HygE3T/74. The third oligonucleotide, designated Kan70T, is a non-specific, control oligonucleotide which is not complementary to the target sequence. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely phosphorothioate-modified oligonucleotide or a completely 2-O-methylated modified oligonucleotide or a completely LNA-modified oligonucleotide may be used as a control. We also use this system with chimeric RNA-DNA double-hairpin oligonucleotides.
  • Oligonucleotide synthesis and cells. We synthesize and purify the oligonucleotides using available phosphoramidites on controlled pore glass supports. After deprotection and detachment from the solid support, each oligonucleotide is gel-purified using, for example, procedures such as those described in Gamper et al., Biochem. 39: 5808-5816 (2000). We determine the concentration of the oligonucleotides spectrophotometrically (33 or 40 µg/ml per A260 unit of single-stranded or hairpin oligomer, respectively). Plasmids used for assay are maintained stably at low copy number under aureobasidin selection in yeast (Saccharomyces cerevisiae) strain LSY678 (wild type) which optionally may contain additional gene mutations or may be engineered to express additional protein(s).
  • Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media to the overnight cultures and continue shaking at 30°C until the OD600 is between 0.5 and 1.0 (3-5 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4°C at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1 M sorbitol and then finally centrifuge the cells at 4°C at 5000 rpm for 5 minutes and resuspend the cells in 120 µl 1M sorbitol. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 µl of cells with 5 µg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus set at 1.5 kV, 25 µF, 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1 M sorbitol and incubate the cultures at 30°C with shaking at 300 rpm for 6 hours. We then spread 200 µl of this culture on selective plates containing 300 µg/ml hygromycin and spread 200 µl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and/or hygromycin and incubate at 30°C for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the nucleic acid sequence alteration efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies.
  • Nucleic acid sequence alteration to repair different mutations in wild-type Saccharomyces cerevisiae. We test the ability of oligonucleotides shown in FIG. 3 to alter all three target plasmids in vivo using wild-type yeast strain LSY678. These target plasmids contain a point mutation (pAURHYG(rep)eGFP), a deletion mutation (pAURHYG(Δ)eGFP) or an insertion mutation (pAURHYG(ins)eGFP). We also test oligonucleotides targeting opposite strands of the target DNA to identify any strand-specific effects and we test the oligonucleotide at a range of concentration to determine the optimum concentration for gene repair.
  • As shown in Table 4 (set forth below at the end of this Example), we observe that oligonucleotides targeting either strand direct correction of all three types of mutations. The data indicate that the point mutation in pAURHYG(rep)eGFP is corrected more efficiently than the insertion mutation in pAURHYG(ins)eGFP, which in turn is corrected more efficiently than the deletion mutation in pAURHYG(Δ)eGFP. In addition, with all three assay plasmids we observe that the optimal oligonucleotide concentration for nucleic acid sequence alteration in this system is 5 µg. We note, however, that the oligonucleotides are capable of effecting repair over a wide range of concentrations. Finally, we observe that the oligonucleotide with sequence complementary to the sense strand of the target DNA, HygE3T/74NT, repairs all three types of target mutations more effectively than the complementary oligonucleotide, HygE3T/74. The fold difference in repair efficiency using HygE3T/74NT relative to using HygE3T/74 is indicated in the final column of Table 4.
  • We also test the ability of oligonucleotides shown in FIG. 3 to alter all three target mutations in strains comprising the integrated pAUR101-HYG(x)eGFP plasmids. We test multiple concentrations of oligonucleotides targeting either strand of the DNA duplex target. The results of these types of experiments with the replacement mutation in pAUR101-HYG(rep)eGFP are shown in Table 14 including data on how to determine an optimized oligonucleotide concentration. We observe that oligonucleotides targeting either strand direct correction of the point mutation in the integrated pAUR101-HYG(rep)eGFP plasmid and that the optimal oligonucleotide concentration for nucleic acid sequence alteration with this chromosomal target is 7.5 µg. We note again, however, that the oligonucleotides are capable of effecting repair over a wide range of concentrations. We observe that the oligonucleotide with sequence complementary to the sense strand of the target DNA, HygE3T/74NT, repairs the chromosomal target mutation more effectively than the complementary oligonucleotide, HygE3T/74, at all concentrations tested. The fold difference in correction efficiency using HygE3T/74NT relative to using HygE3T/74 is indicated in the final column of Table 14.
  • Nucleic acid sequence alteration in strains with mutation(s) in gene(s) of the RAD52 epistasis group. We test the ability of oligonucleotides shown in FIG. 3 to alter a nucleic acid sequence in vivo using yeast strains with additional mutation(s) in gene(s) of the RAD52 epistasis group. In these experiments we use derivatives of LSY678 (wild type) with a mutation in one or more of the genes of the RAD52 epistasis group and containing the target plasmid pAURHYG(rep)eGFP, pAURHYG(ins)eGFP or pAUR HYG(Δ)eGFP. We electroporate these cells with 5 µg of HygE3T/74 and plate on hygromycin and aureobasidinA to obtain the efficiency of nucleic acid sequence alteration. The results of these experiments for plasmid pAURHYG(rep)eGFP, pAURHYG(ins)eGFP and pAUR HYG(Δ)eGFP are shown in Table 5, Table 6 and Table 7, respectively. We also monitor nucleic acid sequence alteration efficiency on chromosomal targets in yeast strains with mutation(s) in gene(s) of the RAD52 epistasis group.
  • These data indicate that the efficiency of nucleic acid sequence alteration is reduced or unchanged in a yeast strain with a mutation in RAD51, RAD52, RAD54, RAD55, RAD59, RAD50, MRE11 or XRS2. The efficiency of nucleic acid sequence alteration that we observe in these experiments in strains with mutations in either RAD57 or a double mutant in rad51/52 is reduced when using pAURHYG(ins)eGFP or pAUR HYG(Δ)eGFP as the target plasmid, but, surprisingly, we observe an increase in the efficiency of nucleic acid sequence alteration in these strains when using pAURHYG(rep)eGFP as the target. We observe that nucleic acid sequence alteration using pAURHYG(rep)eGFP as the target is reduced in yeast strains with mutations in RAD54 or RAD55. We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)eGFP. With this strain we observe that even without added oligonucleotides, there are too many hygromycin resistant colonies to count. We test yeast strains with mutations in both single genes in the RAD52 epistasis group as well as yeast strains with mutations in two or more of the genes. We test the ability of these yeast strains to correct all of the pAURHYG(x)eGFP mutations.
  • Nucleic acid sequence alteration in strains with mutation(s) in mismatch repair gene(s). We test the ability of oligonucleotides shown in FIG. 3 to alter a nucleic acid sequence in vivo using yeast strains with additional mutation(s) in mismatch repair gene(s) containing the plasmid pAURHYG(x)eGFP. We electroporate these cells with 5 µg of HygE3T/74 and plate on hygromycin and aureobasidinA to obtain the efficiency of nucleic acid sequence alteration. For example, the results of these experiments for plasmid pAURHYG(rep)eGFP, pAURHYG(ins)eGFP and pAUR HYG(Δ)eGFP are shown in Table 5, Table 6 and Table 7, respectively. We also monitor nucleic acid sequence alteration efficiency on chromosomal targets in yeast strains with mutation(s) in gene(s) of the RAD52 epistasis group.
  • These data indicate that nucleic acid sequence alteration occurs at a reduced efficiency in strains with mutations in MSH2, MSH3 or MSH6 and at an increased efficiency in strains with a mutation in PMS1. We observe the same general effects, although at different relative efficiencies, in experiments using either plasmid pAURHYG(rep)eGFP, plasmid pAURHYG(ins)eGFP or pAUR HYG(Δ)eGFP as the target. In control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)eGFP, we again observe that, even without added oligonucleotides, there are too many hygromycin resistant colonies to count. We test yeast strains with mutations in both single mismatch repair genes as well as yeast strains with mutations in two or more of the genes. We test the ability of these yeast strains to correct all of the pAURHYG(x)eGFP mutations.
  • Nucleic acid sequence alteration in strains with mutation(s) in nucleotide excision repair gene(s). We test the ability of oligonucleotides shown in FIG. 3 to alter a nucleic acid sequence in vivo using yeast strains with additional mutation(s) in nucleotide excision repair gene(s) containing the plasmid pAURHYG(x)eGFP. We electroporate these cells with 5 µg of HygE3T/74 and plate on hygromycin and aureobasidinA to obtain the efficiency of nucleic acid sequence alteration. For example, the results of these experiments for plasmid pAURHYG(rep)eGFP, pAURHYG(ins)eGFP and pAUR HYG(Δ)eGFP are shown in Table 5, Table 6 and Table 7, respectively. We also monitor nucleic acid sequence alteration efficiency on chromosomal targets in yeast strains with mutation(s) in gene(s) of the RAD52 epistasis group.
  • These data indicate that nucleic acid sequence alteration occurs at a reduced efficiency in strains with mutations in RAD10, RAD2, or RAD23. The efficiency of nucleic acid sequence alteration observed in these experiments in a strain with a mutation in RAD1 is reduced when using either pAURHYG(ins)eGFP or pAUR HYG(Δ)eGFP as the target plasmid, but increased when using pAURHYG(rep)eGFP as the target. We observe that nucleic acid sequence alteration is reduced in a yeast strain with a mutation in EXO1 using pAURHYG(rep)eGFP or pAURHYG(ins)eGFP as the target. We also perform control experiments with LSY678 yeast cells containing the plasmid pAURHYG(wt)eGFP which yield too many hygromycin resistant colonies to count. We test yeast strains with mutations in both single nucleotide excision repair genes as well as yeast strains with mutations in two or more of the genes. We test the ability of these yeast strains to correct all of the pAURHYG(x)eGFP mutations.
  • Nucleic acid sequence alteration in yeast strains expressing DNA repair gene(s) from plasmids. We test the effect on nucleic acid sequence alteration efficiency of increasing expression of DNA repair genes, including genes in the RAD52 epistasis group, mismatch repair genes and nucleotide excision repair genes. We test the effect of expression of these genes both individually and in groups of two or more. We employ plasmids with inducible promoters, for example, the plasmid described in FIG. 6, directing expression of DNA repair genes. Alternatively, we use plasmids with constitutive promoters to direct expression of DNA repair genes, for example, the plasmids described in FIGs 1, 2 and 4.
  • We test the ability of oligonucleotides shown in FIG. 3 to alter a nucleic acid sequence in vivo using yeast strains with additional copies of gene(s) of the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group. In these experiments we use derivatives of LSY678 wild type containing the plasmid pYN132 or the derivatives of pYN132 comprising a cloned copy of a gene from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group. These strains also contain one of the plasmids pAURHYG(rep)eGFP, pAURHYG(ins)eGFP or pAURHYG(del)eGFP as a reporter for monitoring nucleic acid sequence alteration. Alternatively, these strains comprise the one or more copies of the integrational plasmid pAUR101-HYG(x)eGFP as a reporter for monitoring nucleic acid sequence alteration. We confirm expression of the cloned DNA repair gene in these strains by northern blot and/or western blot analysis.
  • We introduce, for example, plasmids expressing RAD10, RAD51, RAD52, RAD54, RAD55, MRE11, PMS1, REC2 or XRS2 into LSY678 (wild type) and monitor the ability of the single-stranded oligonucleotide vector, Hyg3S/74NT, to direct nucleic acid sequence alteration in the pAURHYG(ins)eGFP plasmid. As shown in Table 9 and Table 12, results from these experiments indicate that additional expression of any one of the RAD10, RAD51, RAD52, RAD54, MRE11, PMS1 or XRS2 genes results in an increase in nucleic acid sequence alteration efficiency ranging from 1.2-fold (RAD10) to 7.5-fold (RAD51). These data clearly indicate that additional copies of particular DNA repair proteins results in increased nucleic acid sequence alteration efficiency. We also introduce plasmids expressing multiple proteins into LSY678 (wild type) and monitor the efficiency of nucleic acid sequence alteration as shown in Table 10. We also test other genes from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group for enhancement of nucleic acid sequence alteration efficiency.
  • We test nucleic acid sequence alteration efficiency as described above using yeast strains further comprising mutation(s) in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group. For example, we introduce pYN132-derived plasmids expressing RAD10, RAD51, RAD52, RAD54, RAD55, MRE11, PMS1, REC2 or XRS2 into LSY678 strains with mutations in RAD51, RAD52, MRE11 or PMS1. We then monitor the ability of the single-stranded oligonucleotide vector, Hyg3S/74NT, to direct nucleic acid sequence alteration in the pAURHYG(x)eGFP plasmid. As shown in Table 11, Table 13 and Table 15, we observe that strains with mutations in RAD51, RAD52, MRE11 or PMS1 containing pYN132 exhibit reduced correction efficiency relative to the wild type containing pYN132 shown in Table 9. These data are consistent with results from mutant strains shown in Table 6. In general, we observe that expressing RAD10, RAD51, RAD52, RAD54, MRE11 or PMS1 in these yeast strains results in increased nucleic acid sequence alteration efficiency relative to the mutant with the empty pYN132 vector. These data indicate that additional expression of these genes results in enhancement of nucleic acid sequence alteration efficiency in the mutants as it does in the wild type. We observe that a RAD52 mutant expressing RAD51 from a plasmid gives very high correction efficiency. We observe that a PMS1 mutant expressing RAD51 from a plasmid gives the highest correction efficiency of any strain tested. We also test the effect of expressing multiple proteins in mutant yeast stains and monitor the efficiency of nucleic acid sequence alteration.
  • We also monitor nucleic acid sequence alteration efficiency on chromosomal targets in yeast strains with additional copies of gene(s) of the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision group. For example, we introduce pYN132-derived plasmids expressing RAD51, RAD52, RAD54, RAD51+RAD54, RAD51+RAD52, MRE11, XRS2 or MRE11+XRS2 into yeast strains containing integrated copies of the pAUR101-HYG(x)eGFP plasmids. The results from an experiment using a strain with integrated pAUR101-HYG(rep)eGFP are shown in Table 16. These results are consistent with results observed with episomal target experiments.
  • We also determine nucleic acid sequence alteration efficiency on chromosomal target sequences as described above using yeast strains comprising mutation(s) in the RAD52 epistasis group, the mismatch repair group or the nucleotide excision repair group. For example, we introduce pYN132-derived plasmid(s) expressing RAD51, RAD52, RAD54, MRE11, PMS1, REC2 or XRS2 into LSY678 strains with an integrated copy of pAUR101-HYG(x)eGFP and mutation(s) in one or more of the RAD51, RAD52, MRE11 and PMS1 genes. We then monitor the ability of the single-stranded oligonucleotide vector, Hyg3S/74NT, to direct nucleic acid sequence alteration in the integrated pAUR101-HYG(x)eGFP plasmid.
  • We also test the effect of heterologous expression of DNA repair genes from other organisms, including, for example, other fungi, animals, plants and bacteria.
  • We also use additional oligonucleotides to assay the ability of individual oligonucleotides to correct multiple mutations in the pAURHYG(x)eGFP plasmid contained in yeast strains with altered expression or activity of gene(s) in the RAD52 epistasis group, the mismatch repair group and/or the nucleotide excision repair group. These include, for example, one that alters two basepairs that are 3 nucleotides apart is a 74-mer with the sequence 5'-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGGTACGTCCTGCGGGTAAATAGCT GCGCCGATGGTTTCTAC-3' (SEQ ID NO: 17); a 74-mer that alters two basepairs that are 15 nucleotides apart with the sequence 5'-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAACAGCT GCGCCGATGGTTTCTAC-3' (SEQ ID NO: 18); and a 74-mer that alters two basepairs that are 27 nucleotides apart with the sequence 5'-CTCGTGCTTTCAGCTTCGATGTAGGAGGGCGTGGATACGTCCTGCGGGTAAATAGCTG CGCCGACGGTTTCTAC (SEQ ID NO: 19). The nucleotides in these oligonucleotides that direct alteration of the target sequence are underlined and in boldface. These oligonucleotides are modified in the same ways as the previously described oligonucleotides.
  • We also test the ability of oligonucleotides shown in FIG. 1 to alter a nucleic acid sequence in vivo using yeast strains containing the plasmid pAURNeo(x)FIAsH™ (FIG. 4) and which also have altered expression or activity of gene(s) in the RAD52 epistasis group, the mismatch repair group and/or the nucleotide excision repair group. This plasmid is constructed by inserting a synthetic expression cassette containing a neomycin phosphotransferase (kanamycin resistance) gene and an extended reading frame that encodes a receptor for the FIAsH™ ligand into the pAUR123 shuttle vector (PanVera® Corp., Madison, WI). We make constructs with the same mutation as in pKsm4021. The resulting construct replicates in S. cerevisiae at low copy number, confers resistance to aureobasidinA and constitutively expresses the Neo(x)FIAsH™ fusion product from the ADH1 promoter. By extending the reading frame of this gene to code for a unique peptide sequence capable of binding a small ligand to form a fluorescent complex, restoration of expression by correction of the stop codon can be detected in real time using confocal microscopy. Upon correction of the truncated Neo(-)FIAsH™ product to generate the Neo(+)FIAsH™ fusion product the translated fusion protein binds a ligand (FIAsH™-EDT2) imparting a green fluorescence onto the cells. Additional constructs using any target gene fused to the FIAsH™ peptide may be made using this model system to test additional nucleic acid sequence alteration events.
  • To detect the presence of the Neo(+)FIAsH™ fusion product in yeast cells, we prepare loading buffer by mixing FIAsH™ ligand into YPD containing 1M sorbitol and 20 µM Disperse 3. The ligand molecules are mixed into the YPD at 1 µM FIAsH™-EDT2 and 10 µM 1,2 ethanedithiol (EDT) (Sigma). We then mix 100 µl of cells with an equal volume of wash buffer comprising HBS, 1 mM sodium pyruvate, 10 µM EDT, 1 M sorbitol and 20 µM Disperse 3. We then image the cells with a Zeiss LSM510 laser scanning microscope on a Zeiss Axiovert 100 m using the 488/568 nm excitation line of an Omnichrome Ar-Kr laser with appropriate emission filters (505-550 nm bandpass for FIAsH™-EDT2 binding). We simultaneously acquire laser scanning transmitted or differential interference contrast images with all fluorescent images using 488 nm excitatory. We load samples into a Lab-Tek II chambered #1.5 Coverglass system (Nalge Nunc International, IL) and image them using a Zeiss 63x C-Apochromet water immersion lens (NA 1.2). All samples, including positive and negative controls, are integrated under identical conditions (laser power, pinhole, PMT gap offset, etc.) for a given set of experiments.
  • We observe correction of a mutation in the neomycin phosphotransferase gene (Neo) harbored in yeast strain LSY678 using a FIAsH-EDT2 model system. We electroporate KanGG or another oligonucleotide directing nucleic acid sequence alteration into either LSY386 or LSY678 containing stable copies of the pAURNeo(-)FIAsH™ plasmid. We measure uptake of oligonucleotide using Texas Red conjugated oligonucleotide and optimize electroporation conditions so that over 80% of the surviving cells receive the oligonucleotide. In the absence of KanGG, or another oligonucleotide directing nucleic acid sequence alteration, we observe only a low level of auto-fluorescence after addition of FIAsH™-EDT2 in both LSY678 (FIG. 5A) and LSY386 (FIG. 5B) by confocal microscopy. However, when we introduce KanGG into the cells, we observe many corrected cells in both LSY678 and LSY378 as seen in FIG. 5C and FIG. 5D, respectively. We see a significant increase in the number of cells exhibiting green fluorescence in the LSY378 strain lacking RAD52 (FIG. 5D) relative to the LSY678 strain (FIG. 5C). This result reflects a higher degree of gene repair in the strain lacking RAD52 gene function. Correction of pAURNeo(-)FIAsH™ also confers resistance to G418 selection in yeast cells. Therefore we grow representative samples exhibiting green fluorescence on agar plates containing G418. We then determine the DNA sequence of the plasmid in these cells. The sequence analysis illustrates that the targeted base is changed from a G to a C as designed in plasmids isolated after G418 selection. We perform similar experiments in yeast strains with altered levels of expression or activity of other proteins in the RAD52 epistasis group, the mismatch repair group and the nucleotide excision repair group.
  • Oligonucleotides targeting the sense strand direct nucleic acid sequence alteration more efficiently in yeast mutants. We compare the ability of single-stranded oligonucleotides to target each of the two strands of the target sequence of pAURHYG(ins)eGFP, pAURHYG(rep)eGFP or pAURHYG(Δ)eGFP present in LSY678 mutant strains with increased or decreased expression of DNA repair genes. For example, the results of an experiment performed with yeast strains having mutations in RAD1 and RAD10 are presented in Table 8. The data from this experiment indicate that an oligonucleotide, HygE3T/74NT, with sequence complementary to the sense strand (i.e. the strand of the target sequence that is identical to the mRNA) of the target sequence facilitates gene correction approximately ten-fold more efficiently than an oligonucleotide, HygE3T/74, with sequence complementary to the strand that serves as the template for the synthesis of RNA. However, regardless of the reduced efficiency observed in yeast strains with mutations in DNA repair genes, the oligonucleotides are clearly still able to target either strand of the target sequence. In addition, the role of transcription of the target gene is investigated using plasmids with inducible promoters such as that described in FIG. 6.
  • Influence of DNA repair genes in other cells. In addition to testing the effect of DNA repair genes in the above-described yeast assay system, we test the effect of altering the expression or the activity of DNA repair genes in other cells, including, for example, other fungi, animal, plant and bacterial cells. We use other cells with normal DNA repair genes as well as cells that have altered levels or activity of DNA repair genes, including, for example, human and bacterial cells with mutations in the homologous genes or expressing additional copies of the homologous genes. For example, we use cells that are transiently or stably transformed with vectors that express either native or heterologous DNA repair genes. To monitor nucleic acid sequence alteration in these cells, we employ a reporter-gene assay system, for example, kanamycin resistance, hygromycin resistance or GFP expression. Alternatively, we assay the ability of an oligonucleotide to direct nucleic acid sequence alteration of a target present in the genome of the target cell, for example, we monitor conversion of the sickle T (βS) mutation in the β-globin gene to the normal A (βA) allele or vice-versa. Table 4
    Gene repair of different mutations in wild-type Saccharomyces cerevisiae
    Amount of Oligonucleotide (µg) Correcting Oligonucleotide Tested Fold
    HygE3T/74 HygE3T/74NT
    Repair of pAURHYG(rep)eGFP
    0 0* 0 0x
    1.0 5 (0.03) 238 (1.47) 47.6x
    2.5 99 (0.61) 704 (4.37) 7.1 x
    5.0 204 (1.26) 1,406 (8.73) 6.8x
    7.5 69 (0.42) 998 (6.20) 14.5x
    10.0 19 (0.12) 261 (1.62) 13.7x
    Repair of pAURHYG(Δ)eGFP
    0 0 0 0x
    1.0 1 (0.01) 1 (0.01) 1.0x
    2.5 18 (0.11) 68 (0.42) 3.8x
    5.0 70(0.43) 308 (1.91) 4.4x
    7.5 47 (0.29) 276 (1.71) 5.9x
    10.0 11 (0.07) 137 (0.85) 12.5x
    Repair of pAURHYG(ins)eGFP
    0 0 0 0x
    1.0 5 (0.03) 45 (0.28) 9.0x
    2.5 47 (0.29) 387 (2.4) 8.2x
    5.0 199 (1.24) 623 (3.87) 3.1 x
    7.5 54 (0.34) 398 (2.47) 7.4x
    10.0 17 (1.10) 271 (1.68) 15.9x
    * Average colony count on hygromycin plates from four experiments is shown. Numbers in parentheses indicate the number of hygromycin-resistant colonies per aureobasidin-resistant colony.
    Table 5
    Nucleic acid sequence alteration directing correction of the mutation in pAURHYG(rep)eGFP
    Yeast Strain* Colonies on Hygromycin Colonies on Aureobasidin (/105) Correction Efficiency Fold
    wild type 1,218 286 4.26 1x
    RAD52 Epistasis Group Mutants
    rad51 104 168 0.62 0.14x
    rad52 266 81 3.29 0.77x
    rad51/52 212 39 5.45 1.28x
    rad54 2 103 0.02 0x
    rad55 0 1,230 0 0x
    rad57 984 57 17.26 4.05x
    rad59 1,198 392 3.06 0.71 x
    mre11 12 18 0.63 0.15x
    rad50 336 58 2.09 0.49x
    xrs2 29 44 0.66 0.15x
    Mismatch Repair Group Mutants
    Msh2 0 976 0 0x
    Msh3 0 1,035 0 0x
    Msh6 1,270 541 2.35 0.55x
    Pms1 2,280 20 114 26.76x
    Nucleotide Excision Repair Mutants
    Rad1 1,380 391 8.52 2.00x
    rad10 54 361 0.15 0.04x
    Rad2 919 243 3.78 0.89x
    rad23 66 151 0.44 0.10x
    exo1 486 124 3.92 0.92x
    * Each strain is wild type except for the indicated mutation(s). The mutations used in these experiments are generally knockout mutations.
    Table 6
    Nucleic acid sequence alteration directing correction of the mutation in pAURHYG(ins)eGFP
    Yeast Strain* Colonies on Hygromycin Colonies on Aureobasidin(/105) Correction Efficiency Fold
    wild type 256 74 3.46 1x
    RAD52 Epistasis Group Mutants
    rad51 19 32 0.59 0.17x
    rad52 31 36 0.86 0.24x
    rad51/52 3 86 0.3 0.01x
    rad54 0 170 0 0x
    rad55 0 32 0 0X
    rad57 34 103 0.33 0.10x
    rad59 116 47 2.47 0.71x
    mre11 3 34 0.09 0.03x
    rad50 1 17 0.06 0.02x
    xrs2 6 168 0.04 0.01x
    Mismatch Repair Group Mutants
    msh2 0 51 0 0x
    msh3
    1 18 0.05 0.02x
    msh6 0 49 0 0x
    pms1 111 6 18.5 5.35x
    Nucleotide Excision Repair Mutants
    rad1 52 88 0.59 0.17x
    rad10 14 101 0.14 0.04x
    rad2 113 63 1.79 0.52x
    rad23 1 144 0.01 0x
    Exo1 2 197 0.01 0x
    * Each strain is wild type except for the indicated mutation(s). The mutations used in these experiments are generally knockout mutations.
    TABLE 7
    NUCLEIC ACID SEQUENCE ALTERATION DIRECTING CORRECTION OF THE MUTATION IN PAURHYG(Δ)EGFP
    Yeast Strain* Fold Alteration in Correction Efficiency
    wild type 1x
    RAD52 Epistasis Group Mutants
    rad51 0,47x
    rad52 0.05x
    rad51/52 0.13x
    mre11 1.10x
    Mismatch Repair Group Mutants
    msh2 0x
    msh3 0.02x
    msh6 0x
    Nucleotide Excision Repair Mutants
    rad1 0x
    rad10 0.04x
    * Each strain is wild type except for the indicated mutation(s). The mutations used in these experiments are generally knockout mutations.
    TABLE 8
    ALTERATION WITH AN OLIGONUCLEOTIDE TARGETING THE SENSE STRAND IS MORE EFFICIENT
    Colonies on Hygromycin
    Yeast Strain** Kan70T HygE3T/74 HygE3T/74NT
    rad1 0 3 53 (15x)*
    rad10 0 2 14 (6x)*
    * The numbers in parentheses represent the fold increase in efficiency for targeting the non-transcribed strand as compared to the other strand of a DNA duplex that encodes a protein.
    ** Each strain is wild type except for the indicated mutation(s). The mutations used in these experiments are generally knockout mutations.
    TABLE 9
    NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF DNA REPAIR PROTEINS
    Yeast Strain* Hyg3S/ 74NT (µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    Wild type/pYN132 0 0 931 0 N/A
    Wild type/pYN132 5 249 801 3.1 1
    Wild type/pYNRAD51 5 2,700 1,152 23.4 7.5
    wild type/pYNRAD52 5 1,512 748 20.3 6.5
    wild type/pYNRAD55 5 283 1,016 2.8 0.9
    wild type/pYNMRE11 5 920 728 12.6 4.1
    wild type/pYNPMS1 5 406 804 5.0 1.6
    * All strains also contain pAURHyg(ins)eGFP as the target for correction. All yeast strains are wild type for all DNA repair proteins and contain plasmids expressing DNA repair proteins as indicated.
    TABLE 10
    NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF MULTIPLE DNA REPAIR PROTEINS
    Yeast Strain* Hyg3S/ 74NT (µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    wild type/pYN132 5 330 141 23.4 1
    wild type/pYNRAD51 5 1,360 109 124.77 5.33x
    wild type/pYNRAD54 5 886 70 126.57 5.41x
    wild type/pYNMRE11 5 456 74 61.62 2.63x
    wild type/pYNRAD51 + pYNRAD54 5 978 78 125.38 5.36x
    wild type/pYNRAD51 + pYNMRE11 5 236 69 34.2 1.46x
    wild type/pYNRAD54 + pYNMRE11 5 412 159 25.91 1.11x
    wild type/pYNRAD51 + pYNRAD54 + pYNMRE11 5 1,120 71 157.75 6.74x
    * All strains also contain pAURHyg(ins)eGFP as the target for correction. All yeast strains are wild type for all DNA repair proteins and contain plasmids expressing DNA repair proteins as indicated.
    TABLE 11
    NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF DNA REPAIR PROTEINS
    Yeast Strain* Hyg3S/ 74NT (µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    rad51/pYN132 0 0 1,012 0 N/A
    rad51/pYN132 5 18 708 0.25 1
    rad51/pYNRAD51 5 159 1,392 1.14 4.6
    rad51/pYNRAD52 5 39 1,586 0.24 1
    rad51/pYNRAD55 5 26 1,372 0.19 0.8
    rad51/pYNMRE11 5 8 426 0.18 0.7
    rad51/pYNPMS1 5 33 984 0.33 1.3
    rad52/pYN132 0 0 518 0 N/A
    rad52/pYN132 5 140 644 2.17 1
    rad52/pYNRAD51 5 3,532 832 42.4 19.3
    rad52/pYNRAD52 5 195 684 2.85 1.3
    rad52/pYNRAD55 5 69 308 2.24 1.0
    rad52/pYNMRE11 5 63 122 5.16 2.4
    rad52/pYNPMS1 5 67 145 4.62 2.1
    mre11/pYN132 0 0 302 0 N/A
    mre11/pYN132 5 2 260 0.077 1
    mre11/pYNRAD51 5 1 235 0.042 0.6
    mre11/pYNRAD52 5 3 135 0.022 2.8
    mre11/pYNRAD55 5 20 217 0.922 11.9
    mre11/pYNMRE11 5 57 588 0.969 12.6
    mre11/pYNPMS1 5 1 147 0.067 0.9
    * All strains also contain pAURHyg(ins)eGFP as the target for correction. All yeast strains are wild type except for a single mutation in the indicated DNA repair protein and contain plasmids expressing wildtype DNA repair proteins as indicated. The mutations used in these experiments are generally knockout mutations.
    TABLE 12
    NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF DNA REPAIR PROTEINS
    Yeast Strain* Hyg3S/ 74NT (µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    wild type/pYN132 0 0 931 0 N/A
    wild type/pYN 132 5 827 740 11.17 1
    wild type/pYNRAD10 5 1,112 812 13.69 1.2
    wild type/pYNRAD54 5 4,320 970 44.54 4.0
    wild type/pYNREC2 5 152 686 2.22 0.20
    wild type/pYNXRS2 5 937 670 13.98 1.25
    wild type/pYNPRAD51+RAD52 5 1,042 908 11.48 1.02
    * All strains also contain pAURHyg(ins)eGFP as the target for correction. All yeast strains are wild type for all DNA repair proteins and contain plasmids expressing DNA repair proteins as indicated
    TABLE 13
    NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF DNA REPAIR PROTEINS
    Yeast Strain* Hyg3S/ 74NT (µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    Δrad51/pYN132 0 0 1,012 0 N/A
    Δrad51/pYN132 5 50 576 0.87 1
    Δrad51/pYNRAD10 5 21 548 0.38 0.44
    Δrad51/pYNRAD54 5 10 683 0.15 0.17
    Δrad51/pYNREC2 5 28 456 0.61 0.77
    Δrad51/pYNXRS2 5 15 890 0.17 0.19
    Δrad52/pYN132 0 0 518 0 N/A
    Δrad52/pYN132 5 57 700 0.81 1
    Arad52/pYNRAD10 5 97 777 1.25 1.54
    Δrad52/pYNRAD54 5 388 792 4.89 6.04
    Δrad52/pYNREC2 5 12 678 0.18 0.22
    Δrad52/pYNXRS2 5 56 609 0.92 1.06
    wild type/pYN132 5 465 129 3.6 1
    Δmre11/pYN132 0 0 302 0 N/A
    Δmre11/pYN132 5
    Δmre11/pYNRAD10 5 184 41 4.49 1.25
    Δmre11/pYNRAD54 5 12 17 0.71 0.20
    Δmre11/pYNREC2 5 83 30 2.77 0.77
    Δmre11/pYNXRS2 5 9 14 0.64 0.18
    * All strains also contain pAURHyg(ins)eGFP as the target for correction. All yeast strains are wild type except for a single mutation in the indicated DNA repair protein and contain plasmids expressing wildtype DNA repair proteins as indicated. The mutations used in these experiments are generally knockout mutations.
    TABLE 14
    GENE REPAIR OF CHROMOSOMAL MUTATIONS IN WILD-TYPE SACCHAROMYCES CEREVISIAE
    Amount of Oligonucleotide (µg) Correcting Oligonucleotide Tested Fold Difference in Correction Efficiency
    HygE3T/74 HygE3T/74NT
    Repair of integrated pAUR101-HYG(rep)GFP
    0 0* 0 0x
    2.5 652(140) 3,108(180) 3.7x
    5.0 1,060 (120) 4,203 (139) 3.4x
    7.5 2,052(112) 6,120(116) 2.8x
    10.0 2,012 (121) 3,932 (155) 1.5x
    * Average colony count on hygromycin plates from three experiments is shown. Numbers in parentheses indicate the number of aureobasidin-resistant colonies (/105).
    TABLE 15
    NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF DNA REPAIR PROTEINS
    Yeast Strain* Hyg3S/ 74NT (µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    Δpms1/pYN132 5 11 120 9.17 1 x
    Δpms1/pYNRAD51 5 11,890 578 2057 224x
    Δpms1/pYN RAD52 5 53 241 22 2.4x
    Δpms1/pYNRAD54 5 252 740 34 3.7x
    Δpms1/pYN RAD55 5 255 593 43 4.7x
    Δpms1/pYNMRE11 5 126 247 51 5.6x
    Δpms1/pYNPMS 1 5 64 256 25 2.7x
    Δpms1/pYNXRS2 5 141 359 39 4.3x
    Δpms1/pYNRAD10 5 17 809 2.1 0.23x
    Δpms1/pYNRAD51 + pYNRAD54 5 641 774 83 9.1x
    * All strains also contain pAURHyg(rep)eGFP as the target for correction. All yeast strains are wild type except for a single mutation in the indicated DNA repair protein and contain plasmids expressing wild-type DNA repair proteins as indicated. The mutations used in these experiments are generally knockout mutations.
    TABLE 16
    CHROMOSOMAL NUCLEIC ACID SEQUENCE ALTERATION IN YEAST STRAINS WITH INCREASED LEVELS OF DNA REPAIR PROTEINS
    Plasmid in Yeast Strain* Hyg3S/ 74NT(µg) Hygr Aurr (104) Correction efficiency (1/105) Fold
    pYN132 5 2,743 519 5.28 1x
    pYNRAD51
    5 14,412 389 37.04 7.01x
    pYNRAD52 5 2,579 531 4.86 0.92x
    pYNRAD54 5 15,028 402 37.38 7.08x
    pYNRAD51 + pYNRAD54 5 2,961 326 9.08 1.72x
    pYNRAD51 + pYNRAD52 5 2,578 359 7.18 1.36x
    pYNMRE11 5 9,451 452 20.91 3.96x
    pYNXRS2 5 7,120 290 24.55 4.65x
    pYNMRE11 + pYNXRS2 5 23,669 409 57.87 10.96x
    * All strains contain an integrated pAUR101-HYG(rep)eGFP as the target for correction. All yeast strains are wild type except for the integrated plasmid and contain plasmids expressing wild-type DNA repair proteins as indicated.
  • EXAMPLE 3 CULTURED CELL MANIPULATION
  • Mononuclear cells are isolated from human umbilical cord blood, bone marrow or peripheral blood of normal donors using Ficoll Paque Plus (Amersham Biosciences, Piscataway, NJ) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, CA). Lin-CD38- cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA). Cells used for microinjection are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to microinjection. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 µg/ml glutamine/penicillin/streptomycin, 50 mg/ml bovine serum albumin, 50 µg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM; Stem Cell Technologies), 40 µg/ml low-density lipoprotein (LDL; Sigma, St. Louis, MO), 50 mM HEPEs buffer and 50 µM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ). After microinjection, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
  • 35 mm dishes are coated overnight at 4°C with 50 µg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, PanVera®, Madison, WI) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37°C prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 µ to 0.3 µ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37°C and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are fluorescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
  • For in vitro erythropoiesis from Lin-CD38- cells, the procedure of Malik can be used (Malik et al., Blood 91:2664-71 (1998)). Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A(βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
  • Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
  • EXAMPLE 4 TREATMENT OF BLOOD DISORDERS
  • The kits and methods of the invention can be used, for example, in therapeutic approaches when the target cell is a stem cell. These approaches can be used with a variety of pluripotent stem cells, including, for example, any of the stem cell lines in the National Institutes of Health list which are described elsewhere herein, embryonic stem cells, and hematopoietic stem cells. Such an approach with any of these cell types is particularly advantageous because the target cell can be manipulated ex vivo allowing for correction of the mutation and selection of a clone with the desired alteration. The cells are then reintroduced into the patient resulting in repopulation in whole or in part with progeny from the genetically corrected stem cell. For hematopoietic stem cells, the cells may be reintroduced after the patient's bone marrow has been ablated, although complete eradication of host hematopoiesis is not required to achieve therapeutic effects (see, e.g., Blau, Baillieres Clin. Haematol 11:257-275 (1998)). Many diseases of blood, such as sickle cell anemia, thallassemias, immunological and clotting disorders, can be treated using the compositions and methods of the invention to correct mutations into the chromosomal DNA of hematopoietic stem cells and transplanting these cells into a patient.
  • Most therapeutic approaches on stem cells use viral vectors, e.g. retroviral vectors, portions of adenovirus (Ad) or adeno-associated virus (AAV), to deliver nucleic acid sequences encoding partial or complete portions of a particular protein. The protein is expressed in the cell which results in the desired phenotype. See, for example, U.S. Patents 5,700,470 and 5,139,941 . The use of such transgene vectors in any eukaryotic organism adds one or more exogenous copies of a gene, which gene may be foreign to the host, in a usually random fashion at one or more integration sites of the organism's genome at some frequency. The gene which was originally present in the genome, which may be a normal allelic variant, mutated, defective, and/or functional, is retained in the genome of the host. In contrast, the methods of the inventions described herein produce a legacy-free, precise nucleic acid sequence alteration of the target DNA and lack the immune response produced in viral vector gene therapy.
  • Treatment of sickle cell disease. As a model for the correction of mutations in stem cells using the kits and methods of the invention, we test their ability to correct the hemoglobin sickle mutation in human cells obtained from blood, bone marrow, umbilical cord blood or other sources of human hematopoietic stem cells. Alternatively, we test the ability to correct the hemoglobin sickle mutation in cultured cells or in mouse models. Numerous transgenic mouse strains have been developed which exclusively express human globins, including the sickle allele. Mice that exclusively express human sickle hemoglobin exhibit significant sickle pathology which is sufficiently faithful to test antisickling treatments regimens. See, for example, Blouin et al., Blood 94:1451-1459 (1999) and Fabry et al., Blood 97:410-418 (2001). In addition, methods for purifying and culturing hematopoietic stem cells are well known to one of ordinary skill in the art. See, for example, Spangrude et al., Science 214:58-62 (1988) and United States Patent 6,261,841 .
  • We purify hematopoietic stem cells from mice, correct the sickle allele, reintroduce into mice and monitor sickling phenotype.
  • Treatment of AIDS. Entry of HIV-1 into target cells is known to require cell surface CD4 as well as additional host cell cofactors. The principal cofactor for entry mediated by the envelope glycoproteins of primary macrophage-tropic strains of HIV-1 is CC-CKR5. See, for example, United States Patent 6,057,102 . Individuals who are homozygous for a mutation of the CKR-5 receptor which results in complete suppression of CKR-5 expression are resistant to HIV infection. An individual who is heterozygous for a CKR-5 mutation may be more resistant to HIV infection and an individual who is homozygous for a CKR-5 mutation may be more resistant than heterozygous individuals.
  • The sequence of the human CKR-5 gene is known and there are no apparent adverse effects resulting from a mutation in CKR-5. Accordingly, individuals infected with HIV-1 can be treated by removing hematopoietic stem cells and introducing a mutation in the CKR-5.
  • EXAMPLE 5 TREATMENT OF HUMAN BLOOD CELLS WITH HDAC INHIBITORS INCREASES NUCLEIC ACID SEQUENCE ALTERATION EFFICIENCY
  • Mononuclear cells are isolated from human umbilical cord blood of normal donors using Ficoll Paque Plus (Amersham Biosciences, Piscataway, NJ) density centrifugation. CD34+ cells are immunomagnetically purified from mononuclear cells using either the progenitor or Multisort Kits (Miltenyi Biotec, Auburn, CA). Lin-CD38- cells are purified from the mononuclear cells using negative selection with StemSep system according to the manufacturer's protocol (Stem Cell Technologies, Vancouver, CA). Cells used for microinjection or electroporation or liposomal transfection with the oligonucleotides of the invention are either freshly isolated or cryopreserved and cultured in Stem Medium (S Medium) for 2 to 5 days prior to treatment. S Medium contains Iscoves' Modified Dulbecco's Medium without phenol red (IMDM) with 100 µg/ml glutamine/penicillin/streptomycin, 50 µg/ml bovine pancreatic insulin, 1 mg/ml human transferrin, and IMDM, 40 µg/ml low-density lipoprotein (LDL; Sigma, St. Louis, MO), 50 mM HEPEs buffer and 50 µM 2-mercaptoethanol, 20 ng/ml each of thrombopoietin, flt-3 ligand, kit ligand, and may contain 50 mg/ml fetal bovine serum albumin, stem cell factor and human IL-6 (Pepro Tech Inc., Rocky Hill, NJ). One source of serum-free medium is QBSF60 from Quality Biological in Gaithersburg, Maryland. Cells are cultured in medium containing 170 µM trichostatin A for the 16 hours immediately prior to treatment with the oligonucleotide of the invention. After treatment, cells are detached and transferred in bulk into wells of 48 well plates for culturing.
  • For microinjection, 35 mm dishes are coated overnight at 4°C with 50 µg/ml Fibronectin (FN) fragment CH-296 (Retronectin; TaKaRa Biomedicals, PanVera®, Madison, WI) in phosphate buffered saline and washed with IMDM containing glutamine/penicillin/streptomycin. 300 to 2000 cells are added to cloning rings and attached to the plates for 45 minutes at 37°C prior to microinjection. After incubation, cloning rings are removed and 2 ml of S Medium are added to each dish for microinjection. Pulled injection needles with a range of 0.22 µ to 0.3 µ outer tip diameter are used. Cells are visualized with a microscope equipped with a temperature controlled stage set at 37°C and injected using an electronically interfaced Eppendorf Micromanipulator and Transjector. Successfully injected cells are intact, alive and remain attached to the plate post injection. Molecules that are fluorescently labeled allow determination of the amount of oligonucleotide delivered to the cells.
  • For electroporation, approximately 2-4 x 106 cells in 250 µl of serum-free medium containing TPO (50 ng/ml), Kit Ligand and FLT3 ligand (100 ng/ml) that have been cultured for 72 hours in the presence of the same cytokines are electroporated in an electroporation apparatus such as the Square Wave apparatus by VTX. Cells are electroporated with about 25-30 µg of oligonucleotide at 220 mV and 960 µF for one pulse. After electroporation, cells are diluted to 2.5 x 105 cells/ml in Iscove's medium containing 10% FCS and TPO (50 ng/ml), Kit Ligand and FLT3 ligand (100 ng/ml) and analyzed by flow cytometry. Cells are allowed to recover for about 12 hours following treatment and dead cells are removed. Cells are then maintained in culture. Frequencies of nucleic acid sequence alteration are determined on cell samples at various times using, e.g., sequencing of PCR samples of cellular DNA, to determine nucleic acid sequence alteration efficiencies. Nucleic acid sequence alteration of hematopoietic stem cells is indicated by nucleic acid sequence alteration in cell populations maintained for at least four weeks after electroporation. It is expected that mature cells will die over time leaving a population of immature cells capable of differentiation.
  • For in vitro erythropoiesis from Lin-CD38- cells, the procedure of Malik, 1998 can be used. Cells are cultured in ME Medium for 4 days and then cultured in E Medium for 3 weeks. Erythropoiesis is evident by glycophorin A expression as well as the presence of red color representing the presence of hemoglobin in the cultured cells. The injected cells are able to retain their proliferative capacity and the ability to generate myeloid and erythoid progeny. CD34+ cells can convert a normal A (βA) to sickle T (βS) mutation in the β-globin gene or can be altered using any of the oligonucleotides of the invention herein for correction or alteration of a normal gene to a mutant gene. Alternatively, stem cells can be isolated from blood of humans having genetic disease mutations and the oligonucleotides of the invention can be used to correct a defect or to modify genomes within those cells.
  • Alternatively, non-stem cell populations of cultured cells can be manipulated using any method known to those of skill in the art including, for example, the use of polycations, cationic lipids, liposomes, polyethylenimine (PEI), electroporation, biolistics, calcium phosphate precipitation, or any other method known in the art.
  • EXAMPLE 6 TREATMENT WITH TRICHOSTATIN A INFLUENCES THE ABILITY TO DIRECT NUCLEIC ACID SEQUENCE ALTERATION IN YEAST CELLS
  • In this example, trichostatin A is used to enhance the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in a system employing single-stranded oligonucleotides with modified backbones. We perform these experiments using an episomal target, such as pAURHYG(x)eGFP (FIG. 2), or an integrated copy of the same target to monitor chromosomal gene alteration. These assay systems are described in Example 2.
  • As described in Example 2, both the episomal and integrational plasmids also contain an aureobasidinA resistance gene. For example, in pAURHYG(rep)GFP, hygromycin resistance gene function and green fluorescence from the eGFP protein are restored when a G at position 137, at codon 46 of the hygromycin B coding sequence, is converted to a C thus removing a premature stop codon in the hygromycin resistance gene coding region.
  • We use this system to assay the ability of three oligonucleotides (shown in FIG. 3) to support correction under a variety of conditions both with and without an HDAC inhibitor, such as trichostatin A. Oligonucleotide Hyg74T (HygE3T/74T) is a 74-base oligonucleotide with the base targeted for alteration centrally positioned. The second oligonucleotide, designated Hyg74NT (HygE3T/74NT), is the complement of Hyg74T. The third oligonucleotide, designated Hyg10, is a 24 base oligonucleotide with the base targeted for alteration centrally positioned. The sequences of the oligonucleotides are shown in FIG. 3. Hyg74T and Hyg74NT are single-stranded DNA oligonucleotides with three phosphorothioate linkages at each end. Hyg10 has one LNA on each end. A non-specific, control oligonucleotide that is not complementary to the target sequence may be used as a control. Alternatively, an oligonucleotide of identical sequence but lacking a mismatch to the target or a completely thioate modified oligonucleotide or a completely 2'-O-methylated modified oligonucleotide may be used as a control.
  • Oligonucleotide synthesis and cells. We synthesize and purify single-stranded oligonucleotides (including those with the indicated modifications) as described in Example 2. Plasmids used for assay are maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MATa at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media, with or without 50 µg/mL trichostatin A, to the overnight cultures and continue shaking at 30°C until the OD600 is approximately 0.5 (4 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and twice resuspending the cells in 25 ml ice-cold distilled water. We then centrifuge at 4°C at 3000 rpm for 5 minutes and resuspend in 1 ml ice-cold 1 M sorbitol and then finally centrifuge the cells at 4°C at 5000 rpm for 5 minutes and resuspend the cells in 120 ml 1M sorbitol.
  • To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 µl of cells with 5 µg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. We then transfer the mixture to a 0.2 cm electroporation cuvette and electroporate with a BIO-RAD Gene Pulser apparatus at 1.5 kV, 25 µF, 200 Ω for one five-second pulse. We then immediately resuspend the cells in 1 ml YPD supplemented with 1 M sorbitol and with or without 50 µg/mL a trichostatin, such as trichostatin A, and incubate the cultures at 30°C with shaking at 300 rpm for 6 hr. We then spread 200 µl of this culture on selective plates containing 300 µg/ml hygromycin and spread 200 µl of a 105 dilution of this culture on selective plates containing 500 ng/ml aureobasidinA and incubate at 30°C for 3 days to allow individual yeast colonies to grow. We then count the colonies on the plates and calculate the gene conversion efficiency by determining the number of hygromycin resistance colonies per 105 aureobasidinA resistant colonies. We also test other HDAC inhibitors using this assay system.
  • Trichostatin A increases the efficiency of oligonucleotide-mediated gene alteration. We compare the efficiency of oligonucleotide-mediated gene alteration in cells pre-treated with 50 µg/mL trichostatin A with the efficiency of oligonucleotide-mediated gene alteration in cells without pre-treatment. See, for example, Table 17. These experiments indicate that growth of cells in 50 µg/mL trichostatin A for four hours prior to electroporation increases the efficiency of gene alteration up to several-fold and that treatment of cells with 50 µg/mL trichostatin A during the recovery period can also increase the efficiency of gene alteration up to 3 or more fold. TABLE 17
    EFFECT OF TRICHOSTATIN TREATMENT DURING RECOVERY ON CELL CONVERSION
    Treatment Oligonucleotide Hygr Aurr (104) Correction efficiency (1/105)
    No treatment 5 µg Hyg74NT 1.08
    5 µg Hyg74T 0.16
    Cells pre-treated with 50 µg/mL trichostatin A 5 µg Hyg74NT 42 466 0.9
    5 µg Hyg74T 278 844 3.3
    Cells treated during recovery with 50 µg/mL trichostatin A 5 µg Hyg74NT 2.31
    5 µg Hyg74T 0.34
    Cells both pre-treated and treated during recovery with 50 µg/mL trichostatin A 5 µg Hyg74NT 235 734 3.2
    5 µg Hyg74T 230 1120 2.05
  • Time and temperature dependence of trichostatin A treatment on targeting with Hyg10. We compare the effect of time during the recovery period and temperature of the centrifugation step on the efficiency of oligonucleotide-mediated gene alteration in cells pre-treated with 50 µg/mL trichostatin A. See, for example, Table 18. An overnight culture of yeast cells is diluted into 200 mL YPD with or without 50 µg/mL trichostatin A and grown with shaking at 30°C until the OD600 is approximately 0.5 (4 hours) as above. We then wash the cells by centrifuging at either 4°C or room temperature at 3000 rpm for 5 minutes and resuspending the cells in 100 mls prewarmed, fresh YPD media. The cells are then allowed to grow for 20 or 40 minutes and prepared and electroporated with 1.62 µg of the Hyg10 oligonucleotide, as described above. The cells are allowed to recover and plated as described above and we determine the conversion per 105 cells. TABLE 18
    EFFECT OF TIME OF RECOVERY, TEMPERATURE OF CENTRIFUGATION, AND PRE-TREATMENT WITH TRICHOSTATIN ON CELL CONVERSION
    Oligonucleotide and trichostatin A pre-treatment Conversion per 105 cells
    centrifugation at 4°C, 20 minutes growth after resuspending centrifugation at 4°C, 40 minutes growth after resuspending centrifugation at room temperature, 20 minutes growth after resuspending centrifugation at room temperature, 40 minutes growth after resuspending
    1.62 µg Hyg10 + 50 µg/mL trichostatin A 8.1 14.8 6.6 13.5
    1.62 µg Hyg10 3.8 8.6 3.8 7.6
  • EXAMPLE 7 LAMBDA PHAGE BETA PROTEIN INCREASES THE EFFICIENCY OF TARGETED SEQUENCE ALTERATION IN YEAST
  • The effect of expression of beta protein on the efficiency of gene correction by modified single-stranded gene repair targeting vectors in Saccharomyces cerevisiae is studied.
  • The CYC1 gene in yeast is chosen as an experimental system in which to study gene repair and the effect of beta protein on gene repair efficiency. The diploid yeast strain YMH51 contains a wild-type copy of CYC1 and diploid yeast strains YMH52, YMH53, YMH54 and YMH55 contain a mutated version of the CYC1 gene in hemizygous state. These strains are derived from the yeast strain MATαcyc1-706::CYH2 cyc7-67 ura3-52 leu2-3 112 cyh2. In YMH51, codon 22 of CYC1 is the wild-type TGC (Cys) sequence; in YMH52, codon 22 is CGC (Arg); in YMH53, codon 22 is AGC (Ser); in YMH54, codon 22 is GGC (Gly); and in YMH55, codon 22 is TCC (Ser). In each case, the gene product of the mutated gene possesses a different amino acid in place of a cysteine residue at position 22 of the primary sequence. The phenotype associated with this mutation is inability to grow using glycerol as the sole carbon source. Reversion of the CYC1 gene mutation to the wild-type sequence, e.g., as mediated by a sequence altering oligonucleotide, confers upon the yeast the ability to grow on glycerol only.
  • Cyc1/70T (70T) and Cyc1/70NT (70NT) are modified single-stranded gene repair targeting vectors used in these experiments. The 70T vector is complementary to, and therefore targets, the transcribed strand of the mutant CYC1 gene, whereas the 70NT vector is complementary to, and therefore targets, the nontranscribed strand. The targeting vectors contain wild-type sequence, such that there exists a single base mismatch between the targeting vectors and mutated CYC1 gene sequence. Both 70T and 70NT vectors contain three phosphorothioated linkages at each of their 5' and 3' termini (indicated by the "*" symbols in Table 19, below). The vector called Hyg3S/74T (74T) serves as a negative control and is not complementary to the sequence of either strand of the CYC1 gene. The sequence of these vectors appears as follows in Table 19. All the oligonucleotide vectors are synthesized and purified according to standard techniques in the art, or as discussed elsewhere in this specification. TABLE 19
    Cyc1/70T
    Figure imgb0011
    SEQ ID NO.:21
    Cyc1/70NT
    Figure imgb0012
    SEQ ID NO.:22
    Hyg3S/74T
    Figure imgb0013
    SEQ ID NO.: 8
  • Five micrograms of each CYC1 oligonucleotide are electroporated into a yeast strain with a mutation in the CYC1 gene, such as YMH52, YMH53, YMH54 and YMH55, and the YMH51 diploid wild-type strain according to methods well known to the skilled artisan. Selection for nucleic acid sequence alteration is carried out by spreading 1 ml of yeast cells, without dilution, on YPG plates (1% yeast extract, 2% peptone, 3% glycerol, 2% agar). Growth without selection is analyzed by spreading a separate 0.1 ml of yeast cells, diluted 1 x10-4, on YPD plates, which contain dextrose rather than glycerol as the carbon source. YPG plates are incubated at 30°C for 7 days and YPD plates are incubated at 30°C for 3 days. Colony counts of selected (grown on YPG) and nonselected yeast (grown on YPD) are determined using an AccuCount 1000 (BioLogics, Inc.). Correction efficiency (C.E.) is calculated by dividing the number of YPG colonies by the number of YPD colonies; this value normalizes for variability in transformation frequency and survival. Presence of the wild-type CYC1 gene sequence in YMH52, YMH53, YMH54 or YMH55 yeast selected on YPG plates is confirmed by PCR amplification of the exon of the CYC1 gene containing codon 22 and then sequencing the gene product. Selected colonies are picked at random from a YPG plate and diluted in 50 µl of distilled water. One microliter of yeast cell solution is added to a PCR reaction mixture containing 1x PCR amplification buffer, 300µM dNTP, OJW-24 primer, ORB-27 primer, and Taq polymerase. Sequences for the OJW-24 primer and the ORB-27 primer may be found, for example, in Hampsey, "A tester system for detecting each of the six base-pair substitutions in Saccharomyces cerevisiae by selecting for an essential cysteine in iso-1-cytochrome c," Genetics 128: 59-67 (1991). Samples are preheated at 92°C for 4 min., followed by 35 cycles of 92°C for 10 sec., 52°C for 30 sec., 60°C for 1 min., with a final single elongation step of 68°C for 8 min., followed by incubation at 4°C. PCR products are analyzed by gel electrophoresis through a 1% agarose gel to confirm the presence of the 422 basepair CYC1 exon band. The sequence of PCR products is confirmed by automated sequencing using an ABI 373 Sequencer.
  • Results from these types of experiments are presented below in Table 20. The wild-type strain YMH51 grows well on YPG plates because the-wild type CYC1 gene is capable of metabolizing glycerol. In contrast, the mutant strains, containing a hemizygous mutated CYC1 gene, are unable to grow on YPG plates when electroporated with the negative control 74T vector which does not target the CYC1 gene. Electroporation of the mutant strains with either oligonucleotide, 70T or 70NT, results in reversion of the mutated version of the CYC1 gene to the wild-type sequence, as evidenced by the ability of treated cells to grow into colonies on YPG plates. The frequency of gene repair is much higher for 70NT, the vector that binds to and targets the non-template strand of the CYC1 gene, as compared to 70T. TABLE 20
    Yeast Strain Oligonucleotide No. of YPD Plate Colonies x 10-4 No. of YPG Plate Colonies C.E. (x 10-4) Mismatch
    YMH51 Cyc1/70NT 1339 lawn -- none
    YMH51 Cyc1/70T 1085 lawn -- none
    YMH52 Cyc1/70NT 836 186 0.47 G/T
    YMH52 Cyc1/70T 845 57 0.17 C/A
    YMH53 Cyc1/70NT 722 73 0.21 T/T
    YMH53 Cyc1/70T 771 281 0.74 A/A
    YMH54 Cyc1/70NT 702 80 0.28 C/T
    YMH54 Cyc1/70T 715 43 0.14 G/A
    YMH55 Cyc1/70NT 616 895 2.99 G/G
    YMH55 Cyc1/70T 629 116 0.38 C/C
    YMH55 Hyg3S/74T 739 0 0 nonspecific
  • The expression of beta protein and other proteins in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group are then tested for their effect on efficiency of gene repair of the CYC1 gene in yeast. We construct vectors overexpressing genes in the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group as described elsewhere herein. We construct a yeast beta expression vector as follows. Coding sequence for the beta protein is amplified by PCR from a plasmid containing the gene, after which the PCR product is digested with HindIII and Xhol restriction enzymes, and ligated into the yeast expression vector pYN132, which contains the constitutively active yeast promoter TPI. A sample of the ligation reaction is used to transform DH10B cells after which transformed cells are selected and positive colonies are analyzed for the presence of the expression construct, called pYNTβ, using standard techniques familiar to the skilled artisan. YMH51, YMH52, YMH53, YMH54 and YMH55 cells are electroporated with 5 µg of the pYNTβ construct or a plasmid overexpressing a gene from the RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group, or pYN132 (as a negative control), after which transformed cells are selected by growth on SC URA3- plates (minimal media lacking uracil and supplemented with all amino acids) for 3 days. These yeast strains containing these plasmid constructs are electroporated with 5 µg of the 70NT oligonucleotide and gene repair activity is assessed by testing colony growth on YPG and YPD plates, as described above.
  • The results from such an experiment with YMH55 are shown below in Table 21. YMH55 yeast grow in the presence of glycerol indicating that gene repair is effected, although the growth of the yeast containing the empty pYN132 vector (negative control) is much diminished compared to YMH55 lacking pYN132 (see Table 20, above), an effect that may be attributable to double selection in glycerol and growth medium lacking uracil. Surprisingly, however, despite the inhibitory effects of double selection, expression in the YMH55 strain of beta protein, or a protein from RAD52 epistasis group, the mismatch repair group, or the nucleotide excision repair group as indicated in Table 21, substantially increases the frequency of targeted gene repair of the mutated CYC1 gene by the 70NT oligonucleotide. TABLE 21
    Overexpression construct No. of YPD Plate Colonies No. of YPG Plate Colonies Average C.E. (x 10-5) Fold S.D.
    pYN132 549 19 0.04 1 +/- 0.25
    PYNRAD51 500 260 0.52 14.8 +/- 5.13
    PYNRAD52 484 108 0.22 6.2 +/- 3.61
    PYNRAD54 482 42 0.09 2.4 +/- 0.80
    PYNRAD55 519 410 0.78 22.2 +/- 5.70
    PYNMRE11 627 25 0.04 1.1 +/- 0.69
    PYNXRS2 447 22 0.03 1.34 +/- 0,53
    pYNβ 517 166 0.32 9.1 +/-1.70
  • In other experiments examining the effect of beta protein expression on CYC1 gene repair, the correction efficiency per 105 transformants is 0.326, corresponding to a 5 to 18 fold increase in gene repair efficiency.
  • The results from such an experiment with YMH53 overexpressing multiple proteins are shown below in Table 22. YMH53 yeast grow in the presence of glycerol indicating that gene repair is effected. Expression in the YMH53 strain of both the MRE11 and XRS2 proteins or both the RAD52 and RAD54 proteins, substantially increases the frequency of targeted gene repair of the mutated CYC1 gene by both the 70T and 70NT oligonucleotides. TABLE 22
    Overexpression construct No. of YPD Plate Colonies No. of YPG Plate Colonies Average C.E. (x 10-5) Fold
    Oligonucleotide cyc1/70T
    pYN132 0.03169 1
    PYNMRE11 + PYNXRS2 590 155 .263 8.29
    PYNRAD52 + PYNRAD54 558 103 185 5.82
    Oligonucleotide cyc1/70NT
    pYN132 0.0056 1
    PYNMRE11 + PYNXRS2 553 178 0.322 57.48
    PYNRAD52 + PYNRAD54 608 109 0.179 32.01
  • EXAMPLE 8 HYDROXYUREA ENHANCES TARGETED SEQUENCE ALTERATION IN YEAST CELLS
  • In this example, HU is used to enhance the efficiency of gene repair in a system employing single-stranded oligonucleotides with modified backbones to measure gene repair using plasmid pAURHYG(rep)eGFP, with plasmid pAURHYG(wt)eGFP as a control, as described in Example 2. We use this system to assay the ability of three oligonucleotides (shown in FIG. 3) to support correction under a variety of conditions. Oligonucleotides HygE3T/74 and HygE3T/74NT, and control oligonucleotides, are described in Example 2. The third oligonucleotide, designated Hyg10, is a 24 base oligonucleotide with the base targeted for alteration centrally positioned, with the sequence 5'-ACC CGC AGG ACG TAT CCA CGC CCT- 3' (SEQ ID NO: 20). The Hyg10 oligonucleotide has one LNA modification on each end. Oligonucleotides are synthesized as described in Example 2.
  • Plasmids used for assay are maintained stably in yeast (Saccharomyces cerevisiae) strain LSY678 MATa at low copy number under aureobasidin selection. Plasmids and oligonucleotides are introduced into yeast cells by electroporation as follows: to prepare electrocompetent yeast cells, we inoculate 10 ml of YPD media from a single colony and grow the cultures overnight with shaking at 300 rpm at 30°C. We then add 30 ml of fresh YPD media, with or without 20 mM HU, to the overnight cultures and continue shaking at 30 C until the OD600 is approximately 0.5 (4 hours). We then wash the cells by centrifuging at 4°C at 3000 rpm for 5 minutes and resuspending the cells in fresh YPD media. We then take time points, removing 40 ml of culture at 10, 20, 40, 60, and 90 minutes after resuspension. To transform electrocompetent cells with plasmids or oligonucleotides, we mix 40 µl of cells with 5 µg of nucleic acid, unless otherwise stated, and incubate on ice for 5 minutes. Electroporation and determination of the alteration ("conversion") efficiency are performed as in Example 2.
  • Hydroxyurea increases the efficiency of oligonucleotide-mediated nucleic acid sequence alteration. We compare the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in cells pre-treated with 20 mM HU with the efficiency of oligonucleotide-mediated nucleic acid sequence alteration in cells without pre-treatment. These experiments, presented in Table 23, indicate that growth of cells in 20 mM HU for four hours prior to electroporation can increase the efficiency of nucleic acid sequence alteration at least 25- to 40-fold. As shown in Table 23, although we observe the greatest increase in efficiency of nucleic acid sequence alteration when the post-HU outgrowth period is 90 minutes, HU treatment enhances the efficiency of nucleic acid sequence alteration at 10, 20, 40 and 60 minutes also. Table 23 shows that HU pre-treatment enhances nucleic acid sequence alteration efficiency for all oligonucleotides tested, whether they target the sense (nontranscribed) strand (HygE3T/74NT; SEQ ID NO: 9) or the transcribed strand (HygE3T/74T; SEQ ID NO: 8), and whether the oligonucleotides are 74 bases long (HygE3T/74NT) or 24 bases long (Hyg10; SEQ ID NO: 20). Table 23
    Hydroxyurea increases the efficiency of oligonucleotide-mediated gene repair.
    [Hydroxyurea] Growth Time (min) OD600 Correction efficiency HygE3T/74NT Correction efficiency HygE3T/74 Correction efficiency Hyg10
    0 10 0.57 0.56 0.15 0.57
    0 20 5.16 2.9 4.8
    0 40 8.6 3.4 8.02
    0 60 0.73 3.5 2.32 4.2
    0 90 0.81 2.6 0.56 2.6
    20 mM 10 0.51 6.7 3.1 35
    20 mM 20 7.5 4.9 0.24
    20 mM 40 20.7 9.5 3.6
    20 mM 60 0.64 10.1 7.8 24.6
    20 mM 90 0.75 67.8 22.4 26.3
  • Yeast cultures are grown for 4 hours in the presence or in the absence of 20 mM HU, as indicated. The cells are then washed, resuspended in fresh YPD medium, and grown for 10, 20, 40, 60 or 90 minutes, to the OD600 indicated, prior to electroporation with 5 µg of oligonucleotide HygE3T/74NT or HygE3T/74, or 1.62 µg of Hyg10. The cells are then plated onto selective media containing hygromycin or aureobasidinA. The efficiency of gene correction is reported as "Correction efficiency," which represents the number of hygromycin resistant colonies observed per 105 aureobasidinA resistant colonies.
  • EXAMPLE 9 USE OF HU AND TSA IN DUAL TARGETING EXPERIMENTS
  • The efficiency of targeted alteration can be increased and the cost decreased by using at least two unrelated oligonucleotides simultaneously in dual targeting experiments. In this approach, alteration by a first oligonucleotide confers a selectable phenotype that is selected for. Alterations directed by a second oligonucleotide are then screened for from within this selected population. See, e.g., commonly owned and copending United States patent application No. 60/416,983 "Methods And Compositions For Reducing Screening In Oligonucleotide-Directed Nucleic Acid Sequence Alteration," filed October 7, 2002, which is hereby incorporated by reference in its entirety. Because the population identified by selective pressure is enriched for cells that bear an edited base at the non-selective site, the approach is useful as a method, termed gene editing, for rapidly and efficiently introducing a single nucleotide polymorphism of choice into virtually any gene at any desired location using modified single-stranded oligonucleotides.
  • The dual targeting strategy is illustrated in FIG. 9A. The LSY678lntHyg(rep)β strain (Table 24) contains a 240 kb human βS-globin YAC and a cassette containing a chromosomal hygromycin-resistance gene inactivated by a single base mutation and a functional aureobasidin-resistance gene. See Liu et al., Nucleic Acids Res. 31:2742-2750 (2002); Parekh-Olmedo et al., Chem. Biol. 9:1073-1084 (2002); and Liu et al., Mol. Cell Biol. 22:3852-3863 (2002). FIG. 9B shows the oligonucleotide that is used to direct editing of the chromosomal hygromycin mutant gene. Hyg3S/74NT (SEQ ID NO: 9) is a 74-mer that is specific for binding to the nontranscribed strand and contains three terminal phosphorothioate linkages. Id. Also shown is the target sequence of the mutant, which contains a TAG stop codon. FIG. 9C illustrates the structure of the β-globin YAC and nucleotides targeted for editing are specified. The two nonselectable changes are directed by different oligonucleotides, βThal1 (SEQ ID NO: 27) and βThal2 (SEQ ID NO: 28), in separate experiments. The YAC contains approximately 230 kb of genomic DNA from human chromosome 11, indicated by the shaded region. The unshaded regions represent the yeast sequences that are on either end of the YAC (not drawn to scale). Yu et al., Proc. Natl. Acad. Sci. USA 97:5978-5983 (2000). A portion of the β-globin sequence is shown, beginning with the start codon. βThal1 directs a change from a G to an A while βThal2 directs a change from a T to a C. The sequences of the oligonucleotides having nucleic acid sequence alteration activity are shown and are designed to bind to the non-transcribed strand, relative to human transcription of the β-globin locus. Both changes result in single-base substitutions that have been documented to result in β-thalassemia in humans.
  • For editing experiments, YAC-containing LSY678IntHyg(rep)β cells (Table 24) are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA (FIG. 9A). Because the human β-globin gene is likely to be transcriptionally inactive in yeast, HU and TSA are especially important in increasing target accessibility. The results of dual targeting experiments are presented in FIG. 10A. Hygromycin-resistant colonies are observed when the oligonucleotide, Hyg3S/74NT, is used. The ratio of hygromycin-resistant colonies to aureobasidin-resistant colonies is referred to as the correction efficiency (C.E.). The presence of HU and TSA leads to an increase in the C.E. of the hygromycin mutation, here about 4- to 6-fold. In this experiment, hygromycin-resistant colonies are found at roughly 1 per 3000 aureobasidin-resistant colonies. Hygromycin-resistant colonies are then analyzed for second-site editing in the YAC β-globin gene. The βThal1 oligonucleotide is designed to direct the replacement of a G in TGG codon 16 of exon 1 with an A, giving the stop codon TGA (FIG. 9C). FIG. 10B shows an ABI SNaPshot (middle panels) and direct DNA sequence (bottom panel) of a region of the β-globin gene in a corrected colony from this experiment; in both, the G to A change is evident. Of those colonies that are corrected in the hygromycin mutation, 1 in 325 also contain the second change in the YAC β-globin sequence. Thus, approximately 10% of the cells with the corrected hygromycin-resistance gene also contain the edited β-globin gene.
  • As shown in various experiments above, overexpression of RAD51 consistently increases the frequency of chromosomal gene editing. Accordingly, we introduce an expression plasmid containing the yeast RAD51 gene into LSY678IntHyg(rep)β cells (Table 24). FIG. 11 shows results of dual targeting in this strain and, as expected, expression of RAD51 increases the hygromycin C.E. of oligonucleotide Hyg3S/74NT (compare with FIG. 10). For these editing experiments, YAC-containing LSY678InHyg(rep)β cells (Table 24) are grown in the presence of HU, electroporated with the selectable and nonselectable oligonucleotides, and allowed to recover in the presence of TSA (FIG. 9A). Here too, addition of a second oligonucleotide, βThal2, increases the correction efficiency further, to roughly 1 hygromycin-resistant colony per 800 aureobasidin-resistant colonies.
  • The βThal2 oligonucleotide is designed to direct the replacement of a T in the initiator ATG codon of exon 1 with a C, giving the non-initiator codon ACG (FIG. 9). FIG. 11B shows an ABI SNaPshot (middle panels) and direct DNA sequence (bottom panel) of the β-globin gene from a corrected Hygr colony; the T to C change is evident in both analytical panels. Importantly, of those colonies that are corrected in the hygromycin mutation, 1 in 70 also contain the second single-base change in the YAC β-globin sequence. Thus, the dual targeting approach is again successful; approximately 10% of the cells bearing the corrected hygromycin also contain the edited β-globin gene. In addition, in the presence of high levels of Rad51, gene editing occurs at a higher level, indicating that the presence of HU, TSA, and RAD51 overexpression exhibit synergistic effects on the overall process. Table 24
    Genotype of yeast strains
    Strain Genotype/Description
    AB1380 MATa ura3 trp1 ade2-1 can1-100 lys2-1 his5 ψ+
    LSY678 MATa ura3 trp1-1 ade2-1 leu2-3,112 can1 his3-11,15
    LSY678IntHyg(rep) LSY678 with mutant hygromycin gene and functional aureobasidin-resistance gene integrated into the AUR-1 locus on chromosome XI
    LSY678IntHyg(rep)β LSY678IntHyg(rep) with 250 kb YAC containing the human β-globin locus
    LSY678IntHyg(rep)β + pYNARAD51 The above strain containing an episomal expression plasmid overexpressing RAD51
  • Strains. The genotypes of the yeast strains used in these studies are listed in Table 24. Details of the LSY678IntHyg(rep) strain are published in Liu et al., Mol. Cell Biol. 22:3852-3863 (2002).
  • YAC Manipulations. The β-globin YAC is isolated from a preparative pulsed-field gel as described in Gnirke et al., Genomics 15:659-667 (1993). Briefly, concentrated chromosomal DNA from the β S-YAC strain (AB1380 background, see Chang et al., Proc. Natl. Acad. Sci. USA 95:14886-14890 (1998)) is prepared and resolved on a 1% low-melt agarose pulsed-field gel at 200V, 14°C, 20-50s, 33 hours. The YAC is isolated, equilibrated with a modified agarase buffer (10mM BisTris-HCl pH6.5, 1mM EDTA, 100mM NaCl), treated with β-agarase I (New England Biolabs), and concentrated to a final volume of -200 µl. Thirty µl of the purified YAC are introduced into competent LSY678IntHyg(rep) cells by spheroplast transformation and selection on agar/sorbitol plates lacking tryptophan. Transformants are restreaked and confirmed by pulsed-field gel electrophoresis, PCR, and sequence analysis for a fragment of the human β-globin gene.
  • The pYNARad51 episomal expression plasmid is constructed by replacing the TRP1 gene of pYNRad51 (see Liu et al., Nucleic Acids Res. 31, 2742-2750 (2002)) with the ADE2 gene. pYNARad51 is introduced into LSY678IntHyg(rep)β by electroporation and selection on agar plates lacking adenine.
  • Oligonucleotides. Hyg3S/74NT (SEQ ID NO: 9), βThal1 (SEQ ID NO: 27), and βThal2 (SEQ ID NO: 28) are ordered from IDT with HPLC purification. Hyg3S/74NT is a 74mer and both βThal1 and βThal2 are 71 mers; all three oligonucleotides have three phosphorothioate linkages at the 5' and 3' ends (FIG. 9).
  • Dual Targeting. The dual targeting protocol is outlined in FIG. 9A. LSY678IntHyg(rep)β cells are grown overnight in 10 ml YPD media at 30°C. The culture is diluted to OD600 ~0.15-0.20 in 40 ml YPD media and grown for one doubling time to OD600 ~0.3-0.4. 100mM HU is added to the culture and the cells are grown for one doubling time to OD600 ~0.6-0.8. Cells are harvested and resuspended in 1 ml YPD containing 25 µl 1M DTT and grown for an additional 20 minutes at 30°C. The cells are washed twice with 25 ml cold dH2O and once with 25 ml cold 1 M sorbitol. The cells are resuspended gently in 1 ml cold 1 M sorbitol, spun for 5 minutes at 5000 rpm in a microcentrifuge, and resuspended in 120µl 1M sorbitol. Forty microliters of cells are electroporated with 30 µg of each oligonucleotides in a 2 mm gap cuvette using a Bio-Rad Gene Pulser apparatus (Richmond, CA) with 1.5 kV, 25µF, 200Ω, 1 pulse, 5s/pulsed length. The cells are immediately resuspended in 3 ml YPD with 0.8 µg/ml aureobasidin A and 50 µg/ml TSA and recovered overnight at 30°C. The cells are spun down and resuspended in 1 ml fresh YPD. Dilutions are plated on YPD agar plates containing either hygromycin (300µg/ml) or aureobasidin A (0.5 µg/ml). C.E.s are determined based on the number of hygromycin-resistant colonies per aureobasidin-resistant colonies.
  • Individual colonies are picked from the hygromycin agar plates into 96-well plates (Corning) containing 150 µl YPD and grown overnight at 30°C with shaking. A 345 bp PCR product specific for the human β-globin locus is amplified from each of the 96 wells using the primers PCO2 (5'-TCCTAAGCCAGTGCCAGAAG-3' (SEQ ID NO.: 29)) and PCO5 (5'-CTATTGGTCTCCTTAAACCTG-3' (SEQ ID NO.: 30)) in order to screen for the βThal1 or βThal2 conversion. The PCR reactions are performed by adding 8 pmoles of each primer and 2,5 µl yeast cell culture into pre-aliquoted PCR reaction mixes (Marsh/Abgene). The PCR reactions use an annealing temperature of 45.8°C and an extension time of 1 min for 35 cycles. The PCR reactions are purified using a QiaQuick PCR 96-well purification kit (Qiagen) and eluted in a volume of 80 µl. One microliter of the purified PCR product is used as a template for the ABI SNaPshot reaction. The sequence of the SNaPshot primer used to screen for the βThal1 conversion is: 5'-CCCCCCCCCCCCCCCCCAAGTCTGCCGTTACTGCCCTGTG-3' (SEQ ID NO: 31). The sequence of the SNaPshot primer used to screen for the βThal2 conversion is: 5'-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCACAGGAGTCAGGTGCACC-3' (SEQ ID NO: 32). The SNaPshot reactions are performed using an ABI Prism SNaPshot Multiplex Kit, as specified by the manufacturer, and analyzed on an ABI 3100 Genetic Analyzer.
  • Sequence Analysis. Any potential converted clones from the SNaPshot reactions are confirmed by sequence analysis. Both strands of the PCR products are sequenced using primers PCO2 and PCO5 by Sanger dideoxy sequencing using an ABI Prism kit, as specified by the manufacturer, on an automated ABI 3100 Genetic Analyzer.
  • SEQUENCE LISTING
    • <110> university of Delaware
      Kmiec, Eric B.
      Parekh-Olmedo, Hetal
      Brachman, Erin E.
    • <120> Methods, compositions, and kits for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising a histone deacetylase inhibitor, lambda phage beta protein, or hydroxyurea
    • <130> NaPro-13PCT
    • <150> US 60/363,341
      <151> 2002-03-07
    • <150> US 60/363,053
      <151> 2002-03-07
    • <150> US 60/363,054
      <151> 2002-03-07
    • <150> US 60/416,983
      <151> 2002-10-07
    • <160> 32
    • <170> PatentIn version 3.1
    • <210> 1
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> combined DNA/RNA oligonucleotide
    • <220>
      <221> stem_loop
      <222> (1)..(54)
      <223>
    • <220>
      <221> stem_loop
      <222> (55)..(70)
      <223>
    • <400> 1
      Figure imgb0014
    • <210> 2
      <211> 13
      <212> DNA
      <213> Escherichia coli
    • <400> 2
      gtggatatgt cct    13
    • <210> 3
      <211> 13
      <212> DNA
      <213> Escherichia coli
    • <400> 3
      gtggatacgt cct    13
    • <210> 4
      <211> 13
      <212> DNA
      <213> Escherichia coli
    • <400> 4
      gtggataggt cct    13
    • <210> 5
      <211> 14
      <212> DNA
      <213> Escherichia coli
    • <400> 5
      gtggataatg tcct    14
    • <210> 6
      <211> 12
      <212> DNA
      <213> Escherichia coli
    • <400> 6
      gtggatagtc ct    12
    • <210> 7
      <211> 25
      <212> DNA
      <213> Artificial
    • <220>
      <223> Oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1) .. (3)
      <223>
    • <220>
      <221> misc_feature
      <222> (22)..(24)
      <223>
    • <400> 7
      agggcgtgga tacgtcctgc gggta    25
    • <210> 8
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 8
      Figure imgb0015
    • <210> 9
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> Oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 9
      Figure imgb0016
    • <210> 10
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> combined DNA/RNA oligonucleotide
    • <220>
      <221> stem_loop
      <222> (1)..(54)
      <223>
    • <220>
      <221> stem_loop
      <222> (55)..(70)
      <223>
    • <400> 10
      Figure imgb0017
    • <210> 11
      <211> 69
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (67)..(69)
      <223>
    • <400> 11
      Figure imgb0018
    • <210> 12
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 12
      ttcggctagg actgg    15
    • <210> 13
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 13
      ccagtcctag ccgaa    15
    • <210> 14
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 14
      ttcggctacg actgg    15
    • <210> 15
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 15
      ccagtcgtag ccgaa    15
    • <210> 16
      <211> 19
      <212> PRT
      <213> Artificial
    • <220>
      <223> Ligand-binding peptide
    • <400> 16
      Figure imgb0019
    • <210> 17
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 17
      Figure imgb0020
    • <210> 18
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 18
      Figure imgb0021
    • <210> 19
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1) .. (3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 19
      Figure imgb0022
    • <210> 20
      <211> 24
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with locked nucleic acids
    • <400> 20
      acccgcagga cgtatccacg ccct    24
    • <210> 21
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (67)..(69)
      <223>
    • <400> 21
      Figure imgb0023
    • <210> 22
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (67)..(69)
      <223>
    • <400> 22
      Figure imgb0024
    • <210> 23
      <211> 42
      <212> DNA
      <213> Escherichia coli
    • <400> 23
      gatgtaggag ggcgtggata tgtcctgcgg gtaaatagct gc    42
    • <210> 24
      <211> 42
      <212> DNA
      <213> Escherichia coli
    • <400> 24
      gatgtaggag ggcgtggata ggtcctgcgg gtaaatagct gc    42
    • <210> 25
      <211> 42
      <212> DNA
      <213> Escherichia coli
    • <400> 25
      gatgtaggag ggcgtggata cgtcctgcgg gtaaatagct gc    42
    • <210> 26
      <211> 54
      <212> DNA
      <213> Homo sapiens
    • <400> 26
      atggtgcacc tgactcctgt ggagaagtct gccgttactg ccctgtgggg caag    54
    • <210> 27
      <211> 71
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (68)..(70)
      <223>
    • <400> 27
      Figure imgb0025
    • <210> 28
      <211> 71
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (68)..(70)
      <223>
    • <400> 28
      Figure imgb0026
      Figure imgb0027
    • <210> 29
      <211> 28
      <212> DNA
      <213> Homo sapiens
    • <400> 29
      agtctgccgt tactgccctg tggggcaa    28
    • <210> 30
      <211> 28
      <212> DNA
      <213> Homo sapiens
    • <400> 30
      agtctgccgt tactgccctg tgaggcaa    28
    • <210> 31
      <211> 33
      <212> DNA
      <213> Homo sapiens
    • <400> 31
      atggtgcacc tgactcctgt ggagaagtct gcc    33
    • <210> 32
      <211> 33
      <212> DNA
      <213> Homo sapiens
    • <400> 32
      acggtgcacc tgactcctgt ggagaagtct gcc    33
    SEQUENCE LISTING
    • <110> University of Delaware
      Kmiec, Eric B.
      Parekh-Olmedo, Hetal
      Brachman, Erin E.
    • <120> Methods, compositions, and kits for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising a histone deacetylase inhibitor, lambda phage beta protein, or hydroxyurea
    • <130> K 2442 EP
    • <150> US 60/363,341
      <151> 2002-03-07
    • <150> US 60/363,053
      <151> 2002-03-07
    • <150> US 60/363,054
      <151> 2002-03-07
    • <150> US 60/416,983
      <151> 2002-10-07
    • <160> 32
    • <170> PatentIn version 3.1
    • <210> 1
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> Combined DNA/RNA oligonucleotide
    • <220>
      <221> stem_loop
      <222> (1)..(54)
      <223>
    • <220>
      <221> stem_loop
      <222> (55)..(70)
      <223>
    • <400> 1
      Figure imgb0028
    • <210> 2
      <211> 13
      <212> DNA
      <213> Escherichia coli
    • <400> 2
      gtggatatgt cct    13
    • <210> 3
      <211> 13
      <212> DNA
      <213> Escherichia coli
    • <400> 3
      gtggatacgt cct    13
    • <210> 4
      <211> 13
      <212> DNA
      <213> Escherichia coli
    • <400> 4
      gtggataggt cct    13
    • <210> 5
      <211> 14
      <212> DNA
      <213> Escherichia coli
    • <400> 5
      gtggataatg tcct    14
    • <210> 6
      <211> 12
      <212> DNA
      <213> Escherichia coli
    • <400> 6
      gtggatagtc ct    12
    • <210> 7
      <211> 25
      <212> DNA
      <213> Artificial
    • <220>
      <223> Oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (22)..(24)
      <223>
    • <400> 7
      agggcgtgga tacgtcctgc gggta    25
    • <210> 8
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 8
      Figure imgb0029
    • <210> 9
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 9
      Figure imgb0030
    • <210> 10
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> Combined DNA/RNA oligonucleotide
    • <220>
      <221> stem_loop
      <222> (1)..(54)
      <223>
    • <220>
      <221> stem_loop
      <222> (55)..(70)
      <223>
    • <400> 10
      Figure imgb0031
    • <210> 11
      <211> 69
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (67)..(69)
      <223>
    • <400> 11
      Figure imgb0032
    • <210> 12
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 12
      ttcggctagg actgg    15
    • <210> 13
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 13
      ccagtcctag ccgaa    15
    • <210> 14
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 14
      ttcggctacg actgg    15
    • <210> 15
      <211> 15
      <212> DNA
      <213> Escherichia coli
    • <400> 15
      ccagtcgtag ccgaa    15
    • <210> 16
      <211> 19
      <212> PRT
      <213> Artificial
    • <220>
      <223> Ligand-binding peptide
    • <400> 16
      Figure imgb0033
    • <210> 17
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> Oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 17
      Figure imgb0034
    • <210> 18
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 18
      Figure imgb0035
    • <210> 19
      <211> 74
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (71)..(73)
      <223>
    • <400> 19
      Figure imgb0036
    • <210> 20
      <211> 24
      <212> DNA
      <213> Artificial
    • <220>
      <223> Oligonucleotide with locked nucleic acids
    • <400> 20
      acccgcagga cgtatccacg ccct    24
    • <210> 21
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (67)..(69)
      <223>
    • <400> 21
      Figure imgb0037
    • <210> 22
      <211> 70
      <212> DNA
      <213> Artificial
    • <220>
      <223> Oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (67)..(69)
      <223>
    • <400> 22
      Figure imgb0038
    • <210> 23
      <211> 42
      <212> DNA
      <213> Escherichia coli
    • <400> 23
      gatgtaggag ggcgtggata tgtcctgcgg gtaaatagct gc    42
    • <210> 24
      <211> 42
      <212> DNA
      <213> Escherichia coli
    • <400> 24
      gatgtaggag ggcgtggata ggtcctgcgg gtaaatagct gc    42
    • <210> 25
      <211> 42
      <212> DNA
      <213> Escherichia coli
    • <400> 25
      gatgtaggag ggcgtggata cgtcctgcgg gtaaatagct gc    42
    • <210> 26
      <211> 54
      <212> DNA
      <213> Homo sapiens
    • <400> 26
      atggtgcacc tgactcctgt ggagaagtct gccgttactg ccctgtgggg caag    54
    • <210> 27
      <211> 71
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (68)..(70)
      <223>
    • <400> 27
      Figure imgb0039
    • <210> 28
      <211> 71
      <212> DNA
      <213> Artificial
    • <220>
      <223> oligonucleotide with phosphorothioate linkages
    • <220>
      <221> misc_feature
      <222> (1)..(3)
      <223>
    • <220>
      <221> misc_feature
      <222> (68)..(70)
      <223>
    • <400> 28
      Figure imgb0040
    • <210> 29
      <211> 28
      <212> DNA
      <213> Homo sapiens
    • <400> 29
      agtctgccgt tactgccctg tggggcaa    28
    • <210> 30
      <211> 28
      <212> DNA
      <213> Homo sapiens
    • <400> 30
      agtctgccgt tactgccctg tgaggcaa    28
    • <210> 31
      <211> 33
      <212> DNA
      <213> Homo sapiens
    • <400> 31
      atggtgcacc tgactcctgt ggagaagtct gcc    33
    • <210> 32
      <211> 33
      <212> DNA
      <213> Homo sapiens
    • <400> 32
      acggtgcacc tgactcctgt ggagaagtct gcc    33

Claims (32)

  1. An in vitro or ex vivo method of oligonucleotide-mediated targeted nucleic acid sequence alteration, the method comprising:
    combining a target nucleic acid in the presence of cellular repair proteins with a sequence-altering targeting oligonucleotide; and
    first contacting the cells having said cellular repair proteins with hydroxyurea.
  2. The method of claim 1, wherein said cellular repair proteins are purified.
  3. The method of claim 1, wherein said cellular repair proteins are present in a cell-free protein extract.
  4. The method of claim 1, wherein said cellular repair proteins are present within an intact cell.
  5. The method of claim 4, wherein said cell is cultured ex vivo.
  6. The method of any one of claims 1 to 5, wherein said cellular repair proteins are of a cell selected from the group consisting of: prokaryotic cells and eukaryotic cells.
  7. The method of claim 6, wherein said cell is a prokaryotic cell.
  8. The method of claim 7, wherein said prokaryotic cell is a bacterial cell.
  9. The method of claim 8, wherein said bacterial cell is an E. coli cell.
  10. The method of claim 6, wherein said cell is a eukaryotic cell.
  11. The method of claim 10, wherein said eukaryotic cell is a yeast cell, plant cell, mammalian cell, or human cell.
  12. The method of claim 11, wherein said eukaryotic cell is a yeast cell.
  13. The method of claim 12, wherein said yeast is Saccharomyces cerevisiae, Ustilago maydis, or Candida albicans.
  14. The method of claim 11, wherein said eukaryotic cell is a plant cell.
  15. The method of claim 11, wherein said eukaryotic cell is a human cell.
  16. The method of claim 15, wherein said human cell is selected from the group consisting of liver cell, lung cell, colon cell, cervical cell, kidney cell, epithelial cell, cancer cell, stem cell, hematopoietic stem cell, hematopoietic committed progenitor cell, and non-human embryonic stem cell.
  17. The method of claim 11, wherein said eukaryotic cell is a mammalian cell.
  18. The method of claim 17, wherein said mammal is selected from the group consisting of: mouse, hamster, rat, and monkey.
  19. The method of any one of claims 1 to 18, wherein said oligonucleotide is fully complementary in sequence to the sequence of a first strand of the nucleic acid target, but for one or more mismatches as between the sequences of said oligonucleotide and its complement on said target nucleic acid first strand, and wherein said oligonucleotide has at least one terminal modification.
  20. The method of claim 19, wherein said at least one terminal modification is selected from the group consisting of: at least one terminal locked nucleic acid (LNA), at least one terminal 2'-O-Me base analog, and at least one terminal phosphorothioate linkage.
  21. The method of claim 20, wherein said oligonucleotide is a single- stranded oligonucleotide 17-121 nucleotides in length, has an internally unduplexed domain of at least 8 contiguous deoxyribonucleotides, and wherein said one or more mismatches are positioned exclusively in said oligonucleotide DNA domain and at least 8 nucleotides from each of said oligonucleotide's 5' and 3' termini.
  22. The method of claim 20 or 21, wherein said oligonucleotide has at least one terminal locked nucleic acid (LNA).
  23. The method of any one of claims 1 to 22, wherein said oligonucleotide is at least 25 nucleotides in length.
  24. The method of any one of claims 1 to 23, wherein said oligonucleotide is no more than 74 nucleotides in length.
  25. The method of any one of claims 1 to 22, wherein said oligonucleotide is no more than 121 nucleotides in length.
  26. The method of any one of claims 1 to 25, wherein said target nucleic acid is DNA.
  27. The method of claim 26, wherein said DNA is double-stranded DNA.
  28. The method of claim 27, wherein said double-stranded DNA is genomic DNA.
  29. The method of claim 28, wherein said genomic DNA is in a chromosome.
  30. The method of claim 29, wherein said chromosome is an artificial chromosome.
  31. The method of claim 28, wherein said genomic DNA is episomal.
  32. The method of claim 28, wherein said target nucleic acid is the nontranscribed strand of a double-stranded genomic DNA.
EP03716412A 2002-03-07 2003-03-07 Methods for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising hydroxyurea Expired - Lifetime EP1490013B1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US36334102P 2002-03-07 2002-03-07
US36305402P 2002-03-07 2002-03-07
US36305302P 2002-03-07 2002-03-07
US363054P 2002-03-07
US363341P 2002-03-07
US363053P 2002-03-07
US41698302P 2002-10-07 2002-10-07
US416983P 2002-10-07
PCT/US2003/007217 WO2003075856A2 (en) 2002-03-07 2003-03-07 Methods, compositions, and kits for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising a histone deacetylase inhibitor, lambda phage beta protein, or hydroxyurea

Publications (3)

Publication Number Publication Date
EP1490013A2 EP1490013A2 (en) 2004-12-29
EP1490013A4 EP1490013A4 (en) 2005-12-28
EP1490013B1 true EP1490013B1 (en) 2010-02-17

Family

ID=27808811

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03716412A Expired - Lifetime EP1490013B1 (en) 2002-03-07 2003-03-07 Methods for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising hydroxyurea

Country Status (9)

Country Link
US (1) US7566535B2 (en)
EP (1) EP1490013B1 (en)
JP (1) JP2005518817A (en)
AT (1) ATE458047T1 (en)
AU (1) AU2003220119A1 (en)
CA (1) CA2478479A1 (en)
DE (1) DE60331297D1 (en)
IL (1) IL163875A0 (en)
WO (1) WO2003075856A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI319387B (en) 2002-04-05 2010-01-11 Astrazeneca Ab Benzamide derivatives
US20070072815A1 (en) * 2004-05-04 2007-03-29 Kmiec Eric B Methods and kits to increase the efficiency of oligonucleotide-directed nucleic acid sequence alteration
KR20110094268A (en) * 2008-09-11 2011-08-23 키진 엔.브이. How to Develop Diagnostic Markers
US8993328B2 (en) * 2008-09-22 2015-03-31 Rutgers, The State University Of New Jersey Media conditioning for improving gene delivery efficiency to differentiating embryonic stem cells
PL3140269T3 (en) 2014-05-09 2024-03-11 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
WO2016094845A2 (en) 2014-12-12 2016-06-16 Woolf Tod M Compositions and methods for editing nucleic acids in cells utilizing oligonucleotides
AU2015371083B2 (en) * 2014-12-22 2022-01-27 Universität Zürich Directed evolution of membrane proteins in eukaryotic cells with a cell wall
US11136597B2 (en) 2016-02-16 2021-10-05 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2018132390A1 (en) * 2017-01-10 2018-07-19 Christiana Care Health Services, Inc. Methods for in vitro site-directed mutagenesis using gene editing technologies
JP2022539861A (en) * 2019-07-08 2022-09-13 ライフ テクノロジーズ コーポレーション Compositions and methods for enhancing cell culture
WO2021207673A1 (en) * 2020-04-09 2021-10-14 The Regents of the University of Colorodo, a body corporate Compositions, methods and uses for production of hematopoietic stem cells (hscs)

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US217377A (en) * 1879-07-08 hislop
US51270A (en) * 1865-11-28 Improvement in children s bedclothes-retainers
US143052A (en) * 1873-09-23 Improvement in flexible vertically-extensible attachments for boats
US119570A (en) * 1871-10-03 Improvement in coopers crozes and howels
US5139941A (en) * 1985-10-31 1992-08-18 University Of Florida Research Foundation, Inc. AAV transduction vectors
US5955363A (en) * 1990-01-03 1999-09-21 Promega Corporation Vector for in vitro mutagenesis and use thereof
US5432272A (en) * 1990-10-09 1995-07-11 Benner; Steven A. Method for incorporating into a DNA or RNA oligonucleotide using nucleotides bearing heterocyclic bases
US6136601A (en) * 1991-08-21 2000-10-24 Epoch Pharmaceuticals, Inc. Targeted mutagenesis in living cells using modified oligonucleotides
US5962426A (en) * 1993-06-25 1999-10-05 Yale University Triple-helix forming oligonucleotides for targeted mutagenesis
US5801154A (en) * 1993-10-18 1998-09-01 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of multidrug resistance-associated protein
ES2149962T3 (en) * 1993-12-09 2000-11-16 Univ Jefferson COMPOUNDS AND METHODS FOR MUTATIONS DIRECTED TO THE SITE IN EUCARYTIC CELLS.
US5604090A (en) * 1994-06-06 1997-02-18 Fred Hutchinson Cancer Research Center Method for increasing transduction of cells by adeno-associated virus vectors
US5780296A (en) * 1995-01-17 1998-07-14 Thomas Jefferson University Compositions and methods to promote homologous recombination in eukaryotic cells and organisms
JP3770333B2 (en) * 1995-03-15 2006-04-26 大日本住友製薬株式会社 Recombinant DNA virus and method for producing the same
US5776744A (en) * 1995-06-07 1998-07-07 Yale University Methods and compositions for effecting homologous recombination
US5912340A (en) * 1995-10-04 1999-06-15 Epoch Pharmaceuticals, Inc. Selective binding complementary oligonucleotides
US6777217B1 (en) 1996-03-26 2004-08-17 President And Fellows Of Harvard College Histone deacetylases, and uses related thereto
US6025155A (en) 1996-04-10 2000-02-15 Chromos Molecular Systems, Inc. Artificial chromosomes, uses thereof and methods for preparing artificial chromosomes
US5888983A (en) * 1996-05-01 1999-03-30 Thomas Jefferson University Method and oligonucleobase compounds for curing diseases caused by mutations
US5760012A (en) * 1996-05-01 1998-06-02 Thomas Jefferson University Methods and compounds for curing diseases caused by mutations
US5731181A (en) * 1996-06-17 1998-03-24 Thomas Jefferson University Chimeric mutational vectors having non-natural nucleotides
WO1997047307A1 (en) 1996-06-14 1997-12-18 The Uab Research Foundation Use of histone deacetylase inhibitors to activate transgene expression
US5928638A (en) * 1996-06-17 1999-07-27 Systemix, Inc. Methods for gene transfer
US6057102A (en) * 1996-08-08 2000-05-02 The Aaron Diamond Aids Research Center HIV coreceptor mutants
US6043060A (en) * 1996-11-18 2000-03-28 Imanishi; Takeshi Nucleotide analogues
WO1998026060A2 (en) * 1996-12-12 1998-06-18 Julianna Lisziewicz Materials and methods for gene transfer
JP3756313B2 (en) 1997-03-07 2006-03-15 武 今西 Novel bicyclonucleosides and oligonucleotide analogues
US6043389A (en) * 1997-03-11 2000-03-28 Mor Research Applications, Ltd. Hydroxy and ether-containing oxyalkylene esters and uses thereof
US6387673B1 (en) 1997-05-01 2002-05-14 The Salk Institute For Biological Studies Compounds useful for the modulation of processes mediated by nuclear hormone receptors, methods for the identification and use of such compounds
AUPO721997A0 (en) 1997-06-06 1997-07-03 Queensland Institute Of Medical Research, The Anticancer compounds
US6821759B1 (en) * 1997-06-23 2004-11-23 The Rockefeller University Methods of performing homologous recombination based modification of nucleic acids in recombination deficient cells and use of the modified nucleic acid products thereof
DE69829760T3 (en) 1997-09-12 2016-04-14 Exiqon A/S BI- AND TRI-CYCLIC-NUCLEOSIDE, NUCLEOTIDE AND OLIGONUCLEOTIDE ANALOG
US6262116B1 (en) 1998-01-23 2001-07-17 Sloan-Kettering Institute For Cancer Research Transcription therapy for cancers
US6010907A (en) 1998-05-12 2000-01-04 Kimeragen, Inc. Eukaryotic use of non-chimeric mutational vectors
US6004804A (en) * 1998-05-12 1999-12-21 Kimeragen, Inc. Non-chimeric mutational vectors
TR200101049T2 (en) 1998-10-13 2002-01-21 Fujisawa Pharmaceutical Co. Ltd. Cyclic tetrapeptide compound and its use
JP2002527101A (en) 1998-10-16 2002-08-27 ノバルティス アクチエンゲゼルシャフト Improved transduction of hematopoietic stem cells and promotion of self-renewal by histone deacetylase inhibitors
DE19983694T1 (en) 1998-10-28 2002-05-29 Univ Washington Seattle Targeted gene modification using parvoviral vectors
AU2832100A (en) 1999-02-24 2000-09-14 N.V. Kema Combustion unit for combusting a liquid fuel and a power generating system comprising such combustion unit
ES2295018T3 (en) 1999-03-02 2008-04-16 Transave, Inc. ENCAPSULATION OF BIOACTIVE COMPLEXES IN LIPOSOMAS.
JP4269041B2 (en) 1999-03-02 2009-05-27 国立大学法人九州工業大学 Novel cyclic tetrapeptide derivatives and their pharmaceutical uses
WO2000051424A2 (en) * 1999-03-04 2000-09-08 Ppl Therapeutics (Scotland) Ltd. Genetic modification of somatic cells and uses thereof
DE60044241D1 (en) 1999-03-18 2010-06-02 Exiqon As XYLO-LNA ANALOG
JP2003500052A (en) 1999-05-03 2003-01-07 メチルジーン インコーポレイテッド Inhibition of histone deacetylase
NZ514348A (en) 1999-05-04 2004-05-28 Exiqon As L-ribo-LNA analogues
US6261841B1 (en) * 1999-06-25 2001-07-17 The Board Of Trustees Of Northwestern University Compositions, kits, and methods for modulating survival and differentiation of multi-potential hematopoietic progenitor cells
JP2001064177A (en) 1999-08-16 2001-03-13 Schering Ag Pharmaceutical preparation including benzamide derivative as ingredient
US6271360B1 (en) * 1999-08-27 2001-08-07 Valigen (Us), Inc. Single-stranded oligodeoxynucleotide mutational vectors
JP2001081031A (en) 1999-08-30 2001-03-27 Schering Ag Benzamide derivative-containing preparation having improved solubility and oral adsorption
CA2383999A1 (en) 1999-09-08 2001-03-15 Sloan-Kettering Institute For Cancer Research Novel class of cytodifferentiating agents and histone deacetylase inhibitors, and methods of use thereof
WO2001018045A1 (en) 1999-09-08 2001-03-15 Sloan-Kettering Institute For Cancer Research Crystal structure of a deacetylase and inhibitors thereof
AR025996A1 (en) 1999-10-07 2002-12-26 Valigen Us Inc NON-TRANSGENIC PLANTS RESISTANT TO HERBICIDES.
AU784988B2 (en) 1999-11-10 2006-08-17 Uab Research Foundation, The Lentiviral vector transduction of hematopoietic stem cells
JP2003514904A (en) 1999-11-23 2003-04-22 メチルジーン インコーポレイテッド Histone deacetylase inhibitor
DE60114565T2 (en) 2000-01-05 2006-07-27 Novartis Ag HYDROGELS
AU2001248701A1 (en) 2000-03-24 2001-10-03 Methylgene, Inc. Inhibitors of histone deacetylase
NZ521698A (en) * 2000-03-27 2004-08-27 Univ Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
US6936467B2 (en) 2000-03-27 2005-08-30 University Of Delaware Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
EP1170008A1 (en) 2000-07-07 2002-01-09 Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus Valproic acid and derivatives thereof as histone deacetylase inhibitors
US7056884B2 (en) 2000-07-17 2006-06-06 Astellas Pharma Inc. Reduced FK228 and use thereof
AU2001279069A1 (en) 2000-07-27 2002-02-13 University Of Delaware Methods for enhancing targeted gene alteration using oligonucleotides
CA2419322C (en) * 2000-08-14 2012-10-23 Donald L. Court Enhanced homologous recombination mediated by lambda recombination proteins
WO2002026967A2 (en) 2000-09-25 2002-04-04 Thomas Jefferson University Targeted gene correction by single-stranded oligodeoxynucleotides
US7312247B2 (en) 2001-03-27 2007-12-25 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors

Also Published As

Publication number Publication date
EP1490013A4 (en) 2005-12-28
ATE458047T1 (en) 2010-03-15
CA2478479A1 (en) 2003-09-18
JP2005518817A (en) 2005-06-30
IL163875A0 (en) 2005-12-18
US20030207451A1 (en) 2003-11-06
AU2003220119A1 (en) 2003-09-22
US7566535B2 (en) 2009-07-28
EP1490013A2 (en) 2004-12-29
WO2003075856A3 (en) 2004-06-24
WO2003075856A2 (en) 2003-09-18
DE60331297D1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
US20070122822A1 (en) Compositions and methods for enhancing oligonucleotide-directed nucleic acid sequence alteration
EP1421187B1 (en) Systems for in vivo site-directed mutagenesis using oligonucleotides
US20030236208A1 (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
US20040014057A1 (en) Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
EP1490013B1 (en) Methods for enhancing oligonucleotide-mediated nucleic acid sequence alteration using compositions comprising hydroxyurea
AU2001265277A1 (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides
AU2002319696A1 (en) Systems for in vivo site-directed mutagenesis using oligonucleotides
US20030215947A1 (en) Methods for enhancing targeted gene alteration using oligonucleotides
US20070072815A1 (en) Methods and kits to increase the efficiency of oligonucleotide-directed nucleic acid sequence alteration
AU2001249488C8 (en) Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
AU2001249488A1 (en) Targeted chromosomal genomic alterations with modified single stranded oligonucleotides
ZA200209833B (en) Targeted chromosomal genomic alterations in plants using modified single stranded oligonucleotides.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041007

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRACHMAN, ERIN, E.

Inventor name: PAREKH-OLMEDO, HETAL

Inventor name: KMIEC, ERIC, B.

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 07H 21/00 A

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 12N 15/10 A

A4 Supplementary search report drawn up and despatched

Effective date: 20051114

17Q First examination report despatched

Effective date: 20060222

RTI1 Title (correction)

Free format text: METHODS FOR ENHANCING OLIGONUCLEOTIDE-MEDIATED NUCLEIC ACID SEQUENCE ALTERATION USING COMPOSITIONS COMPRISING HYDROXYUREA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60331297

Country of ref document: DE

Date of ref document: 20100401

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100316

Year of fee payment: 8

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100528

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100518

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100818

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100217