EP1454051A1 - Thermohydrodynamic power amplifier - Google Patents
Thermohydrodynamic power amplifierInfo
- Publication number
- EP1454051A1 EP1454051A1 EP03752650A EP03752650A EP1454051A1 EP 1454051 A1 EP1454051 A1 EP 1454051A1 EP 03752650 A EP03752650 A EP 03752650A EP 03752650 A EP03752650 A EP 03752650A EP 1454051 A1 EP1454051 A1 EP 1454051A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thk
- pressure
- working
- fluid
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/02—Compression machines, plants or systems with non-reversible cycle with compressor of reciprocating-piston type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B23/00—Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
Definitions
- Liquids are practically incompressible compared to gases, have a smaller, heat-related increase in volume, significantly higher specific heat capacities and offer the possibility of exchanging heat better.
- the attempt to use liquids in heat engines as an alternative to working gas was undertaken in the mid-1920s by J. F. Malone from Newscastle-on-Tyne (England).
- Fig. 1 the Malone machine is shown schematically. Thereby (1) the working cylinder, (2) the displacement cylinder, (3) the heater which is continuously heated by the external (flame) heat (3a), (4) the cooler, (5) the displacement piston, which is the regenerator ( 2a) 90 ° out of phase with the working piston (6) from hot to cold.
- the object of the present invention is therefore to use the fundamental advantages of liquids as thermodynamic working media, already recognized by Malone, in a technically novel construction in such a way that the negative aspects described no longer occur.
- thermo-hydrodynamic power amplifier TTK
- the THK goes through a fundamentally different cycle than classic heat engines.
- the liquid is heated isochorically from a to b.
- the initial pressure Po corresponds to the ambient pressure (or a slightly higher pressure).
- a shut-off element (17) opens and the liquid expands by working on a downstream system (hydraulic motor, compressor piston, etc.). This relaxation occurs until the initial pressure Po is again reached at a larger volume and higher temperature than the initial state a at c.
- classic machines in which the fluid is brought back to the initial state a by mechanical back compression, the contraction of the liquid is brought about by heat extraction in the THK.
- this has the great advantage that since all useful energy is withdrawn from b to c during the expansion phase, no mechanical energy has to be temporarily stored in any way (flywheel, wind boiler, etc.).
- This principle also lies, as explained below , the possibility according to the invention of a crankshaft mechanism, with the constraining forces exerted by it on the fluid, can be completely dispensed with.
- regenerator or recuperator is also included in the heat exchange process during work phases a ⁇ b and c - * a and the expansion of the fluid is isothermal, the work process defined by the key points a, b, c is the exception of irreversible losses in the fluid and heat loss thermodynamically ideal.
- FIG. 4 shows the basic configuration of a THK in combination with a hydraulic motor.
- (11) is the displacement piston which is moved up and down by a linear drive (12) inside the pressure cylinder (13). It periodically displaces the working fluid back and forth via a heater (14), regenerator (15) and cooler (16).
- a hydraulic valve serves as a switchable shut-off element (17). This is closed at the beginning of the cycle (Fig. 3, section a ⁇ b) when the displacer moves down and thus transports the liquid to the hot side of the system.
- the valve opens and the liquid expands at high pressure with the work being carried out by the hydraulic motor (18) with the flywheel (19) coupled. The relaxed fluid then collects in the collecting vessel (20).
- a circulation line with the check valve (21) ensures that the fluid circulates continuously from the collecting vessel through the hydraulic motor as long as it is rotating.
- the valve (17) is closed, the displacer (11) moves upward and displaces the fluid on the cold side of the system (Distance c ⁇ a in Fig. 3).
- the cooling fluid contracts to the starting point a of the cycle (Fig. 3) and sucks in fluid via the line (22) and the check valve (23) from the collecting vessel (20).
- regenerator (15) Since the regenerator (15) is flowed through in alternating directions by the hot and cold fluid, it temporarily stores heat almost without loss of entropy (because heat and cold are recovered along a linearly increasing temperature profile) and releases it back to the fluid at the right time.
- thermo-hydrodynamic power amplifier TK
- Fig. 4a the fluid is compressed isochorically.
- the displacement piston (11) driven by the linear drive (12) is on its way down.
- the hydraulic valve (17) is closed.
- the route a -> • b is traveled in the PV diagram.
- the fluid level in the expansion vessel (20) is at its lowest level.
- Fig. 4a the fluid is compressed isochorically.
- the displacement piston (11) driven by the linear drive (12) is on its way down.
- the hydraulic valve (17) is closed.
- the route a ⁇ b is covered.
- the fluid level in the expansion vessel (20 is at its lowest level.
- Fig. 4b the displacement piston (11) has reached bottom dead center.
- the linear drive (12) stands.
- the hydraulic valve (17) has opened.
- the route b ⁇ c is traveled in the PV diagram.
- the hydraulic motor (18) is driven by the relaxing liquid.
- the fluid level in the expansion tank (20) increases.
- FIG. 5 shows a PV diagram resulting from such a THK process. The process is started again according to the invention when the fluid is in the pressure state P 0 .
- the medium that expands by moving the fluid from cold to hot flows through the hydraulic motor (17) under increasing pressure until at P'i at b the displacement piston (11) has reached its bottom dead center.
- the fluid then relaxes with the displacer piston held at point c at P 0 , and is then contracted by regenerative cooling from c - ⁇ a.
- the hydraulic valve (17) is closed during cycle part a ⁇ b ⁇ c and opened from c ⁇ b.
- Such a variant of the THK cycle achieves lower outputs per cycle, but is characterized by a particularly smooth, continuous run and requires less pressure resistance due to the lower maximum pressure.
- a further advantageous embodiment is the combination of the shut-off properties of the hydraulic valve (17) and the hydraulic motor.
- 6 shows the indicator diagram of such a THK variant.
- the fluid is isochorically compressed (valve 17 is closed) to the intermediate pressure Pi.
- the fluid relaxes isobarically via the hydraulic motor (18) (valve 18 is open).
- the fluid relaxes from b 'to c (valve 18 is open).
- the valve 18 closed the fluid is again contracted from c to the initial state a by reversible heat removal.
- THK thermoelectric heater
- the cooler (16) Another advantageous embodiment of the THK according to the invention consists in the possibility of integrating the heater (14) and the cooler (16) into the fluid circuit only during the work cycle sections during which their respective function is required. On the one hand, this minimizes the negative effects of fluid dead volumes and, on the other hand, enables the pressure flow cross sections through the heater and the cooler to be designed without negative effects on the cycle with regard to a low dynamic flow resistance and optimal heat transfer properties.
- Fig. 7 the corresponding, necessary by-pass lines with shut-off valves and their temporal use are shown schematically on the basis of the PV diagram.
- the reheating by the heater (14) is due to the desired isothermal relaxation of b ⁇ c desired.
- the fact that the fluid flows from a ⁇ b ⁇ c through the bypass 24c is marked in the PV diagram. If the fluid is subsequently reversibly cooled from c - ⁇ a and thereby contracts, only the effect of the cooler (16), but not that of the heater (14), is desired. For this reason, the heater is now shut off via the two valves 25a, 25b and the fluid is directed via the bypass 25c directly through the regenerator (15) and cooler (16) (valves 24a, 24b opened again).
- the bypass lines 24c and 25c are provided with check valves 24d and 25d so that the fluid flows through (16) and (14) when the shut-off valves 24a, 24b and 25a, 25b are open.
- a further embodiment of the THK machine according to the invention is to design it as a multi-cylinder machine (number n of cylinders> 2) and to control the timing of the linear drives (12) of the various cylinders in such a way that the resulting cycle overlap to a smoothed drive torque leads. This leads to much smaller flywheels.
- the purely translatory movement of the expanding and contracting liquid column is also used to drive subsystems such as typically: air compressors, heat pump refrigeration machines, compressors, reverse osmosis systems and the like.
- FIG. 8 shows such a THK machine according to the invention with linear force decoupling and a linear conformer. Since the subsystems in this case require a fixed working piston (instead of the "liquid" working piston described so far), the advantageous embodiment of this variant of the object according to the invention is due to the integration of the working piston (26) in the pressure cylinder (13) and the the air cushion (27) underneath the working piston makes the expansion vessel (Fig. 3, 26) unnecessary. tig.
- the working piston which in this case also periodically moves downward during the expansion phase under the application of force, is held by the switchable shut-off element (29), which in this case is advantageously designed as a shoe brake which engages around the piston rod, until the desired maximum pressure (in the PV Indication diagram point b) is reached.
- the force is then decoupled via the force KoiüOrmator (30), which is designed geometrically as a parallelogram.
- the parallelogram is provided with swivel joints in its four corners, which cause its shape to change constantly due to the imprinted movement (indicated by 30, 31). If you now couple the piston rod of the desired subsystem to be operated with linear force at a corner point whose axis is perpendicular to the axis defined by the working piston, the force-effect of the working piston of the THK, which is due to the isothermal relaxation of b -> c is asymptotic, conformal, that is, even over the entire working stroke.
- this type of THK can also be operated with the cycle variants shown in FIGS. 5 and 6 and described in the text, and can be optimized with the “by-pass” arrangements shown in FIG. 7.
- thermodynamic machine Since the THK represents a reversible thermodynamic machine, there is a particularly advantageous variant according to the invention in its configuration as a refrigerator heat pump.
- FIGS. 9a, 9b, 9c Such a THK machine is shown in FIGS. 9a, 9b, 9c, each with the corresponding work steps during the three work phases of the driving THK machine and the driven THK refrigerating machine heat pump.
- the driving THK machine basically has the same structure as that shown in Fig. 8 and described in the previous text.
- the conformer mechanism (30) pushes the working piston (26a) of the driven refrigeration machine and heat pump into the cylinder (13a) periodically and out of phase with the drive machine due to the pressure-free coupling (33a), which is also described.
- Fig. 9a Working machine The fluid is heated isochorically from a to b.
- the displacer (11) moves towards the fixed working piston (26)
- Refrigerating machine The fluid is cooled isobarically by moving the displacer from a 'to c'.
- the working piston (26a) is fixed.
- the pressure-free coupling (33 a) is disengaged
- Fig. 9b Working machine
- the fluid expands isothermally from b to c Working piston (26) and displacement piston (11) move down together.
- the pressure-free coupling (30) is engaged.
- the shut-off element (29) is open
- Refrigerating machine The working piston (26a) compresses the fluid.
- the displacer piston is fixed in the outer dead center.
- the shut-off element (29a) is open
- Refrigerating machine The working piston (26a) is fixed at the bottom dead center by the shut-off element (29a).
- the displacer piston pushes the fluid from b 'to a' (isochoric cooling)
- the refrigeration machine heat pump therefore absorbs (16a) ambient heat (Kuhler), compresses it isothermally, and releases the heat again via (14a. User) Drive through “reverse” and works at a lower temperature level
- 16a ambient heat
- User User
- all heat exchange processes can take place from liquid to liquid.
- this enables much more economical and efficient coolers / heat exchangers.
- analogous to the by-pass circuit of FIG. 7 (24c, 25c) such an arrangement can also be used in the refrigeration machine and the cooled fluid can thus flow directly through the corresponding heat sink without dead space effects.
- the pressures must be matched to one another. According to the invention, this can be done either by corresponding volume ratios of the working machine cylinder (13) to the refrigerating machine cylinder (13a), or by a corresponding pressure reduction by means of a stepped working piston between the conformer (30) and the refrigerating machine.
- THK refrigeration machine heat pump uses the basic principle of the known Vuilleumier refrigeration machine heat pump, which operates according to the Stirling principle, with adaptation to the special cycle of the THK machine. This variant is shown schematically in FIG.
- both cylinder halves are filled with the same fluid at the same pressure (advantageously: 1 bar).
- the displacement drives 12a. 12b move the displacement pistons 11a, 11b with the phase shifted by 90 °.
- the fluid In the hot cylinder I, the fluid is brought to high pressure by heating by means of 14a. After this pressure has been reached, the valve (35) is opened and the drain fluid from cylinder I compresses the fluid in cylinder II with the development of heat. After the pressure has been equalized, the displacement piston (Ha) moves upwards in the "hot” cylinder, while in the “cold” cylinder the displacement piston moves down.
- regenerators 15a and 15b are transferred and buffered for the following cycle section.
- (11a) and (11b) move up synchronously. As soon as both have reached their top dead center, the valve (35) closes and the cycle begins again as described.
- cylinder I acts as a regenerative pressure pulsator
- cylinder II as a refrigeration machine heat pump runs through the cycle of the THK pulsator which is driven through clockwise in cylinder I to the left.
- Heat is extracted from a desired room by (14b) at low temperature (refrigeration machine) and released again by (16c) at a medium temperature level (heat pump).
- (16c) When operating as a heat pump or as a combined unit (simultaneous generation of cold and heat), it makes sense to connect the heat flows in series using (16c) and (16a).
- the "Vuilleumier THK” refrigerator heat pump described here can also be operated without the valve (35).
- the valve (35) is replaced in this case by a permanent, small passage opening in the wall (34).
- the displacers (11a, 11b) are not moved discontinuously by 90 ° out of phase, but continuously out of phase by 90 °.
- this simplification of the cycle according to the invention has a lower power density because of the less usable pressure fluctuation. This can in principle be compensated for by an increased operating frequency However, due to the disproportionately increasing hydraulic pressure losses, the efficiency is poor.
- the water used by Malone has many advantages, but also the fundamental disadvantage that, in order to remain fluid over the entire working cycle, it must be subjected to a pre-pressure of> 100 bar. Although this can basically be achieved with the described THK machines, it requires expansion tanks and air boilers that are filled with this form.
- thermodynamics of the THK preference is therefore given in particular to synthetic oils in which, as described, it is possible to work against atmospheric pressure, and which can be tailored in terms of viscosity, temperature stability, compressibility and other important parameters of the thermodynamics of the THK. Since the THK machines work well in the medium temperature range from approx. 100 ° C to approx. 400 ° C, and the heat input (and cooling) of the fluid is technically particularly easy to implement, the following energy sources for operating the THK are Of particular interest: solar energy including night operation through thermal storage, all biogenic fuels, waste heat in the temperature range mentioned. THK machines and combined THK refrigeration machine heat pumps are particularly suitable for cogeneration in buildings, for decentralized energy supply with sun and / or biomass and for the re-generation of (industrial) waste heat.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Fluid-Pressure Circuits (AREA)
- Fats And Perfumes (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Amplifiers (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10240924A DE10240924B4 (en) | 2002-09-02 | 2002-09-02 | Thermo-hydrodynamic power amplifier |
DE10240924 | 2002-09-02 | ||
PCT/DE2003/002810 WO2004022962A1 (en) | 2002-09-02 | 2003-08-20 | Thermohydrodynamic power amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1454051A1 true EP1454051A1 (en) | 2004-09-08 |
EP1454051B1 EP1454051B1 (en) | 2004-12-29 |
Family
ID=31724352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03752650A Expired - Lifetime EP1454051B1 (en) | 2002-09-02 | 2003-08-20 | Thermohydrodynamic power amplifier |
Country Status (16)
Country | Link |
---|---|
US (1) | US20050268607A1 (en) |
EP (1) | EP1454051B1 (en) |
JP (1) | JP2005537433A (en) |
KR (1) | KR20060111356A (en) |
CN (1) | CN100412346C (en) |
AT (1) | ATE286204T1 (en) |
AU (1) | AU2003266179A1 (en) |
BR (1) | BR0314462A (en) |
CA (1) | CA2497603A1 (en) |
DE (2) | DE10240924B4 (en) |
ES (1) | ES2236677T3 (en) |
MX (1) | MXPA05002392A (en) |
NO (1) | NO20051185L (en) |
TR (1) | TR200500719T2 (en) |
WO (1) | WO2004022962A1 (en) |
ZA (1) | ZA200501785B (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LT5488B (en) * | 2007-06-28 | 2008-04-25 | Antanas BANEVI�IUS | EQUIPMENT AND METHOD FOR CONVERSION OF HEAT ENERGY |
DE102008031524A1 (en) * | 2008-07-03 | 2010-01-14 | Schiessl, Siegfried | Thermal engine i.e. stirling engine, for use in e.g. biogas plant, has heat discharging unit movable back and forth between cold area and hot area of cylinder, and operating unit comprising fluid and interacting with displacement piston |
CN102269021B (en) * | 2010-06-03 | 2013-11-13 | 韩树君 | Air heat energy cycle power generating unit |
EP2582927B1 (en) * | 2010-06-18 | 2014-01-01 | Cyclo Dynamics B.V. | A method of converting thermal energy into mechanical energy, and an apparatus |
JP6071678B2 (en) * | 2013-03-22 | 2017-02-01 | 株式会社東芝 | Sealed secondary battery and manufacturing method of sealed secondary battery |
US9841146B2 (en) * | 2014-01-10 | 2017-12-12 | Electro-Motive Diesel, Inc. | Gas production system for producing high pressure gas |
CN103925113B (en) * | 2014-04-30 | 2015-04-08 | 郭远军 | In-line arrangement type high-low pressure power machine and work-doing method of in-line arrangement type high-low pressure power machine |
ES2579056B2 (en) * | 2015-02-04 | 2017-03-09 | Universidade Da Coruña | Energy contribution system to the reliquation plant for natural gas transport ships using residual thermal energy from the propulsion system. |
WO2018152603A1 (en) * | 2017-02-23 | 2018-08-30 | Associacao Paranaense De Cultura - Apc | Thermal engine with differentiated cycle composed of two isochoric processes, four isothermal process and two adiabatic processes, and process for controlling the thermodynamic cycle of the thermal engine |
WO2018195620A1 (en) * | 2017-04-25 | 2018-11-01 | Associação Paranaense De Cultura - Apc | Differential-cycle heat engine with four isothermal processes and four polytropic processes with regenerator and method for controlling the thermodynamic cycle of the heat engine |
SI25712A (en) * | 2018-09-04 | 2020-03-31 | Gorenje Gospodinjski Aparati, D.O.O. | Heat transfer method in the united structure of recuperation unit and the recuperation unit construction |
CN109300646B (en) * | 2018-11-27 | 2021-05-18 | 上海联影医疗科技股份有限公司 | Coil structure for superconducting magnet and superconducting magnet |
CN110029944B (en) * | 2019-04-23 | 2020-11-03 | 西南石油大学 | PDC drill bit for realizing impact rock breaking by pulse oscillation |
WO2022107102A1 (en) * | 2020-11-23 | 2022-05-27 | Dharmendra Kumar | Power engine |
CZ2022350A3 (en) * | 2022-08-24 | 2023-10-11 | Pavel ÄŚinÄŤura | A reversible heat engine |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1487664A (en) * | 1923-02-27 | 1924-03-18 | Malone John Fox Jennens | Heat engine |
US1717161A (en) * | 1923-02-28 | 1929-06-11 | Malone John Fox Jennens | Heat engine operated by the expansion of liquids |
GB769368A (en) * | 1955-03-30 | 1957-03-06 | James Windrum | Improvements in hot gas reciprocating engines |
US2963853A (en) * | 1958-08-11 | 1960-12-13 | Cleveland Pneumatic Ind Inc | Liquid cycle heat engine |
US4353218A (en) * | 1980-05-28 | 1982-10-12 | The United States Of America As Represented By The United States Department Of Energy | Heat pump/refrigerator using liquid working fluid |
GB2080431B (en) * | 1980-07-16 | 1984-03-07 | Thermal Systems Ltd | Reciprocating external combustion engine |
US4498295A (en) * | 1982-08-09 | 1985-02-12 | Knoeoes Stellan | Thermal energy transfer system and method |
DE3305253A1 (en) * | 1983-02-16 | 1984-08-16 | Karlheinz Dipl.-Phys. Dr. 3300 Braunschweig Raetz | Malone thermal engine |
US4543793A (en) * | 1983-08-31 | 1985-10-01 | Helix Technology Corporation | Electronic control of cryogenic refrigerators |
JPS6179842A (en) * | 1984-09-28 | 1986-04-23 | Aisin Seiki Co Ltd | Liquid type stirling engine |
US4637211A (en) * | 1985-08-01 | 1987-01-20 | Dowell White | Apparatus and method for converting thermal energy to mechanical energy |
US5327745A (en) * | 1993-09-28 | 1994-07-12 | The United States Of America As Represented By The Secretary Of The Navy | Malone-Brayton cycle engine/heat pump |
US5737925A (en) * | 1995-11-30 | 1998-04-14 | Sanyo Electric Co., Ltd. | Free piston Vuillermier machine |
KR100233198B1 (en) * | 1997-07-04 | 1999-12-01 | 윤종용 | Vibration Absorption Pump System of Stirling Refrigerator |
US6282908B1 (en) * | 1999-02-25 | 2001-09-04 | Mark Weldon | High efficiency Malone compressor |
DE19959687C2 (en) * | 1999-12-02 | 2002-01-24 | Andreas Gimsa | Heat engine with rotating cylinders |
-
2002
- 2002-09-02 DE DE10240924A patent/DE10240924B4/en not_active Expired - Fee Related
-
2003
- 2003-08-20 ES ES03752650T patent/ES2236677T3/en not_active Expired - Lifetime
- 2003-08-20 AU AU2003266179A patent/AU2003266179A1/en not_active Abandoned
- 2003-08-20 KR KR1020057003633A patent/KR20060111356A/en not_active Application Discontinuation
- 2003-08-20 EP EP03752650A patent/EP1454051B1/en not_active Expired - Lifetime
- 2003-08-20 US US10/526,585 patent/US20050268607A1/en not_active Abandoned
- 2003-08-20 WO PCT/DE2003/002810 patent/WO2004022962A1/en active Application Filing
- 2003-08-20 DE DE50300228T patent/DE50300228D1/en not_active Expired - Fee Related
- 2003-08-20 CA CA002497603A patent/CA2497603A1/en not_active Abandoned
- 2003-08-20 AT AT03752650T patent/ATE286204T1/en not_active IP Right Cessation
- 2003-08-20 TR TR2005/00719T patent/TR200500719T2/en unknown
- 2003-08-20 CN CNB038248476A patent/CN100412346C/en not_active Expired - Fee Related
- 2003-08-20 BR BR0314462-3A patent/BR0314462A/en not_active IP Right Cessation
- 2003-08-20 JP JP2004533204A patent/JP2005537433A/en active Pending
- 2003-08-20 MX MXPA05002392A patent/MXPA05002392A/en active IP Right Grant
-
2005
- 2005-03-01 ZA ZA200501785A patent/ZA200501785B/en unknown
- 2005-03-04 NO NO20051185A patent/NO20051185L/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO2004022962A1 * |
Also Published As
Publication number | Publication date |
---|---|
ATE286204T1 (en) | 2005-01-15 |
DE10240924A1 (en) | 2004-03-18 |
KR20060111356A (en) | 2006-10-27 |
NO20051185L (en) | 2005-06-01 |
CN100412346C (en) | 2008-08-20 |
DE50300228D1 (en) | 2005-02-03 |
WO2004022962A1 (en) | 2004-03-18 |
BR0314462A (en) | 2005-12-13 |
US20050268607A1 (en) | 2005-12-08 |
CA2497603A1 (en) | 2004-03-18 |
JP2005537433A (en) | 2005-12-08 |
DE10240924B4 (en) | 2005-07-14 |
MXPA05002392A (en) | 2005-10-05 |
ES2236677T3 (en) | 2005-07-16 |
ZA200501785B (en) | 2005-09-14 |
EP1454051B1 (en) | 2004-12-29 |
AU2003266179A1 (en) | 2004-03-29 |
CN1708638A (en) | 2005-12-14 |
TR200500719T2 (en) | 2005-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1454051B1 (en) | Thermohydrodynamic power amplifier | |
DE69325598T2 (en) | HEATING MACHINE AND HEAT PUMP | |
DE60305982T2 (en) | STIRLING-MOTORIZED HEAT PUMP WITH FLUID CONNECTION | |
DE1933159B2 (en) | Piston machine operating according to the starting process | |
DE102009057210B4 (en) | Stirling evaporator heat power plant | |
EP2334923A1 (en) | Method and device for operating a stirling cycle process | |
DE10052993A1 (en) | Process for converting thermal energy into mechanical energy in a thermal engine comprises passing a working medium through an expansion phase to expand the medium, and then passing | |
DE3500124A1 (en) | Decentral supply unit operated by external heat supply for the alternative and combined generation of electrical energy, heat and cold | |
JP2005537433A5 (en) | ||
DE2342103A1 (en) | Hot gas engine - has cycle involving isothermal, isochoric and isobaric phases and incorporates regenerative heat exchanger | |
DE2539878C2 (en) | Thermodynamic machine with closed circuit | |
EP3320189B1 (en) | Supercritical cyclic process comprising isothermal expansion and free-piston heat engine comprising hydraulic extracting of energy for said cyclic process | |
WO2016146096A2 (en) | Membrane stirling engine | |
DE102006028561B3 (en) | Hydro-Stirling motor has two-cylinders linked by pipe with hydraulic motor power take-off | |
EP0178348A1 (en) | Gas compressor directly driven by a heat supply | |
DE112016002485B4 (en) | EXPANSION MACHINE AND METHOD FOR PRODUCING COOLING | |
EP1509690B1 (en) | Method and device for converting thermal energy into kinetic energy | |
DE102007017663A1 (en) | Thermal energy conversion arrangement, has cylinders coupled with heat pump, where one cylinder or cylinder head is supported in heat medium heated by pump and another cylinder or cylinder foot is supported in cooling medium cooled by pump | |
DE10051115A1 (en) | Pulse-tube cooler for cooling cryogenic spacecraft applications has given phase difference between compression cylinder and expansion cylinder | |
DE69816446T2 (en) | THERMAL MACHINE | |
DE3732123A1 (en) | Prime mover | |
AT500640B1 (en) | Method of converting thermal into kinetic energy involves feeding working fluid between two working spaces | |
DE19635976A1 (en) | External combustion heat engine with rotating piston | |
EP3486473A1 (en) | Method for using small temperature differences for operating heat engines designed for the conversion of thermal energy into mechanical energy | |
DE9109202U1 (en) | Thermohydraulic working or heat machine operated by external heat supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041229 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50300228 Country of ref document: DE Date of ref document: 20050203 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050330 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20050401066 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: POWERFLUID GMBH |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: WEBER, ECKHART Inventor name: KLEINWAECHTER, JUERGEN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: POWERFLUID GMBH Free format text: KLEINWAECHTER, JUERGEN#LINDENSTRASSE 15#79400 KANDERN (DE) $ COLSMAN-FREYBERGER, CLAUS#715 NORTH BROADWAY#HASTING-ON-HUDSON, NY 10706 (US) $ WEBER, ECKHART#AM LAUFER SCHLAGTURM 6#90403 NUERNBERG (DE) -TRANSFER TO- POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE) Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050509 |
|
NLS | Nl: assignments of ep-patents |
Owner name: POWERFLUID GMBH |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: POWERFLUID GMBH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2236677 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050820 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050831 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050930 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: POWERFLUID GMBH Free format text: POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE) -TRANSFER TO- POWERFLUID GMBH#INDUSTRIESTRASSE 8#79541 LOERRACH (DE) |
|
BERE | Be: lapsed |
Owner name: *WEBER ECKHART Effective date: 20050831 Owner name: *KLEINWACHTER JURGEN Effective date: 20050831 Owner name: *COLSMAN-FREYBERGER CLAUS Effective date: 20050831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080829 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20081015 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080929 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20081015 Year of fee payment: 6 Ref country code: CZ Payment date: 20081030 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20081013 Year of fee payment: 6 Ref country code: ES Payment date: 20080929 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080930 Year of fee payment: 6 Ref country code: SE Payment date: 20081014 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20081014 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20081017 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20100301 Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090820 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100302 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090821 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090821 |