[go: up one dir, main page]

EP1473208B1 - Process for detection of track occupation - Google Patents

Process for detection of track occupation Download PDF

Info

Publication number
EP1473208B1
EP1473208B1 EP03009575A EP03009575A EP1473208B1 EP 1473208 B1 EP1473208 B1 EP 1473208B1 EP 03009575 A EP03009575 A EP 03009575A EP 03009575 A EP03009575 A EP 03009575A EP 1473208 B1 EP1473208 B1 EP 1473208B1
Authority
EP
European Patent Office
Prior art keywords
frequency
receiver
information
transmitted
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03009575A
Other languages
German (de)
French (fr)
Other versions
EP1473208A1 (en
Inventor
Rolf Schmid
Manja Eichenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Schweiz AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to AT03009575T priority Critical patent/ATE303277T1/en
Priority to EP03009575A priority patent/EP1473208B1/en
Priority to DE50301090T priority patent/DE50301090D1/en
Priority to ES03009575T priority patent/ES2247447T3/en
Publication of EP1473208A1 publication Critical patent/EP1473208A1/en
Application granted granted Critical
Publication of EP1473208B1 publication Critical patent/EP1473208B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/16Devices for counting axles; Devices for counting vehicles
    • B61L1/167Circuit details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/18Railway track circuits
    • B61L1/181Details
    • B61L1/188Use of coded current

Definitions

  • the present invention relates to a method for detection a track occupancy according to the preamble of the claim 1.
  • track vacancy reporting means the axle counting - mechanically or electronically - known.
  • an axle detector is disclosed in which by means of an inductance passing through a conductor loop and The rails are formed in a limited section that Pre-crossing of a wagon or axle by short-circuiting the aforementioned inductance is detected.
  • An application of an axle counting sensor is presented in [2].
  • Electronic detection systems and in particular electronically working axle counters have the disadvantage that they turn on the relevant working frequencies, such as 33kHz, 43kHz or 850 kHz or 1.2 MHz exposed to interference and therefore have limited availability.
  • the interference can be caused, for example are powered by electric eddy current brakes and inverter locomotives.
  • a relocation of the Operating frequencies in supposedly interference-free areas bring lasting success.
  • very broadband Sources of interference can actually no working frequency which are outside the frequency band of the whole the sources of interference.
  • an interference field through a first coreless coil to detect and provide a second coreless coil to the Compensate interference field This application can not full compensation can be achieved as these are only for homogeneous interference fields acts.
  • a wheel sensor which has two independent, having galvanically isolated Radsensorsysteme. These detect the wheel flange of a railway wheel.
  • the operating principle based on an electromagnetic alternating field deprived of energy by damping with metal. This System requires monitoring of correct assembly.
  • the present invention is therefore based on the object to provide a method for detecting the lane occupation, that as far as possible immune to electromagnetic interference in a wide frequency range and no settings required during installation.
  • the inventive method opens up the possibility existing installations on the track, be it Axle counter or track circuits, continue to use.
  • By the Coupling of transmitting unit and receiving unit requires this inventive method no calibration and no level adjustments during installation.
  • Through the spectral broadband information containing signal is ensures that occurring interference fields, for example by magnetic rail brakes or eddy current brakes caused, does not affect the safety-related Detecting a track occupancy.
  • the spectrally wideband signal containing an information can be coded in various ways, for example through the Direct Sequence Spread Spectrum technique (DSSS) or by repetitive sending of a rising or falling Frequency curve. Because with this procedure always a receiver is present, this receiver can also be used for detection use of static or transient interference fields and thereby, in the sense of a learning system, it can be sent out Frequency course, if necessary outside or on Edge of an interference field to be created and safety be further improved. But this learning behavior is not absolutely necessary for the process according to the invention.
  • DSSS Direct Sequence Spread Spectrum technique
  • the frequency sweep keying technique is different from the otherwise commonly used meaning labeled with FSK technology. It may therefore not with the so-called Frequency Shift Keying Technique (also called: Frequency shift keying method) for which also the acronym FSK is in use.
  • Frequency Shift Keying Technique also called: Frequency shift keying method
  • An information S B spread in this way is modulated to a carrier frequency.
  • Fig. 1 shows two separated by a rail insulation 12 Track sections.
  • a track section is in the distance d from a transmitter / transmitter 5 a receiving circuit with a Receiver / transformer 6 connected.
  • a typical area for such a distance d lies in the interval 25 m .. 2500 m.
  • the thus modulated Carrier frequency when used in a track circuit as shown in FIG. 1 on the transmitting coil 51 as Part of a transformer 5 switched.
  • the secondary transmission coil 52 as part of the transformer 5 is connected to the two rails. 3 a track section connected.
  • the receiver / transmitter 6 has a receiving coil 62 and in the primary circuit Secondary circuit on a receiving coil 61.
  • the principal Function of such a track circuit in DC or AC technology is the following: Responds to a quiet track circuit a receiving device at a free track and the Rail-mounted relay or electronic detection "picks up". If a wagon is on the track section, it will change the electrical conditions. It creates a shunt, so that by the receiving device only a small Residual current flows. This will determine that the section is occupied, since the jelly relay then no longer "attracts". This construction has the consequence that all frequently occurring Errors such as interruptions of the circuit (for example by a Line break or defective fuses) to one alleged lead occupied track section.
  • This procedure in DC or AC technique has the disadvantage that reverse currents in the rails can simulate an occupancy, the do not represent any occupancy by an axle or vehicle.
  • the spread signal modulated onto a carrier frequency band is broadband.
  • the specified upper limit of the frequency band can be explained by the fact that above this frequency emission limits must be observed.
  • the level of the signal S B 'received by the receiver 6 in the receiver coil 62 is dependent upon the presence of a wheel 1 in the immediate vicinity of the transmitter / receiver located on the rail. In a receiving device (not shown in the figures), this signal S B 'must be despread. This is generally much more complex than the spread.
  • the transmission clock is directly present in the reception device, because transmission and reception devices can be realized directly next to one another or as an integrated device.
  • This essential requirement is generally not the case for DSSS messaging.
  • no special effort for synchronization is provided in the receiving device.
  • the received signal S B ' is in turn XORed to the same Barker code B.
  • the received signal S B ' has according to the figure 5 at the point i a curve S i .
  • a non-ideal course also occurs in the other places, but this is not shown in FIG. 5, but is shown merely by way of example for location i.
  • This signal S i deviates from the mean signal strength S Avg by D i .
  • the deviation D i is then multiplied by -1 if the value of the Barker code at the position i is equal to 1.
  • the result R i is calculated from this value added to the average signal strength S Avg .
  • the transmitted spread S B can nevertheless be regenerated as information S.
  • the following frequencies or a frequency band from the frequency band listed below are used for the transmission: 10 kHz .. 30 MHz.
  • the information S is spread with another Barker code B 2 , this code comprising m 2 digits.
  • the spread signal S B2 is modulated on a carrier frequency band disjoint with respect to the first carrier frequency band.
  • the Barker Code B 2 no special conditions apply, in particular the lengths m and m 2 may be different. In this way, a redundant two-channel system for detecting a track occupancy is created, which is largely immune to interference on certain frequency bands and thereby optimally meets security requirements. Despite the redundancy, no second installation of facilities on the track is required. Such a second channel with another Barker code B 2 can be implemented with relatively little effort.
  • the second embodiment of the present invention will be based on the "magnetic" implementation according to the Fig. 2 and 3 explained.
  • the receiving coils 9a and 9b detect over the field lines 13, the spectrum emitted by the transmitting coil 5.
  • the level This spectrum is dependent on the presence of a Rades or an object made of a magnetic material between transmitting coil 5 and receiving coil 9a and 9b.
  • FIG. 6 c shows a constant level P s over the frequency range, which is defined by the lower frequency f 1 and the upper frequency f 2 .
  • the transmitting coil 5 is supplied via the aforementioned frequency range [f 1 .. f 12 ] this level.
  • a reception level P S is shown in a momentary level distance P D , it is assumed that an interference field D f is present in a small subrange around a frequency f.
  • the term "momentary" mentioned above means for the relevant frequency f at a certain time.
  • This reception level occurs at a reception coil 9a or 9b.
  • This interference field is of course part of the received signal S B , with the level P s ,. For clarification, however, this is designated in FIG.
  • FIG. 8 shows an evaluation of the frequency characteristics f a and f b generated according to FIGS. 6 a in an implementation with digital signal processors.
  • the transmitting device 50 has a voltage-controlled oscillator 55 (VCO voltage controlled oscillator).
  • a controller 56 generates a corresponding voltage curve for the desired frequency profile.
  • Not shown in FIG. 9 is a possibly provided feedback in order to avoid transient or quasi-static interference fields detected in the receiver coils 9a and 9b.
  • a transmission clock generator 54 is provided for determining the respective distance T ab from the two frequency curves f a , f b as well as for the repetition T REP .
  • the receiver coils 9a and 9b are each connected to a broadband filter 71.
  • the transmit clock generator is also connected to bandwidth attenuated filters 71 to supply the received level of the respective frequency to the A / D converters 72 in the respective time frame.
  • the digital values of the levels at discrete time intervals are levels at specific frequencies, see FIG. 6c. Although the frequency is indicated on the abscissa, in a method with, for example, a linearly increasing frequency, this abscissa is also underlaid by a time axis.
  • These digital levels are subjected to a reference storage 64 over time in order to be able to compensate for any aging phenomena.
  • the time constant here is orders of magnitude of weeks or months.
  • the above-mentioned digital signals are, as explained earlier on FIGS. 6a and 6c, used for wheel or axle recovery.
  • the result is a value ⁇ 1.
  • the sign contains the direction of travel.
  • the long-term return of the stored reference values has the consequence that this embodiment of the present invention requires no external calibration.
  • the aforementioned value ⁇ 1 is further evaluated in a known manner in the Achsoutheasternelektronik 80.
  • FIG. 6b shows a logarithmic progression, the scale f 1 to f 2 being linear.
  • a representation with a logarithmic scale would also have been possible, the graphical representation then appearing as "linear".
  • the advantage of a logarithmic progression lies in the fact that the residence time in an assumed interference band f d1 and f d2 is shorter than in the linear time profile according to FIG. 6a. In this way, a statically known interference band can be additionally avoided.
  • the respective emitted frequency response f a , f b , etc. is known, it would also be possible to determine by a detection and analysis of the disturbance field "the frequency response to be emitted so that the current, quasi-static interference field 6a and 6b, the frequency response over time is strictly monotonically increasing, but it is also possible to provide a frequency response that is either monotonically increasing, monotonically decreasing, or severe is monotonically decreasing.
  • first course f a can also be ascending and the second course f b formed falling.
  • the method described above can also be carried out with two channels.
  • independent transmitting devices 6c and 6d are provided for a second channel, which generate a frequency curve f c and f d as shown in FIG. 6a.
  • the corresponding courses f c and f d can be registered in the receiver coils 9c and 9d and analyzed or correlated in the receiver units 6c and 6b.
  • This dual-channel design enables the required safety requirement with regard to redundancy and independence to be met.
  • the transmitting coil 5 is a static element. A possible impairment of the function of the transmitting coil 5 can be determined from the transmitter side and is thus independent of signals of the receiving circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A broadband, information- (S) containing signal (SB) generated in a unit (50) modulates the transmitter (5). Signals (SB') registered by the receiver (6) are sent to a unit (60) for information recovery. Transmitter and receiver are coupled. Difference in received signal level is indicative of rail icing.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Detektion einer Geleisebelegung nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a method for detection a track occupancy according to the preamble of the claim 1.

Aus dem Stand der Eisenbahnsicherungstechnik ist bekannt, die Belegung eines Geleises mit einem Gleisstromkreis zu detektieren. Dazu sind die beiden Schienen eines Geleiseabschnittes voneinander isoliert. Beim Befahren durch einen Eisenbahnfahrzeug werden die beiden Schienen elektrisch kurzgeschlossen und dadurch kann die Belegung zuverlässig festgestellt werden. Ebenso sind Gleisfreimeldeverfahren mittels der Achszählung - mechanisch oder elektronisch - bekannt. Beispielsweise ist in [1] ein Achsdetektor offenbart, bei dem mittels einer Induktivität, die durch eine Leiterschlaufe und den Schienen in einem begrenzten Abschnitt gebildet wird, die Vorüberfahrt eines Wagens bzw. einer Achse durch Kurzschliessen der vorgenannten Induktivität festgestellt wird. Eine Anwendung eines Achszählsensors ist in [2] vorgestellt. Elektronische Detektionssysteme und insbesondere elektronisch arbeitenden Achszähler weisen den Nachteil auf, dass sie auf den betreffenden Arbeitsfrequenzen wie z.B. 33 kHz, 43 kHZ oder 850 kHz oder 1.2 MHz den Störbeeinflussungen ausgesetzt sind und demzufolge eine beschränkte Verfügbarkeit aufweisen. Die Störbeeinflussungen können beispielsweise verursacht werden durch elektrische Wirbelstrombremsen und Umrichterlokomotiven. Wie in [3] ausgeführt, kann eine Verlegung der Arbeitsfrequenzen in vermeintlich störfeldfreie Bereiche, keinen dauerhaften Erfolg bringen. Gerade bei sehr breitbandigen Störquellen kann eigentlich keine Arbeitsfrequenz festgelegt werden, die ausserhalb des Frequenzbandes der Gesamtheit der Störquellen liegt. Dazu wird in [3] vorgeschlagen, ein Störfeld durch eine erste kernlose Spule zu detektieren und eine zweite kernlose Spule vorzusehen, um das Störfeld zu kompensieren. Bei dieser Anwendung kann keine vollständige Kompensation erreicht werden, da diese nur für homogene Störfelder wirkt. Da die Feldverteilung radial um das Schienenprofil geht, sind inhomogene Störfelder stets vorhanden. Die Kompensation wirkt bei der Resonanz eines Kreises um einen Arbeitsfrequenzpunkt deshalb nicht vollständig, da die Kompensation frequenzabhängig ist. Eine Überlagerung durch starke Transientenströme kann Ausschwingsignale bzw. keine Kompensation des Störfeldes zur Folge haben.From the state of railway safety technology is known, the Occupancy of a track with a track circuit to detect. These are the two rails of a track section isolated from each other. When driving through a Railway vehicle, the two rails are electrically shorted and thereby the occupancy can be reliably detected become. Likewise, track vacancy reporting means the axle counting - mechanically or electronically - known. For example, in [1] an axle detector is disclosed in which by means of an inductance passing through a conductor loop and The rails are formed in a limited section that Pre-crossing of a wagon or axle by short-circuiting the aforementioned inductance is detected. An application of an axle counting sensor is presented in [2]. Electronic detection systems and in particular electronically working axle counters have the disadvantage that they turn on the relevant working frequencies, such as 33kHz, 43kHz or 850 kHz or 1.2 MHz exposed to interference and therefore have limited availability. The interference can be caused, for example are powered by electric eddy current brakes and inverter locomotives. As stated in [3], a relocation of the Operating frequencies in supposedly interference-free areas, bring lasting success. Especially with very broadband Sources of interference can actually no working frequency which are outside the frequency band of the whole the sources of interference. This is suggested in [3], an interference field through a first coreless coil to detect and provide a second coreless coil to the Compensate interference field. This application can not full compensation can be achieved as these are only for homogeneous interference fields acts. Because the field distribution radially around the rail profile goes, are inhomogeneous interference always available. The compensation acts at the resonance of a Circle around a working frequency point therefore not complete, since the compensation is frequency-dependent. An overlay strong transient currents can cause dimming signals or no compensation of the interference field to have.

In [4] wird ein Radsensor vorgeschlagen, der zwei unabhängige, galvanisch getrennte Radsensorsysteme aufweist. Diese detektieren den Spurkranz eines Eisenbahnrades. Das Wirkprinzip basiert darauf, dass einem elektromagnetischen Wechselfeld durch Bedämpfung mit Metall Energie entzogen wird. Dieses System erfordert eine Überwachung der korrekten Montage.In [4] a wheel sensor is proposed which has two independent, having galvanically isolated Radsensorsysteme. These detect the wheel flange of a railway wheel. The operating principle based on an electromagnetic alternating field deprived of energy by damping with metal. This System requires monitoring of correct assembly.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Detektion der Geleisebelegung anzugeben, dass weitestgehend immun gegen elektromagnetische Störbeeinflussungen in einem weiten Frequenzbereich ist und keine Einstellungen bei der Montage erfordert.The present invention is therefore based on the object to provide a method for detecting the lane occupation, that as far as possible immune to electromagnetic interference in a wide frequency range and no settings required during installation.

Diese Aufgabe wird erfindungsgemäss durch das im Patentanspruch 1 angegebene Verfahren gelöst.This object is achieved by the in the claim 1 specified method solved.

Durch das erfindungsgemässe Verfahren eröffnet sich die Möglichkeit, bestehende Installationen am Geleise, seien es nun Achszähler oder Gleisstromkreise, weiter zu nutzen. Durch die Kopplung von Sendeeinheit und Empfangseinheit erfordert das erfindungsgemässe Verfahren keine Kalibrierung und keine pegelmässigen Einstellungen bei der Montage. Durch das spektral breitbandige, eine Information enthaltende Signal ist sichergestellt, dass auftretende Störfelder, die beispielsweise durch Magnetschienenbremsen oder Wirbelstrombremsen verursacht werden, keinen Einfluss auf die sicherheitsrelevante Detektion einer Geleisebelegung ausüben. The inventive method opens up the possibility existing installations on the track, be it Axle counter or track circuits, continue to use. By the Coupling of transmitting unit and receiving unit requires this inventive method no calibration and no level adjustments during installation. Through the spectral broadband, information containing signal is ensures that occurring interference fields, for example by magnetic rail brakes or eddy current brakes caused, does not affect the safety-related Detecting a track occupancy.

Das spektral breitbandige eine Information enthaltende Signal lässt sich auf verschiedene Arten codieren, beispielsweise durch die Direct Sequence Spread Spectrum Technik (DSSS) oder durch repetitives Aussenden eines ansteigenden oder fallenden Frequenzverlaufes. Da bei diesem Verfahren stets ein Empfänger vorhanden ist, lässt sich dieser Empfänger auch zur Feststellung von statischen oder transienten Störfeldern nutzen und dadurch kann im Sinne eines lernenden Systems der auszusendene Frequenzverlauf gegebenenfalls ausserhalb oder am Rande eines Störfeldes angelegt werden und die Sicherheit weiter verbessert werden. Dieses lernende Verhalten ist aber für das erfindungsgemässe Verfahren nicht zwingend notwendig.The spectrally wideband signal containing an information can be coded in various ways, for example through the Direct Sequence Spread Spectrum technique (DSSS) or by repetitive sending of a rising or falling Frequency curve. Because with this procedure always a receiver is present, this receiver can also be used for detection use of static or transient interference fields and thereby, in the sense of a learning system, it can be sent out Frequency course, if necessary outside or on Edge of an interference field to be created and safety be further improved. But this learning behavior is not absolutely necessary for the process according to the invention.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in weiteren Ansprüchen angegeben.Further advantageous embodiments of the invention are in further claims.

Die Erfindung wird nachfolgend anhand einer Zeichnung beispielsweise näher erläutert. Dabei zeigen:

Figur 1
Prinzipdarstellung eines Gleisstromkreises bei Anwendung einer ersten Ausführungsform der vorliegenden Erfindung;
Figur 2
Anordnung von Sende- und Empfangsspulen am Gleis;
Figur 3
Aufbau eines Radsensors in montiertem Zustand an einer Schiene;
Figur 4
Prinzipdarstellung der Spreizung eines Signals für die DSSS-Technik;
Figur 5
Darstellung eines gestörten Signals SB';
Figur 6a
Darstellung des zeitlich linearen FSK-Verfahrens
Figur 6b
Darstellung des zeitlich logarithmischen FSK-Verfahrens;
Figur 6c
Darstellung des Verlaufes des Sende- und Empfangspegels über ein Frequenzband beim FSK-Verfahren;
Figur 7
Prinzipschema zur Raddetektion für FSK-Verfahren;
Figur 8
Prinzipschema zur Raddetektion für FSK-Verfahren für digitalen Signalprozessoren.
The invention will be explained in more detail with reference to a drawing, for example. Showing:
FIG. 1
Schematic representation of a track circuit when using a first embodiment of the present invention;
FIG. 2
Arrangement of transmitting and receiving coils on the track;
FIG. 3
Structure of a wheel sensor in the assembled state on a rail;
FIG. 4
Schematic representation of the spread of a signal for the DSSS technique;
FIG. 5
Representation of a disturbed signal S B ';
FIG. 6a
Representation of the temporally linear FSK method
FIG. 6b
Representation of the time-logarithmic FSK method;
FIG. 6c
Representation of the course of the transmission and reception level over a frequency band in the FSK method;
FIG. 7
Schematic diagram for wheel detection for FSK methods;
FIG. 8
Schematic diagram for wheel detection for FSK methods for digital signal processors.

Die Erfindung wird anhand zweier Codierverfahren unter Verwendung eines breitbandigen Frequenzbereiches zur Detektion einer Geleisebelegung erläutert:

  • 1. Detektion mit der Direct Sequence Spread Spectrum Technik, im folgenden DSSS-Technik genannt;
  • 2. Detektion mittels Frequency Sweep Keying Technik; im folgenden FSK-Technik genannt. Bei dieser FSK-Technik ist ein steigender oder fallender Frequenzverlauf innerhalb eines vorgegebenen Frequenzbandes vorgesehen: "überstreichen" = sweep des Frequenzbandes.
  • The invention will be explained with reference to two coding methods using a broadband frequency range for the detection of a track occupancy:
  • 1. Detection with the Direct Sequence Spread Spectrum technique, called DSSS technique in the following;
  • 2. Detection by frequency sweep keying technique; in the following called FSK technique. In this FSK technique, an increasing or decreasing frequency response within a given frequency band is provided: "sweep" = sweep of the frequency band.
  • In dieser Schrift wird die Frequency Sweep Keying Technik abweichend von der sonst üblicherweise verwendeten Bedeutung mit FSK-Technik bezeichnet. Sie darf daher nicht mit der sogenannten Frequency Shift Keying Technik (auch genannt: Verfahren der Frequenzumtastung) verwechselt werden, für die ebenfalls das Akronym FSK gebräuchlich ist.In this document, the frequency sweep keying technique is different from the otherwise commonly used meaning labeled with FSK technology. It may therefore not with the so-called Frequency Shift Keying Technique (also called: Frequency shift keying method) for which also the acronym FSK is in use.

    Die vorgenannten zwei Techniken sind anwendbar bei:

  • A1 "Galvanische" Detektion einer Geleisebelegung über einen Gleisstromkreis durch "Kurzschliessen" zweier einen Geleiseabschnitt bildende Schienen;
  • A2 magnetische Detektion eines Rades und Anwendung einer Rad- bzw. Achszählmethode.
  • The above two techniques are applicable to:
  • A1 "Galvanic" detection of a track occupancy via a track circuit by "short-circuiting" two rails forming a track section;
  • A2 magnetic detection of a wheel and application of a wheel or axle counting method.
  • Für die magnetische Detektion erfolgt eine Erläuterung anhand der Figuren 2 und 3. Die magnetische oder galvanische Detektion sind dabei unabhängig von den vorerwähnten zwei Codierverfahren.For the magnetic detection, an explanation will be given Figures 2 and 3. The magnetic or galvanic detection are independent of the aforementioned two coding methods.

    Die erste Ausführungsform der vorliegenden Erfindung wird anhand der "galvanischen" Implementierungsform gemäss der Figur 1 erläutert und beinhaltet folgende Schritte:

  • Ein Information S in binärer Darstellung der Breite n Bit wird gemäss der DSSS-Technik mit einer sogenannten "Chipping Sequence" B - auch Barker Code B genannt - exklusiv-oder verknüpft. Diese Verknüpfung wird meist mit XOR bezeichnet.
  • The first embodiment of the present invention is explained with reference to the "galvanic" implementation form according to FIG. 1 and includes the following steps:
  • An information S in binary representation of the width n bits is exclusive-or linked according to the DSSS technique with a so-called "chipping sequence" B - also called Barker code B. This link is usually called XOR.
  • Die Verknüpfung XOR ist in Figur 4 dargestellt, wobei für die Information S lediglich eine Breite von n = 2 Bit angenommen wurde, das Ergebnis der Verknüpfung XOR mit dem Barker Code B ist mit SB bezeichnet. Die Breite m des Barker Codes B beträgt in dieser Darstellung m = 11 Bit. Eine auf diese Weise gespreizte Information SB wird auf eine Trägerfrequenz moduliert.The linkage XOR is shown in FIG. 4, where for the information S only a width of n = 2 bits has been assumed, the result of the linkage XOR with the barker code B is denoted by S B. The width m of the Barker code B is m = 11 bits in this representation. An information S B spread in this way is modulated to a carrier frequency.

    Fig. 1 zeigt zwei durch eine Schienenisolierung 12 getrennte Geleiseabschnitte. Für einen Geleiseabschnitt ist im Abstand d von einem Sender/Übertrager 5 ein Empfangskreis mit einem Empfänger/Übertrager 6 angeschlossen. Ein typischer Bereich für einen solchen Abstand d liegt im Intervall 25 m .. 2500 m. Wie vorstehend ausgeführt, wird die so modulierte Trägerfrequenz in der Anwendung in einem Gleisstromkreis gemäss der Darstellung von Fig. 1 auf die Sendespule 51 als Teil eines Übertragers 5 geschaltet. Die sekundäre Sendespule 52 als Teil des Übertragers 5 ist an die beiden Schienen 3 eines Geleiseabschnittes angeschlossen. Der Empfänger/Übertrager 6 weist im Primärkreis eine Empfangsspule 62 und im Sekundärkreis eine Empfangsspule 61 auf. Die prinzipielle Funktion eines solchen Gleisstromkreises in DC- oder AC-Technik ist folgende: Bei einem Ruhe-Gleisstromkreis reagiert eine Empfangseinrichtung bei einem freien Geleise und das Geleiserelais oder eine elektronische Detektion "zieht an". Befindet sich ein Wagon auf dem Geleiseabschnitt, ändern sich die elektrischen Verhältnisse. Es entsteht ein Nebenschluss, so dass durch die Empfangseinrichtung nur noch ein kleiner Reststrom fließt. Damit wird festgestellt, dass der Abschnitt belegt ist, da das Geleiserelais dann nicht mehr "anzieht". Dieser Aufbau hat zur Folge, dass alle häufig auftretenden Fehler wie Unterbrechungen des Stromkreises (z.B. durch einen Leitungsbruch oder defekte Sicherungen) zu einem angeblich besetzten Geleiseabschnitt führen. Dieses Verfahren in DC- oder AC-Technik ist mit dem Nachteil behaftet, dass Rückströme in den Schienen eine Belegung simulieren können, die gar keine Belegung durch eine Achse bzw. Fahrzeug darstellen. Fig. 1 shows two separated by a rail insulation 12 Track sections. For a track section is in the distance d from a transmitter / transmitter 5 a receiving circuit with a Receiver / transformer 6 connected. A typical area for such a distance d lies in the interval 25 m .. 2500 m. As stated above, the thus modulated Carrier frequency when used in a track circuit as shown in FIG. 1 on the transmitting coil 51 as Part of a transformer 5 switched. The secondary transmission coil 52 as part of the transformer 5 is connected to the two rails. 3 a track section connected. The receiver / transmitter 6 has a receiving coil 62 and in the primary circuit Secondary circuit on a receiving coil 61. The principal Function of such a track circuit in DC or AC technology is the following: Responds to a quiet track circuit a receiving device at a free track and the Rail-mounted relay or electronic detection "picks up". If a wagon is on the track section, it will change the electrical conditions. It creates a shunt, so that by the receiving device only a small Residual current flows. This will determine that the section is occupied, since the jelly relay then no longer "attracts". This construction has the consequence that all frequently occurring Errors such as interruptions of the circuit (for example by a Line break or defective fuses) to one alleged lead occupied track section. This procedure in DC or AC technique has the disadvantage that reverse currents in the rails can simulate an occupancy, the do not represent any occupancy by an axle or vehicle.

    Dies trifft auch bei einem DC-Kreis zu, da aufgrund der hohen Ströme auch nur wenige Promille eines DC-Anteils die vorgenannten Relais zum Ansprechen bzw. nicht Ansprechen bringen. Dieser Nachteil wird in dieser ersten Ausführungsform der vorliegenden Erfindung dadurch behoben, dass das auf ein Trägerfrequenzband modulierte gespreizte Signal breitbandig ist. Die angegebene obere Grenze des Frequenzbandes erklärt sich dadurch, dass oberhalb dieser Frequenz Emissionsgrenzwerte einzuhalten sind. Der Pegel des vom Empfänger 6 in der Empfangsspule 62 empfangenen Signals SB' ist abhängig von der Anwesenheit eines Rades 1 in der unmittelbaren Umgebung der an der Schiene angeordneten Sender/Empfänger. In einer Empfangseinrichtung (nicht dargestellt in den Figuren) muss dieses Signal SB'entspreizt werden. Dies ist im allgemeinen wesentlich komplexer als die Spreizung. Bei der vorliegenden Erfindung ist jedoch besonders vorteilhaft, dass in der Empfangseinrichtung der Sendetakt direkt vorhanden ist, weil Sende- und Empfangseinrichtung unmittelbar nebeneinander oder als integrierte Einrichtung realisiert werden können. Diese wesentliche Voraussetzung trifft bei einer Nachrichtenübertragung in DSSS-Technik im allgemeinen nicht zu. Somit ist in der Empfangseinrichtung kein besonderer Aufwand zur Synchronisation vorzusehen. Das empfangene Signal SB' wird wiederum mit dem gleichen Barker Code B XOR-verknüpft. Das empfangene Signal SB' hat gemäss der Figur 5 an der Stelle i einen Verlauf Si. Selbstverständlich tritt auch an den anderen Stellen ein nicht idealer Verlauf auf, dies ist in der Figur 5 jedoch nicht dargestellt, sondern lediglich exemplarisch für die Stelle i dargestellt. Dieses Signal Si weicht um Di von der mittleren Signalstärke SAvg ab. Die Abweichung Di wird anschliessend mit -1 multipliziert, falls der Wert des Barker Codes an der Stelle i gleich 1 ist. Das Resultat Ri berechnet sich aus diesem Wert addiert zur mittleren Signalstärke SAvg. Ein Integrator summiert die dabei erhaltenen Werte für jede Stelle i = 1, 2, .. n des Barker Codes der Länge n. Ist das Ergebnis grösser als die mittlere Signalstärke SAvg so entscheidet ein Komparator für dieses Bit (der Nutzinformation S) auf 1, sonst auf 0. Auf diese Weise kann nun entschieden werden, ob an der betreffenden Stelle der Schiene sich ein Rad befindet oder nicht.This also applies to a DC circuit, since, due to the high currents, only a few parts per thousand of a DC component cause the aforementioned relays to respond or not to respond. This disadvantage is remedied in this first embodiment of the present invention in that the spread signal modulated onto a carrier frequency band is broadband. The specified upper limit of the frequency band can be explained by the fact that above this frequency emission limits must be observed. The level of the signal S B 'received by the receiver 6 in the receiver coil 62 is dependent upon the presence of a wheel 1 in the immediate vicinity of the transmitter / receiver located on the rail. In a receiving device (not shown in the figures), this signal S B 'must be despread. This is generally much more complex than the spread. However, in the case of the present invention, it is particularly advantageous that the transmission clock is directly present in the reception device, because transmission and reception devices can be realized directly next to one another or as an integrated device. This essential requirement is generally not the case for DSSS messaging. Thus, no special effort for synchronization is provided in the receiving device. The received signal S B 'is in turn XORed to the same Barker code B. The received signal S B 'has according to the figure 5 at the point i a curve S i . Of course, a non-ideal course also occurs in the other places, but this is not shown in FIG. 5, but is shown merely by way of example for location i. This signal S i deviates from the mean signal strength S Avg by D i . The deviation D i is then multiplied by -1 if the value of the Barker code at the position i is equal to 1. The result R i is calculated from this value added to the average signal strength S Avg . An integrator sums the values obtained for each position i = 1, 2,... N of the Barker code of length n. If the result is greater than the mean signal strength S Avg , a comparator decides on this bit (the useful information S) to be 1 , otherwise to 0. In this way it can now be decided whether or not there is a wheel at the relevant point of the rail.

    Der besondere Vorteil des vorstehend genannten Codierung mit der DSSS-Technik liegt darin, dass eine elffache Redundanz vorliegt. Dies ist gegeben durch die Barker Code Breite von m = 11. Bei einer schmalbandigen Störung an verschiedenen Stellen im Frequenzband kann dadurch das übertragene gespreizte SB trotzdem als Information S regeneriert werden. Für die Übertragung werden beispielhaft folgende Frequenzen bzw. ein Frequenzband aus dem nachfolgend aufgeführten Frequenzband verwendet:
       10 kHz .. 30 MHz.
    The particular advantage of the aforementioned coding with the DSSS technique is that there is an eleven-fold redundancy. This is given by the Barker code width of m = 11. In a narrow-band interference at different locations in the frequency band, the transmitted spread S B can nevertheless be regenerated as information S. For example, the following frequencies or a frequency band from the frequency band listed below are used for the transmission:
    10 kHz .. 30 MHz.

    In einer besonders vorteilhaften Weiterentwicklung der vorliegenden Erfindung kann unter Nutzung der bestehenden Infrastruktur wie der vorstehend genannte Geleisestromkreis zur Erhöhung der Detektionssicherheit folgendes vorgesehen werden: Die Information S wird mit einem weiteren Barker Code B2 gespreizt, wobei dieser Code m2 Stellen umfasst. Das gespreizte Signal SB2 wird auf einem gegenüber dem ersten Trägerfrequenzband disjunkten Trägerfrequenzband moduliert. Für den Barker Code B2 gelten keine besonderen Bedingungen, insbesondere können die Längen m und m2 verschieden sein. Auf diese Weise ist ein redundantes zweikanalsystem zur Detektion einer Geleisebelegung geschaffen, das gegenüber einer Störung auf bestimmten Frequenzbändern weitestgehend immun ist und dadurch gestellte Sicherheitsanforderungen optimal erfüllt. Trotz der Redundanz ist keine Zweitinstallation von Einrichtungen am Geleise erforderlich. Ein solcher zweiter Kanal mit einem weiteren Barker Code B2 ist mit relativ geringem Aufwand implementierbar.In a particularly advantageous further development of the present invention, the following can be provided by using the existing infrastructure such as the above-mentioned track circuit for increasing the detection reliability: The information S is spread with another Barker code B 2 , this code comprising m 2 digits. The spread signal S B2 is modulated on a carrier frequency band disjoint with respect to the first carrier frequency band. For the Barker Code B 2 no special conditions apply, in particular the lengths m and m 2 may be different. In this way, a redundant two-channel system for detecting a track occupancy is created, which is largely immune to interference on certain frequency bands and thereby optimally meets security requirements. Despite the redundancy, no second installation of facilities on the track is required. Such a second channel with another Barker code B 2 can be implemented with relatively little effort.

    Die zweite Ausführungsform der vorliegenden Erfindung wird anhand der "magnetischen" Implementierungsform gemäss den Fig. 2 und 3 erläutert. The second embodiment of the present invention will be based on the "magnetic" implementation according to the Fig. 2 and 3 explained.

    Figur 2 zeigt die Anordnung eines Senders 5 und eines Empfängers 6 links und rechts einer Schiene 3 eines Geleises 11. Sender 5 und Empfänger 6 sind über eine Anschlussleitung 8 mit einer Anschlussklemme verbunden. Zu beachten ist, dass der Empfänger 6 wenigstens zwei Empfangsspule 9a und 9b (nicht dargestellt in den Fig. 2 und 3) aufweist, die typischer Weise in einem Abstand von etwa 10 cm (- 0 cm; + 10 cm) angeordnet sind. In Figur 3 ist die konstruktive Anordnung des Senders 5 und des Empfängers 6 in einem Radsensor 9 dargestellt. In einem Gehäuse sind geschützt Sender 5 und Empfänger 6 resp. Empfangsspulen 9a, 9b, .. untergebracht und mit einem Befestigungsmittel 7, wie z.B. eine Schraubverbindung, fest mit der Schiene 3 verbunden. Die Anschlussleitungen 8 werden vom Geleise her gesehen nach aussen zu einer nicht darstellten Anschlussklemme 10 geführt. Ebenfalls nicht dargestellt ist die Befestigung der Schiene an der durch die Oberkante 4 dargestellten Schwellen. Zwischen Sender 5 und Empfänger 6 sind über die Schienenoberkante führende Feldlinien 13 dargestellt. Der Verlauf der Feldlinien 13 wird dabei durch ein vorbeirollendes Rad 1 beeinflusst. Zur Darstellung der Orientierung ist das Rad 1 mit einem Radkranz 2 gezeigt. Der Sender 5 resp. die Sendespule erstrecken sich über die wenigstens zwei Empfangsspulen 9a, 9b. Es könnten jedoch noch weitere Empfangsspule 9c und 9d vorgesehen sein. Die Sendespule 5 wird in einer ersten Variante mit einem Signal gemäss der Darstellung von Fig. 6a beaufschlagt. Dieses Signal, d.h. die Frequenzverlauf fa wird repetitiv in einem Raster von Trep ausgesendet. Dieser Frequenzverlauf fa ist innerhalb von Trep linear über die Zeit von einer ersten unteren Frequenz f1 zu einer oberen Frequenz f2. In der Fachsprache wird ein so linear oder anders ansteigender oder fallender Frequenzverlauf als "Sweep" bezeichnet. In einem zeitlichen Abstand von Tab wird ein weiterer Verlauf fb auf die Sendespule 5 geschaltet. Der zeitliche Abstand Tab kann als Codierung einer bestimmten Information S herangezogen werden. Typische Werte für die vorgenannten Variablen sind:

  • f1 = 10 kHz
  • f2 = 10 MHz
  • Trep = 10 .. 2000 µs
  • Tab = 2 .. 500 µs
  • FIG. 2 shows the arrangement of a transmitter 5 and a receiver 6 to the left and right of a rail 3 of a track 11. Transmitter 5 and receiver 6 are connected via a connecting line 8 to a connection terminal. It should be noted that the receiver 6 has at least two receiving coils 9a and 9b (not shown in Figs. 2 and 3), typically arranged at a distance of about 10 cm (-0 cm; + 10 cm). In Figure 3, the structural arrangement of the transmitter 5 and the receiver 6 is shown in a wheel sensor 9. In a housing protected transmitter 5 and receiver 6 resp. Reception coils 9a, 9b, .. housed and connected to a fastening means 7, such as a screw, fixed to the rail 3. The connection lines 8 are seen from the track ago outwards to an unillustrated terminal 10 out. Also not shown is the attachment of the rail at the thresholds represented by the upper edge 4. Between transmitter 5 and receiver 6 leading field lines 13 are shown on the top rail. The course of the field lines 13 is influenced by a passing wheel 1. To illustrate the orientation of the wheel 1 is shown with a rim 2. The transmitter 5 resp. the transmitting coil extend over the at least two receiving coils 9a, 9b. However, it could be provided even more receiving coil 9c and 9d. The transmission coil 5 is acted upon in a first variant with a signal according to the illustration of Fig. 6a. This signal, ie the frequency curve f a is emitted repetitively in a grid of T rep . This frequency curve f a is linear within T rep over the time from a first lower frequency f 1 to an upper frequency f 2 . In technical terms, such a linear or otherwise increasing or decreasing frequency response is referred to as a "sweep". In a time interval of T from a subsequent course is f b switched to the transmit coil. 5 The time interval T ab can be used as a coding of a specific information S. Typical values for the aforementioned variables are:
  • f 1 = 10 kHz
  • f 2 = 10 MHz
  • T rep = 10 .. 2000 μs
  • T ab = 2 .. 500 μs
  • Die Empfangsspulen 9a und 9b detektieren über die Feldlinien 13 das von der Sendespule 5 ausgesandte Spektrum. Der Pegel dieses Spektrums ist dabei abhängig von der Anwesenheit eines Rades bzw. eines Gegenstandes aus einem magnetischen Material zwischen Sendespule 5 und Empfangsspule 9a und 9b.The receiving coils 9a and 9b detect over the field lines 13, the spectrum emitted by the transmitting coil 5. The level This spectrum is dependent on the presence of a Rades or an object made of a magnetic material between transmitting coil 5 and receiving coil 9a and 9b.

    In der Fig. 6c ist ein konstanter Pegel Ps über den Frequenzbereich dargestellt, der durch die untere Frequenz f1 und die obere Frequenz f2 definiert ist. Der Sendespule 5 wird dabei über den vorgenannten Frequenzbereich [f1 .. f12] dieser Pegel zugeführt. Im gleichen Diagramm ist in einem momentanen Pegelabstand PD ein Empfangspegel PS, dargestellt, dabei wird angenommen, dass in einem kleinen Teilbereich um eine Frequenz f eine Störfeld Df vorhanden ist. Der vorstehend erwähnte Begriff "momentan" bedeutet dabei für die betreffende Frequenz f zu einem bestimmten Zeitpunkt. Dieser Empfangspegel tritt bei einer Empfangspule 9a oder 9b auf. Dieses Störfeld ist selbstverständlich Teil des empfangenen Signals SB, mit dem Pegel PS,. Zur Verdeutlichung ist dies jedoch in der Figur 6c besonders mit Df bezeichnet. Aufgrund einer Selbstkalibration ist feststellbar, ob der jeweilige Pegelunterschied PD zwischen PS und PS, der Anwesenheit eines Rades entspricht oder nicht. Dieser Pegelunterschied PD wird durch das vorgenannte Störfeld "verfälscht". Dies ist jedoch für die Feststellung der Anwesenheit bzw. Abwesenheit eines Rades unerheblich, als in diskreten Intervallen über den Frequenz PD bereich [f1 .. f12] der jeweilige Abstand PD detektiert, fortlaufend summiert und schlieslich gemittelt wird. Somit haben durch ein Störfeld bedingte "Ausreisser" keinen Einfluss auf die vorgenannte Feststellung der Anwesenheit bzw. Abwesenheit eines Rades. Darüber hinaus sind die Störfelder hochgradig transient, so dass mit der vorgegebenen Repetition TREP im Bereich von 10 - 2000 µs der momentane Zustand bezüglich der Anwesenheit/Abwesenheit eines Rades an einem Sensor mehrfach ermittelt wird.FIG. 6 c shows a constant level P s over the frequency range, which is defined by the lower frequency f 1 and the upper frequency f 2 . The transmitting coil 5 is supplied via the aforementioned frequency range [f 1 .. f 12 ] this level. In the same diagram, a reception level P S , is shown in a momentary level distance P D , it is assumed that an interference field D f is present in a small subrange around a frequency f. The term "momentary" mentioned above means for the relevant frequency f at a certain time. This reception level occurs at a reception coil 9a or 9b. This interference field is of course part of the received signal S B , with the level P s ,. For clarification, however, this is designated in FIG. 6c particularly by D f . Due to a self-calibration can be determined whether the respective level difference P D between P S and P S , the presence of a wheel or not. This level difference P D is "falsified" by the aforementioned interference field. However, this is irrelevant for determining the presence or absence of a wheel, as in discrete intervals over the frequency P D range [f 1 .. f 12 ] detected the respective distance P D , continuously summed and finally averaged. Thus, outliers caused by an interference field have no influence on the aforementioned determination of the presence or absence of a wheel. In addition, the interference fields are highly transient, so that with the given repetition T REP in the range of 10-2000 μs, the instantaneous state with respect to the presence / absence of a wheel on a sensor is determined several times.

    Für die weitere Auswertung des empfangenen Spektrums wird auf die Figuren 7 und 8 Bezug genommen.For further evaluation of the received spectrum is on Figures 7 and 8, reference is made.

    Fig. 7 zeigt ein erstes Prinzipschema zur Raddektion mittels dem FSK-Verfahren. Mit den Bezugszeichen 5a, 5b, usw. sind synchronisierte Sendeeinrichtungen für den Frequenzverlauf fa, fb, usw. dargestellt. Die von den Sendeeinrichtungen 5a, 5b, usw. erzeugten Signale werden der Sendespule 5 zugeführt. Abhängig von der Anwesenheit eines Rades im Bereich der Sendespule 5 erfolgt in den Empfangsspulen 9a, 9b, usw. eine Induktion. Diese Empfangsspulen 9a, 9b, usw. sind an je eine Empfangseinrichtung 6a, 6b, usw. angeschlossen die ihrerseits mit einem Generator für die Erzeugung der Repetitionszeit TREP angeschlossen sind. Auf diese Weise kann in den Empfangseinrichtungen 6a, 6b, usw. das empfangene Signal mit dem den Sendespulen zugeführten Signal korreliert werden und auftretende Pegelunterschiede für die Anwesenheit eines Rades herangezogen werden. In einer Minimalausführungsform, das heisst in einer einkanaligen Ausführungsform, sind zwei Empfangseinrichtung 6a und 6b vorzusehen. Diesen ist je ein synchronisiertes Bandpassfilter vorgeschaltet. Die Synchronisation erstreckt sich dabei über den jeweiligen Frequenzverlauf fa, fb. Auf diese Weise können Störungen in einem bestimmten Frequenzbereich zu einem bestimmten Zeitpunkt ausgefiltert werden, ohne dass deswegen das in den Empfangsspulen 9a, 9b induzierte Signal dadurch verfälscht" wird. Auf diese Weise ist selbst bei spektral und pegelmässig massiven Störungen eine Korrelation mit dem ausgesendeten Signal möglich und erlaubt daher eine von der Störbeeinflussung unabhängige Detektion eines Rades durch einen so beaufschlagten Radsensor 9. Es sind in einer einkanaligen Ausführung deshalb zwei Empfangsspulen 9a, 9b und zwei Empfangseinrichtung 6a und 6b erforderlich, um die Richtung der Radbewegung feststellen zu können. Aufgrund der festgestellten Richtung wird für den betreffenden Geleiseabschnitt ein Zähler um 1 hoch bzw. herunter getaktet. Die Detektion einer Geleisebelegung selber erfolgt aufgrund des Zählerstandes für den betreffenden Geleiseabschnitt:

  • Zählerstand = 0 : Geleiseabschnitt ist frei;
  • Zählerstand ≠ 0 : Geleiseabschnitt ist belegt.
  • FIG. 7 shows a first schematic diagram for wheel deflection by means of the FSK method. With the reference numerals 5 a , 5 b , etc. Synchronized transmitting devices for the frequency response f a , f b , etc. are shown. The signals generated by the transmitting devices 5 a , 5 b , etc. are fed to the transmitting coil 5. Depending on the presence of a wheel in the region of the transmitting coil 5, an induction takes place in the receiving coils 9a, 9b, etc. These receiving coils 9a, 9b, etc. are each connected to a receiving device 6a, 6b, etc., which in turn are connected to a generator for generating the repetition time T REP . In this way, in the receiving devices 6a, 6b, etc., the received signal can be correlated with the signal supplied to the transmitting coil and occurring level differences for the presence of a wheel can be used. In a minimal embodiment, that is to say in a single-channel embodiment, two receiving devices 6a and 6b are to be provided. These are each preceded by a synchronized bandpass filter. The synchronization extends over the respective frequency curve f a , f b . In this way, disturbances in a specific frequency range can be filtered out at a certain point in time, without the signal induced in the receiving coils 9a, 9b being thereby corrupted, thus correlating with the transmitted signal, even in the case of spectrally and moderately massive interference Therefore, in a single-channel design, two receiver coils 9a, 9b and two receiver devices 6a and 6b are required in order to detect the direction of the wheel movement For the track section in question, a counter is clocked up or down by 1. Detection of a track occupancy itself takes place on the basis of the counter reading for the relevant track section:
  • Meter reading = 0: track section is free;
  • Counter reading ≠ 0: Track section is occupied.
  • In der Figur 8 ist die Auswertung der gemäss den Fig. 6a erzeugten Frequenzverläufe fa und fb in einer Implementierung mit digitalen Signalprozessoren in einer Prinzipdarstellung gezeigt. Die Sendeeinrichtung 50 weist einen spannungsgesteuerten Oszillator 55 (VCO voltage controlled oscillator) auf. Eine Steuerung 56 erzeugt für den gewünschten Frequenzverlauf einen entsprechenden Spannungsverlauf. Nicht dargestellt in der Figur 9 ist eine eventuell vorzusehende Rückführung, um in den Empfangsspulen 9a und 9b festgestellten transienten oder quasistatischen Störfeldern auszuweichen. Für die Bestimmung des jeweiligen Abstandes Tab der beiden Frequenzverläufe fa, fb wie auch für die Wiederholung TREP ist ein Sendetaktgenerator 54 vorgesehen. Die Empfangsspulen 9a und 9b sind mit je einem breitbandigen Filter 71 verbunden. Der Sendetaktgenerator ist ebenfalls mit bandbreiten gedämpften Filtern 71 verbunden, um im jeweiligen Zeitraster den empfangenen Pegel nur der jeweiligen Frequenz den A/D-Wandlern 72 zuzuführen. Die in diskreten Zeitabständen digitalen Werte der Pegel sind Pegel zu bestimmten Frequenzen, siehe dazu die Fig. 6c. Hier ist zwar auf der Abszisse die Frequenz angegeben, bei einem Verfahren mit z.B. linear ansteigender Frequenz ist dieser Abszisse auch eine Zeitachse unterlegt. Diese digitalen Pegel werden über die Zeit einer Referenzspeicherung 64 unterzogen, um allfällige Alterungserscheinungen ausgleichen zu können. Die Zeitkonstante beträgt hier Grössenordnungen von Wochen oder Monaten. Die vorgenannten digitalen Signale werden, wie weiter vorne zu den Figuren 6a und 6c erläutert, zur Rad- bzw. Achsrückgewinnung herangezogen. Als Ergebnis resultiert ein Wert ± 1. Das Vorzeichen enthält dabei die Überfahrrichtung. Die Langzeitrückführung der gespeicherten Referenzwerte hat zur Folge, dass diese Ausführungsform der vorliegenden Erfindung keiner externen Kalibration bedarf. Der vorgenannte Wert ± 1 wird in bekannter Weise in der Achszählelektronik 80 weiter ausgewertet.FIG. 8 shows an evaluation of the frequency characteristics f a and f b generated according to FIGS. 6 a in an implementation with digital signal processors. The transmitting device 50 has a voltage-controlled oscillator 55 (VCO voltage controlled oscillator). A controller 56 generates a corresponding voltage curve for the desired frequency profile. Not shown in FIG. 9 is a possibly provided feedback in order to avoid transient or quasi-static interference fields detected in the receiver coils 9a and 9b. For determining the respective distance T ab from the two frequency curves f a , f b as well as for the repetition T REP , a transmission clock generator 54 is provided. The receiver coils 9a and 9b are each connected to a broadband filter 71. The transmit clock generator is also connected to bandwidth attenuated filters 71 to supply the received level of the respective frequency to the A / D converters 72 in the respective time frame. The digital values of the levels at discrete time intervals are levels at specific frequencies, see FIG. 6c. Although the frequency is indicated on the abscissa, in a method with, for example, a linearly increasing frequency, this abscissa is also underlaid by a time axis. These digital levels are subjected to a reference storage 64 over time in order to be able to compensate for any aging phenomena. The time constant here is orders of magnitude of weeks or months. The above-mentioned digital signals are, as explained earlier on FIGS. 6a and 6c, used for wheel or axle recovery. The result is a value ± 1. The sign contains the direction of travel. The long-term return of the stored reference values has the consequence that this embodiment of the present invention requires no external calibration. The aforementioned value ± 1 is further evaluated in a known manner in the Achszählelektronik 80.

    Die vorstehend genannten Auswertungen/Analysen für einen über das Zeitraster linearen Frequenzverlauf fa, fb gemäss der Fig. 6a können zur Erhöhung der Robustheit des erfindungsgemässen Verfahrens auch für einen Frequenzverlauf fa und fb gemäss der Fig. 6b eingesetzt werden. In Fig. 6b ist ein logarithmischer Verlauf dargestellt, dabei ist die Skala f1 bis f2 linear. Möglich gewesen wäre auch eine Darstellung mit einer logarithmischen Skala, wobei die graphische Darstellung dann als "linear" erscheint. Der Vorteil eines logarithmischen Verlaufes liegt darin, dass die Verweildauer in einem angenommenen Störband fd1 und fd2 kürzer ist als beim zeitlich linearen Verlauf gemäss der Fig. 6a. Auf diese Weise kann einem statisch bekannten Störband zusätzlich ausgewichen werden. Da in der Empfangseinrichtung 6a, 6b, usw. der jeweilig ausgesandte Frequenzverlauf fa, fb, usw. bekannt ist, wäre es auch möglich, durch eine Detektion und Analyse des Störfeldes" den auszusenden Frequenzverlauf so festzulegen, dass dem momentanen, quasistatischen Störfeld ausgewichen werden kann. Dies führt zu sogenannt lernenden Sendeeinrichtungen 5a, 5b usw. Gemäss den Fig. 6a und 6b ist der Frequenzverlauf über die Zeit streng monoton ansteigend. Möglich ist es aber auch, einen Frequenzverlauf vorzusehen der entweder monoton steigend, monoton fallend oder streng monoton fallend ist.The above-mentioned evaluations / analyzes for a linear frequency characteristic f a , f b according to FIG. 6 a can be used to increase the robustness of the method according to the invention also for a frequency curve f a and f b according to FIG. 6 b . FIG. 6b shows a logarithmic progression, the scale f 1 to f 2 being linear. A representation with a logarithmic scale would also have been possible, the graphical representation then appearing as "linear". The advantage of a logarithmic progression lies in the fact that the residence time in an assumed interference band f d1 and f d2 is shorter than in the linear time profile according to FIG. 6a. In this way, a statically known interference band can be additionally avoided. Since in the receiving device 6a, 6b, etc., the respective emitted frequency response f a , f b , etc. is known, it would also be possible to determine by a detection and analysis of the disturbance field "the frequency response to be emitted so that the current, quasi-static interference field 6a and 6b, the frequency response over time is strictly monotonically increasing, but it is also possible to provide a frequency response that is either monotonically increasing, monotonically decreasing, or severe is monotonically decreasing.

    In einer weiteren Ausführungsform kann auch der erste Verlauf fa steigend und der zweite Verlauf fb fallend ausgebildet sein. In a further embodiment, the first course f a can also be ascending and the second course f b formed falling.

    Das vorstehend erläuterte Verfahren kann auch zweikanalig ausgeführt sein. Dabei sind unabhängige Sendeeinrichtungen 6c und 6d für einen zweiten Kanal vorgesehen, die einen Frequenzverlauf fc und fd gemäss der Darstellung in Fig. 6a erzeugen. Unabhängig vom Verlauf fa und fb können in den Empfangsspulen 9c und 9d die entsprechenden Verläufe fc und fd registriert und in den Empfangseinrichtungen 6c und 6b analysiert bzw. korreliert. Durch diese zweikanalige Ausführung können die geforderten Sicherheitsanforderung hinsichtlich Redundanz und Unabhängigkeit erfüllt werden. Die Sendespule 5 ist dabei ein statisches Element. Eine allfällige Beeinträchtigung der Funktion der Sendespule 5 kann von der Senderseite her festgestellt werden und ist somit unabhängig von Signalen der Empfangskreise. The method described above can also be carried out with two channels. In this case, independent transmitting devices 6c and 6d are provided for a second channel, which generate a frequency curve f c and f d as shown in FIG. 6a. Regardless of the course f a and f b , the corresponding courses f c and f d can be registered in the receiver coils 9c and 9d and analyzed or correlated in the receiver units 6c and 6b. This dual-channel design enables the required safety requirement with regard to redundancy and independence to be met. The transmitting coil 5 is a static element. A possible impairment of the function of the transmitting coil 5 can be determined from the transmitter side and is thus independent of signals of the receiving circuits.

    Liste der verwendeten BezugszeichenList of reference numbers used

    11
    Radwheel
    22
    Radkranzrim
    33
    Schienerail
    44
    Schwelle, Oberkante SchwelleThreshold, top edge threshold
    55
    Sender, ÜbertragerTransmitter, transformer
    5a5a
    1. Sendeeinrichtung für ersten Kanal mit synchronisiertem Träger der Frequenz fa 1. First channel transmitter with synchronized carrier of frequency f a
    5b5b
    2. Sendeeinrichtung ersten Kanal mit synchronisiertem Träger der Frequenz fb Second transmitting means first channel with synchronized carrier of the frequency f b
    5c5c
    3. Sendeeinrichtung für zweiten Kanal mit synchronisiertem Träger der Frequenz fc 3. Second channel transmitter with synchronized carrier of frequency f c
    5d5d
    4. Sendeeinrichtung für zweiten Kanal mit synchronisiertem Träger der Frequenz fd 4. Second channel transmitter with synchronized carrier of frequency f d
    66
    Empfänger, ÜbertragerReceiver, transformer
    6a6a
    1. Empfangseinrichtung für ersten Kanal mit synchronisiertem Bandpassfilter1. receiving device for first channel with synchronized Bandpass filter
    6b6b
    2. Empfangseinrichtung für ersten Kanal mit synchronisiertem Bandpassfilter2. Receiving device for first channel with synchronized Bandpass filter
    6c6c
    1. Empfangseinrichtung für zweiten Kanal mit synchronisiertem Bandpassfilter1. receiving device for second channel with synchronized Bandpass filter
    6d6d
    2. Empfangseinrichtung für zweiten Kanal mit synchronisiertem Bandpassfilter2. Receiving device for second channel with synchronized Bandpass filter
    77
    Befestigungsmittel für Sender/EmpfängerFastener for transmitter / receiver
    88th
    Anschlussleitungenconnecting cables
    99
    Radsensorwheel sensor
    9a9a
    1. Empfänger/Empfangsspule für ersten Kanal1. receiver / receiver coil for first channel
    9b9b
    2. Empfänger/Empfangsspule für ersten Kanal2. Receiver / receiver coil for first channel
    9c9c
    1. Empfänger/Empfangsspule für zweiten Kanal1. receiver / receiver coil for second channel
    9d9d
    2. Empfänger/Empfangsspule für zweiten Kanal2. Receiver / receiver coil for second channel
    1010
    Anschlussklemmeterminal
    1111
    Geleise track
    1212
    Schienenisolierungrail insulation
    1313
    Darstellung Verlauf FeldlinienPresentation of progress field lines
    2020
    Generator für RepetitionszeitGenerator for repetition time
    5050
    Sendeeinrichtungtransmitting device
    5151
    Sendespule Primärkreis, ÜbertragerTransmitting coil primary circuit, transformer
    5252
    Sendespule Sekundärkreis, ÜbertragerTransmitter coil secondary circuit, transformer
    5353
    Verstärkeramplifier
    5454
    Sendetaktsend clock
    5555
    spannungsgesteuerter Oszillator, VCO Voltage controlled oscilltorVoltage controlled oscillator, VCO Voltage controlled oscilltor
    5656
    Steuerung für Frequenz- bzw. SpannungsverlaufControl for frequency or voltage curve
    6060
    Empfangseinrichtungreceiver
    6161
    Empfängerspule Sekundärkreis, ÜbertragerReceiver coil secondary circuit, transformer
    6262
    Empfängerspule Primärkreis, ÜbertragerReceiver coil primary circuit, transformer
    6363
    Achsrückgewinnung, ± 1Axle recovery, ± 1
    6464
    Referenzwertspeicherung über die ZeitReference value storage over time
    7070
    AnalysefilterdatenbankAnalysis filtering database
    7171
    bandbreitenbedämpfter Filterbandwidth-damped filter
    7272
    Analog/Digital-WandlerAnalog / digital converter
    8080
    AchszählelektronikAchszählelektronik
    B, B2 B, B 2
    Barker CodeBarker code
    Df D f
    Störfeld um eine Frequenz fInterference field around a frequency f
    dd
    Abstanddistance
    Di D i
    Abweichungdeviation
    ff
    Frequenzfrequency
    fa, fb, fc, fd f a , f b , f c , f d
    Frequenzverläufe für FSK-VerfahrenFrequency characteristics for FSK procedures
    fd1, fd2 f d1 , f d2
    Untere, obere Frequenz eines StörbandesLower, upper frequency of an interference band
    f1, f2 f 1 , f 2
    Untere, obere Frequenz für FSK-VerfahrenLower, upper frequency for FSK method
    ii
    laufender Index zur Kennzeichnung einer Stelle des Barker Codes, i = 1, .., m current index identifying a body of the Barker codes, i = 1, .., m
    m, m2 m, m 2
    Breite des Barker Code in Bit, Anzahl Stellen des Barker CodeWidth of the Barker code in bits, number of digits of the Barker code
    nn
    Breite der Information S in BitWidth of the information S in bits
    pp
    Pegellevel
    Ps, Ps,P s , P s ,
    Sendepegel, EmpfangspegelTransmission level, reception level
    PD P D
    Pegelunterschied zwischen Ps, Ps Level difference between P s , P s
    SS
    Informationinformation
    SAvg S Avg
    mittlere Signalstärkemean signal strength
    SB S B
    gespreiztes Signal, Nutzsignalspread signal, useful signal
    SB'S B '
    empfangenes Signal in gespreizter Darstellungreceived signal in spread representation
    Si S i
    Empfangenes Signal an der Stelle iReceived signal at the position i
    Trep T rep
    RepetionszeitRepetionszeit
    Tab T off
    Folgezeit zwischen zwei Frequenzverläufen fa und fb Follow-up time between two frequency curves f a and f b
    Liste der verwendeten AkronymeList of acronyms used

    DCDC
    Direct Current, GleichstromDirect Current, DC
    ACAC
    Alternating CurrentAlternating Current
    GFMGFM
    GleisfreimeldesystemTrain detection system
    DSSSDSSS
    Direct Sequence Spread SpectrumDirect Sequence Spread Spectrum
    FSKRated
    Frequency Sweep KeyingFrequency Sweep Keying
    LiteraturlisteBibliography

  • [1] DE 196 47 737 A1, Siemens AG, Achsdetektor[1] DE 196 47 737 A1, Siemens AG, axle detector
  • [2] SIGNAL+DRAHT (95) 3/2003 p. 20 - 23[2] SIGNAL + WIRE (95) 3/2003 p. 20-23
  • [3] DE 101 37 519 A1, Siemens AG, Radsensor[3] DE 101 37 519 A1, Siemens AG, wheel sensor
  • [4] SIGNAL + DRAHT (95) 4/2003, p. 15 - 17[4] SIGNAL + WIRE (95) 4/2003, p. 15 - 17
  • Claims (15)

    1. Method for establishing track occupancy by:
      A1
      a wheel sensor (9) attached to a rail (3) containing a transmitter (5) and receiver (6) which registers a change in the magnetic field as a result of a train wheel (1) passing over the rail (3),
      or
      A2
      a direct current circuit formed by two rails (3) featuring a transmitter (5) and receiver (6) which is short circuited when a railway vehicle passes over it, with the short circuit being able to be registered in the receiver;
      characterized by the following steps:
      B
      a spectral broadband signal (SB) containing information (S) generated in a transmit unit (50; 5a, 5b, ..) is applied to the transmitter (5);
      C
      signals (SB') registered by the receiver are routed to a receive unit (60, 6a, 6b, ..) for recovering the information (S) transmitted in step B, with transmit unit (50; 5a, 5b, ..)and receive unit (60; Ga, 6b, ..) being coupled;
      D
      different levels of the registered signal (SB') arising are included for determining the track occupancy.
    2. Method according to claim 1,
      characterized in that
      in step B in the transmit unit (50; 5a, 5b, ..) the information (S) to be transmitted is injected in Direct Sequence Spread Spectrum technology with a code (B) and is modulated on a carrier frequency band.
    3. Method according to claim 2,
      characterized in that
      in step C for coupling transmit unit (50; 5a, 5b, ..) and receive unit (60; 6a, 6b, ..) the transmit clock (54; 20) is routed to the receive unit (60; 6a, 6b, ..).
    4. Method according to claim 2 or 3
      characterized in that
      in stpe B the information (S) to be transmitted is injected with two different codes (B, B2) and modulated on disjunctive carrier frequency bands.
    5. Method according to one of the claims 2 to 4,
      characterized in that
      the carrier frequency band features a range of 10 kHz to 30 MHz.
    6. Method according to claim 1,
      characterized in that
      in step B in the transmit unit (50; 5a, 5b, ..) the information (S) to be transmitted is encoded by transmitting two consecutive frequency curves (Tab, fa, fb, ..), with the two curves being transmitted repetitively (TRep).
    7. Method according to claim 6,
      characterized in that
      in step B in the transmit unit (50; 5a, 5b, ..) the information (S) to be transmitted is encoded by transmitting four consecutive frequency curves (Tab, fa, fb, fc, fd), with the four curves being transmitted repetitively (TRep).
    8. Method according to claim 6 or 7,
      characterized in that
      a generator (20) is provided for repetitive transmission and that the generator to the transmit unit (5a, 5b, ..) and to the receive unit (6a, 6b, ..).
    9. Method according to one of the claims 6 to 8,
      characterized in that
      the frequency curve (fa, fb,..) rises and falls in a linear way over time.
    10. Method according to one of the claims 6 to 8,
      characterized in that
      the frequency curve (fa, fb,..) is a curve which rises or falls logarithmically over time.
    11. Method according to one of the claims 6 to 8,
      characterized in that
      the frequency curve (fa, fb,..) is a curve which rises or falls monotonously over time.
    12. Method according to one of the claims 6 to 11,
      characterized in that
      Before the execution of step B a disturbance field recorded by the receiver is anayzed and that in step B the frequency curve (fa, fb,..) is defined outside or at the edeg of the disturbance field.
    13. Method according to one of the claims 6 to 12,
      characterized in that
      the frequency curves (fa, fb,..) are arranged within a band from 10 kHz to 10 MHz.
    14. Method according to one of the claims 1 to 13,
      characterized in that
      the wheel sensor (9) features two receive coils (9a, 9b) for detection of the direction of travel.
    15. Method according to one of the claims 1 to 13,
      characterized in that
      the wheel sensor (9) features four receive coils (9a, 9b, 9c, 9d) for detection of the direction of travel.
    EP03009575A 2003-04-29 2003-04-29 Process for detection of track occupation Expired - Lifetime EP1473208B1 (en)

    Priority Applications (4)

    Application Number Priority Date Filing Date Title
    AT03009575T ATE303277T1 (en) 2003-04-29 2003-04-29 METHOD FOR DETECTING TRACK OCCUPANCY
    EP03009575A EP1473208B1 (en) 2003-04-29 2003-04-29 Process for detection of track occupation
    DE50301090T DE50301090D1 (en) 2003-04-29 2003-04-29 Method for detecting a track occupancy
    ES03009575T ES2247447T3 (en) 2003-04-29 2003-04-29 PROCEDURE FOR THE DETECTION OF THE OCCUPATION OF THE RAILWAYS.

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP03009575A EP1473208B1 (en) 2003-04-29 2003-04-29 Process for detection of track occupation

    Publications (2)

    Publication Number Publication Date
    EP1473208A1 EP1473208A1 (en) 2004-11-03
    EP1473208B1 true EP1473208B1 (en) 2005-08-31

    Family

    ID=32981765

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03009575A Expired - Lifetime EP1473208B1 (en) 2003-04-29 2003-04-29 Process for detection of track occupation

    Country Status (4)

    Country Link
    EP (1) EP1473208B1 (en)
    AT (1) ATE303277T1 (en)
    DE (1) DE50301090D1 (en)
    ES (1) ES2247447T3 (en)

    Families Citing this family (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102007031139A1 (en) * 2007-06-29 2009-01-02 Siemens Ag Method for increasing the interference immunity of a wheel sensor and wheel sensor for carrying out the method
    DE102008008028A1 (en) * 2008-02-04 2009-11-26 Siemens Aktiengesellschaft Method for increasing the interference immunity of a wheel sensor and wheel sensor for carrying out the method
    ES2531016B1 (en) * 2014-03-18 2016-02-12 Logistica Y Telecomunicacion, S.L. (Logytel) Sensor device and procedure to detect the passage of train axes along the tracks
    CN112214876B (en) * 2020-09-11 2024-12-27 通号城市轨道交通技术有限公司 Axle counter modeling method, device and electronic equipment in CBTC signal test system

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE3307689C2 (en) * 1983-03-04 1984-12-20 Standard Elektrik Lorenz Ag, 7000 Stuttgart Circuit arrangement for operating an inductively operating rail contact
    GB2149275B (en) * 1983-10-26 1987-01-21 Standard Telephones Cables Ltd Identity card recognition system
    JP3291607B2 (en) * 1994-12-28 2002-06-10 日本信号株式会社 Train detection device
    DE19709840C2 (en) * 1997-02-28 2001-10-04 Siemens Ag Axle counting device to distinguish between wheel influences and non-wheel influences
    JP2001063573A (en) * 1999-08-27 2001-03-13 Mitsubishi Electric Corp Train detecting device

    Also Published As

    Publication number Publication date
    ES2247447T3 (en) 2006-03-01
    ATE303277T1 (en) 2005-09-15
    EP1473208A1 (en) 2004-11-03
    DE50301090D1 (en) 2005-10-06

    Similar Documents

    Publication Publication Date Title
    EP1058093B1 (en) Method and circuit for powering and monitoring the functioning of at least one sensor
    DE69829526T2 (en) System for the detection of trains
    EP2084048B1 (en) Method and device for evaluation of measurement data in railway track circuits
    EP2403745B1 (en) Devices for detecting the occupied state or free state of a track section and method for operating such devices
    WO2010100054A1 (en) Device for detecting the occupied state and the free state of a track section as well as method for operating such a device
    DE69404218T2 (en) Impedance connection for railways
    EP3475142B1 (en) Sensor device and method for sensing a magnetic field change
    EP2868548B1 (en) Method for monitoring the state of a switch in a train security system, and train securing system
    EP1473208B1 (en) Process for detection of track occupation
    DE19709840C2 (en) Axle counting device to distinguish between wheel influences and non-wheel influences
    DE2108496C3 (en) Circuit arrangement for the continuous functional control of the information processing and the output of data telegrams, in particular for process computer-controlled railway signal systems
    EP3819162B1 (en) Traction energy supply system and method for monitoring the integrity of at least one conductor of a return line for the traction energy
    EP4417484A1 (en) Axle counter system for monitoring a track section of a rail system
    DE4405809C2 (en) Method and device for identifying an AC voltage in a power supply network with multiple AC voltages
    EP3042805A1 (en) Device for monitoring an onboard network
    EP2797802B1 (en) Sensor device for detecting a wheel which moves along a travel rail
    WO2013023647A2 (en) Arrangement and method for controlling an inductive power supply device for electric vehicles
    WO2007134992A1 (en) Device for detecting the occupied or free status of a section of track
    EP1491864A2 (en) Method and device for testing the functioning of an inductive sensor
    DE102006035598A1 (en) Method and device for detecting the occupancy or free status of a track section
    DE4423785C1 (en) Railway rolling stock position discrimination method
    AT406856B (en) CIRCUIT ARRANGEMENT FOR MONITORING THE OPERATING CHARACTERISTICS OF RAILWAY TECHNICAL SAFETY DETECTORS
    DE3034659A1 (en) Safety device for cable guided vehicle - generates recognition field in appropriate coil, fitted near two aerial coils, with orthogonal coil axes
    EP3587214B1 (en) Balise control device
    DE102011079385A1 (en) Method and device for detecting a broken rail

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20041118

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50301090

    Country of ref document: DE

    Date of ref document: 20051006

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051003

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060223

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060301

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2247447

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060601

    BERE Be: lapsed

    Owner name: SIEMENS SCHWEIZ A.G.

    Effective date: 20060430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060429

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCOW

    Free format text: SIEMENS SCHWEIZ AG;FREILAGERSTRASSE 40;8047 ZUERICH (CH)

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20150403

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20150520

    Year of fee payment: 13

    Ref country code: GB

    Payment date: 20150414

    Year of fee payment: 13

    Ref country code: DE

    Payment date: 20150619

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20150305

    Year of fee payment: 13

    Ref country code: IT

    Payment date: 20150428

    Year of fee payment: 13

    Ref country code: FR

    Payment date: 20150415

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20150702

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50301090

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20160501

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 303277

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160429

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20160429

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20161230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161101

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160501

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160430

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160429

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160502

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160429

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160429

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160430

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20181204