EP1476956B1 - Device for transmitting signals between mobile units - Google Patents
Device for transmitting signals between mobile units Download PDFInfo
- Publication number
- EP1476956B1 EP1476956B1 EP03739434A EP03739434A EP1476956B1 EP 1476956 B1 EP1476956 B1 EP 1476956B1 EP 03739434 A EP03739434 A EP 03739434A EP 03739434 A EP03739434 A EP 03739434A EP 1476956 B1 EP1476956 B1 EP 1476956B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dielectric
- conductor
- conductor structure
- layer
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004020 conductor Substances 0.000 claims abstract description 162
- 230000008054 signal transmission Effects 0.000 claims abstract description 8
- 239000011810 insulating material Substances 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 16
- 239000006260 foam Substances 0.000 claims description 10
- 230000005855 radiation Effects 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 230000000087 stabilizing effect Effects 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 239000007787 solid Substances 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 TeflonĀ® Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/20—Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/206—Microstrip transmission line antennas
Definitions
- the invention relates to a device for transmitting electrical signals or energy between a plurality of mutually movable units.
- ladder structures refers to all conceivable forms of conductor structures which are suitable for carrying electrical signals.
- the signals are decoupled in the near field of the conductor structure.
- the signal extraction should ideally take place only in the area of the second unit.
- a further signal transmission in other areas of the conductor structure is usually undesirable in contrast to the known leakage lines, since the broadband signals can lead to disturbances in other equipment parts or devices.
- the design and sizing principles of leakage lines, such as described in US 5,936,203, are not applicable to this type of conductor structures. Leakage lines are currently designed to radiate a certain portion of the guided RF energy over the entire length to the outside. But this is exactly what should be avoided here.
- contactless decoupling is usually preferred because it is more reliable and maintenance free.
- the conductor structures described here can be made either contact or contactless. Of course, adjustments according to the transfer task are possible.
- a conductor structure for contacting transmission have a particularly good conductive surface, for example with silver coating.
- a conductor structure for contactless transmission can be provided with a lacquer layer on the surface as corrosion protection.
- the basic principles for designing the ladder structures are identical in these cases.
- a particular embodiment of a contacting transfer device is described in U.S. Patent No. 5,208,581. Here also an unbalanced conductor system is described.
- the conductor system is fed with an unbalanced signal.
- the signal flow takes place via the middle conductor from the transmitter to the receiver and partly via one or both outer conductors or else the computed tomography system itself.
- the reference surface here is the device itself.
- the geometry of the reference surface is not clearly symmetrical here. Due to the asymmetrical signals with an ambiguously defined signal path and the undefined reference surface, this system radiates high RF power. Even with data rates of 50 MBaud, the current EMC standards can no longer be met without additional, expensive shielding.
- the conductor arrangements used here for the transmission are usually constructed as strip lines or conductor structures by means of double-sided printed circuit boards.
- a carrier and dielectric is usually a glass fiber reinforced plastic. This support is provided on one side with a continuous conductor surface as electrical reference surface or ground and on the other side with a strip-shaped conductor or the conductor structure.
- the signal level of the transmitter can not normally be increased arbitrarily. Despite high symmetry always a low radiation takes place. With higher symmetry, the radiation is reduced and the signal levels can be further increased.
- the dielectric must be very homogeneous over the length and especially over the width of the array.
- Standard circuit board materials do not meet these requirements by far.
- special printed circuit board materials such as those used for high-frequency engineering printed circuit boards, are often unsuitable here.
- the variations in material properties are of little importance.
- Suitable, prior art materials such as special, particularly homogeneous Teflon or ceramic materials are problematic in processing and very expensive.
- U.S. Patent No. 5,287,117 One solution that avoids these problems from the outset is disclosed in U.S. Patent No. 5,287,117.
- the conductor assembly is replaced by a plurality of small antenna segments. These can be manufactured on PCBs of small area with high quality materials.
- the power supply over long distances can be achieved with high-quality coaxial cables of high shielding and low attenuation.
- the high number of antenna segments results in a high use of material and in particular a high assembly outlay, which leads to high production costs.
- US 2002/000936 A1 discloses a broadband microstrip line antenna having a structure of a coated dielectric, one of these layers comprising air.
- US 5,463,404 discloses a microstrip antenna having materials having a dielectric constant tolerance of about 5%.
- An inventive device for signal transmission comprises at least one transmitter which generates the electrical signals to be transmitted and feeds them into a conductor arrangement. At least one such conductor arrangement is arranged along the path of the movement and carries the signals fed by the transmitter. At least one receiver, which is movable relative to the transmitter and the conductor arrangement, serves to decouple the signals from the conductor arrangement. Depending on the application, a transmitter can also feed several conductor arrangements. Likewise, a conductor arrangement can be fed by several transmitters. Furthermore, it is possible to use any number of receivers for coupling signals to a conductor arrangement.
- a conductor arrangement comprises at least one conductor structure in which electrical signals can be guided. Such a conductor structure includes one or more conductors of a preferably highly conductive material.
- a conductor arrangement comprises at least one electrically conductive reference surface assigned to each conductor structure. Between the conductor structure and the reference surface there is at least one dielectric for insulating the conductor structure and the reference surface.
- a dielectric optionally has a high homogeneity or a high symmetry with respect to the electrical center of the longitudinal axis of the conductor structure.
- the symmetry term here refers to a symmetry of the electric field. Starting from the electrical center of the conductor structure, the electric field lines should be symmetrical. This can be realized, for example, with a mirror-symmetrical arrangement. Likewise, however, other implementations are conceivable, such as in the case of a layered dielectric for conductors parallel to the reference surface.
- the layer sequence of the dielectric in the conductors may be different if the total dielectric constants are the same on both sides and the areas are the same size.
- the symmetry of the electric field is related to an equipotential surface with a potential which corresponds to the mean potential between the active conductors, ie conductors used for signal routing.
- a high homogeneity here means that the electrical properties, in particular the dielectric constants and the dielectric losses are subject to only slight fluctuations. Typical values of tolerances of these values are ā 5% and preferably ā 1%. If particularly high demands are made, tolerances of 0.1% are also appropriate.
- the electrical parameters of the dielectric should be the same for both conductors.
- a certain dielectric constant or a certain dissipation factor results. It is essential that these values are the same for both conductor pieces. In the further course of the conductor still changes of the values to previous sections can be tolerated, provided they are the same for both conductors.
- a high symmetry can be achieved with the desired electrical properties
- a high symmetry with respect to the electrical center of the longitudinal axis of the conductor structure prevents the signals in symmetric conductors or in asymmetrical conductor system with multiple conductors due to different Running times or attenuations become unbalanced.
- a dielectric of high homogeneity and high symmetry is used.
- the best results can be produced at a reasonable cost. If a symmetrical arrangement of the dielectric can not be achieved, the use of a high-homogeneity dielectric also brings about a significant improvement. Likewise, a symmetrical arrangement brings about an improvement, even if sufficient homogeneity of the dielectric can not be achieved.
- the ladder structure is usually open to one side to the free space. From this side the coupling of receivers takes place. The opposite side and optionally also its boundary are closed off by symmetrical surfaces with a conductive surface. On the one hand, this makes it possible to achieve a defined impedance of the conductor system and, on the other hand, to realize a defined symmetrical limitation. If no defined reference surface were present here, then at least a part of the device in which the device is mounted would serve as an electrical reference. Certainly, the required symmetry would not be achieved here along the entire length of the conductor structure since different components or assemblies of the device would not be arranged arbitrarily symmetrical.
- At least one dielectric comprises an air or gas layer.
- the attenuation is low, with the same tolerance of the attenuation this has a much smaller influence on the tolerance of the signal level as with high attenuation values.
- An example will explain this. If a given material with given geometry has a signal attenuation of 10% with a tolerance of ā 10% of the attenuation, the actual attenuation value may vary between 9% and 11%. The level of the attenuated signal is thus 9% to 11% lower than the original signal. Depending on the current attenuation value, the signal level can now vary by 2%. If, on the other hand, the attenuation of the material is only 1% with the same tolerance of ā 10% of the attenuation, the signal level between 0.9% and 1.1% may be attenuated from the original signal level.
- the signal level can only vary by 0.2%. Furthermore, the amplitude of the signal is only slightly attenuated by the low attenuation value, even with long conductor structures. By a uniformly high signal level only a low dynamics of the receiver is required. At the same time, immunity to interference can be maximized since the maximum possible input level is always available to receivers.
- At least one dielectric comprises a honeycomb or lattice-shaped structure of an insulating material.
- the spaces or cavities are filled with air.
- the dielectric consists of a combination of the insulating material, usually with a higher dielectric constant than air and a higher loss factor than air.
- the electric field is now preferably by webs of insulating material, which bridge the gap between the conductors or the conductors and the reference surface run. Therefore, these bars should be designed with the smallest possible cross section. In the majority of the total area, the electric field will pass through a series circuit of insulating material and air. Here then dominate the excellent electrical properties of the air, as applied to the air paths inversely proportional to the dielectric constant higher field strength.
- At least one dielectric comprises a foam of an insulating material.
- the cavities of the foam are filled with air.
- foams can be produced inexpensively and processed.
- foaming it is also possible to use granules or air-filled hollow spheres.
- a further embodiment of the invention consists in that at least one dielectric comprises a polyethylene foam.
- Polyethylene is a plastic with excellent electrical properties. It is one of the insulating materials with the lowest loss factor. At the same time, inexpensive foams can be produced with this material. Processing is particularly simple and inexpensive, especially in the form of thin films with thicknesses of a few millimeters.
- Another advantageous embodiment comprises a multilayer structure of a dielectric.
- a multi-layered structure for example, different dielectrics with different electrical and mechanical properties can be combined.
- particularly advantageous thin webs of mechanically stable insulating material combined with large-area arrays of dielectrics with the inclusion of air.
- At least one dielectric has a construction of a plurality of layers arranged parallel to the conductor structure.
- insulation materials with poor electrical properties can also be combined over a large area with insulation materials having good electrical properties, in particular if they have a lower dielectric constant.
- the combination still relatively good electrical properties can be achieved.
- a particularly advantageous embodiment of the invention is that a dielectric, which includes air and consequently has only a low mechanical stability is combined with at least one second insulating material in solid construction and corresponding high mechanical stability.
- this second insulating material can be used to stabilize the combination of different dielectrics.
- the second layer is formed as a mechanically rigid layer for fixing or stabilizing the first layer and connected thereto.
- a connection can be done for example by positive engagement or by gluing.
- a further advantageous embodiment of the invention is that the second layer is additionally designed as a carrier of the conductor structure.
- a further advantageous embodiment of the invention is that at least one additional layer of conductive material or material with high conductivity and incomplete surface coverage, such as a grid structure is provided.
- Such layers act as equipotential surfaces and help to compensate for asymmetries in the dielectric. Depending on the design or arrangement of the surfaces, these are arranged electrically isolated or even at the ends of the conductor structure reflection-free.
- At least one dielectric comprises a structure comprising a plurality of layers arranged perpendicular to the conductor structure. Such layers can be used, for example, as a support of the conductor structure.
- Another advantageous embodiment of the invention consists in that layers of a second, mechanically rigid insulating material are provided in a dielectric made of a first material comprising air perpendicular to the conductor structure.
- the second material is provided as a support for fixing the conductor structure and for stabilizing the first material, if this is a foam or hollow body, for example.
- the cross-sectional area of the supports of the second material should be as low as possible in order to influence the field as little as possible.
- the supports can be arranged at irregular intervals to prevent resonances on the conductor system.
- the part carrying the conductor structure has a groove for receiving at least one dielectric.
- the dielectric can be fixed easily and inexpensively in production.
- Another embodiment provides that the groove for receiving at least one dielectric is simultaneously provided for fixing the conductor structure.
- the conductor structure comprises a symmetrical conductor system.
- symmetrical conductor systems can especially low emission can be realized. Particularly in a symmetrical design of the conductor system and in operation with symmetrical electrical signals, the electric fields and the magnetic fields of the conductors cancel each other out in the distance.
- ladder systems are preferably used with two conductors.
- the conductor structure comprises an asymmetrical conductor system.
- asymmetrical conductor system There are special cases of unbalanced conductor systems in which the radiation can be kept low. An example of this is the system shown in US Patent 5,208,581. In this case, current flows through different conductor systems in accordance with the signal polarity. However, unbalanced conductor systems usually require significantly more technical effort for suppressing interference than with symmetrical conductor systems.
- a transmitter (10) feeds electrical signals into the conductor arrangement (11).
- the receiver (12) is arranged to be movable. The relative movement takes place on predetermined paths. Such webs may for example be linear or circular.
- the conductor arrangement (11) is arranged along at least one of these tracks of the movement, so that there is only a short distance between the conductor arrangement (11) and the receiver (12) at each point of the movement at which signals are to be transmitted.
- the distances are in a range of 0.1 mm to about 10 mm. Direct contact with a distance of 0 is possible. This is the case of a galvanic transmission.
- the conductor arrangement comprises at least one conductor structure (1) and a reference surface (2) associated therewith and a dielectric (3).
- the conductor arrangement comprises at least one conductor structure (1) and a reference surface (2) associated therewith and a dielectric (3).
- two conductors (1a, 1b) are shown on the conductor structure (1). These conductors may have any of the prior art gradients.
- the reference surface (2) itself is electrically conductive at least on its surface. In this example, located between the conductor structure (1) and the reference surface (2) is a cavity, which is guided with air or a similar gas. Thus, in this case, the air is the dielectric.
- Fig. 3 is an example of an embodiment of a conductor arrangement (11) corresponding to Fig. 2, wherein the cavity between the conductor structure (1) and the reference surface (2) with a dielectric (3) is filled, which consists at least partially of solids.
- dielectrics may be, for example, lattice structures or foams of an insulating material.
- Fig. 4 shows an arrangement in which the conductor structure (1) is mounted in a carrier (6) made of insulating material.
- a groove is provided in the carrier.
- the reference surface (2) is designed as an electrically conductive surface in the bottom of the groove.
- Such an electrically conductive surface can be realized for example by means of a conductive paint or a thin film strip.
- Such a film strip can be attached by adhesion, but also by adhesive such as double-sided adhesive tape. Due to the comparatively robust attachment in a solid support, the geometry and thus also the symmetry of the arrangement is precisely defined and fixed with long-term stability.
- FIG. 5 shows an arrangement with a conductive carrier.
- This conductive support has a groove for receiving the dielectric and fulfills with its surface the function of the reference surface (2).
- the surface is refined inside the groove to obtain a long-term stable, highly conductive surface.
- the groove can be designed such that it is designed for precisely defined recording of the conductor structure (1).
- the geometry can usually be defined even more precisely than with a conductive support and an additional reference surface, since tolerances due to sticking or due to the thickness tolerances of the additional reference surface are omitted here.
- a greater degree of freedom for the design of the groove itself This can now be optimized with regard to cost-effective production be, because here no additional conductor must be introduced as a reference surface.
- FIG. 6 shows an embodiment in which the dielectric (3) and the conductor structure (1) are accommodated in a conductive carrier.
- the groove for receiving a symmetrical, both sides beveled bottom.
- FIG. 7 shows an embodiment with a dielectric layered parallel to the conductor structure and reference surface.
- a carrier (6) for receiving serves a carrier (6), in which a groove is introduced, the inside of which serves as a reference surface (2) at the same time.
- the dielectric has a first layer (5) consisting of a solid insulating material. Parallel to this is a second layer consisting of a dielectric comprising air or gas.
- the primary purpose of the first dielectric is to support the conductor structure (1) and fix it in a defined position.
- a precise fixation of the conductor structure at the predetermined position symmetrical to the environment and in particular to the reference surface (2) is essential for a high symmetry of the signals and thus a high immunity to interference or a low interference emission.
- the second layer (4) consists of a dielectric with low dielectric constant and low losses.
- the electrical series connection with the first layer with high dielectric constant is the vast majority of the total electric field strength and thus also the stored energy in the second layer (5) with low dielectric constant. Because this also has a much lower loss factor, the total loss factor of the arrangement is much lower.
- FIG. 8 shows an advantageous embodiment of the invention with a dielectric layered perpendicular to the conductor structure or reference surface in a section along the propagation direction.
- supports made of a solid insulating material (5) are arranged perpendicularly between the conductor structure and the reference surface in order to ensure a defined alignment of the conductor structure to the reference surface.
- the spaces are filled with an insulating material comprising air or gas.
- the supports themselves can be mounted in constant or variable intervals. Variable distances help to prevent resonances in the line system. Ideally, the supports are made narrow, so that the capacity at the location of the supports is relatively low. This minimizes reflections at the location of these columns.
- FIG. 9 shows an arrangement corresponding to FIG. 8 in a section perpendicular to the direction of movement.
- the supports of solid insulating material are designed such that they do not extend over the entire width of the groove in the carrier. This leads to a further reduction of the losses in the supports. Of course, these supports can also be extended for reasons of stability over the entire width of the groove.
- Fig. 10 shows an arrangement with vertical layering of the dielectric.
- the layers are formed in such a way that narrow webs of the first dielectric (5), made of solid insulating material, result along the conductor structure.
- narrow webs of the first dielectric (5) made of solid insulating material, result along the conductor structure.
- no reflections are present in the propagation direction along the conductor structure.
- attention must be paid to a very symmetrical arrangement and stable fixation of the longitudinal strips in order to achieve a high degree of symmetry.
- Fig. 11 shows an arrangement with a particularly low-capacity solid dielectric support to minimize the reflections at the location of the supports.
- a particularly low-capacity solid dielectric support to minimize the reflections at the location of the supports.
- other types and configurations of supports can be used.
- Essential here is the mechanically supporting function of the support. Ie. it should be stiffer than the dielectric, which essentially retains its properties of air or gas.
Landscapes
- Near-Field Transmission Systems (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Mobile Radio Communication Systems (AREA)
- Aerials With Secondary Devices (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Transmitters (AREA)
Abstract
Description
Die Erfindung bezieht sich auf eine Vorrichtung zur Ćbertragung elektrischer Signale bzw. Energie zwischen mehreren gegeneinander beweglichen Einheiten.The invention relates to a device for transmitting electrical signals or energy between a plurality of mutually movable units.
Der Ćbersichtlichkeit halber wird in diesem Dokument nicht zwischen der Ćbertragung zwischen gegeneinander beweglichen Einheiten und einer feststehenden und dazu beweglichen Einheiten unterschieden, da dies nur eine Frage des Ortsbezugs ist und keinen Einfluss auf die Funktionsweise der Erfindung hat. Ebenso wird nicht weiter zwischen der Ćbertragung von Signalen und Energie unterschieden, da die Wirkungsmechanismen hier die selben sind.For the sake of clarity, no distinction is made in this document between the transmission between mutually movable units and a stationary and movable unit, since this is only a question of location reference and has no influence on the operation of the invention. Likewise, no distinction is made between the transmission of signals and energy, since the mechanisms of action are the same here.
Bei linear beweglichen Einheiten wie Kran- und Fƶrderanlagen und auch bei drehbaren Einheiten wie Radaranlagen oder auch Computertomographen ist es notwendig, zwischen gegeneinander beweglichen Einheiten elektrische Signale bzw. Energie zu übertragen. Eine hierfür geeignete Vorrichtung ist in der deutschen Offenlegungsschrift DE 44 12 958 A1 beschrieben. Das zu übertragende Signal wird hier in eine Streifenleitung der ersten Einheit, welche lƤngs des Weges der Bewegung der gegeneinander beweglichen Einheiten angeordnet ist, eingespeist. Mittels kapazitiver oder induktiver Kopplung wird das Signal von der zweiten Einheit abgegriffen. Eine verbesserte Vorrichtung zur Ćbertragung, wie sie beispielsweise in der WO 98/29919 beschrieben ist, basiert auf einer speziellen Leiterstruktur, welche gleichzeitig Filtereigenschaften besitzt. Mit derartige Strukturen lassen sich extrem breitbandige Ćbertragungssysteme im Bereich von einigen MHz bis GHz realisieren. In den folgenden Ausführungen bezieht sich der Begriff Leiterstrukturen auf alle denkbaren Formen von Leiterstrukturen, welche geeignet sind, elektrische Signale zu führen. Die Signale werden im Nahfeld der Leiterstruktur ausgekoppelt. Die Signalauskopplung soll im Idealfall ausschlieĆlich im Bereich der zweiten Einheit erfolgen. Eine weitere Signalaussendung in anderen Bereichen der Leiterstruktur ist im Gegensatz zu den bekannten Leckleitungen meist unerwünscht, da die breitbandigen Signale zu Stƶrungen in anderen GerƤteteilen bzw. GerƤten führen kƶnnen.
Die Konstruktions- und Dimensionierungsprinzipien von Leckleitungen, wie beispielsweise in der US 5,936,203 beschrieben, sind für diese Art von Leiterstrukturen nicht anwendbar. Leckleitungen sind gerade dafür ausgelegt, über die gesamte LƤnge einen bestimmten Anteil der geführten Hochfrequenzenergie nach auĆen abzustrahlen. Genau das soll aber hier vermieden werden.In the case of linearly movable units such as crane and conveyor systems and also with rotatable units such as radar systems or computer tomographs, it is necessary to transmit electrical signals or energy between mutually movable units. A device suitable for this purpose is disclosed in German Offenlegungsschrift DE 44 12 958 A1. The signal to be transmitted is fed here into a strip line of the first unit, which is arranged along the path of movement of the mutually movable units. By means of capacitive or inductive coupling, the signal is tapped from the second unit. An improved device for transmission, as described, for example, in WO 98/29919, is based on a special conductor structure which simultaneously has filter properties. With such structures, it is possible to realize extremely broadband transmission systems in the range of a few MHz to GHz. In the following embodiments, the term ladder structures refers to all conceivable forms of conductor structures which are suitable for carrying electrical signals. The signals are decoupled in the near field of the conductor structure. The signal extraction should ideally take place only in the area of the second unit. A further signal transmission in other areas of the conductor structure is usually undesirable in contrast to the known leakage lines, since the broadband signals can lead to disturbances in other equipment parts or devices.
The design and sizing principles of leakage lines, such as described in US 5,936,203, are not applicable to this type of conductor structures. Leakage lines are currently designed to radiate a certain portion of the guided RF energy over the entire length to the outside. But this is exactly what should be avoided here.
Technisch Ƥhnlich mit der kontaktlosen Signalauskopplung ist auch die kontaktierende Signalauskopplung. Eine kontaktlose Auskopplung wird jedoch meist vorgezogen, da sie zuverlƤssiger und wartungsfrei ist.
Die hier beschriebenen Leiterstrukturen kƶnnen wahlweise kontaktierend oder auch kontaktlos ausgeführt werden. Dabei sind selbstverstƤndlich Anpassungen entsprechend der Ćbertragungsaufgabe mƶglich. So kann eine Leiterstruktur zur kontaktierenden Ćbertragung eine besonders gut leitende OberflƤche, beispielsweise mit Silberbeschichtung aufweisen. Im Gegensatz hierzu kann eine Leiterstruktur zur kontaktlosen Ćbertragung mit einer Lackschicht auf der OberflƤche als Korrosionsschutz versehen sein. Die grundlegenden Prinzipien zur Ausgestaltung der Leiterstrukturen sind in diesen FƤllen jedoch identisch. Eine besondere Ausführung einer kontaktierenden Ćbertragungseinrichtung ist in der US-Patentschrift 5,208,581 beschrieben. Hier ist auch ein unsymmetrisches Leitersystem beschrieben. Die Geometrie ist hier zwar symmetrisch, allerdings wird das Leitersystem mit einem unsymmetrischen Signal gespeist. Der Signalfluss erfolgt über den mittleren Leiter vom Sender zum EmpfƤnger und teilweise über einen bzw. beide AuĆenleiter oder auch das Computertomographensystem selbst zurück. Die BezugflƤche ist hier das GerƤt selbst. Die Geometrie der BezugflƤche ist hier nicht eindeutig symmetrisch ausgeführt.
Aufgrund der unsymmetrischen Signale mit einem nicht eindeutig definierten Signalpfad und der undefinierten Bezugfläche strahlt dieses System hohe HF-Leistüngen ab. Bereits mit Datenraten von 50 MBaud können die aktuellen EMV-Normen nicht mehr ohne zusätzliche, teure Schirmung eingehalten werden.Technically similar to the contactless signal decoupling is also the contacting signal decoupling. A However, contactless decoupling is usually preferred because it is more reliable and maintenance free.
The conductor structures described here can be made either contact or contactless. Of course, adjustments according to the transfer task are possible. Thus, a conductor structure for contacting transmission have a particularly good conductive surface, for example with silver coating. In contrast, a conductor structure for contactless transmission can be provided with a lacquer layer on the surface as corrosion protection. However, the basic principles for designing the ladder structures are identical in these cases. A particular embodiment of a contacting transfer device is described in U.S. Patent No. 5,208,581. Here also an unbalanced conductor system is described. Although the geometry is symmetrical here, the conductor system is fed with an unbalanced signal. The signal flow takes place via the middle conductor from the transmitter to the receiver and partly via one or both outer conductors or else the computed tomography system itself. The reference surface here is the device itself. The geometry of the reference surface is not clearly symmetrical here.
Due to the asymmetrical signals with an ambiguously defined signal path and the undefined reference surface, this system radiates high RF power. Even with data rates of 50 MBaud, the current EMC standards can no longer be met without additional, expensive shielding.
Die hier zur Ćbertragung verwendeten Leiteranordnungen sind üblicherweise als Streifenleitungen bzw. Leiterstrukturen mittels doppelseitiger Leiterplatten aufgebaut. Als TrƤger und Dielektrikum dient üblicherweise ein glasfaserverstƤrkter Kunststoff. Dieser TrƤger ist auf einer Seite mit einer durchgehenden LeiterflƤche als elektrische BezugsflƤche bzw. Masse und auf der anderen Seite mit einem streifenfƶrmigen Leiter bzw. der Leiterstruktur versehen.The conductor arrangements used here for the transmission are usually constructed as strip lines or conductor structures by means of double-sided printed circuit boards. As a carrier and dielectric is usually a glass fiber reinforced plastic. This support is provided on one side with a continuous conductor surface as electrical reference surface or ground and on the other side with a strip-shaped conductor or the conductor structure.
Zu den schwierigsten technischen Probleme bei derartigen Ćbertragungssystemen zƤhlt das Erreichen einer hohen Stƶrfestigkeit sowie einer niedrigen Abstrahlung.
Um nun eine besonders stƶrarme Signalübertragung zu erreichen werden beispielsweise zwei parallel laufende Leitungen bzw. Leiterstrukturen symmetrisch mit einem Differenzsignal gespeist. Dadurch wird zumindest bei LeiterabstƤnden, die kleiner als die WellenlƤnge sind, das Fernfeld nƤherungsweise zu null. Somit wird nur eine ƤuĆerst geringe Energie abgestrahlt. Im umgekehrten Falle wird bei einer unerwünschten Einkopplung elektromagnetischer Wellen von auĆen in beiden Leitern das gleiche Signal erzeugt. Dieses kann nun von einer Empfangsschaltung mit hoher Gleichtaktunterdrückung ausgefiltert werden. Wesentlich für eine hohe Stƶrfestigkeit ist die Symmetrie der gesamten Anordnung.Among the most difficult technical problems with such transmission systems is the achievement of high immunity to interference and low radiation.
In order to achieve a particularly interference-free signal transmission, for example, two parallel lines or conductor structures are fed symmetrically with a differential signal. As a result, the distance field is at least approximately zero at conductor distances which are smaller than the wavelength. Thus, only a very low energy is emitted. In the opposite case, the unwanted coupling of electromagnetic waves from the outside in both conductors generates the same signal. This can now be filtered out by a receiving circuit with high common-mode rejection. Essential for a high immunity to interference is the symmetry of the entire arrangement.
Um die Stƶrfestigkeit zu erhƶhen, kann normalerweise der Signalpegel des Senders nicht beliebig erhƶht werden. Trotz hoher Symmetrie findet immer eine geringe Abstrahlung statt. Mit hƶherer Symmetrie wird die Abstrahlung geringer und die Signalpegel kƶnnen weiter erhƶht werden.In order to increase the immunity to interference, the signal level of the transmitter can not normally be increased arbitrarily. Despite high symmetry always a low radiation takes place. With higher symmetry, the radiation is reduced and the signal levels can be further increased.
Bei hohen Bandbreiten bzw. Datenraten im Bereich von einigen 100 MHz bis mehrere GHz treten nicht mehr vernachlƤssigbare DƤmpfungen bzw. Verzerrungen der Signale auf. So wurden bei üblichen Leitermaterialien und einer Frequenz von 1 GHz DƤmpfungen in der GrƶĆenordnung von 10 dB pro Meter gemessen. Dies führt bei groĆen LƤngen zu unakzeptablen DƤmpfungen. Zudem besteht eine erhƶhte Gefahr von Unsymmetrien. Oftmals werden die Leitungen bzw. Leiterstrukturen in Breiten von mehreren Millimetern bis Zentimetern gefertigt, so dass die mechanischen Toleranzen in der Bahn zwischen den bewegten Teilen durchaus einige Millimeter betragen kƶnnen, ohne dass dabei die Signalübertragung beeinflusst wird. Derart breite Leiterstrukturen sind besonders empfindlich gegen Ćnderungen der Eigenschaften des Dielektrikums. Somit werden besonders hohe Anforderungen an die HomogenitƤt des Dielektrikums gestellt, da Ćnderungen der Dicke, der DielektrizitƤtskonstanten und auch des Verlustfaktors die Ausbreitung des Signals, die Symmetrie und auch die Abstrahleigenschaften beeintrƤchtigen. So muss das Dielektrikum über die LƤnge und insbesondere über die Breite der Anordnung sehr homogen sein. Standard - Leiterplattenmaterialien erfüllen diese Anforderungen bei weitem nicht. Auch spezielle Leiterplattenmaterialien, wie sie für Hochfrequenztechnik-Leiterplatten eingesetzt werden, sind hier oft ungeeignet. Beim üblichen Einsatz in Leiterplatten kleiner Geometrie wie beispielsweise 50 mm * 50 mm und Streifenleitungen mit Breiten im Bereich von 1 mm sind die Streuungen der Materialeigenschaften kaum von Bedeutung. Geeignete, dem Stand der Technik entsprechende Materialien wie beispielsweise spezielle, besonders homogene Teflon- oder Keramikmaterialien sind problematisch in der Verarbeitung und sehr teuer. Das Hauptproblem bei derartigen Materialien ist allerdings, dass diese nicht in den geforderten groĆen LƤngen von einigen Metern verfügbar sind. Diese sind allenfalls in typischen PlattengrƶĆen von 50 cm * 50 cm lieferbar. Es müssten also neue Fertigungsprozesse zur Herstellung von Leiteranordnungen mit den zuvor beschriebenen hochwertigen Materialien in groĆen LƤngen entwickelt werden. Alternativ hierzu kƶnnten kurze Segmente der Leiteranordnung der LƤnge nach miteinander verbunden werden. Die hierbei notwendigen Verbindungsstellen bzw. Lƶtstellen verursachen ein hohen Fertigungsaufwand, haben meist Reflexionen und Unsymmetrien am Ort der Verbindung zur Folge und reduzieren die ZuverlƤssigkeit der gesamten Leiteranordnung wesentlich.At high bandwidths or data rates in the range of a few 100 MHz to several GHz, no longer negligible attenuation or distortion of the signals occur. For example, with standard conductor materials and a frequency of 1 GHz, attenuations of the order of 10 dB per meter were measured. This leads to unacceptable attenuation for long lengths. There is also an increased risk of asymmetries. Often, the lines or conductor structures are manufactured in widths of several millimeters to centimeters, so that the mechanical tolerances in the web between the moving parts can be quite a few millimeters, without affecting the signal transmission. Such wide conductor structures are particularly sensitive to changes in the properties of the dielectric. Thus, particularly high demands are placed on the homogeneity of the dielectric, since changes in the thickness, the dielectric constant and also the loss factor affect the propagation of the signal, the symmetry and also the emission properties. Thus, the dielectric must be very homogeneous over the length and especially over the width of the array. Standard circuit board materials do not meet these requirements by far. Even special printed circuit board materials, such as those used for high-frequency engineering printed circuit boards, are often unsuitable here. For common use in small geometry circuit boards such as 50 mm * 50 mm and strip lines with widths in the range of 1 mm, the variations in material properties are of little importance. Suitable, prior art materials such as special, particularly homogeneous Teflon or ceramic materials are problematic in processing and very expensive. The main problem with such materials, however, is that they are not available in the required long lengths of a few meters. These are available in typical plate sizes of 50 cm * 50 cm. So it would have to be developed new manufacturing processes for the production of conductor assemblies with the above-described high quality materials in long lengths. Alternatively, short segments of the conductor assembly could be interconnected lengthwise. The necessary connection points or solder joints cause a high production cost, usually have reflections and asymmetries at the site of the connection result and reduce the reliability of the entire conductor arrangement significantly.
Eine Lösung, die diese Probleme von vorneherein vermeidet, ist in der US-Patentschrift 5,287,117 angegeben. Hierin wird die Leiteranordnung durch mehrere kleine Antennensegmente ersetzt. Diese können auf Leiterplatten kleiner Fläche mit hochwertigen Materialien hergestellt werden. Die Speisung über lange Distanzen kann mit hochwertigen Koaxialkabeln hoher Schirmung und niedriger Dämpfung erreicht werden. Allerdings ergibt sich auch hier durch die hohe Anzahl von Antennensegmenten ein hoher Materialeinsatz und insbesondere ein hoher Montageaufwand, was zu hohen Fertigungskosten führt.One solution that avoids these problems from the outset is disclosed in U.S. Patent No. 5,287,117. Herein, the conductor assembly is replaced by a plurality of small antenna segments. These can be manufactured on PCBs of small area with high quality materials. The power supply over long distances can be achieved with high-quality coaxial cables of high shielding and low attenuation. However, here too, the high number of antenna segments results in a high use of material and in particular a high assembly outlay, which leads to high production costs.
In der US 2002/000936 A1 ist eine breitbandige Mikrostreifenleitungsantenne offenbart, welche einen Aufbau eines beschichteten Dielektrikums aufweist, wobei eine dieser Schichten Luft umfasst.US 2002/000936 A1 discloses a broadband microstrip line antenna having a structure of a coated dielectric, one of these layers comprising air.
In DAIGLE, B. "Printed circuit board material and design considerations for wireless applications" ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE; 28. Mai 1996 (1996.05-28), - 31. Mai 1996 (1996-05-31) Seiten 354-357, XP010167266 sind Toleranzbereiche der Dielektrizitätskonstanten von bekannten Mikrowellenmaterialien von± 0,02 bis ± 0,05 angegeben.In DAIGLE, B. "Printed circuit board material and design considerations for wireless applications" ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE; May 28, 1996 (1996.05-28), - May 31, 1996 (1996-05-31) pages 354-357, XP010167266, tolerance ranges of the dielectric constants of known microwave materials of ± 0.02 to ± 0.05 are given.
In der US 5,463,404 ist eine Mikrostreifenantenne angegeben, welche Materialien aufweist, die eine Toleranz der DielektrizitƤtskonstanten von ungefƤhr 5 % aufweisen.US 5,463,404 discloses a microstrip antenna having materials having a dielectric constant tolerance of about 5%.
Es stellt sich die Aufgabe, eine breitbandige und kostengünstige Vorrichtung zur Signalübertragung darzustellen, welche eine Leiteranordnung mit Leitern bzw. Leiterstrukturen aufweist, die auch bei hohen Frequenzen eine hohe Symmetrie des Signals sowie niedrige Dämpfungswerte erreicht.It has as its object to represent a broadband and cost-effective device for signal transmission, which has a conductor arrangement with conductors or conductor structures, which achieves high signal symmetry and low attenuation values even at high frequencies.
Die Aufgabe wird erfindungsgemäà mit den in den unabhängigen Ansprüchen angegebenen Mitteln gelöst. Vorteilhafte Weiterbildung in der Erfindung sind Gegenstand der abhängigen weiteren Ansprüche.The object is achieved according to the invention with the means specified in the independent claims. Advantageous development in the invention are the subject of the dependent claims.
Eine erfindungsgemƤĆe Vorrichtung zur Signalübertragung umfasst mindestens einen Sender, der die zu übertragenden elektrischen Signale erzeugt und in eine Leiteranordnung einspeist. Mindestens eine solche Leiteranordnung ist entlang der Bahn der Bewegung angeordnet und führt die vom Sender eingespeisten Signale. Mindestens ein EmpfƤnger, welcher gegenüber Sender und Leiteranordnung beweglich ist, dient zur Auskopplung der Signale aus der Leiteranordnung. Entsprechend dem Anwendungsfall kann auch ein Sender mehrere Leiteranordnungen speisen. Ebenso kann eine Leiteranordnung von mehreren Sendern gespeist werden. Weiterhin ist es mƶglich, eine beliebige Anzahl von EmpfƤngern zur Auskopplung von Signalen an einer Leiteranordnung einzusetzen.
Eine Leiteranordnung umfasst mindestens eine Leiterstruktur, in der elektrische Signale geführt werden können. Eine solche Leiterstruktur enthält einen oder mehrere Leiter aus einem vorzugsweise gut leitenden Material.An inventive device for signal transmission comprises at least one transmitter which generates the electrical signals to be transmitted and feeds them into a conductor arrangement. At least one such conductor arrangement is arranged along the path of the movement and carries the signals fed by the transmitter. At least one receiver, which is movable relative to the transmitter and the conductor arrangement, serves to decouple the signals from the conductor arrangement. Depending on the application, a transmitter can also feed several conductor arrangements. Likewise, a conductor arrangement can be fed by several transmitters. Furthermore, it is possible to use any number of receivers for coupling signals to a conductor arrangement.
A conductor arrangement comprises at least one conductor structure in which electrical signals can be guided. Such a conductor structure includes one or more conductors of a preferably highly conductive material.
Weiterhin umfasst eine Leiteranordnung mindestens eine jeder Leiterstruktur zugeordnete elektrisch leitende Bezugsfläche. Zwischen der Leiterstruktur und der Bezugsfläche befindet sich mindestens ein Dielektrikum zur Isolation von Leiterstruktur und Bezugsfläche. Ein solches Dielektrikum besitzt wahlweise eine hohe Homogenität bzw. eine hohe Symmetrie in Bezug auf die elektrische Mitte der Längsachse der Leiterstruktur. Der Symmetriebegriff bezieht sich hier auf eine Symmetrie des elektrischen Feldes. Ausgehend von der elektrischen Mitte der Leiterstruktur sollen die elektrischen Feldlinien symmetrisch verlaufen. Dies ist beispielsweise mit einer spiegelsymmetrischen Anordnung realisierbar. Ebenso aber sind andere Realisierungen vorstellbar, wie beispielsweise im Falle eines geschichteten Dielektrikums bei Leitern parallel zur Bezugsfläche. Hier kann grundsätzlich die Schichtenabfolge des Dielektrikums bei den Leitern unterschiedlich sein, wenn die gesamten Dielektrizitätskonstanten auf beiden Seiten gleich sind und auch die Flächen gleich groà sind.
Die Symmetrie des elektrischen Feldes wird bezogen auf eine ĆquipotentialflƤche mit einem Potential, welches dem mittleren Potential zwischen den aktiven, d.h. zur Signalführung verwendeten Leitern entspricht.
Eine hohe HomogenitƤt bedeutet hier, dass die elektrischen Eigenschaften, insbesondere die DielektrizitƤtskonstanten sowie die dielektrischen Verluste nur geringen Schwankungen unterliegen. Typische Werte von Toleranzen dieser Werte sind < 5% und vorzugsweise < 1%. Werden besonders hohe Anforderungen gestellt, so sind auch Toleranzen von 0.1% angebracht. Ergeben sich bei der Fertigung unterschiedliche HomogenitƤten des Dielektrikums in unterschiedlichen Richtungen, so ist senkrecht zur Richtung der LƤngsachse der Leiterstruktur die hƶchste HomogenitƤt vorzusehen. In Richtung der LƤngsachse kƶnnen geringere HomogenitƤten toleriert werden. Wesentlich hierbei ist, dass entsprechend dem vorhergehenden Betrachtungen zur Symmetrie an jedem Punkt entlang der LƤngsachse der Leiterstruktur Symmetrie besteht und entsprechend die Eigenschaften des Dielektrikums symmetrisch sind.
Dieser relativ komplexe Symmetriebegriff soll anhand eines einfachen Beispiels erlƤutert werden. Es wird von einer Leiterstruktur aus zwei parallelen, gleich breiten und gleich dicken Leitern ausgegangen. Die elektrische Mitte der LƤngsachse der Leiterstruktur liegt hier genau in der Mitte zwischen den Leitern. Nun sollen für jede infinitesimal kurze Strecke dieser Leiterstruktur die elektrischen Parameter des Dielektrikums für beide Leiter gleich sein. Bei der Betrachtung eines solch kurzen Leiterstückes spielt es keine Rolle, aus welcher Schichtung oder Zusammensetzung des Dielektrikums sich eine bestimmte DielektrizitƤtskonstanten oder ein bestimmter Verlustfaktor ergibt. Wesentlich ist, dass diese Werte für beide Leiterstücke gleich sind. Im weiteren Verlauf des Leiters kƶnnen noch Ćnderungen der Werte zu vorhergehenden Teilstücken toleriert werden, vorausgesetzt sie sind für beide Leiter gleich. Somit kann eine hohe Symmetrie mit den gewünschten elektrischen Eigenschaften erreicht werden
Eine hohe Symmetrie in Bezug auf die elektrische Mitte der LƤngsachse der Leiterstruktur verhindert, dass die Signale bei symmetrischen Leitern oder bei unsymmetrischen Leitersystem mit mehreren Leitern auf Grund unterschiedlicher Laufzeiten bzw. DƤmpfungen unsymmetrisch werden.
Idealerweise wird ein Dielektrikum hoher Homogenität und hoher Symmetrie eingesetzt. Damit lassen sich erfahrungsgemäà die besten Ergebnisse bei einem vertretbaren Aufwand erzeugen. Kann eine symmetrische Anordnung des Dielektrikums nicht erreicht werden, so bringt auch der Einsatz eines Dielektrikums hoher Homogenität eine deutliche Verbesserung. Ebenso bringt eine symmetrische Anordnung eine Verbesserung, auch wenn keine hinreichende Homogenität des Dielektrikums erreichbar ist.Furthermore, a conductor arrangement comprises at least one electrically conductive reference surface assigned to each conductor structure. Between the conductor structure and the reference surface there is at least one dielectric for insulating the conductor structure and the reference surface. Such a dielectric optionally has a high homogeneity or a high symmetry with respect to the electrical center of the longitudinal axis of the conductor structure. The symmetry term here refers to a symmetry of the electric field. Starting from the electrical center of the conductor structure, the electric field lines should be symmetrical. This can be realized, for example, with a mirror-symmetrical arrangement. Likewise, however, other implementations are conceivable, such as in the case of a layered dielectric for conductors parallel to the reference surface. Here, in principle, the layer sequence of the dielectric in the conductors may be different if the total dielectric constants are the same on both sides and the areas are the same size.
The symmetry of the electric field is related to an equipotential surface with a potential which corresponds to the mean potential between the active conductors, ie conductors used for signal routing.
A high homogeneity here means that the electrical properties, in particular the dielectric constants and the dielectric losses are subject to only slight fluctuations. Typical values of tolerances of these values are <5% and preferably <1%. If particularly high demands are made, tolerances of 0.1% are also appropriate. Are the production different homogeneities of the dielectric in different directions, perpendicular to the direction of the longitudinal axis of the conductor structure, the highest homogeneity is provided. In the direction of the longitudinal axis lower homogeneities can be tolerated. It is essential here that, in accordance with the preceding considerations on the symmetry, there is symmetry at each point along the longitudinal axis of the conductor structure and accordingly the properties of the dielectric are symmetrical.
This relatively complex symmetry concept will be explained by means of a simple example. It is assumed that a ladder structure of two parallel, equal width and equal thickness conductors. The electrical center of the longitudinal axis of the conductor structure lies exactly in the middle between the conductors. Now, for each infinitesimally short distance of this ladder structure, the electrical parameters of the dielectric should be the same for both conductors. When considering such a short conductor piece, it does not matter from which layering or composition of the dielectric a certain dielectric constant or a certain dissipation factor results. It is essential that these values are the same for both conductor pieces. In the further course of the conductor still changes of the values to previous sections can be tolerated, provided they are the same for both conductors. Thus, a high symmetry can be achieved with the desired electrical properties
A high symmetry with respect to the electrical center of the longitudinal axis of the conductor structure prevents the signals in symmetric conductors or in asymmetrical conductor system with multiple conductors due to different Running times or attenuations become unbalanced.
Ideally, a dielectric of high homogeneity and high symmetry is used. Experience has shown that the best results can be produced at a reasonable cost. If a symmetrical arrangement of the dielectric can not be achieved, the use of a high-homogeneity dielectric also brings about a significant improvement. Likewise, a symmetrical arrangement brings about an improvement, even if sufficient homogeneity of the dielectric can not be achieved.
Die Leiterstruktur ist meist nach einer Seite hin zum freien Raum offen. Von dieser Seite aus erfolgt die Ankopplung von Empfängern. Die Gegenseite und optional auch deren Begrenzung sind von möglichst symmetrischen Flächen mit leitender Oberfläche abgeschlossen. Damit lässt sich einerseits eine definierte Impedanz des Leitersystem erreichen und andererseits eine definiert symmetrische Begrenzung realisieren. Würde hier keine definierte Bezugsfläche vorhanden sein, so wäre mindestens ein Teil des Gerätes, in dem die Vorrichtung angebracht ist, als elektrischer Bezug dienen. Sicherlich würde hier nicht auf der ganzen Länge der Leiterstruktur die erforderliche Symmetrie erreicht werden, da verschiedene Bauteile bzw. Baugruppen des Gerätes nicht beliebig symmetrisch anzuordnen wären.The ladder structure is usually open to one side to the free space. From this side the coupling of receivers takes place. The opposite side and optionally also its boundary are closed off by symmetrical surfaces with a conductive surface. On the one hand, this makes it possible to achieve a defined impedance of the conductor system and, on the other hand, to realize a defined symmetrical limitation. If no defined reference surface were present here, then at least a part of the device in which the device is mounted would serve as an electrical reference. Certainly, the required symmetry would not be achieved here along the entire length of the conductor structure since different components or assemblies of the device would not be arranged arbitrarily symmetrical.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung umfasst mindestens ein Dielektrikum eine Luft- bzw. Gasschicht.In a further advantageous embodiment of the invention, at least one dielectric comprises an air or gas layer.
Die meisten der bekannten technisch einsetzbaren Gase, insbesondere die Luft, welche eine variierende Kombination aus verschiedenen Gasen mit einem hohen Stickstoffanteil ist, besitzen ähnliche dielektrische Eigenschaften mit einer relativen Dielektrizitätskonstanten nahe 1 und einen nahezu vernachlässigbaren Verlustfaktor. In diesem Dokument wird daher nur noch auf Luft als Dielektrikum bzw. eine Luftschicht Bezug genommen. Hierin eingeschlossen sind auch Mischungen aus mehreren unterschiedlichen Gasen mit elektrischen Eigenschaften ähnlich Luft. An Stelle von Luft können auch Flüssigkeiten mit sehr niedrigen Verlustfaktoren eingesetzt werden.Most of the known engineered gases, especially the air, which is a varying combination of various gases with a high nitrogen content, have similar dielectric properties with a relative dielectric constant close to 1 and a nearly negligible loss factor. In this document, reference is therefore made only to air as a dielectric or an air layer. Also included herein are mixtures of several different gases having electrical properties similar to air. Instead of air, liquids with very low loss factors can be used.
Wesentlich für die Funktion ist der geringe dielelektrische Verlustfaktor der Gase. Somit haben auch Schwankungen des Verlustfaktors nur geringe Auswirkungen.Essential for the function is the low dielectric loss factor of the gases. Thus, fluctuations in the loss factor have little effect.
Ist die Dämpfung gering, so hat bei gleicher Toleranz der Dämpfung diese einen wesentlich geringeren Einfluss auf die Toleranz der Signalpegel wie bei hohen Dämpfungswerten. Ein Beispiel soll dies erläutern. Weist ein bestimmtes Material mit vorgegebenen Geometrie eine Dämpfung des Signals um 10% mit einer Toleranz von ±10% der Dämpfung, so kann der tatsächliche Dämpfungswert zwischen 9% und 11% schwanken. Der Pegel des gedämpften Signals ist somit um 9% bis 11% geringer als das ursprüngliche Signal. Abhängig von dem aktuellen Dämpfungswert kann nun der Signalpegel um 2% variieren. Beträgt dagegen die Dämpfung des Materials nur 1% mit derselben Toleranz von ±10% der Dämpfung, so kann der Signalpegel zwischen 0.9% und 1.1% gegenüber dem ursprünglichen Signalpegel gedämpft sein.If the attenuation is low, with the same tolerance of the attenuation this has a much smaller influence on the tolerance of the signal level as with high attenuation values. An example will explain this. If a given material with given geometry has a signal attenuation of 10% with a tolerance of ± 10% of the attenuation, the actual attenuation value may vary between 9% and 11%. The level of the attenuated signal is thus 9% to 11% lower than the original signal. Depending on the current attenuation value, the signal level can now vary by 2%. If, on the other hand, the attenuation of the material is only 1% with the same tolerance of ± 10% of the attenuation, the signal level between 0.9% and 1.1% may be attenuated from the original signal level.
Somit kann in diesem Falle abhƤngig vom aktuellen DƤmpfungswert der signalpegel nur noch um 0.2% variieren. Weiterhin wird durch den geringen DƤmpfungswert die Amplitude des Signals auch bei langen Leiterstrukturen nur geringfügig gedƤmpft. Durch eine gleichmƤĆig hohen Signalpegel wird nur eine geringe Dynamik des EmpfƤngers gefordert. Gleichzeitig lƤsst sich die Stƶrfestigkeit maximieren, da an EmpfƤnger immer der maximal mƶgliche Eingangspegel zur Verfügung steht.Thus, in this case, depending on the current attenuation value, the signal level can only vary by 0.2%. Furthermore, the amplitude of the signal is only slightly attenuated by the low attenuation value, even with long conductor structures. By a uniformly high signal level only a low dynamics of the receiver is required. At the same time, immunity to interference can be maximized since the maximum possible input level is always available to receivers.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung umfasst mindestens ein Dielektrikum eine wabenförmige bzw. gitterförmige Struktur eines Isoliermaterials. Die Zwischenräume bzw. Hohlräume sind mit Luft gefüllt. Grundsätzlich sind auch andere Hohlstrukturen, welche zur Aufnahme von Luft geeignet sind, einsetzbar.
Im Falle derartiger Hohlstrukturen besteht das Dielektrikum aus einer Kombination des Isoliermaterials mit meist einer hƶheren DielektrizitƤtskonstanten als Luft und einem hƶheren Verlustfaktor als Luft. Das elektrische Feld wird nun bevorzugt durch Stege aus Isoliermaterial, welche die Lücke zwischen den Leitern bzw. den Leitern und der BezugsflƤche überbrücken, verlaufen. Daher sollten diese Stege mit mƶglichst kleinem Querschnitt ausgelegt werden. Im GroĆteil der gesamten FlƤche wird das elektrische Feld durch eine Serienschaltung aus Isoliermaterial und Luft verlaufen. Hier dominieren dann die hervorragenden elektrischen Eigenschaften der Luft, da an den Luftstrecken eine umgekehrt proportional zur DielektrizitƤtskonstanten hƶhere FeldstƤrke anliegt.In a further advantageous embodiment of the invention, at least one dielectric comprises a honeycomb or lattice-shaped structure of an insulating material. The spaces or cavities are filled with air. Basically, other hollow structures, which are suitable for receiving air, can be used.
In the case of such hollow structures, the dielectric consists of a combination of the insulating material, usually with a higher dielectric constant than air and a higher loss factor than air. The electric field is now preferably by webs of insulating material, which bridge the gap between the conductors or the conductors and the reference surface run. Therefore, these bars should be designed with the smallest possible cross section. In the majority of the total area, the electric field will pass through a series circuit of insulating material and air. Here then dominate the excellent electrical properties of the air, as applied to the air paths inversely proportional to the dielectric constant higher field strength.
In einer weiteren, verbesserten Ausgestaltung der Erfindung umfasst mindestens ein Dielektrikum einen Schaum eines Isoliermaterials. Die Hohlräume des Schaums sind mit Luft gefüllt. Bei einem Schaum lassen sich naturgemäà extrem dünne Wandstärken des Isoliermaterials und damit extrem geringe Brückenquerschnitte realisieren. Somit ist die vom Isoliermaterial ohne Zwischenschaltung von Luft überbrückte Fläche wesentlich geringer als bei Waben- bzw. Gitterstrukturen. Zudem lassen sich Schäume preisgünstig herstellen und verarbeiten. Alternativ zu Schäumen können auch Granulate oder luftgefüllte Hohlkugeln eingesetzt werden.In a further, improved embodiment of the invention, at least one dielectric comprises a foam of an insulating material. The cavities of the foam are filled with air. In the case of a foam, it is naturally possible to realize extremely thin wall thicknesses of the insulating material and thus extremely small bridge cross sections. Thus, the bridged by the insulating material without the interposition of air surface is substantially lower than in honeycomb or lattice structures. In addition, foams can be produced inexpensively and processed. As an alternative to foaming, it is also possible to use granules or air-filled hollow spheres.
Eine weitere Ausgestaltung der Erfindung besteht darin, dass mindestens ein Dielektrikum einen Polyethylen-Schaum umfasst. Polyethylen ist ein Kunststoff mit hervorragenden elektrischen Eigenschaften. Es ist eines der Isoliermaterialien mit dem niedrigsten Verlustfaktor. Gleichzeitig lassen sich mit diesem Material preiswerte Schäume herstellen. Eine Verarbeitung ist insbesondere in Form von dünnen Folien mit Stärken von einigen Millimetern besonders einfach und preisgünstig.A further embodiment of the invention consists in that at least one dielectric comprises a polyethylene foam. Polyethylene is a plastic with excellent electrical properties. It is one of the insulating materials with the lowest loss factor. At the same time, inexpensive foams can be produced with this material. Processing is particularly simple and inexpensive, especially in the form of thin films with thicknesses of a few millimeters.
Eine andere vorteilhafte Ausgestaltung umfasst einen mehrschichtigen Aufbau eines Dielektrikums. Durch einen solchen mehrschichtigen Aufbau kƶnnen beispielsweise unterschiedliche Dielektrika mit unterschiedlichen elektrischen und mechanischen Eigenschaften kombiniert werden. So sind besonders vorteilhaft dünne Stege aus mechanisch stabilem Isoliermaterial kombiniert mit groĆflƤchigen Anordnungen aus Dielektrika unter Einschluss von Luft.Another advantageous embodiment comprises a multilayer structure of a dielectric. By means of such a multi-layered structure, for example, different dielectrics with different electrical and mechanical properties can be combined. Thus, particularly advantageous thin webs of mechanically stable insulating material combined with large-area arrays of dielectrics with the inclusion of air.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist mindestens ein Dielektrikum einen Aufbau aus mehreren parallel zu Leiterstruktur angeordneten Schichten auf. Mit einer derartigen parallelen Schichtstruktur lassen sich auch groĆflƤchig Isoliermaterialien mit schlechten elektrischen Eigenschaften zusammen mit Isoliermaterialien mit guten elektrischen Eigenschaften kombinieren, insbesondere wenn diese eine niedrigere DielektrizitƤtskonstante aufweisen. Somit lassen sich in der Kombination noch relativ gute elektrischen Eigenschaften erzielen.In a further advantageous embodiment of the invention, at least one dielectric has a construction of a plurality of layers arranged parallel to the conductor structure. With such a parallel layer structure, insulation materials with poor electrical properties can also be combined over a large area with insulation materials having good electrical properties, in particular if they have a lower dielectric constant. Thus, the combination still relatively good electrical properties can be achieved.
Eine besonders vorteilhafte Ausgestaltung der Erfindung besteht darin, dass ein Dielektrikum, welches Luft einschlieĆt und demzufolge nur eine geringe mechanische StabilitƤt aufweist mit mindestens einem zweiten Isoliermaterial in massiver Bauform und entsprechender hoher mechanische StabilitƤt kombiniert wird. So kann dieses zweite Isoliermaterial zur Stabilisierung der Kombination aus verschiedenen Dielektrika eingesetzt werden. Damit ist unabhƤngig von den schlechteren mechanischen Eigenschaften der ersten Schicht eine prƤzise und für eine hohe Symmetrie zwingend notwendige Fixierung der Dielektrika gegeben.A particularly advantageous embodiment of the invention is that a dielectric, which includes air and consequently has only a low mechanical stability is combined with at least one second insulating material in solid construction and corresponding high mechanical stability. Thus, this second insulating material can be used to stabilize the combination of different dielectrics. Thus, irrespective of the poorer mechanical properties of the first layer, there is a precise fixation of the dielectrics which is absolutely necessary for a high degree of symmetry.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist die zweite Schicht als mechanisch steife Schicht zur Fixierung bzw. Stabilisierung der ersten Schicht ausgebildet und mit dieser verbunden. Eine solche Verbindung kann beispielsweise durch Formschluss oder aber auch durch Klebung erfolgen. Mit einer solchen Ausgestaltung ergibt sich nicht nur eine hohe StabilitƤt, sondern auch eine prƤzise definierte Geometrie. Zudem kann nun der Fertigungsprozess vereinfacht werden, wenn alle Schichten eines Dielektrikums zusammen vorgefertigt und als Einheit endmontiert werden kƶnnen.In a further advantageous embodiment of the invention, the second layer is formed as a mechanically rigid layer for fixing or stabilizing the first layer and connected thereto. Such a connection can be done for example by positive engagement or by gluing. With such a configuration results not only a high stability, but also a precisely defined geometry. In addition, the manufacturing process can now be simplified if all layers of a dielectric can be prefabricated together and finally assembled as a unit.
Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass die zweite Schicht zusƤtzlich als TrƤger der Leiterstruktur ausgebildet ist. Dadurch sind sƤmtliche Komponenten des elektrischen Systems der Leiteranordnung zu einer Einheit verbunden und kƶnnen mit geringsten Toleranzen ƤuĆerst kostengünstig montiert werden.A further advantageous embodiment of the invention is that the second layer is additionally designed as a carrier of the conductor structure. As a result, all components of the electrical system of the conductor arrangement are connected in one unit and can be mounted extremely inexpensively with the lowest tolerances.
Eine weitere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass mindestens eine zusƤtzliche Schicht aus leitfƤhigem Material bzw. Material mit hoher LeitfƤhigkeit und unvollstƤndiger FlƤchenüberdeckung, wie beispielsweise eine Gitterstruktur vorgesehen ist. Derartige Schichten wirken als ĆquipotentialflƤchen und helfen Unsymmetrien im Dielektrikum auszugleichen. Je nach Ausbildung bzw. Anordnung der FlƤchen sind diese elektrische isoliert angeordnet oder auch an den Enden der Leiterstruktur Reflexionsfrei abgeschlossen.A further advantageous embodiment of the invention is that at least one additional layer of conductive material or material with high conductivity and incomplete surface coverage, such as a grid structure is provided. Such layers act as equipotential surfaces and help to compensate for asymmetries in the dielectric. Depending on the design or arrangement of the surfaces, these are arranged electrically isolated or even at the ends of the conductor structure reflection-free.
In einer weiteren vorteilhaften Ausgestaltung umfasst mindestens ein Dielektrikum einen Aufbau aus mehreren senkrecht zu Leiterstruktur angeordneten Schichten. Derartige Schichten können beispielsweise als Stütze der Leiterstruktur eingesetzt werden.In a further advantageous embodiment, at least one dielectric comprises a structure comprising a plurality of layers arranged perpendicular to the conductor structure. Such layers can be used, for example, as a support of the conductor structure.
Weiterhin vorteilhaft ist eine Ausbildung dieser Schichten symmetrisch zur elektrischen Mitte der LƤngsachse der Leiterstruktur. Damit wird die Symmetrie aufrechterhalten.Also advantageous is an embodiment of these layers symmetrical to the electrical center of the longitudinal axis of the Conductor structure. This maintains the symmetry.
Eine andere vorteilhafte Ausgestaltung der Erfindung besteht darin, dass in einem Dielektrikum aus einem ersten Material, umfassend Luft senkrecht zu Leiterstruktur angeordneten Schichten aus einem zweiten, mechanisch steifen Isoliermaterial vorgesehen sind. So werden die elektrischen Eigenschaften der Anordnung dominierend von dem groĆflƤchigen ersten Material bestimmt. Das zweite Material ist als Stütze zur Fixierung der Leiterstruktur und zur Stabilisierung des ersten Materials, falls dies beispielsweise ein Schaum oder Hohlkƶrper ist, vorgesehen. SelbstverstƤndlich sollten die QuerschnittflƤche der Stützen aus dem Zweiten Material mƶglichst gering sein, um das Feld mƶglichst wenig zu beeinflussen. Weiterhin kƶnnen die Stützen in unregelmƤĆigen AbstƤnden angeordnet werden, um Resonanzen auf dem Leitersystem zu verhindern.Another advantageous embodiment of the invention consists in that layers of a second, mechanically rigid insulating material are provided in a dielectric made of a first material comprising air perpendicular to the conductor structure. Thus, the electrical properties of the device are dominated by the large area first material. The second material is provided as a support for fixing the conductor structure and for stabilizing the first material, if this is a foam or hollow body, for example. Of course, the cross-sectional area of the supports of the second material should be as low as possible in order to influence the field as little as possible. Furthermore, the supports can be arranged at irregular intervals to prevent resonances on the conductor system.
In einer weiteren vorteilhaften Ausgestaltung weist das den Leiteraufbau tragende Teil eine Nut zur Aufnahme mindestens eines Dielektrikums auf. Mit Hilfe einer solchen Nut lässt sich das Dielektrikum einfach und in der Fertigung kostengünstig fixieren.In a further advantageous embodiment, the part carrying the conductor structure has a groove for receiving at least one dielectric. With the help of such a groove, the dielectric can be fixed easily and inexpensively in production.
Eine andere Ausgestaltung sieht vor, dass die Nut zur Aufnahme mindestens eines Dielektrikums gleichzeitig zur Fixierung der Leiterstruktur vorgesehen ist.Another embodiment provides that the groove for receiving at least one dielectric is simultaneously provided for fixing the conductor structure.
In einer besonders vorteilhaften Ausgestaltung der Erfindung umfasst die Leiterstruktur ein symmetrisches Leitersystem. Derartige symmetrische Leitersysteme kƶnnen besonders Abstrahlungsarm realisiert werden. Insbesondere in einer symmetrischen Ausbildung des Leitersystems und beim Betrieb mit symmetrischen elektrischen Signalen heben sich in der Ferne die elektrischen Felder und die magnetischen Felder der Leiter gegenseitig auf. Solche Leitersysteme werden bevorzugt mit zwei Leitern eingesetzt. Zu weiteren Darstellung wird auf die Offenbarung der US-Patentschrift 5,530,422 sowie der internationalen Verƶffentlichung WO 98/29919 verwiesen.In a particularly advantageous embodiment of the invention, the conductor structure comprises a symmetrical conductor system. Such symmetrical conductor systems can especially low emission can be realized. Particularly in a symmetrical design of the conductor system and in operation with symmetrical electrical signals, the electric fields and the magnetic fields of the conductors cancel each other out in the distance. Such ladder systems are preferably used with two conductors. For further illustration, reference is made to the disclosure of US Pat. No. 5,530,422 and international publication WO 98/29919.
In einer weiteren Ausgestaltung der Erfindung umfasst die Leiterstruktur ein unsymmetrisches Leitersystem. Es gibt spezielle Fälle von unsymmetrischen Leitersystemen, in denen auch die Abstrahlung gering gehalten werden kann. Ein Beispiel hierfür ist das in der US-Patentschrift 5,208,581 dargestellte System. Hierbei werden entsprechend der Signalpolarität unterschiedliche Leitersysteme vom Strom durchflossen. Allerdings ist bei unsymmetrischen Leitersystemen meist ein wesentlich höherer technischer Aufwand zur Störunterdrückung notwendig als bei symmetrischen Leitersystemen.In a further embodiment of the invention, the conductor structure comprises an asymmetrical conductor system. There are special cases of unbalanced conductor systems in which the radiation can be kept low. An example of this is the system shown in US Patent 5,208,581. In this case, current flows through different conductor systems in accordance with the signal polarity. However, unbalanced conductor systems usually require significantly more technical effort for suppressing interference than with symmetrical conductor systems.
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben.
- Fig. 1 zeigt in allgemeiner Form schematisch eine erfindungsgemƤĆe Vorrichtung.
- Fig. 2 zeigt beispielhaft eine Ausführungsform einer Leiteranordnung.
- Fig. 3 zeigt beispielhaft eine Ausführungsform einer Leiteranordnung mit einem Dielektrikum, welches zumindest Feststoffe enthält.
- Fig. 4 zeigt eine Anordnung mit einem TrƤger aus Isoliermaterial.
- Fig. 5 zeigt eine Anordnung mit einem leitfƤhigen TrƤger.
- Fig. 6 zeigt eine Anordnung in einem leitfƤhigen TrƤger mit abgeschrƤgter BezugsflƤche.
- Fig. 7 zeigt eine Ausführungsform mit einem parallel zu Leiterstruktur und Bezugsfläche geschichteten Dielektrikum.
- Fig. 8 zeigt eine vorteilhaften Ausführung mit senkrecht zu Leiterstruktur und Bezugsfläche geschichteten Dielektrikum in einem Schnitt längs zur Bewegungsrichtung.
- Fig. 9 zeigt eine vorteilhaften Ausführung mit senkrecht zu Leiterstruktur und Bezugsfläche geschichtetem Dielektrikum in einem Schnitt quer zur Bewegungsrichtung.
- Fig. 10 zeigt eine Anordnung mit senkrecht zu Leiterstruktur und Bezugsfläche geschichtetem in Dielektrikum, wobei die Schichten als Stützen in Längsrichtung der Leiterstruktur ausgebildet sind.
- Fig. 11 zeigt eine Anordnung mit einer besonders Kapazitätsarm ausgebildeten Stütze aus massivem Dielektrikum.
- Fig. 1 shows in a general form schematically a device according to the invention.
- Fig. 2 shows an example of an embodiment of a conductor arrangement.
- FIG. 3 shows by way of example an embodiment of a conductor arrangement with a dielectric which contains at least solids.
- Fig. 4 shows an arrangement with a carrier made of insulating material.
- Fig. 5 shows an arrangement with a conductive carrier.
- Fig. 6 shows an arrangement in a conductive support with a beveled reference surface.
- FIG. 7 shows an embodiment with a dielectric layered parallel to the conductor structure and the reference surface.
- FIG. 8 shows an advantageous embodiment with dielectric layered perpendicular to the conductor structure and the reference surface in a section along the direction of movement.
- Fig. 9 shows an advantageous embodiment with layered perpendicular to the conductor structure and reference surface dielectric in a section transverse to the direction of movement.
- FIG. 10 shows an arrangement with dielectric layers stacked perpendicular to the conductor structure and the reference surface, wherein the layers are formed as supports in the longitudinal direction of the conductor structure.
- FIG. 11 shows an arrangement with a support of solid dielectric formed with a particularly low capacity.
In der Fig. 1 ist eine erfindungsgemƤĆe Vorrichtung beispielhaft abgebildet. Ein Sender (10) speist elektrische Signale in die Leiteranordnung (11) ein. Gegenüber der Leiteranordnung (11) und dem damit verbundenen Sender (10) ist der EmpfƤnger (12) beweglich angeordnet. Die relative Bewegung erfolgt auf vorgegebenen Bahnen. Derartige Bahnen kƶnnen beispielsweise linear oder auch kreisfƶrmig sein. Die Leiteranordnung (11) ist entlang mindestens einer dieser Bahnen der Bewegung angeordnet, so dass an jedem Punkt der Bewegung, an dem Signale übertragen werden sollen nur eine kurze Distanz zwischen der Leiteranordnung (11) und dem EmpfƤnger (12) besteht. Typischerweise liegen die Distanzen in einem Bereich von 0.1 mm bis ca. 10 mm. Ein direkter Kontakt mit einer Distanz von 0 ist mƶglich. Hierbei liegt der Fall einer galvanischen Ćbertragung vor. Um hier eine hohe Lebensdauer des Kontaktsystems zu erhalten, ist es notwendig, wie OberflƤchen besonders zu gestalten. Im Normalfall ist jedoch eine kontaktlose und damit verschleiĆarme Ćbertragung erwünscht. GrƶĆere AbstƤnde als ca. 10 mm sind nicht ausgeschlossen, aber in den meisten FƤllen unerwünscht, da die Abstrahlung der gesamten Leiteranordnung (11) derart niedrig sein soll, dass keine Stƶrung bzw. Beeinflussungen anderer GerƤteteile bzw. GerƤte erfolgt. Daher ist das Ćbertragungssystem gezielt so ausgelegt, dass das elektromagnetische Fernfeld der Leiteranordnung (11) mƶglichst gering und im Idealfall gleich 0 ist.In Fig. 1, a device according to the invention is shown by way of example. A transmitter (10) feeds electrical signals into the conductor arrangement (11). Opposite the conductor arrangement (11) and the associated transmitter (10), the receiver (12) is arranged to be movable. The relative movement takes place on predetermined paths. Such webs may for example be linear or circular. The conductor arrangement (11) is arranged along at least one of these tracks of the movement, so that there is only a short distance between the conductor arrangement (11) and the receiver (12) at each point of the movement at which signals are to be transmitted. Typically, the distances are in a range of 0.1 mm to about 10 mm. Direct contact with a distance of 0 is possible. This is the case of a galvanic transmission. In order to obtain a long service life of the contact system here, it is necessary to design surfaces as special. Normally, however, a contactless and thus low-wear transmission he wishes. Greater distances than about 10 mm are not excluded, but in most cases undesirable because the radiation of the entire conductor assembly (11) should be so low that no interference or interference of other equipment or devices takes place. Therefore, the transmission system is deliberately designed so that the electromagnetic far field of the conductor arrangement (11) is as low as possible and ideally equal to zero.
Die Fig. 2 zeigt beispielhaft eine besonders einfache Ausführungsform einer Leiteranordnung (11). Die Leiteranordnung umfasst mindestens eine Leiterstruktur (1) sowie eine dieser zugeordnete Bezugsfläche (2) und ein Dielektrikum (3). Zur besseren Veranschaulichung sind auf der Leiterstruktur (1) zwei Leiter (1a, 1b) dargestellt. Diese Leiter können beliebige, dem Stand der Technik entsprechende Verläufe aufweisen. Die Bezugsfläche (2) selbst ist zumindest an deren Oberfläche elektrisch leitfähig. In diesem Beispiel befindet sich zwischen der Leiterstruktur (1) und der Bezugsfläche (2) eine Hohlraum, welcher mit Luft oder einem ähnlichen Gas geführt ist. Somit ist in diesem Falle die Luft das Dielektrikum.2 shows by way of example a particularly simple embodiment of a conductor arrangement (11). The conductor arrangement comprises at least one conductor structure (1) and a reference surface (2) associated therewith and a dielectric (3). For better illustration, two conductors (1a, 1b) are shown on the conductor structure (1). These conductors may have any of the prior art gradients. The reference surface (2) itself is electrically conductive at least on its surface. In this example, located between the conductor structure (1) and the reference surface (2) is a cavity, which is guided with air or a similar gas. Thus, in this case, the air is the dielectric.
In Fig. 3 ist beispielhaft eine Ausführungsform einer Leiteranordnung (11) entsprechend Fig. 2, wobei der Hohlraum zwischen der Leiterstruktur (1) und der Bezugsfläche (2) mit einem Dielektrikum (3) gefüllt ist, welches zumindest teilweise aus Feststoffen besteht. Derartige Dielektrika können beispielsweise Gitterstrukturen oder auch Schäume eines Isoliermaterials sein.In Fig. 3 is an example of an embodiment of a conductor arrangement (11) corresponding to Fig. 2, wherein the cavity between the conductor structure (1) and the reference surface (2) with a dielectric (3) is filled, which consists at least partially of solids. Such dielectrics may be, for example, lattice structures or foams of an insulating material.
Fig. 4 zeigt eine Anordnung, bei der die Leiterstruktur (1) in einem Träger (6) aus Isoliermaterial befestigt ist. Zur Aufnahme des Dielektrikums (3) und der Bezugsfläche (2) ist eine Nut in dem Träger vorgesehen. In diesem Falle ist die Bezugsfläche (2) als elektrisch leitende Fläche im Boden der Nut ausgeführt. Eine solche elektrisch leitende Fläche kann beispielsweise mittels eines leitfähigen Lackes oder eines dünnen Folienstreifens realisiert werden. Ein solcher Folienstreifen kann durch Adhäsion, aber auch durch Klebemittel wie doppelseitiges Klebeband befestigt werden. Durch die vergleichsweise robuste Befestigung in einem massiven Träger ist die Geometrie und damit auch die Symmetrie der Anordnung präzise definiert und langzeitstabil fixiert.Fig. 4 shows an arrangement in which the conductor structure (1) is mounted in a carrier (6) made of insulating material. For receiving the dielectric (3) and the reference surface (2), a groove is provided in the carrier. In this case, the reference surface (2) is designed as an electrically conductive surface in the bottom of the groove. Such an electrically conductive surface can be realized for example by means of a conductive paint or a thin film strip. Such a film strip can be attached by adhesion, but also by adhesive such as double-sided adhesive tape. Due to the comparatively robust attachment in a solid support, the geometry and thus also the symmetry of the arrangement is precisely defined and fixed with long-term stability.
In Fig. 5 ist eine Anordnung mit einem leitfƤhigen TrƤger dargestellt. Dieser leitfƤhigen TrƤger besitzt eine Nut zur Aufnahme des Dielektrikums und erfüllt mit seiner OberflƤche die Funktion der BezugsflƤche (2). Optional ist die OberflƤche im inneren der Nut veredelt, um eine langzeitstabile, gut leitfƤhige OberflƤche zu erhalten. Weiterhin kann die Nut derart ausgestaltet sein, dass sie zur prƤzise definierten Aufnahme der Leiterstruktur (1) ausgelegt ist. In dieser Ausführungsform kann die Geometrie meist noch prƤziser als mit einem leitfƤhigen TrƤger und einer zusƤtzlichen BezugsflƤche definiert werden, da hier Toleranzen durch das Aufkleben bzw. durch die Dickentoleranzen der zusƤtzlichen BezugsflƤche entfallen. Weiterhin besteht in dieser Ausführungsform ein grƶĆerer Freiheitsgrad zur Gestaltung der Nut selbst. Diese kann nun auch im Hinblick auf kostengünstige Fertigung optimiert werden, ein da hier kein zusƤtzlicher Leiter als BezugsflƤche eingebracht werden muss.FIG. 5 shows an arrangement with a conductive carrier. This conductive support has a groove for receiving the dielectric and fulfills with its surface the function of the reference surface (2). Optionally, the surface is refined inside the groove to obtain a long-term stable, highly conductive surface. Furthermore, the groove can be designed such that it is designed for precisely defined recording of the conductor structure (1). In this embodiment, the geometry can usually be defined even more precisely than with a conductive support and an additional reference surface, since tolerances due to sticking or due to the thickness tolerances of the additional reference surface are omitted here. Furthermore, in this embodiment, a greater degree of freedom for the design of the groove itself. This can now be optimized with regard to cost-effective production be, because here no additional conductor must be introduced as a reference surface.
Fig. 6 zeigt eine Ausführungsform, in der das Dielektrikum (3) sowie die Leiterstruktur (1) in einem leitfähigen Träger aufgenommen sind. Hierbei weist die Nut zur Aufnahme einen symmetrischen, beidseitig abgeschrägten Boden auf.FIG. 6 shows an embodiment in which the dielectric (3) and the conductor structure (1) are accommodated in a conductive carrier. Here, the groove for receiving a symmetrical, both sides beveled bottom.
In Fig. 7 ist eine Ausführungsform mit einem parallel zu Leiterstruktur und BezugsflƤche geschichtete Dielektrikum dargestellt. Zur Aufnahme dient ein TrƤger (6), in den eine Nut eingebracht ist, dessen Innenseite gleichzeitig als BezugsflƤche (2) dient. Das Dielektrikum weist hier beispielhaft eine erste Schicht (5) bestehend aus einem massiven Isoliermaterial auf. Parallel zur dieser befindet sich eine zweite Schicht bestehend aus einem Dielektrikum umfassend Luft bzw. Gas. Das erste Dielektrikum hat primƤr die Aufgabe, die Leiterstruktur (1) zu tragen und in einer definierten Position zu fixieren. Eine prƤzise Fixierung der Leiterstruktur an der vorgegebenen Position symmetrisch zur Umgebung und insbesondere zur BezugsflƤche (2) ist wesentlich für eine hohe Symmetrie der Signale und damit eine hohe Stƶrfestigkeit bzw. eine niedrige Stƶremission. Um hier eine ausreichende mechanische StabilitƤt zu erreichen, wurde in diesem Beispiel eine groĆe Schichtdicke der ersten Schicht gewƤhlt. Die zweite Schicht (4) besteht aus einem Dielektrikum mit niedriger DielektrizitƤtskonstante und geringen Verlusten. Durch die elektrische Serienschaltung mit der ersten Schicht mit hoher DielektrizitƤtskonstante ist der überwiegende Anteil der gesamten elektrischen FeldstƤrke und somit auch der im Feld gespeicherten Energie in der zweiten Schicht (5) mit niedriger DielektrizitƤtskonstante. Dadurch, dass diese auch einen wesentlich geringeren Verlustfaktor aufweist, ist der Gesamt-Verlustfaktor der Anordnung wesentlich geringer.FIG. 7 shows an embodiment with a dielectric layered parallel to the conductor structure and reference surface. For receiving serves a carrier (6), in which a groove is introduced, the inside of which serves as a reference surface (2) at the same time. By way of example, the dielectric has a first layer (5) consisting of a solid insulating material. Parallel to this is a second layer consisting of a dielectric comprising air or gas. The primary purpose of the first dielectric is to support the conductor structure (1) and fix it in a defined position. A precise fixation of the conductor structure at the predetermined position symmetrical to the environment and in particular to the reference surface (2) is essential for a high symmetry of the signals and thus a high immunity to interference or a low interference emission. In order to achieve sufficient mechanical stability, a large layer thickness of the first layer was chosen in this example. The second layer (4) consists of a dielectric with low dielectric constant and low losses. By the electrical series connection with the first layer with high dielectric constant is the vast majority of the total electric field strength and thus also the stored energy in the second layer (5) with low dielectric constant. Because this also has a much lower loss factor, the total loss factor of the arrangement is much lower.
In Fig. 8 ist eine vorteilhafte Ausgestaltung der Erfindung mit senkrecht zu Leiterstruktur bzw. Bezugsfläche geschichtetem Dielektrikum in einem Schnitt längs der Ausbreitungsrichtung dargestellt. In bestimmten Abständen sind Stützen aus einem massiven Isoliermaterial (5) senkrecht zwischen Leiterstruktur und Bezugsfläche angeordnet, um eine definierte Ausrichtung der Leiterstruktur zur Bezugsfläche zu gewährleisten. Die Zwischenräume sind mit einem Isoliermaterial umfassend Luft bzw. Gas gefüllt. Die Stützen selbst können in konstantem oder auch Variablen Abständen zueinander angebracht sein. Variable Abstände helfen Resonanzen in dem Leitungssystem zu verhindern. Idealerweise werden die Stützen schmal ausgeführt, so dass die Kapazität am Ort der Stützen relativ gering ist. Damit lassen sich die Reflexionen am Ort dieser Stützen minimieren.FIG. 8 shows an advantageous embodiment of the invention with a dielectric layered perpendicular to the conductor structure or reference surface in a section along the propagation direction. At certain intervals supports made of a solid insulating material (5) are arranged perpendicularly between the conductor structure and the reference surface in order to ensure a defined alignment of the conductor structure to the reference surface. The spaces are filled with an insulating material comprising air or gas. The supports themselves can be mounted in constant or variable intervals. Variable distances help to prevent resonances in the line system. Ideally, the supports are made narrow, so that the capacity at the location of the supports is relatively low. This minimizes reflections at the location of these columns.
In Fig. 9 ist eine Anordnung entsprechend Fig. 8 in einem Schnitt senkrecht zur Bewegungsrichtung dargestellt. Hierbei sind die Stützen aus massiven Isoliermaterial derart ausgeführt, dass sie sich nicht über die ganze Breite der Nut in dem Träger erstrecken. Dies führt zu einer weiteren Reduzierung der Verluste in den Stützen. Selbstverständlich können diese Stützen auch aus Stabilitätsgründen auch über die ganze Breite der Nut erstreckt sein.FIG. 9 shows an arrangement corresponding to FIG. 8 in a section perpendicular to the direction of movement. Here, the supports of solid insulating material are designed such that they do not extend over the entire width of the groove in the carrier. This leads to a further reduction of the losses in the supports. Of course, these supports can also be extended for reasons of stability over the entire width of the groove.
Fig. 10 zeigt eine Anordnung mit senkrechter Schichtung des Dielektrikums. Hierbei sind die Schichten derart ausgebildet, dass sich schmale Stege aus dem ersten Dielektrikum (5), aus massivem Isoliermaterial, lƤngs der Leiterstruktur ergeben. Somit sind in Ausbreitungsrichtung lƤngs der Leiterstruktur keine Reflexionen vorhanden. Allerdings muss hier auf einen sehr symmetrische Anordnung und stabile Fixierung der LƤngsstreifen geachtet werden, um eine hohe Symmetrie zu erreichen.Fig. 10 shows an arrangement with vertical layering of the dielectric. In this case, the layers are formed in such a way that narrow webs of the first dielectric (5), made of solid insulating material, result along the conductor structure. Thus, no reflections are present in the propagation direction along the conductor structure. However, attention must be paid to a very symmetrical arrangement and stable fixation of the longitudinal strips in order to achieve a high degree of symmetry.
Fig. 11 zeigt eine Anordnung mit einer besonders Kapazitätsarm ausgebildeten Stütze aus massivem Dielektrikum, um die Reflexionen am Ort der Stützen zu minimieren. Selbstverständlich können auch andere Arten und Ausbildungen von Stützen eingesetzt werden. Wesentlich hierbei ist die mechanisch tragende Funktion der Stütze. D. h. sie sollte steifer bzw. stabiler als das Dielektrikum, welches im wesentlichen seine Eigenschaften von Luft bzw. Gas erhält, beschaffen sein.Fig. 11 shows an arrangement with a particularly low-capacity solid dielectric support to minimize the reflections at the location of the supports. Of course, other types and configurations of supports can be used. Essential here is the mechanically supporting function of the support. Ie. it should be stiffer than the dielectric, which essentially retains its properties of air or gas.
- 11
- Leiterstrukturconductor structure
- 1a1a
- erster Leiterfirst leader
- 1b1b
- zweiter Leitersecond conductor
- 22
- BezugsflƤchereference surface
- 33
- Dielektrikum (allgemeinen)Dielectric (general)
- 44
- Dielektrikum umfassend Luft bzw. GasDielectric comprising air or gas
- 55
- Dielektrikum aus massivem IsoliermaterialDielectric made of solid insulating material
- 66
- TrƤgercarrier
- 1010
- Sendertransmitter
- 1111
- Leiteranordnungconductor arrangement
- 1212
- EmpfƤngerreceiver
Claims (16)
- Device for broadband signal transmission between units that are movable along predetermined tracks, comprising:- at least one transmitter (10) for generating electrical signals;- at least one conductor arrangement (11) for conducting at least one of the electrical signals of at least one transmitter along the track of movement with low outward emission of radiation;- at least one receiver (12) for coupling-out electrical signals from at least one conductor arrangement in the near field of the conductor arrangement;in which at least one conductor arrangement comprises:- at least one conductor structure (1) for conducting electrical signals, the conductor structure comprising a symmetrical conductor system; and- at least one electrically conducting reference surface (2) assigned to each conductor structure; and also- at least one dielectric (3) of high homogeneity between the conductor structure and the reference surface;characterized in that
at least one dielectric of high homogeneity and of high symmetry with respect to the electrical centre of the longitudinal axis of the conductor structure is provided, the tolerances of the dielectric constants and the dielectric losses with reference to an equipotential surface through the longitudinal axis of the conductor structure are less than 5 %, and the dielectric comprises hollow structures that are filled with air and/or industrially usable gases, and/or a gas layer. - Device according to claim 1,
characterized in that at least one dielectric comprises a honeycomb-shaped or grid-shaped structure of an insulating material, the hollow spaces or intermediate spaces being filled with air or a gas. - Device according to any one of the preceding claims,
characterized in that at least one dielectric comprises a foam or granules of an insulating material, the hollow spaces being filled with air or a gas. - Device according to any one of the preceding claims,
characterized in that at least one dielectric comprises a polyethylene foam. - Device according to any one of the preceding claims,
characterized in that at least one dielectric is built-up of a plurality of layers. - Device according to any one of the preceding claims,
characterized in that at least one dielectric is built-up of a plurality of layers disposed in parallel to the conductor structure. - Device according to any one of the preceding claims,
characterized in that at least one dielectric comprises at least one first layer of a first material comprising, or enclosing in hollow spaces, air or a gas, and at least one layer of at least one massive second insulating material. - Device according to claim 7,
characterized in that the second layer is designed to be a mechanically rigid layer for stabilizing or fixing the first layer. - Device according to any one of claims 7 to 8,
characterized in that the second layer is designed to be a support for the conductor structure. - Device according to any one of the preceding claims,
characterized in that at least one additional layer of a conductive material, or a conductive material having incomplete surface coverage such as a grid structure, for example, is provided. - Device according to any one of the preceding claims,
characterized in that the dielectric is built-up of a plurality of layers disposed perpendicularly to the conductor structure. - Device according to claim 12,
characterized in that the layers are disposed to be symmetrical to the electrical centre of the longitudinal axis of the conductor structure. - Device according to any one of the preceding claims,
characterized in that a dielectric of a first material comprising air or gas is provided, and that layers of a mechanically stiff insulating material disposed perpendicularly to the conductor structure are provided at a predetermined spacing to stabilize or fix the conductor structure. - Device according to at least one of the preceding claims,
characterized in that a groove for accommodating the dielectric (3) is provided in the part supporting the conductor assembly (11). - Device according to claim 14,
characterized in that the groove for accommodating the dielectric is also provided for fixing the conductor structure. - Device according to any one of the preceding claims,
characterized in that a groove for fixing the conductor structure is provided in the part supporting the conductor assembly (11).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10206160 | 2002-02-14 | ||
DE10206160A DE10206160A1 (en) | 2002-02-14 | 2002-02-14 | Device for transmitting signals between moving units |
PCT/DE2003/000455 WO2003069797A2 (en) | 2002-02-14 | 2003-02-14 | Device for transmitting signals between mobile units |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1476956A2 EP1476956A2 (en) | 2004-11-17 |
EP1476956B1 true EP1476956B1 (en) | 2006-06-14 |
Family
ID=27634948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03739434A Expired - Lifetime EP1476956B1 (en) | 2002-02-14 | 2003-02-14 | Device for transmitting signals between mobile units |
Country Status (6)
Country | Link |
---|---|
US (1) | US7212077B2 (en) |
EP (1) | EP1476956B1 (en) |
AT (1) | ATE330376T1 (en) |
AU (1) | AU2003215506A1 (en) |
DE (2) | DE10206160A1 (en) |
WO (1) | WO2003069797A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012111382A1 (en) * | 2012-11-23 | 2014-05-28 | GAT Gesellschaft für Antriebstechnik mbH | Antenna structure for broadband transmission of electrical signals |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256737A1 (en) * | 2008-04-11 | 2009-10-15 | Rosemount Tank Radar Ab | Radar level gauge system with multi band patch antenna array arrangement |
NL1039667C2 (en) * | 2012-06-11 | 2013-12-12 | Purac Biochem Bv | Quantification of lactide amounts in a polymeric matrix. |
DE102013001667A1 (en) | 2013-01-31 | 2014-07-31 | Harry Schilling | Device for performing broad-band signal transfer between e.g. crane, along given trajectories, has dielectric, where plastic resin or electrically conductive material is introduced as potential or reference surface material in dielectric |
DE102014206295A1 (en) | 2014-04-02 | 2015-10-08 | Siemens Aktiengesellschaft | Device and method for the contactless transmission of electrical signals and computed tomography system with such a device |
EP3503349B1 (en) | 2017-12-22 | 2020-07-15 | Siemens Healthcare GmbH | Data transmission unit and imaging apparatus comprising a corresponding data transmission unit |
DE102018117892A1 (en) * | 2018-07-24 | 2020-01-30 | GAT Gesellschaft für Antriebstechnik mbH | System for the contactless transmission of data |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463404A (en) * | 1994-09-30 | 1995-10-31 | E-Systems, Inc. | Tuned microstrip antenna and method for tuning |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4516097A (en) * | 1982-08-03 | 1985-05-07 | Ball Corporation | Apparatus and method for coupling r.f. energy through a mechanically rotatable joint |
GB2131232B (en) * | 1982-09-27 | 1986-05-08 | Rogers Corp | Microstrip antenna and method of manufacture thereof |
US5576710A (en) * | 1986-11-25 | 1996-11-19 | Chomerics, Inc. | Electromagnetic energy absorber |
US5140696A (en) * | 1989-02-28 | 1992-08-18 | Kabushiki Kaisha Toshiba | Communication system for transmitting data between a transmitting antenna utilizing strip-line transmission line and a receive antenna in relative movement to one another |
JP2736107B2 (en) * | 1989-03-14 | 1998-04-02 | ę Ŗå¼ä¼ē¤¾ę±č | Signal wiring board |
US5160936A (en) * | 1989-07-31 | 1992-11-03 | The Boeing Company | Multiband shared aperture array antenna system |
US4973972A (en) * | 1989-09-07 | 1990-11-27 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Adminstration | Stripline feed for a microstrip array of patch elements with teardrop shaped probes |
JPH03205901A (en) * | 1989-10-26 | 1991-09-09 | Toshiba Corp | Electromachinery |
US5208581A (en) * | 1991-11-22 | 1993-05-04 | General Electric Company | High speed communication apparatus for computerized axial tomography (cat) scanners with matching receiver |
DE4412958A1 (en) * | 1994-04-17 | 1995-10-19 | Schwan Ulrich | Data transmission device |
US5530422A (en) * | 1994-09-16 | 1996-06-25 | General Electric Company | Differentially driven transmission line for high data rate communication in a computerized tomography system |
ATE403240T1 (en) | 1997-01-03 | 2008-08-15 | Schleifring Und Appbau Gmbh | DEVICE FOR THE CONTACTLESS TRANSMISSION OF ELECTRICAL SIGNALS AND/OR ENERGY |
US5936203A (en) * | 1997-10-15 | 1999-08-10 | Andrew Corporation | Radiating coaxial cable with outer conductor formed by multiple conducting strips |
JP3241019B2 (en) * | 1999-03-15 | 2001-12-25 | ę„ę¬é»ę°ę Ŗå¼ä¼ē¤¾ | Coplanar railway track |
DE10021671A1 (en) * | 2000-05-05 | 2001-11-15 | Schleifring Und Appbau Gmbh | Broadband signal transmission device with bi-directional transmission path, includes units mutually movable along selectable trajectory |
US6340951B1 (en) * | 2000-06-02 | 2002-01-22 | Industrial Technology Research Institute | Wideband microstrip leaky-wave antenna |
KR100466073B1 (en) * | 2002-05-24 | 2005-01-13 | ģ¼ģ±ģ 기주ģķģ¬ | Dielectric Composition Having Improved Homogeneity And Insulation Resistance, Preparing Method Thereof And Multilayer Ceramic Condenser Using The Same |
-
2002
- 2002-02-14 DE DE10206160A patent/DE10206160A1/en not_active Ceased
-
2003
- 2003-02-14 AU AU2003215506A patent/AU2003215506A1/en not_active Abandoned
- 2003-02-14 AT AT03739434T patent/ATE330376T1/en not_active IP Right Cessation
- 2003-02-14 WO PCT/DE2003/000455 patent/WO2003069797A2/en not_active Application Discontinuation
- 2003-02-14 EP EP03739434A patent/EP1476956B1/en not_active Expired - Lifetime
- 2003-02-14 DE DE50303824T patent/DE50303824D1/en not_active Expired - Lifetime
-
2004
- 2004-08-13 US US10/918,549 patent/US7212077B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463404A (en) * | 1994-09-30 | 1995-10-31 | E-Systems, Inc. | Tuned microstrip antenna and method for tuning |
Non-Patent Citations (1)
Title |
---|
DAIGLE B.: "Printed circuit board material and design considerations for wireless applications", ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, 28 May 1996 (1996-05-28), pages 354 - 357, XP010167266 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012111382A1 (en) * | 2012-11-23 | 2014-05-28 | GAT Gesellschaft für Antriebstechnik mbH | Antenna structure for broadband transmission of electrical signals |
WO2014079744A1 (en) * | 2012-11-23 | 2014-05-30 | GAT Gesellschaft für Antriebstechnik mbH | Antenna structure for the wide-band transmission of electrical signals |
US9478853B2 (en) | 2012-11-23 | 2016-10-25 | Gat Gesellschaft Fur Antriebstechnik Mbh | Antenna structure for the wide-band transmission of electrical signals |
Also Published As
Publication number | Publication date |
---|---|
WO2003069797A2 (en) | 2003-08-21 |
EP1476956A2 (en) | 2004-11-17 |
ATE330376T1 (en) | 2006-07-15 |
AU2003215506A8 (en) | 2003-09-04 |
DE10206160A1 (en) | 2003-08-28 |
WO2003069797A3 (en) | 2003-10-16 |
US20050040917A1 (en) | 2005-02-24 |
US7212077B2 (en) | 2007-05-01 |
AU2003215506A1 (en) | 2003-09-04 |
DE50303824D1 (en) | 2006-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60038586T2 (en) | NRD waveguides and backwall systems | |
DE60024128T2 (en) | PRINTED PCB WITH LOSS-BASED POWER DISTRIBUTION NETWORK TO REDUCE POWER SUPPLY LEVEL RESONANCES | |
DE69620673T2 (en) | Vertical microwave connection by means of an arrangement with a compressible conductor | |
WO2008155340A1 (en) | Impedance-controlled coplanar waveguide system for the three-dimensional distribution of high-bandwidth signals | |
EP2991159B1 (en) | Feed network for antenna systems | |
DE102013213981A1 (en) | Coil for switching device with high RF power | |
DE112019003857T5 (en) | FILTER | |
DE102017124974B3 (en) | Connection unit for high frequency devices | |
EP1476956B1 (en) | Device for transmitting signals between mobile units | |
DE2403056A1 (en) | ADJUSTABLE DELAY LINE AND PROCEDURE FOR ITS OPERATION | |
EP2489095B1 (en) | Antenna coupler | |
DE19915074B4 (en) | Dielectric resonator and dielectric filter with such a resonator | |
DE3215323A1 (en) | Antenna in the form of a slotted line | |
WO2007131879A1 (en) | Test device with hf/uhf dual band antenna for testing rfid transponders in a production device | |
DE112005000068B4 (en) | Directional coupler of the microstrip line type | |
EP0886887B1 (en) | Planar emitter | |
DE10225803A1 (en) | Device for broadband electrical connection between two mutually movable units | |
EP1006608A2 (en) | Multi-layered antenna arrangement | |
EP1139491A2 (en) | Radiating coaxial high-frequency cable | |
EP2137787B1 (en) | Isolation amplifier | |
DE3209697C2 (en) | Damper plate | |
EP0649180B1 (en) | Stripline with adjustable electrical length | |
EP0429791B1 (en) | Resonator tuning device | |
DE69837841T2 (en) | Composite circuit and switching device to do so | |
EP0789416A1 (en) | Passive non-reciprocal multiport element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040914 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO |
|
17Q | First examination report despatched |
Effective date: 20041018 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060614 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50303824 Country of ref document: DE Date of ref document: 20060727 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060914 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060925 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061114 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070315 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: SCHLEIFRING UND APPARATEBAU G.M.B.H. Effective date: 20070228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070607 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060914 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080214 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060614 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061215 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140218 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140220 Year of fee payment: 12 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150214 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20151030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150302 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220223 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50303824 Country of ref document: DE |