EP1447634A1 - Procédé et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote par distillation cryogénique de l'air - Google Patents
Procédé et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote par distillation cryogénique de l'air Download PDFInfo
- Publication number
- EP1447634A1 EP1447634A1 EP04300066A EP04300066A EP1447634A1 EP 1447634 A1 EP1447634 A1 EP 1447634A1 EP 04300066 A EP04300066 A EP 04300066A EP 04300066 A EP04300066 A EP 04300066A EP 1447634 A1 EP1447634 A1 EP 1447634A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- air
- exchange line
- turbine
- high pressure
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04163—Hot end purification of the feed air
- F25J3/04169—Hot end purification of the feed air by adsorption of the impurities
- F25J3/04175—Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/04054—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04236—Integration of different exchangers in a single core, so-called integrated cores
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04296—Claude expansion, i.e. expanded into the main or high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
- F25J3/04357—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen and comprising a gas work expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04381—Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04375—Details relating to the work expansion, e.g. process parameter etc.
- F25J3/04393—Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04781—Pressure changing devices, e.g. for compression, expansion, liquid pumping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04787—Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
- F25J3/04818—Start-up of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2235/00—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
- F25J2235/50—Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/10—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
- F25J2240/12—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/40—Processes or apparatus involving steps for recycling of process streams the recycled stream being air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/50—Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Definitions
- the present invention relates to a production process under gaseous form and under high pressure of at least one fluid selected from oxygen, argon and nitrogen, in which air is distilled, said fluid in the liquid state at high pressure, it is vaporized and heated under this high pressure in the heat exchange line of the installation.
- high pressure means higher than about 10 bar for oxygen, argon and nitrogen
- “Blower” means a compressor having a single compression stage.
- the pressures in question are absolute pressures.
- EP-A-0504029 discloses a process in which all air is compressed at high pressure in a blower, part of the air at high pressure is relaxed in a Claude turbine (ie, a Claude turbine that opens in the medium pressure column) and the rest of the air exchange of the heat with liquid oxygen being vaporized in the line exchange.
- a Claude turbine ie, a Claude turbine that opens in the medium pressure column
- EP-A-0644388 discloses a method in which part of the air is compressed at medium pressure and sent to the middle column pressure of a double column while the rest of the air is overpressed to ambient temperature. Part of the overpressed air is then compressed in a cold booster.
- the air out of the heat exchange line is at the entrance of the blower at room temperature because there is very little gas colds that are warming in the exchange line.
- the air out of the heat exchange line is at the entrance of the blower at room temperature because there is very little gas colds that are warming in the exchange line.
- An object of the invention is to allow a quick start of the device without risk of damage to the exchange line.
- a production method under gaseous form and under high pressure of at least one fluid selected from oxygen, argon and nitrogen in an air separation apparatus wherein we compress all the air intended for the distillation in a compressor, we purify compressed air, it overpresses at least a first part of the air to a high pressure, we send the compressed air and purified in a line of exchange thermal system where it cools, the compressed air is separated, purified and cooled in a system of columns of the installation comprising at least a distillation column, a fluid in the liquid state is withdrawn from a column of system of columns, said fluid is brought to the liquid state at high pressure, it is vaporized by heat exchange with air and the liquid is heated up vaporized under this high pressure in the heat exchange line of the installation relaxes at least a portion of the compressed air in a turbine the pressure is raised to a second pressure, the relaxed air being then sent to a column of the column system, in operation normal, with the supercharged air being cooled to
- oxygen covers fluids containing at least 60 mol%. oxygen, preferably at least 80 mol%. of oxygen
- argon covers fluids containing at least 90 mol%. argon, preferably at minus 95 mol% argon
- nitrogen covers fluids containing minus 80 mol%. nitrogen, preferably at least 90 mol%. nitrogen.
- an installation of production in gaseous form and under high pressure of at least one fluid selected from oxygen, argon and nitrogen, of the type comprising a system of air distillation columns, a booster for overpressing at least one part of the feed air or a cycle gas up to a high pressure, a heat exchange line putting in heat exchange relation the air incoming and withdrawn fluids from the column system, of which said fluid (s) in liquid form withdrawn from the distillation apparatus and compressed by a pump, and a turbine whose input is connected to the output of the booster by means which cross the heat exchange line and characterized in that the inlet of the turbine is also connected to the output of the booster by means that do not cross the heat exchange line.
- the inlet of the turbine and the outlet of the booster are connected through cooling means.
- the air sent to the booster can consist of at least a part incoming air during cooling.
- the inlet temperature of the turbine is warmer as the inlet temperature of the cold booster.
- the air distillation plant shown in Figure 1 comprises essentially an air compressor 1, an air cleaning apparatus 2, a turbine-booster assembly 3, comprising an expansion turbine 4 and a booster 5 whose shafts are coupled, a heat exchanger 6 constituting the thermal exchange line of the installation and of which the cold part serves as the subcooler; a double distillation column 7 comprising a medium pressure column 8 and a low pressure column 9, with a vaporizer-condenser 10 connecting heat exchange the overhead gas of the medium pressure column and the bottom liquid of the low pressure column; a liquid oxygen tank 11 whose bottom is connected to a pump 12; and a tank of liquid nitrogen 13 whose bottom is connected to a pump 14.
- This installation is intended to provide, via a pipe 15, gaseous oxygen under a high pressure, which can be between 5 and 50 bar abs, preferably between 10 and 50 bar abs.
- liquid oxygen withdrawn from the tank of column 9, via a pipe 16, and stored in the tank 11, is brought to the high pressure by the pump 12 in the liquid state, then vaporized and heated under this high pressure in passages 17 of the exchanger 6.
- All of the air to be distilled is compressed by the compressor 1 to a pressure greater than the pressure of the medium pressure column 8 but lower than the high pressure. Then the air pre-cooled to 18 and cooled to neighborhood of the ambient temperature in 19 is purified in one of adsorption bottles and overpressed all at high pressure by the booster 5, which is driven by the turbine 4.
- valve V1 If the inlet or outlet temperature of the turbine 4 becomes too low following start-up or changeover, the opening of valve V1 is triggered, and at least some of the air overpressed and cooled passes directly to the inlet of the turbine 4 without passing through the exchanger 6. This avoids to damage the turbine.
- valve V1 closes by again and all the air goes to the hot end of the exchanger.
- the installation shown in Figure 2 is intended to produce oxygen gas under a high pressure, for example between 10 and 50 bar, particularly of the order of 40 bar It essentially comprises a double distillation column 7 consisting of a medium pressure column 8, operating at about 6 bar, and a low pressure column 9, operating at a pressure slightly above 1 bar, a line heat exchange 6, which is integrated cold end subcooler, a liquid oxygen pump 12, a cold blower 5A and a turbine 4 of which the wheel is mounted on the same shaft as that of the cold blower and a oil brake 49.
- a double distillation column 7 consisting of a medium pressure column 8, operating at about 6 bar, and a low pressure column 9, operating at a pressure slightly above 1 bar
- a line heat exchange 6 which is integrated cold end subcooler
- a liquid oxygen pump 12 a cold blower 5A and a turbine 4 of which the wheel is mounted on the same shaft as that of the cold blower and a oil brake 49.
- the pump 12 draws liquid oxygen at about 2 bar from the tank of the column 9, the door to a pressure greater than the pressure of desired production, for example 40 bars, and introduced into passages 17 of vaporization-oxygenation of the exchange line.
- the air to be distilled, compressed, cooled and purified in a conventional way arrives at about 16.5 bars via a pipe and enters passages 30 of air cooling of the exchange line 6.
- the air conveyed by the pipe 43 and not deflected by the pipe 41 continues its cooling in the exchange line and leaves it upstream of the sousrefroidisseur. He is then relaxed at the average pressure in a expansion valve 27 and sent to the distillation columns, in particular in column of the column 8.
- the blower 5A which ensures the pressure is driven by the turbine 4, so that no external energy is needed.
- the amount of cold produced by this turbine may be slightly greater than the heat of compression, and the surplus contributes to maintaining cold installation.
- a balance or all of the frigories can be provided by relaxation air or nitrogen at medium pressure in another turbine (not shown).
- the or each cold blower can compress a gas other than the air circulating in the heat exchange line, in particular the cycle nitrogen preheated to room temperature, compressed and being cooled.
- the installation comprises a valve V1 on a pipe 45 connecting the output of the blower 5A and the pipe 41 bringing air to the inlet of the turbine 4 and a valve V2 on the pipe 39 connecting the outlet of the fan 5A and the inlet of the exchanger of the pipe 39.
- the air to be distilled reaches about 16.5 bar and enters cooling passages of air from the exchange line.
- the air (or possibly some of the air) is out of line exchange via a pipe 37 at a temperature that can reach 90 ° C and brought to the suction of the cold blower 5A. This one overpresses this air between 20 and 26 bar and a temperature up to 120 ° C, the valve V1 being open and the valve V2 closed, the compressed air is sent by the pipes 45, 41 directly to the inlet of the turbine 4 without cooling in the exchange line 6. The relaxed air is then sent to the bottom of the column medium pressure 8.
- the temperature measuring means detect whether the inlet temperature of the turbine 4 and / or the outlet of the air blower from the blower 5A falls below a predetermined threshold and if the temperature is low enough, the valve V2 opens and the valve V1 is closes so that the supercharged air in 5A is sent to line 39, then to exchange line 6, before being divided in two and sent partly to the turbine 4 and partly to the tank of the medium pressure column 8
- This Valve arrangement corresponds to stable operation.
- closing the valve V1 and opening the valve V2 can be triggered a certain time after the implementation operation of the main compressor.
- Valves V1, V2 can also have the same operation than in Figure 1, that is, if the inlet temperature of the turbine and / or outlet of the blower becomes too low, a hot air shipment to the turbine can be initiated by opening the valve V1 so that the air passes directly from the blower to the turbine through line 45.
- Control of the tank level (LIC) of the medium pressure column 8 or the low pressure column 9 can be made by acting on the speed of the turbine 4 via a SIC (indicator and cruise control).
- the speed of rotation can also be fixed for the installation to operate in excess of cooling capacity.
- the excess of cold is eliminated by any line liquid (nitrogen, oxygen or argon) from the cold box, for example by opening the valve V3.
- the liquid line must have an automatic valve whose opening and the closure are related to tank level thresholds of the low column pressure 9.
- the Claude 4 turbine, and possibly the cold blower 5A can be coupled to a device for adsorbing energy other than an oil brake 49, such as an alternator or generator.
- the invention also applies to the case where only a part of the air is overpressed as seen in Figures 6, 8, 10 and 11 of EP504029 and in EP-A-0644388 and FR-A-2688052.
- the liquid lifts 23, 24 and the productions 15, 29 of the column low pressure 9 are identical to those previously described.
- Compressed air at medium pressure is purified and then cools in the exchange line 6 before being sent to the medium pressure column 8.
- Medium pressure nitrogen is withdrawn at the top of the middle column pressure 8, warmed in the exchange line 6 to the hot end and then compressed in a compressor 54. All or a portion of the compressed nitrogen is cooled by a cooler 47 and enters the exchange line.
- the nitrogen returned to the exchange line comes out of it at a temperature intermediate to be overpressed in a booster 5B coupled to the same shaft than a 5B turbine.
- a valve V2 is open on a pipe 39 which brings back the pressurized nitrogen in the exchange line to be cooled and the valve V1 on a pipe 45 is closed.
- valve V1 opens and the valve V2 closes so that the compressed nitrogen in the booster 5B arrives at the inlet of the turbine 4B without being cooled in the line exchange. It is also possible to adjust the valves so that part of the pressurized nitrogen arrives at the inlet of the turbine after cooling in the trading line while the rest of the pressurized nitrogen arrives at the inlet turbine 48 without cooling.
- the column system may comprise a single column, a double column or triple column with or without a column of mixture argon, a mixing column or any other type of separation column of a gas of the air.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
- à une température intermédiaire voisine de la température de vaporisation dudit fluide, ou de sa température de pseudo-vaporisation si la haute pression est supercritique, on sort de la ligne d'échange thermique de l'air en cours de refroidissement dans cette dernière ;
- on comprime cet air dans une soufflante ;
- on le réintroduit dans la ligne d'échange thermique et on effectue au moins une détente d'un gaz de cycle dans une turbine.
- à une température intermédiaire de la ligne d'échange, on sort de la ligne d'échange thermique au moins une partie de l'air en cours de refroidissement dans cette dernière ;
- on amène ledit fluide à l'état liquide à la haute pression entre 5 et 50 bars, de préférence entre 10 et 50 bars ;
- on surpresse l'air à la température intermédiaire dans une soufflante froide jusqu'à la pression élevée ;
- on réintroduit l'air surpressé dans la ligne d'échange thermique ;
- on envoie une première partie de l'air surpressé à une colonne du système de colonnes et on envoie une deuxième partie de l'air surpressé à une turbine de détente, l'air détendu étant ensuite envoyé à une colonne du système de colonnes ;
- pendant le début de la mise en fonctionnement de l'installation et/ou quand la température à l'entrée de la turbine tombe en dessous d'un seuil prédéterminé et/ou pendant un changement de marche, au moins une partie de l'air sorti de la ligne d'échange et surpressée dans la soufflante froide est envoyée en amont de la turbine de détente sans passer par la ligne d'échange ;
- on sort tout l'air entrant en cours de refroidissement, on le surpresse dans la soufflante froide et on le réintroduit dans la ligne d'échange ;
- pendant le début de la mise en fonctionnement de l'installation, tout l'air sorti de la ligne d'échange et surpressé dans la soufflante froide est envoyé en amont de la turbine de détente sans passer par la ligne d'échange ;
- quand la température de l'air surpressé dans la soufflante froide est réduite à une température prédéterminée ou après un temps prédéterminé, on n'envoie plus d'air surpressé en amont de la turbine de détente sans passer par la ligne d'échange ;
- la température d'entrée de la soufflante froide est inférieure à la température d'entrée de la turbine de détente ;
- au moins une partie de l'air est comprimée jusqu'à la pression élevée, l'air à la pression élevée est envoyé au bout chaud de la ligne d'échange, une partie de l'air est sortie de la ligne d'échange à une température intermédiaire et détendue dans la turbine et le reste de l'air poursuit son refroidissement dans la ligne d'échange et dans lequel, pendant le début de la mise en fonctionnement de l'installation et/ou si la température à l'entrée de la turbine tombe en dessous d'un seuil prédéterminé et/ou en cas de changement de marche, de l'air est envoyé directement du surpresseur à l'entrée de la turbine sans avoir été refroidi dans la ligne d'échange ;
- tout l'air est comprimé dans le compresseur et le surpresseur jusqu'à la pression élevée ;
- seule une partie de l'air est surpressée dans une surpresseur jusqu'à la pression élevée.
- à une température intermédiaire de la ligne d'échange, on sort de la ligne d'échange thermique un débit d'azote comprimé en cours de refroidissement dans cette dernière ;
- on surpresse l'azote à la température intermédiaire dans une soufflante froide jusqu'à la première pression ;
- on réintroduit l'azote surpressé dans la ligne d'échange thermique ;
- on envoie une première partie de l'azote surpressé à une colonne du système de colonnes et on envoie une deuxième partie de l'azote surpressé à une turbine de détente, l'azote détendu étant ensuite envoyé à une colonne du système de colonnes ;
- une soufflante froide, des moyens pour alimenter cette soufflante froide avec de l'air ou un gaz de cycle en cours de refroidissement prélevé à un niveau de température intermédiaire dans la ligne d'échange thermique, des moyens pour réintroduire l'air surpressé ou le gaz de cycle surpressé dans des passages de la ligne d'échange thermique reliés à la turbine l'entrée de la turbine étant également reliée à la sortie de la soufflante froide par des moyens qui ne traversent pas la ligne d'échange thermique ;
- des moyens pour envoyer tout l'air destiné à être distillé à la soufflante froide ;
- des moyens de détection de la température de l'air ou du gaz de cycle entrant dans la turbine ou sortant de la soufflante froide en amont de la ligne d'échange thermique ;
- des moyens pour ouvrir et fermer les conduites reliant l'entrée de la turbine avec la sortie de la soufflante froide en passant par les passages de la ligne d'échange et sans passer par les passages de la ligne d'échange ;
- l'entrée de la turbine est reliée à la sortie de la soufflante froide par des moyens qui ne traversent pas la ligne d'échange thermique et qui ne comprennent pas de moyen de refroidissement ;
- des moyens pour comprimer tout ou une partie de l'air destiné à la distillation à la pression élevée en amont de la ligne d'échange (6), des moyens pour envoyer l'air à la pression élevée depuis le surpresseur jusqu'au bout chaud de la ligne d'échange.
- ledit gaz de cycle est constitué par de l'azote réintroduit dans la ligne d'échange thermique, qui est sorti de cette demière à une température intermédiaire inférieure à la température d'entrée de la turbine ;
- on produit en outre de l'oxygène, de l'argon ou de l'azote sous une pression intermédiaire par pompage et vaporisation-réchauffement dans la ligne d'échange thermique, la pression intermédiaire permettant d'assurer la vaporisation par condensation d'un gaz circulant dans cette ligne d'échange thermique.
- à une température intermédiaire, on sort de la ligne d'échange thermique au moins une partie de l'air en cours de refroidissement dans cette dernière ;
- on surpresse l'air à la température intermédiaire dans un surpresseur froide ;
- on réintroduit l'air surpressé dans la ligne d'échange thermique ;
- on envoie une première partie de l'air surpressé à une colonne du système de colonnes et on envoie une deuxième partie de l'air surpressé à une turbine de détente, l'air détendu étant ensuite envoyé à une colonne du système de colonnes ;
Claims (17)
- Procédé de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote dans un appareil de séparation d'air, dans lequel on comprime tout l'air destiné à la distillation dans un compresseur (1), on épure l'air comprimé, on surpresse au moins une première partie de l'air jusqu'à une pression élevée, on envoie l'air comprimé et épuré dans une ligne d'échange thermique (6) de l'appareil où il se refroidit, on sépare l'air comprimé, épuré et refroidi dans un système de colonnes (8, 9) de l'appareil comprenant au moins une colonne de distillation, on soutire un fluide (16) à l'état liquide d'une colonne du système de colonnes, on amène ledit fluide à l'état liquide à la haute pression, on le vaporise par échange de chaleur avec de l'air et on réchauffe le liquide vaporisé sous cette haute pression dans la ligne d'échange thermique de l'installation, on détend au moins une partie de l'air surpressé dans une turbine de détente (4, 4B) depuis la pression élevée à une deuxième pression, l'air détendu (22) étant ensuite envoyé à une colonne du système de colonnes, en fonctionnement normal l'air surpressé étant refroidi jusqu'à la température d'entrée de la turbine dans la ligne d'échange en amont de la turbine de détente,
caractérisé en ce que, pendant le début de la mise en fonctionnement de l'appareil de séparation d'air et/ou afin de réguler la température d'entrée de la turbine et/ou pendant un changement de marche, au moins une partie de l'air surpressé à la pression élevée est envoyée en amont de la turbine de détente sans passer par la ligne d'échange. - Procédé selon la revendication 1 dans lequel :à une température intermédiaire de la ligne d'échange (6), on sort de la ligne d'échange thermique au moins une partie de l'air en cours de refroidissement dans cette dernière ;on surpresse l'air à la température intermédiaire dans une soufflante froide (5A) jusqu'à la pression élevée ;on réintroduit l'air surpressé dans la ligne d'échange thermique ;on envoie une première partie (43) de l'air surpressé à une colonne (8, 9) du système de colonnes et on envoie une deuxième partie (41) de l'air surpressé à la turbine de détente (4), l'air détendu étant ensuite envoyé à une colonne du système de colonnes ;pendant le début de la mise en fonctionnement de l'installation et/ou pendant un changement de marche et/ou quand la température à l'entrée de la turbine tombe en dessous d'un seuil prédéterminé, au moins une partie de l'air sorti de la ligne d'échange et surpressé dans la soufflante froide est envoyée en amont de la turbine de détente sans passer par la ligne d'échange.
- Procédé suivant la revendication 2, caractérisé en ce que l'on sort tout l'air entrant en cours de refroidissement, on le surpresse dans la soufflante froide (5A) et on le réintroduit dans la ligne d'échange (6).
- Procédé suivant la revendication 2 ou 3, caractérisé en ce que pendant le début de la mise en fonctionnement de l'installation, tout l'air sorti de la ligne d'échange (6) et surpressé dans la soufflante froide (5A) est envoyé en amont de la turbine de détente (4) sans passer par la ligne d'échange.
- Procédé suivant la revendication 2, 3 ou 4, dans lequel quand la température de l'air surpressé dans la soufflante froide (5A) est réduite à une température prédéterminée ou après un temps prédéterminé, on n'envoie plus d'air surpressé en amont de la turbine de détente (4) sans passer par la ligne d'échange.
- Procédé selon l'une des revendications 2 à 5 dans lequel la température d'entrée de la soufflante froide (5A) est inférieure à la température d'entrée de la turbine de détente (4).
- Procédé selon la revendication 1 dans lequel au moins une partie de l'air est comprimée jusqu'à la pression élevée, l'air à la pression élevée est envoyé au bout chaud de la ligne d'échange (6), une partie de l'air est sorti de la ligne d'échange à une température intermédiaire et détendue dans la turbine (4) et le reste de l'air poursuit son refroidissement dans la ligne d'échange (6) et dans lequel pendant le début de la mise en fonctionnement de l'installation et/ou si la température à l'entrée de la turbine tombe en dessous d'un seuil prédéterminé, au moins une partie de l'air surpressé est envoyé directement d'un surpresseur (5) qui sert à surpresser au moins une partie de l'air jusqu'à la pression élevée jusqu'à l'entrée de la turbine (4) sans avoir été refroidi dans la ligne d'échange.
- Procédé selon la revendication 7 dans lequel tout l'air est comprimé dans le compresseur (1) et le surpresseur (5) jusqu'à la pression élevée ou seule une partie de l'air est surpressée dans un surpresseur (5) jusqu'à la pression élevée.
- Procédé de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote, dans lequel, en fonctionnement stable, on comprime de l'air dans un compresseur (1), on épure l'air comprimé et on l'envoie dans une ligne d'échange thermique (6) de l'installation où il se refroidit, on sépare l'air comprimé, épuré et refroidi dans un système de colonnes (8, 9) de l'installation comprenant au moins une colonne de distillation, on soutire un fluide (16) à l'état liquide d'une colonne du système de colonnes, on amène ledit fluide à l'état liquide à la haute pression, on le vaporise par échange de chaleur avec de l'air et on réchauffe le liquide vaporisé sous cette haute pression dans la ligne d'échange thermique (6) de l'installation :à une température intermédiaire de la ligne d'échange, on sort de la ligne d'échange thermique un débit d'azote comprimé en cours de refroidissement dans cette dernière ;on surpresse l'azote à la température intermédiaire dans une soufflante froide (5B) jusqu'à la première pression ;on réintroduit l'azote surpressé dans la ligne d'échange thermique ;on envoie tout ou une partie de l'azote surpressé à une turbine de détente (4B), l'azote détendu étant ensuite envoyé à une colonne du système de colonnes,
- Installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote, du type comprenant un système de colonnes de distillation d'air (8, 9), un surpresseur (5, 5A, 5B) pour surpresser au moins une partie de l'air d'alimentation ou d'un gaz de cycle jusqu'à une pression élevée, une ligne d'échange thermique (6) mettant en relation d'échange thermique l'air entrant et des fluides soutirés du système de colonnes, dont ledit (lesdits) fluide(s) sous forme liquide soutiré(s) de l'appareil de distillation et comprimé par une pompe, et une turbine (4, 4B) dont l'entrée est reliée à la sortie du surpresseur par des moyens qui traversent la ligne d'échange thermique et caractérisée en ce que l'entrée de la turbine est également reliée à la sortie du surpresseur (5, 5A, 5B) par des moyens (45) qui ne traversent pas la ligne d'échange thermique.
- Installation selon la revendication 10 comprenant une soufflante froide (5A, 5B), des moyens pour alimenter cette soufflante froide avec de l'air ou un gaz de cycle en cours de refroidissement prélevé à un niveau de température intermédiaire dans la ligne d'échange thermique (6), des moyens pour réintroduire l'air surpressé ou le gaz de cycle surpressé dans des passages de la ligne d'échange thermique reliés à la turbine (4, 4B), l'entrée de la turbine étant également reliée à la sortie de la soufflante froide par des moyens (45) qui ne traversent pas la ligne d'échange thermique.
- Installation suivant la revendication 11, caractérisée en ce qu'elle comprend des moyens (37) pour envoyer tout l'air destiné à être distillé à la soufflante froide.
- Installation suivant la revendication 11 ou 12 caractérisée en ce qu'elle comprend des moyens de détection de la température de l'air ou du gaz de cycle sortant de la soufflante froide en amont de la ligne d'échange thermique.
- Installation suivant la revendication 11, 12 ou 13 comprenant des moyens (V1, V2) pour ouvrir et fermer les conduites reliant l'entrée de la turbine (4, 4B) avec la sortie de la soufflante froide (5A, 5B) en passant par les passages de la ligne d'échange et sans passer par les passages de la ligne d'échange.
- Installation selon l'une des revendications 11 à 14 caractérisée en ce l'entrée de la turbine étant reliée à la sortie de la soufflante froide par des moyens (45) qui ne traversent pas la ligne d'échange thermique et qui ne comprennent pas de moyen de refroidissement.
- Installation selon la revendication 10 comprenant des moyens (1, 5) pour comprimer tout ou une partie de l'air destiné à la distillation à la pression élevée en amont de la ligne d'échange (6) et des moyens pour envoyer l'air à la pression élevée depuis le surpresseur (5) jusqu'au bout chaud de la ligne d'échange.
- Installation selon la revendication 16 dans laquelle l'entrée de la turbine et la sortie du surpresseur sont reliées à travers des moyens de refroidissement (47).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0301722 | 2003-02-13 | ||
FR0301722A FR2851330B1 (fr) | 2003-02-13 | 2003-02-13 | Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1447634A1 true EP1447634A1 (fr) | 2004-08-18 |
EP1447634B1 EP1447634B1 (fr) | 2018-07-25 |
Family
ID=32669364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04300066.0A Expired - Lifetime EP1447634B1 (fr) | 2003-02-13 | 2004-02-05 | Procédé et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote par distillation cryogénique de l'air |
Country Status (5)
Country | Link |
---|---|
US (2) | US7076971B2 (fr) |
EP (1) | EP1447634B1 (fr) |
CN (1) | CN100394132C (fr) |
ES (1) | ES2685794T3 (fr) |
FR (1) | FR2851330B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102216709A (zh) * | 2007-09-12 | 2011-10-12 | 乔治洛德方法研究和开发液化空气有限公司 | 主交换系统和结合有该交换系统的低温蒸馏空气分离设备 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2854682B1 (fr) | 2003-05-05 | 2005-06-17 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
FR2865024B3 (fr) * | 2004-01-12 | 2006-05-05 | Air Liquide | Procede et installation de separation d'air par distillation cryogenique |
FR2906605B1 (fr) * | 2006-10-02 | 2009-03-06 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique. |
FR2913760B1 (fr) * | 2007-03-13 | 2013-08-16 | Air Liquide | Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique |
FR2913759B1 (fr) * | 2007-03-13 | 2013-08-16 | Air Liquide | Procede et appareil de production de gaz de l'air sous forme gazeuse et liquide a haute flexibilite par distillation cryogenique. |
FR2915271A1 (fr) * | 2007-04-23 | 2008-10-24 | Air Liquide | Procede et appareil de separation des gaz de l'air par distillation cryogenique |
BRPI0721931A2 (pt) * | 2007-08-10 | 2014-03-18 | Air Liquide | Processo de aparelho para a separação de ar por destilação criogênica |
WO2009021351A1 (fr) * | 2007-08-10 | 2009-02-19 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et appareil pour la séparation de l'air par distillation cryogénique |
FR2930331B1 (fr) * | 2008-04-22 | 2013-09-13 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
EP2369281A1 (fr) * | 2010-03-09 | 2011-09-28 | Linde Aktiengesellschaft | Procédé et dispositif destinés à la décomposition à basse température d'air |
FR2959802B1 (fr) * | 2010-05-10 | 2013-01-04 | Air Liquide | Procede et appareil de separation d'air par distillation cryogenique |
US10895417B2 (en) * | 2016-03-25 | 2021-01-19 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for the production of air gases by the cryogenic separation of air with improved front end purification and air compression |
PL3410050T3 (pl) | 2017-06-02 | 2019-10-31 | Linde Ag | Sposób do pozyskiwania jednego lub wielu produktów powietrza i instalacja do separacji powietrza |
FR3069915B1 (fr) * | 2017-08-03 | 2020-11-20 | Air Liquide | Appareil et procede de separation d'air par distillation cryogenique |
FR3069913B1 (fr) * | 2017-08-03 | 2020-06-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil et procede de separation d'air par distillation cryogenique |
FR3069914B1 (fr) * | 2017-08-03 | 2020-06-26 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Appareil et procede de separation d'air par distillation cryogenique |
EP3438584B1 (fr) | 2017-08-03 | 2020-03-11 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé et appareil de séparation d'air par distillation cryogénique |
WO2020124427A1 (fr) * | 2018-12-19 | 2020-06-25 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procédé de démarrage d'une unité de séparation d'air cryogénique et unité de séparation d'air associée |
US11137205B2 (en) | 2018-12-21 | 2021-10-05 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit |
FR3090831B1 (fr) * | 2018-12-21 | 2022-06-03 | L´Air Liquide Sa Pour L’Etude Et L’Exploitation Des Procedes Georges Claude | Appareil et procédé de séparation d’air par distillation cryogénique |
US11029086B2 (en) | 2018-12-21 | 2021-06-08 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit |
CN109737691B (zh) * | 2019-01-31 | 2020-05-19 | 东北大学 | 一种钢铁企业空气分离系统 |
CN110787587A (zh) | 2019-11-08 | 2020-02-14 | 乔治洛德方法研究和开发液化空气有限公司 | 一种空分纯化均压系统及控制方法 |
TWI849486B (zh) * | 2022-08-26 | 2024-07-21 | 中國鋼鐵股份有限公司 | 一種縮短液氬產出時間的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3563046A (en) * | 1968-01-05 | 1971-02-16 | Hydrocarbon Research Inc | Air separatiin process |
US3912476A (en) * | 1973-03-01 | 1975-10-14 | Hitachi Ltd | Air separating apparatus |
GB1500610A (en) * | 1974-07-12 | 1978-02-08 | Nuovo Pignone Spa | Separating air to produce oxygen and/or nitrogen in the liquid state |
JPS5420986A (en) * | 1977-07-18 | 1979-02-16 | Kobe Steel Ltd | Method of equipment for separating air |
US4746343A (en) * | 1985-10-30 | 1988-05-24 | Hitachi, Ltd. | Method and apparatus for gas separation |
FR2688052A1 (fr) * | 1992-03-02 | 1993-09-03 | Grenier Maurice | Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air. |
EP0577349A1 (fr) * | 1992-06-29 | 1994-01-05 | The BOC Group plc | Séparation d'air |
US5337571A (en) * | 1991-09-18 | 1994-08-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and installation for the production of oxygen gas under high pressure by air distillation |
US6336345B1 (en) * | 1999-07-05 | 2002-01-08 | Linde Aktiengesellschaft | Process and apparatus for low temperature fractionation of air |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833171A (en) | 1981-01-27 | 1989-05-23 | Sweeney Maxwell P | Synthesis gas system |
US4507134A (en) * | 1983-06-02 | 1985-03-26 | Kabushiki Kaisha Kobe Seiko Sho | Air fractionation method |
US4617036A (en) * | 1985-10-29 | 1986-10-14 | Air Products And Chemicals, Inc. | Tonnage nitrogen air separation with side reboiler condenser |
US4834785A (en) * | 1988-06-20 | 1989-05-30 | Air Products And Chemicals, Inc. | Cryogenic nitrogen generator with nitrogen expander |
GB8824216D0 (en) | 1988-10-15 | 1988-11-23 | Boc Group Plc | Air separation |
JP2909678B2 (ja) | 1991-03-11 | 1999-06-23 | レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 圧力下のガス状酸素の製造方法及び製造装置 |
US5379598A (en) | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Cryogenic rectification process and apparatus for vaporizing a pumped liquid product |
US5475980A (en) * | 1993-12-30 | 1995-12-19 | L'air Liquide, Societe Anonyme Pour L'etude L'exploitation Des Procedes Georges Claude | Process and installation for production of high pressure gaseous fluid |
US5635541A (en) | 1995-06-12 | 1997-06-03 | Air Products And Chemicals, Inc. | Elevated pressure air separation unit for remote gas process |
GB9515907D0 (en) * | 1995-08-03 | 1995-10-04 | Boc Group Plc | Air separation |
GB9605171D0 (en) * | 1996-03-12 | 1996-05-15 | Boc Group Plc | Air separation |
US5678425A (en) * | 1996-06-07 | 1997-10-21 | Air Products And Chemicals, Inc. | Method and apparatus for producing liquid products from air in various proportions |
KR100221881B1 (ko) * | 1997-08-26 | 1999-09-15 | 전주범 | 냉장고의 저소음 운전 제어 방법 |
US5934105A (en) * | 1998-03-04 | 1999-08-10 | Praxair Technology, Inc. | Cryogenic air separation system for dual pressure feed |
US5979183A (en) | 1998-05-22 | 1999-11-09 | Air Products And Chemicals, Inc. | High availability gas turbine drive for an air separation unit |
US6282901B1 (en) | 2000-07-19 | 2001-09-04 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Integrated air separation process |
DE60024634T2 (de) | 2000-10-30 | 2006-08-03 | L'Air Liquide, S.A. a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude | Verfahren und Einrichtung für kryogenische Luftzerlegung integriert mit assoziiertem Verfahren |
US6568209B1 (en) * | 2002-09-06 | 2003-05-27 | Praxair Technology, Inc. | Cryogenic air separation system with dual section main heat exchanger |
US7143606B2 (en) | 2002-11-01 | 2006-12-05 | L'air Liquide-Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etide Et L'exploitation Des Procedes Georges Claude | Combined air separation natural gas liquefaction plant |
US6925818B1 (en) * | 2003-07-07 | 2005-08-09 | Cryogenic Group, Inc. | Air cycle pre-cooling system for air separation unit |
-
2003
- 2003-02-13 FR FR0301722A patent/FR2851330B1/fr not_active Expired - Fee Related
-
2004
- 2004-02-05 EP EP04300066.0A patent/EP1447634B1/fr not_active Expired - Lifetime
- 2004-02-05 ES ES04300066.0T patent/ES2685794T3/es not_active Expired - Lifetime
- 2004-02-12 CN CNB2004100042532A patent/CN100394132C/zh not_active Expired - Fee Related
- 2004-02-13 US US10/779,381 patent/US7076971B2/en not_active Expired - Lifetime
-
2006
- 2006-07-17 US US11/487,928 patent/US7370494B2/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3563046A (en) * | 1968-01-05 | 1971-02-16 | Hydrocarbon Research Inc | Air separatiin process |
US3912476A (en) * | 1973-03-01 | 1975-10-14 | Hitachi Ltd | Air separating apparatus |
GB1500610A (en) * | 1974-07-12 | 1978-02-08 | Nuovo Pignone Spa | Separating air to produce oxygen and/or nitrogen in the liquid state |
JPS5420986A (en) * | 1977-07-18 | 1979-02-16 | Kobe Steel Ltd | Method of equipment for separating air |
US4746343A (en) * | 1985-10-30 | 1988-05-24 | Hitachi, Ltd. | Method and apparatus for gas separation |
US5337571A (en) * | 1991-09-18 | 1994-08-16 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process and installation for the production of oxygen gas under high pressure by air distillation |
FR2688052A1 (fr) * | 1992-03-02 | 1993-09-03 | Grenier Maurice | Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air. |
EP0577349A1 (fr) * | 1992-06-29 | 1994-01-05 | The BOC Group plc | Séparation d'air |
US6336345B1 (en) * | 1999-07-05 | 2002-01-08 | Linde Aktiengesellschaft | Process and apparatus for low temperature fractionation of air |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 003, no. 046 (C - 043) 18 April 1979 (1979-04-18) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102216709A (zh) * | 2007-09-12 | 2011-10-12 | 乔治洛德方法研究和开发液化空气有限公司 | 主交换系统和结合有该交换系统的低温蒸馏空气分离设备 |
Also Published As
Publication number | Publication date |
---|---|
US20040221612A1 (en) | 2004-11-11 |
US7370494B2 (en) | 2008-05-13 |
US20060254312A1 (en) | 2006-11-16 |
CN1521121A (zh) | 2004-08-18 |
FR2851330A1 (fr) | 2004-08-20 |
CN100394132C (zh) | 2008-06-11 |
US7076971B2 (en) | 2006-07-18 |
ES2685794T3 (es) | 2018-10-11 |
EP1447634B1 (fr) | 2018-07-25 |
FR2851330B1 (fr) | 2006-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1447634B1 (fr) | Procédé et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygène, l'argon et l'azote par distillation cryogénique de l'air | |
EP0689019B1 (fr) | Procédé et installation de production d'oxygène gazeux sous pression | |
EP0024962B1 (fr) | Procédé cryogénique de séparation d'air avec production d'oxygène sous haute pression | |
EP0848220B1 (fr) | Procédé et installation de fourniture d'un débit variable d'un gaz de l'air | |
EP0576314B1 (fr) | Procédé et installation de production d'oxygène gazeux sous pression | |
FR2746667A1 (fr) | Procede et installation de traitement d'air atmospherique destine a un appareil de separation | |
EP0694746B1 (fr) | Procédé de production d'un gaz sous pression à débit variable | |
EP0789208A1 (fr) | Procédé et installation de production d'oxygène gazeux sous haute pression | |
WO2004099691A1 (fr) | Procede et installation de production de gaz de l'air sous pression par distillation cryogenique d'air | |
FR2728663A1 (fr) | Procede de separation d'un melange gazeux par distillation cryogenique | |
FR2805339A1 (fr) | Procede de production d'oxygene par rectification cryogenique | |
EP0644390B1 (fr) | Procédé et ensemble de compression d'un gaz | |
EP0914584B1 (fr) | Procede et installation de production d'un gaz de l'air a debit variable | |
FR2711778A1 (fr) | Procédé et installation de production d'oxygène et/ou d'azote sous pression. | |
EP2475945A2 (fr) | Procede et installation de production d'oxygene par distillation d'air | |
FR2688052A1 (fr) | Procede et installation de production d'oxygene et/ou d'azote gazeux sous pression par distillation d'air. | |
WO2005073651A1 (fr) | Procédé et installation de séparation d'air par distillation cryogénique | |
FR2929697A1 (fr) | Procede de production d'azote gazeux variable et d'oxygene gazeux variable par distillation d'air | |
FR2915271A1 (fr) | Procede et appareil de separation des gaz de l'air par distillation cryogenique | |
FR2864213A1 (fr) | Procede et installation de production sous forme gazeuse et sous haute pression d'au moins un fluide choisi parmi l'oxygene, l'argon et l'azote par distillation cryogenique de l'air | |
WO2003006902A1 (fr) | Procede et installation de production de vapeur d'eau et de distillation d'air | |
FR2777641A1 (fr) | Procede et installation de distillation d'air avec production d'argon | |
FR2787562A1 (fr) | Procede et installation de distillation d'air avec production d'argon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BALOG, OVIDIU Inventor name: JAOUANI, LASADL'AIR LIQUIDE SA Inventor name: HA, BAOL'AIR LIQUIDE SA Inventor name: GRENIER, MAURICEL'AIR LIQUIDE SA Inventor name: PONTONE, XAVIERL'AIR LIQUIDE SA |
|
17P | Request for examination filed |
Effective date: 20050218 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: L'AIR LIQUIDE, SOCIETE ANONYME POUR L'ETUDE ET L'E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180221 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1022214 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004052961 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2685794 Country of ref document: ES Kind code of ref document: T3 Effective date: 20181011 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181025 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181026 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: RECTIFICATIONS |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: F25J 3/04 20060101AFI20040514BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004052961 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20190304 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190205 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200327 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1022214 Country of ref document: AT Kind code of ref document: T Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190206 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181125 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1022214 Country of ref document: AT Kind code of ref document: T Effective date: 20180725 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040205 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220217 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20220203 Year of fee payment: 19 Ref country code: IT Payment date: 20220218 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004052961 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230205 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230901 |