EP1440313A2 - Arrays with hairpin structures - Google Patents
Arrays with hairpin structuresInfo
- Publication number
- EP1440313A2 EP1440313A2 EP02782967A EP02782967A EP1440313A2 EP 1440313 A2 EP1440313 A2 EP 1440313A2 EP 02782967 A EP02782967 A EP 02782967A EP 02782967 A EP02782967 A EP 02782967A EP 1440313 A2 EP1440313 A2 EP 1440313A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- carrier
- receptors
- analyte
- sequence
- analytes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003491 array Methods 0.000 title abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 36
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 25
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 25
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 25
- 239000012491 analyte Substances 0.000 claims description 29
- 238000009396 hybridization Methods 0.000 claims description 25
- 239000011159 matrix material Substances 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 21
- 230000000295 complement effect Effects 0.000 claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 14
- 238000003786 synthesis reaction Methods 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 12
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 230000003993 interaction Effects 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 3
- 238000001338 self-assembly Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 238000007599 discharging Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000523 sample Substances 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 12
- 238000000018 DNA microarray Methods 0.000 description 8
- 239000007790 solid phase Substances 0.000 description 7
- 108091093037 Peptide nucleic acid Proteins 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 238000011898 label-free detection Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical group C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- 208000035657 Abasia Diseases 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- -1 alkyl phosphate Chemical compound 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0046—Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00436—Maskless processes
- B01J2219/00439—Maskless processes using micromirror arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00351—Means for dispensing and evacuation of reagents
- B01J2219/00436—Maskless processes
- B01J2219/00441—Maskless processes using lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/00497—Features relating to the solid phase supports
- B01J2219/00527—Sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00277—Apparatus
- B01J2219/0054—Means for coding or tagging the apparatus or the reagents
- B01J2219/00572—Chemical means
- B01J2219/00576—Chemical means fluorophore
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00585—Parallel processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00596—Solid-phase processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00612—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00617—Delimitation of the attachment areas by chemical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00621—Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00623—Immobilisation or binding
- B01J2219/00626—Covalent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00653—Making arrays on substantially continuous surfaces the compounds being bound to electrodes embedded in or on the solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00659—Two-dimensional arrays
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00686—Automatic
- B01J2219/00689—Automatic using computers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/0068—Means for controlling the apparatus of the process
- B01J2219/00702—Processes involving means for analysing and characterising the products
- B01J2219/00704—Processes involving means for analysing and characterising the products integrated with the reactor apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00709—Type of synthesis
- B01J2219/00711—Light-directed synthesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00709—Type of synthesis
- B01J2219/00713—Electrochemical synthesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00722—Nucleotides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00718—Type of compounds synthesised
- B01J2219/0072—Organic compounds
- B01J2219/00729—Peptide nucleic acids [PNA]
Definitions
- the invention relates to arrays of nucleic acids immobilized on a carrier, which are at least partially in the form of secondary structures, such as hairpin structures. Methods of making such arrays and uses thereof are also disclosed.
- the technology of receptor arrays immobilized on a carrier e.g. DNA chips, a valuable tool that enables complex analyte determination procedures to be carried out quickly and in high parallel.
- the biophysical principle on which the receptor arrays are based is that of the interaction of a specific immobilized receptor with an analyte present in a liquid phase, for example by nucleic acid hybridization, with a large number of receptors, e.g. Hybridization probes are attached which are compatible with analytes present in the sample, e.g. specifically bind complementary nucleic acid analytes.
- a binding event between immobilized receptor and analyte is usually detected by detection of a label group that is bound to the analyte.
- a carrier and a method for analyte determination which allow integrated synthesis of receptors and analysis are e.g. described in WO 00/1 301 8.
- This object is achieved by providing receptor arrays which contain nucleic acid receptors which are at least partially in the form of hairpins.
- Hairpins are a special form of secondary structures in nucleic acids, which are composed of two complementary sequence sections in the so-called stem and a further sequence section in the so-called loop (FIG. 1 a).
- FIG. 1 a Here there is a balance between the closed shape and the open shape ( Figure 1 b).
- Hairpin structures have already been used in solution for the label-free detection of hybridization events (Tyagi et.al, Nature Biotechnology 1 995, 14, 303-308).
- These hairpin structures (FIG. 2 type A) are distinguished by the fact that the recognition sequence is in the loop of the hairpin (Marras et al, Genetic Analysis; Biomolecular Engineering, 1 999, 14, 1 51 -1 56).
- a quencher and a fluorophore molecule are in close spatial proximity in the closed state, so that the fluorescence is quenched. If a hybridization event occurs with the recognition sequence in the loop, the hairpin opens, whereby Fluorophore and quencher are spatially separated. As a result, a fluorescence signal can be observed.
- quenchers can also be poly-deoxyguanosine sequences (M. Sauer, BioTec, 2000, 1, 30ff). This has the advantage that the hairpin structure only has to be labeled with a fluorophore (M. Sauer et.al., Anal.Chem. 1999, 71 (14), 2850ff) that the incorporation of a quencher molecule is omitted.
- the invention relates to a method for determining analytes, comprising the steps:
- Another object of the invention is a device for determining analytes, comprising
- a carrier with a plurality of predetermined positions, at each of which different receptors are immobilized on the carrier, (iii) means for supplying fluids to the carrier and for removing fluids from the carrier, and (iv) a detection matrix with a plurality of detectors, which are assigned to the predetermined positions on the carrier.
- the inventions according to the structure of the structure can be used for a very precise discrimination of base mismatches on a solid phase, in particular on an array.
- the hairpin structures according to the invention can be generated highly parallel both in situ on the solid phase, but can also, if prefabricated, be immobilized on this.
- the receptors are selected from nucleic acid biopolymers, e.g. Nucleic acids such as DNA and RNA or nucleic acid analogues such as peptide nucleic acids (PNA) and locked nucleic acids (LNA) as well as combinations thereof. Nucleic acids are particularly preferably determined as analytes, the binding of the analytes comprising hybridization. However, the method also enables the detection of other receptor-analyte interactions, e.g. the detection of nucleic acid-protein exchange effects.
- Nucleic acid biopolymers e.g. Nucleic acids such as DNA and RNA or nucleic acid analogues such as peptide nucleic acids (PNA) and locked nucleic acids (LNA) as well as combinations thereof. Nucleic acids are particularly preferably determined as analytes, the binding of the analytes comprising hybridization. However, the method also enables the detection of other receptor-analyte interactions, e.g. the detection of nucle
- the method according to the invention preferably comprises a parallel determination of several analytes, ie a carrier is provided, that contains several different receptors that can react with different analytes in a single sample.
- the method according to the invention preferably determines at least 50, preferably at least 100 and particularly preferably at least 200 analytes in parallel.
- the receptors can be immobilized on the carrier by covalent binding, non-covalent self-assembly, charge interaction or combinations thereof.
- the covalent bond preferably comprises the provision of a support surface with a chemically reactive group to which the starting components for receptor synthesis can be bound, preferably via a spacer or linker.
- the non-covalent self-assembly can, for example, on a noble metal surface, e.g. a gold surface, by means of thiol groups, preferably via a spacer or linker.
- the present invention is preferably characterized in that the detection system for analyte determination combines a light source matrix, a microfluidic carrier and a detection matrix in an at least partially integrated structure.
- This detection system can be used for integrated synthesis and analysis, in particular for the construction of complex supports, e.g. Biochips, and for analysis of complex samples, e.g. for genome, gene expression or proteome analysis.
- the synthesis of the receptors takes place in situ on the carrier, for example by passing fluid with receptor synthesis building blocks over the carrier, the building blocks are immobilized in place-specific and / or time-specific manner on predetermined areas on the carrier and these steps are repeated, until the desired receptors have been synthesized on the respective predetermined areas on the support.
- the light source matrix is preferably a programmable light source matrix, e.g. selected from a light valve matrix, a mirror array, a UV laser array and a UV LED (diode) array.
- the carrier is preferably a flow cell or a micro flow cell, i.e. a microfluidic carrier with channels, preferably with closed channels, in which the predetermined positions with the differently immobilized receptors are located.
- the channels preferably have diameters in the range from 10 to 10000 ⁇ m, particularly preferably from 50 to 250 ⁇ m, and can in principle be designed in any form, e.g. with a round, oval, square or rectangular cross-section.
- the secondary structures of the receptors preferably comprise a hairpin structure, which is composed of a stem and a loop.
- the sequence of the receptor which is bindable with the analyte can be located in the area of the loop of a hairpin.
- the hairpin structure is opened by binding the loop to the receptor. This hairpin opening can in turn be detected by suitable measures (eg see above).
- the sequence of the receptor that is specifically bindable with the analyte is located in the stem of the hairpin structure. In this embodiment too, the binding of the analyte to the receptor brings about a detectable dissolution of the hairpin structure.
- the hairpin structures according to the invention with a recognition sequence in the stem comprise complementary sequences A and A * in the stem and a linker unit L in the loop.
- base pairings e.g. polyethylene glycol, alkyl, polyethylene glycol phosphate or alkyl phosphate units
- Both sequence sections A (FIG. 3B) or A * (FIG. 3A) in the stem can serve as recognition sequences.
- a hybridization experiment for example a sequence A in the sample to be examined competes with the reference sequence A in the stem of the hairpin for the sequence A * (FIG. 3A). This competitive situation is used to increase the specificity of the hybridization. If, for example, sequence A in the sample is not completely complementary to A * (ie mismatches occur), the pairing between the two sequences A and A * is more stable in the hairpin, which has the consequence that the hybridization balance on the left side is shifted to the closed form of the hairpin (FIG. 3A). If a labeled sample A is used for hybridization, this means that no or only a small signal can be detected, since the equilibrium lies on the side of the closed hairpin. Signals can only be detected when the hairpin structure is in the open state, ie a stable pairing between A in the sample to be examined and A * in the hairpin is possible, and the equilibrium is on the right, ie with an open hairpin.
- hybridization balance (and thus the stringency) of the reference probe or the recognition sequence can be varied, inter alia, by the fact that these sequences contain building blocks of nucleic acid analogues which are distinguished by the fact that they bind more strongly with DNA than DNA with DNA.
- PNA or LNA building blocks or other building blocks known to the person skilled in the art having the described characteristics can be used for this purpose.
- the procedure described ensures that, in contrast to the usual procedure (use of 1 perfect match + 1 single base mismatch probe), only one probe needs to be used for the discrimination between perfect match and single base mismatch, and thus parking spaces on the array can be saved or more information can be queried with a predetermined amount of parking spaces. Furthermore, terminal mismatches can also be queried, since the presence of the reference sequence in the same molecule allows higher stringency conditions to be set than if two separate probes were used to discriminate perfect match and single base mismatch.
- the hairpin structures comprise two complementary sequences (A, A *) and two non-complementary units (Z, X) in the stem and a linker unit (L) in the loop
- Sequence sequence A * -Z ( Figure 4B) serve.
- Crucial is the fact that X and Z don't pair up.
- X is one or more nucleic acid building blocks capable of pairing
- Z is one or more non-pairing building blocks.
- Z can be, for example, an “abasic site” (DNA or RNA building block without a heterobase) or a building block known to the person skilled in the art which does not enter into base pairing, but does
- Z can also be the mixture of the 4 bases adenosine, guanosine, cytidine and thymidine or uracil.
- the hairpin structure contains a marker group which is at least partially quenched in the closed state, for example a fluorophore.
- a marker group which is at least partially quenched in the closed state
- fluorophore By dissolving the hairpin structure, the signal originating from the marker group increases and this signal increase is demonstrated.
- a hairpin structure (FIG. 5) according to the invention thus contains, for example, a quencher (Q) and a fluorophore (F), which are located at opposite ends of the hairpin nucleic acid sequence.
- Q quencher
- F fluorophore
- Fluorescence in the closed hairpin is quenched by the spatial proximity of Q and F. Fluorescence can be detected in the open state. Molecule combinations Q and F are well known to those skilled in the art.
- hybridization can also be carried out using double-stranded targets (FIG. 6). If both strands are marked, the light intensity detectable for a parking space can be increased.
- the hairpin structures of type A (recognition sequence in the loop) and type B (recognition sequence in the stem) can be connected to the carrier not only terminally but also internally (FIG. 7). It also discloses type A hairpin structures internally bonded to the carrier. Combinations of terminally and internally immobilized receptors on a carrier are also possible.
- the hairpin structure according to the invention contains the recognition sequence in the stem.
- the strand complementary to the recognition sequence is used as a reference sequence for mismatch discrimination.
- a target sequence in the sample solution competes with the reference sequence (A *) for the probe sequence (A).
- the stringency can be further increased by incorporating special nucleic acid building blocks (PNA, LNA) in the reference strand. This means that only hybridization will take place - ie change the hairpin to the open form - if the target sequence in the sample solution is exactly complementary to the probe sequence.
- the reference sequence integrated in the hairpin ensures that the hairpin does not change to the open form and therefore no hybridization with a target sequence can take place. Furthermore, the hairpin structure according to the invention allows the discrimination of terminal base mismatches. These are made possible by hybridizing the target sequence to position X. Base pairings complementary to terminal position X decide whether the hairpin changes to the open form and whether a hybridization event can be detected as a result.
- an integrated system for determining analytes is provided, which allows highly parallel in situ production of complex populations of hairpin receptors immobilized in microstructures for the detection of analytes.
- a device comprising:
- Specific areas of the receptors in the absence of one bindable analytes are at least partially present as a secondary structure, (iii) means for supplying fluids to the carrier and for deriving fluids from the carrier and (iv) a detection matrix comprising a plurality of detectors which are assigned to the predetermined areas on the carrier.
- the carrier is particularly preferably arranged between the light source matrix and the detection matrix.
- the detectors of the detection matrix are preferably made of photodetectors and / or electronic detectors, e.g. Electrodes selected.
- the device according to the invention can be used for the controlled in situ synthesis of nucleic acids, e.g. DNA / RNA oligomers are used, and photochemical, fluid-chemical and / or electronically removable protective groups can be used as temporary protective groups.
- the location- and / or time-resolved receptor synthesis can be carried out by targeted activation of electrodes in the detection matrix, targeted fluid supply in defined areas or area groups on the support or / and targeted exposure via the light source matrix.
- FIG. 1A schematically shows a hairpin structure and FIG. 1B shows the balance between the closed and open form of the hairpin.
- Figure 2 shows two types of surface-bound hairpin structures.
- the recognition sequence of the receptor that is bindable with the analyte is in the loop.
- the recognition sequence in the stem which is bindable with the analyte.
- the arrangement of the recognition sequence shown in FIG. 2B represents a preferred embodiment of the invention.
- FIG. 3 shows an embodiment of the hairpin structure according to the invention and its mode of action, where S is the solid phase and L is a linker sequence.
- a * is the recognition sequence of the receptor which is capable of binding to the analyte and A is a sequence (reference sequence) of the receptor which is complementary thereto.
- a * is a sequence (reference sequence) of the receptor which is complementary thereto.
- FIGS. 4A and 4B show a further embodiment of the hairpin structures according to the invention with an additional recognition sequence X and a sequence Z which is not complementary to it within the star or its mode of action.
- FIGS. 5A and 5B show an embodiment of the hairpin structures according to the invention, which enables label-free detection, i.e. for the detection of unmarked analytes and their mode of action.
- F represents a fluorescent labeling group
- Q a quencher.
- Figure 6 shows the mode of action of hairpin structures according to the invention in double-strand hybridization, i.e. the analyte to be determined is in the form of a double-stranded target.
- FIG. 7 shows hairpin structures according to the invention which are not bound to the solid phase via the ends, but inside the sequence.
- the recognition sequence is in the loop and according to FIG. 7B the recognition sequence is in the stem.
- FIG. 8 shows an example of a hybridization on an array with hairpin structures in which the recognition sequence is in the loop.
- FIG. 9 shows an example for a hybridization on an array which contains hairpin structures with a recognition sequence in the stem.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biophysics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
Arrays mit Hairpin-StrukturenArrays with hairpin structures
Beschreibungdescription
Die Erfindung betrifft Arrays von auf einem Träger immobilisierten Nukleinsäuren, die zumindest teilweise in Form von Sekundärstrukturen, wie etwa Hairpin-Strukturen, vorliegen. Weiterhin werden Verfahren zur Herstellung solcher Arrays und Anwendungen davon offenbart.The invention relates to arrays of nucleic acids immobilized on a carrier, which are at least partially in the form of secondary structures, such as hairpin structures. Methods of making such arrays and uses thereof are also disclosed.
In den letzten Jahren wurde mit der Technologie von auf einem Träger immobilisierten Rezeptorarrays, z.B. DNA-Chips, ein wertvolles Mittel geschaffen, das es erlaubt, komplexe Analytbestimmungsverfahren schnell und hochparallel durchzuführen. Das den Rezeptorarrays zugrunde liegende biophysikalische Prinzip ist das der Wechselwirkung eines spezifischen immobilisierten Rezeptors mit einem in einer Flüssigphase vorhandenen Analyten, beispielsweise durch Nukleinsäurehybridisierung, wobei auf dem Träger eine Vielzahl von Rezeptoren, z.B. Hybridisierungssonden, angebracht sind, die mit in der Probe vorhandenen Analyten, z.B. komplementären Nukleinsäureanalyten, spezifisch binden.In recent years, the technology of receptor arrays immobilized on a carrier, e.g. DNA chips, a valuable tool that enables complex analyte determination procedures to be carried out quickly and in high parallel. The biophysical principle on which the receptor arrays are based is that of the interaction of a specific immobilized receptor with an analyte present in a liquid phase, for example by nucleic acid hybridization, with a large number of receptors, e.g. Hybridization probes are attached which are compatible with analytes present in the sample, e.g. specifically bind complementary nucleic acid analytes.
Ein Bindungsereignis zwischen immobilisiertem Rezeptor und Analyt wird üblicherweise durch Detektion einer Markierungsgruppe nachgewiesen, die an den Analyten gebunden ist. Ein Träger und ein Verfahren zur Analytbestimmung, die eine integrierte Synthese von Rezeptoren und Analyse erlauben, sind z.B. in WO 00/1 301 8 beschrieben.A binding event between immobilized receptor and analyte is usually detected by detection of a label group that is bound to the analyte. A carrier and a method for analyte determination which allow integrated synthesis of receptors and analysis are e.g. described in WO 00/1 301 8.
Um mit Rezeptorarrays, z.B. DNA-Chips, komplexe biologische Fragestellungen (Genexpressions-Studien, Target-Validierung, Sequencing By Hybridisation, Re-Sequenzierung) bearbeiten zu können, ist es von grundlegender Bedeutung, dass die Hybridisierung zwischen Rezeptor und Target möglichst fehlerfrei durchgeführt werden kann. Das Nachweissystem muss daher in der Lage sein, zwischen einem sogenannten „füll match", d.h. wenn Sonde und Target vollkommen komplementär sind, und einem „mismatch", wenn eine oder mehrere fehlerhafte Basenpaarungen vorliegen, zu unterscheiden. Besonders schwer ist natürlicherweise die Unterscheidung zwischen einem „Single mismatch", wenn lediglich 1 Basenpaarung fehlerhaft ist , und dem „füll match". Desweiteren sind aus thermodynamischen Gründen besonders endständige (terminale) Basen-Fehlpaarungen schwer bzw. nur unzureichend zu detektieren. Fehlpaarungen in der Mitte einer Sequenz sind dagegen aus denselben Gründen einfacher zu detektieren.In order to be able to deal with complex biological questions (gene expression studies, target validation, sequencing by hybridization, re-sequencing) with receptor arrays, e.g. DNA chips, it is of fundamental importance that the hybridization between receptor and target is carried out as error-free as possible can. The The detection system must therefore be able to distinguish between a so-called "fill match", ie if the probe and target are completely complementary, and a "mismatch" if one or more incorrect base pairings are present. It is of course particularly difficult to distinguish between a "single mismatch" when only 1 base pairing is faulty and the "fill match". Furthermore, for thermodynamic reasons, particularly terminal (terminal) base mismatches are difficult or insufficient to detect. Mismatches in the middle of a sequence, on the other hand, are easier to detect for the same reasons.
Auf bekannten DNA-Chips liegen Nukleinsäure-Rezeptoren möglichst in einzelsträngiger Form vor. Bei der Auswahl der Sequenzen für die Rezeptoren wird daher darauf geachtet, dass eine etwaige Ausbildung von Sekundärstrukturen vermieden wird. Die Detektion von Basen- Fehlpaarungen erfolgt nun dadurch, dass auf dem DNA-Chip nicht nur die eigentliche abzufragende Sequenz, sondern auch als Vergleich die entsprechende Sequenz mit einer Fehlpaarung in der Mitte der Basenabfolge als Negativ-Kontrolle aufgebracht ist. Ob es sich um einen „füll match" oder „mismatch" handelt, wird durch die jeweils unterschiedlichen Signalintensitäten, die sich durch Hybridisierung der Probe (Target) auf die Sonde bzw. ihrer Negativ-Kontrollsequenz (Mismatch-Sequenz) ergeben, detektierbar. Da aber auch hier nicht immer eine eindeutige Entscheidung getroffen werden kann, müssen zur Detektion einer bestimmten DNA-Sequenz innerhalb des Targets nicht nur eine einzige Sequenz, sondern mehrere (z.B. 20 Sequenzen pro Gen) Sequenzen (R. Lipschutz et.al., Nature Genetics, 1 999, 21 , 20ff), die sich jeweils als Bruchstücke der nachzuweisenden Probe ergeben, mit den jeweils zugehörigen Kontroll-Sequenzen (Mismatch-Sequenzen) verwendet werden. Dadurch wird zum Nachweis einer einzigen Probensequenz nicht nur eine einzige Nukleinsäuresequenz auf dem DNA-Chip benötigt, sondern es sind üblicherweise 20 Sequenzen zuzüglich der jeweiligen 20 Negativ- Kontrollsequenzen (Mismatch-Sequenzen) erforderlich. Dies resultiert in einem erheblichen Mehraufwand bei der Herstellung von DNA-Chips und verringert deren Informationsdichte signifikant.Known DNA chips have nucleic acid receptors in single-stranded form if possible. When selecting the sequences for the receptors, care is therefore taken to avoid any formation of secondary structures. Base mismatches are now detected by not only applying the actual sequence to be queried to the DNA chip, but also, as a comparison, the corresponding sequence with a mismatch in the middle of the base sequence as a negative control. Whether it is a "fill match" or "mismatch" can be detected by the different signal intensities in each case, which result from hybridization of the sample (target) to the probe or its negative control sequence (mismatch sequence). However, since a clear decision cannot always be made here, not only a single sequence, but several (e.g. 20 sequences per gene) sequences (R. Lipschutz et al., Nature Genetics, 1 999, 21, 20ff), which each result as fragments of the sample to be detected, are used with the associated control sequences (mismatch sequences). As a result, not only a single nucleic acid sequence is required on the DNA chip for the detection of a single sample sequence, but there are usually 20 sequences plus the respective 20 negative sequences. Control sequences (mismatch sequences) required. This results in a considerable additional effort in the production of DNA chips and significantly reduces their information density.
Gegenwärtig gibt es noch keine Möglichkeiten, terminale Basen- Fehlpaarungen auf DNA-Chips zu detektieren.There are currently no ways to detect terminal base mismatches on DNA chips.
Eine Aufgabe der Erfindung ist es daher, ein System bereitzustellen, dass es erlaubt, Basen-Fehlpaarungen sehr genau detektieren zu können. Weiterhin soll das erfindungsgemässe System nicht nur Basen- Fehlpaarungen in der Mitte einer Sequenz, sondern auch am Ende (terminal) auf einem Array hochparallel zu erkennen.It is therefore an object of the invention to provide a system which allows base mismatches to be detected very precisely. Furthermore, the system according to the invention should not only recognize base mismatches in the middle of a sequence, but also at the end (terminal) on an array in a highly parallel manner.
Diese Aufgabe wird durch Bereitstellung von Rezeptorarrays gelöst, die Nukleinsäure-Rezeptoren enthalten, die mindestens teilweise in Form von Hairpins vorliegen.This object is achieved by providing receptor arrays which contain nucleic acid receptors which are at least partially in the form of hairpins.
Hairpins sind eine spezielle Form von Sekundärstrukturen bei Nukleinsäuren, die sich aus zwei komplementären Sequenz-Abschnitten im sogenannten Stem und einem weiteren Sequenzabschnitt im sogenannten Loop zusammensetzen (Figur 1 a). Hierbei besteht ein Gleichgewicht zwischen der geschlossenen Form und der geöffneten Form (Figur 1 b). Hairpin-Strukturen wurden bereits in Lösung zur markierungsfreien Detektion von Hybridisierungs-Ereignissen eingesetzt (Tyagi et.al, Nature Biotechnology 1 995, 14, 303-308). Diese Hairpin-Strukturen (Figur 2 Typ A) zeichnen sich dadurch aus, dass sich die Erkennungssequenz im Loop des Hairpins befindet (Marras et.al, Genetic Analysis; Biomolecular Engineering, 1 999, 14, 1 51 -1 56). In einer besonderen Ausführungsform befinden sich ein Quencher- und ein Fluorophor-Molekül im geschlossenen Zustand in unmittelbar räumlicher Nähe, so dass die Fluoreszenz gelöscht wird. Tritt nun ein Hybridisierungs-Ereignis mit der sich im Loop befindlichen Erkennungssequenz ein, öffnet sich der Hairpin, wobei Fluorophor und Quencher räumlich voneinander getrennt werden. Als Folge davon ist ein Fluoreszenzsignal zu beobachten. Als Quencher können neben bekannten Farbstoffen auch poly-Deoxyguanosinsequenzen fungieren (M. Sauer, BioTec, 2000, 1 , 30ff). Dies hat den Vorteil, dass die Hairpin-Struktur nur mit einem Fluorophor markiert werden muss (M. Sauer et.al., Anal.Chem. 1999, 71 (14), 2850ff), dass der Einbau eines Quencher- Moleküls entfällt.Hairpins are a special form of secondary structures in nucleic acids, which are composed of two complementary sequence sections in the so-called stem and a further sequence section in the so-called loop (FIG. 1 a). Here there is a balance between the closed shape and the open shape (Figure 1 b). Hairpin structures have already been used in solution for the label-free detection of hybridization events (Tyagi et.al, Nature Biotechnology 1 995, 14, 303-308). These hairpin structures (FIG. 2 type A) are distinguished by the fact that the recognition sequence is in the loop of the hairpin (Marras et al, Genetic Analysis; Biomolecular Engineering, 1 999, 14, 1 51 -1 56). In a particular embodiment, a quencher and a fluorophore molecule are in close spatial proximity in the closed state, so that the fluorescence is quenched. If a hybridization event occurs with the recognition sequence in the loop, the hairpin opens, whereby Fluorophore and quencher are spatially separated. As a result, a fluorescence signal can be observed. In addition to known dyes, quenchers can also be poly-deoxyguanosine sequences (M. Sauer, BioTec, 2000, 1, 30ff). This has the advantage that the hairpin structure only has to be labeled with a fluorophore (M. Sauer et.al., Anal.Chem. 1999, 71 (14), 2850ff) that the incorporation of a quencher molecule is omitted.
Studien über das Verhalten von Hairpinstrukturen auf einer festen Phase - d.h. Arrays mit Hairpin-Strukturen - sind zwar bekannt (US 5770772), nutzen jedoch lediglich das Vorhandensein der doppelsträngigen Struktur eines Hairpin als Erkennungsstelle für z.B. Proteine aus. Der Nachweis einer Analytbindung durch Auflösung der Hairpinstruktur wird nicht offenbart. Im Besonderen sind keine Hairpin-Strukturen bekannt, die die Sequenzinformation im Stem des Hairpins als Erkennungssequenz für eine Hybridisierung nutzen. Desweiteren sind bislang noch keine Hairpinstrukturen bekannt, deren Anbindung an die feste Phase nicht über ein terminales Ende erfolgt.Studies on the behavior of hairpin structures on a fixed phase - i.e. Arrays with hairpin structures - are known (US 5770772), but only use the presence of the double-stranded structure of a hairpin as a recognition site for e.g. Proteins. Evidence of analyte binding by dissolving the hairpin structure is not disclosed. In particular, no hairpin structures are known which use the sequence information in the stem of the hairpin as a recognition sequence for hybridization. Furthermore, no hairpin structures have yet been known whose connection to the solid phase is not via a terminal end.
Ein Gegenstand der Erfindung ist ein Verfahren zur Bestimmung von Analyten, umfassend die Schritte:The invention relates to a method for determining analytes, comprising the steps:
(a) Bereitstellen eines Trägers mit mehreren vorbestimmten Bereichen, an denen jeweils unterschiedliche Rezeptoren ausgewählt aus Nukleinsäuren und Nukleinsäureanaloga immobilisiert sind, wobei in einem oder mehreren der vorbestimmten Bereiche die Rezeptoren in(a) Providing a carrier with a plurality of predetermined areas, on each of which different receptors selected from nucleic acids and nucleic acid analogs are immobilized, the receptors in one or more of the predetermined areas
Abwesenheit eines damit spezifisch bindefähigen Analyten zumindest teilweise als Sekundärstruktur vorliegen,The absence of an analyte specifically capable of binding is at least partially present as a secondary structure,
(b) Inkontaktbringen des Trägers mit einer Analyten enthaltenden Probe und (c) Bestimmen der Analyten über deren Bindung an die auf dem Träger immobilisierten Rezeptoren, wobei die Bindung eines Analyten an einem damit spezifisch bindefähigen Rezeptor den Nachweis der Auflösung der in Abwesenheit des Analyten vorliegenden Sekundärstruktur umfasst.(b) bringing the carrier into contact with a sample containing analytes and (c) determining the analytes via their binding to the receptors immobilized on the carrier, the binding of an analyte to a receptor specifically capable of binding the detection of the Resolution of the secondary structure present in the absence of the analyte comprises.
Ein weiterer Gegenstand der Erfindung ist eine Vorrichtung zur Bestimmung von Analyten, umfassendAnother object of the invention is a device for determining analytes, comprising
(i) eine Lichtquellenmatrix,(i) a light source matrix,
(ii) einen Träger mit mehreren vorbestimmten Positionen, an denen jeweils unterschiedliche Rezeptoren auf dem Träger immobilisiert sind, (iii) Mittel zur Zufuhr von Fluids zum Träger und zur Ableitung von Fluids aus dem Träger und (iv) eine Detektionsmatrix mit umfassend mehrere Detektoren, die den vorbestimmten Positionen auf dem Träger zugeordnet sind.(ii) a carrier with a plurality of predetermined positions, at each of which different receptors are immobilized on the carrier, (iii) means for supplying fluids to the carrier and for removing fluids from the carrier, and (iv) a detection matrix with a plurality of detectors, which are assigned to the predetermined positions on the carrier.
D i e erfi n d ung sg em ässe n H ai rp i n- Stru ktu re n l assen si c h überraschenderweise für eine sehr genaue Diskriminierung von Basenfehlpaarungen auf einer Festphase, insbesondere auf einem Array, verwenden. Die erfindungsgemässen Hairpin-Strukturen lassen sich hochparallel sowohl in situ auf der festen Phase erzeugen, können aber auch, wenn vorgefertigt, auf dieser immobilisiert werden.Surprisingly, the inventions according to the structure of the structure can be used for a very precise discrimination of base mismatches on a solid phase, in particular on an array. The hairpin structures according to the invention can be generated highly parallel both in situ on the solid phase, but can also, if prefabricated, be immobilized on this.
Die Rezeptoren werden ausgewählt aus Nukleinsäure-Biopolymeren, z.B. Nukleinsäuren wie DNA und RNA oder Nukleinsäureanaloga wie Peptidnukleinsäuren (PNA) und Locked-Nukleinsäuren (LNA) sowie Kombinationen davon. Besonders bevorzugt werden als Analyten Nukleinsäuren bestimmt, wobei die Bindung der Analyten eine Hybridisierung umfasst. Das Verfahren ermöglicht jedoch auch den Nachweis anderer Rezeptor-Analyt-Wechselwirkungen, z.B. den Nachweis von Nukleinsäure-Protein-Wechsel Wirkungen.The receptors are selected from nucleic acid biopolymers, e.g. Nucleic acids such as DNA and RNA or nucleic acid analogues such as peptide nucleic acids (PNA) and locked nucleic acids (LNA) as well as combinations thereof. Nucleic acids are particularly preferably determined as analytes, the binding of the analytes comprising hybridization. However, the method also enables the detection of other receptor-analyte interactions, e.g. the detection of nucleic acid-protein exchange effects.
Das erfindungsgemäße Verfahren umfasst vorzugsweise eine parallele Bestimmung von mehreren Analyten, d.h. es wird ein Träger bereitgestellt, der mehrere unterschiedliche Rezeptoren, die mit jeweils unterschiedlichen Analyten in einer einzigen Probe reagieren können, enthält. Vorzugsweise werden durch das erfindungsgemäße Verfahren mindestens 50, vorzugsweise mindestens 100 und besonders bevorzugt mindestens 200 Analyten parallel bestimmt.The method according to the invention preferably comprises a parallel determination of several analytes, ie a carrier is provided, that contains several different receptors that can react with different analytes in a single sample. The method according to the invention preferably determines at least 50, preferably at least 100 and particularly preferably at least 200 analytes in parallel.
Die Immobilisierung der Rezeptoren an den Träger kann durch kovalente Bindung, nicht-kovalente Selbstassemblierung, Ladungswechselwirkung oder Kombinationen davon erfolgen. Die kovalente Bindung umfasst vorzugsweise die Bereitstellung einer Trägeroberfläche mit einer chemisch reaktiven Grupppe, an die die Startbausteine zur Rezeptorsynthese, vorzugsweise über einen Spacer bzw. Linker gebunden werden können. Die nicht-kovalente Selbstassemblierung kann beispielsweise auf einer Edelmetalloberfläche, z.B. einer Goldoberfläche, mittels Thiolgruppen, vorzugsweise über einen Spacer bzw. Linker, erfolgen.The receptors can be immobilized on the carrier by covalent binding, non-covalent self-assembly, charge interaction or combinations thereof. The covalent bond preferably comprises the provision of a support surface with a chemically reactive group to which the starting components for receptor synthesis can be bound, preferably via a spacer or linker. The non-covalent self-assembly can, for example, on a noble metal surface, e.g. a gold surface, by means of thiol groups, preferably via a spacer or linker.
Die vorliegende Erfindung zeichnet sich vorzugsweise dadurch aus, dass das Detektionssystem zur Analytbestimmung, eine Lichtquellenmatrix, einen mikrofluidischen Träger und eine Detektionsmatrix in einem zumindest teilweise integrierten Aufbau kombiniert. Dieses Detektionssystem kann zur integrierten Synthese und Analyse eingesetzt werden, insbesondere zum Aufbau komplexer Träger, z.B. Biochips, und zur Analyse komplexer Proben, z.B. zur Genom-, Genexpressions- oder Proteomanalyse.The present invention is preferably characterized in that the detection system for analyte determination combines a light source matrix, a microfluidic carrier and a detection matrix in an at least partially integrated structure. This detection system can be used for integrated synthesis and analysis, in particular for the construction of complex supports, e.g. Biochips, and for analysis of complex samples, e.g. for genome, gene expression or proteome analysis.
In einer besonders bevorzugten Ausführungsform erfolgt die Synthese der Rezeptoren in situ auf dem Träger, beispielsweise indem Fluid mit Rezeptorsynthesebausteinen über den Träger geleitet wird, die Bausteine an jeweils vorbestimmten Bereichen auf dem Träger orts- oder/und zeitspezifisch immobilisiert werden und diese Schritte wiederholt werden, bis die gewünschten Rezeptoren an den jeweils vorbestimmten Bereichen auf dem Träger synthetisiert worden sind. Diese Rezeptorsynthese umfasst vorzugsweise mindestens einen fluidchemischen Schritt, einen fotochemischen Schritt, einen elektrochemischen Schritt oder eine Kombination solcher Schritte sowie eine online-Prozessüberwachung, beispielsweise unter Verwendung der Detektionsmatrix.In a particularly preferred embodiment, the synthesis of the receptors takes place in situ on the carrier, for example by passing fluid with receptor synthesis building blocks over the carrier, the building blocks are immobilized in place-specific and / or time-specific manner on predetermined areas on the carrier and these steps are repeated, until the desired receptors have been synthesized on the respective predetermined areas on the support. This includes receptor synthesis preferably at least one fluid-chemical step, a photochemical step, an electrochemical step or a combination of such steps and online process monitoring, for example using the detection matrix.
Die Lichtquellenmatrix ist vorzugsweise eine programmierbare Lichtquellenmatrix, z.B. ausgewählt aus einer Lichtventilmatrix, einem Spiegelarray, einem UV-Laserarray und einem UV-LED (Dioden)-Array.The light source matrix is preferably a programmable light source matrix, e.g. selected from a light valve matrix, a mirror array, a UV laser array and a UV LED (diode) array.
Der Träger ist vorzugsweise eine Flusszelle bzw. eine Mikroflusszelle, d.h. ein mikrofluidischer Träger mit Kanälen, vorzugsweise mit geschlossenen Kanälen, in denen sich die vorbestimmten Positionen mit den jeweils unterschiedlich immobilisierten Rezeptoren befinden. Die Kanäle haben vorzugsweise Durchmesser im Bereich von 10 bis 10000 μm, besonders bevorzugt von 50 bis 250 μm und können grundsätzlich in beliebiger Form ausgestaltet sein, z.B. mit rundem, ovalem, quadratischem oder rechteckigem Querschnitt.The carrier is preferably a flow cell or a micro flow cell, i.e. a microfluidic carrier with channels, preferably with closed channels, in which the predetermined positions with the differently immobilized receptors are located. The channels preferably have diameters in the range from 10 to 10000 μm, particularly preferably from 50 to 250 μm, and can in principle be designed in any form, e.g. with a round, oval, square or rectangular cross-section.
Wie bereits ausgeführt, umfassen die Sekundärstrukturen der Rezeptoren vorzugsweise eine Hairpin-Struktur, die aus einem Stem und einem Loop zusammengesetzt ist. In einer ersten Ausführungsform des erfindungsgemäßen Verfahrens kann sich die mit dem Analyten bindefähige Sequenz des Rezeptors im Bereich des Loops eines Hairpins befinden. Durch Bindung des Loops an den Rezeptor wird die Hairpin-Struktur geöffnet. Diese Hairpin-Öffnung kann wiederum durch geeignete Maßnahmen (z.B. siehe oben) nachgewiesen werden. In einer besonders bevorzugten Ausführungsform befindet sich jedoch die mit dem Analyten spezifisch bindefähige Sequenz des Rezeptors im Stem der Hairpin- Struktur. Auch in dieser Ausführungsform bewirkt die Bindung des Analyten an den Rezeptor eine nachweisbare Auflösung der Hairpin- Struktur. Gemäß einer bevorzugten Ausführungsform umfassen die erfindungsgemäßen Hairpin-Strukturen mit einer Erkennungssequenz im Stem (Figur 2B, 3A und 3B) komplementäre Sequenzen A und A* im Stem und eine Linker-Einheit L im Loop. Dabei befinden sich im Loop des Hairpins Bausteine, die keine Basenpaarungen eingehen können (z.B. Polyethylenglykol-, Alkyl-, Polyethylenglykolphosphat- oder Alkylphosphat- Einheiten) oder Bausteine, die nur schwache Basenpaarungen eingehen können (z.B. ein Tn-Loop mit n = 2-8). Als Erkennungssequenzen können beide Sequenzabschnitte A (Figur 3B) oder A* (Figur 3A) im Stem dienen. Wird ein Hybridisierungsexperiment durchgeführt, konkurriert z.B. eine in der zu untersuchenden Probe befindliche Sequenz A mit der Referenzsequenz A im Stem des Hairpins um die Sequenz A* (Figur 3A). Diese Konkurrenzsituation wird dazu verwendet, die Spezifität der Hybridisierung zu erhöhen. Ist z.B. die in der Probe befindliche Sequenz A nicht vollständig komplementär zu A* (d.h. es treten Fehlpaarungen auf), ist die Paarung zwischen den beiden Sequenzen A und A* im Hairpin stabiler, was zur Folge hat, dass das Hybridisierungsgleichgewicht auf die linke Seite zur geschlossenen Form des Hairpin verlagert ist (Figur 3A). Wird zur Hybridisierung also eine markierte Probe A verwendet, bedeutet dies, dass kein oder nur ein geringes Signal detektierbar ist, da das Gleichgewicht auf der Seite des geschlossenen Hairpins liegt. Signale werden nur detektierbar, wenn die Hairpinstruktur im geöffneten Zustand vorliegt, d.h. eine stabile Paarung zwischen A in der zu untersuchenden Probe und A* im Hairpin möglich ist, und das Gleichgewicht rechts, d.h. bei einem offenen Hairpin, liegt.As already stated, the secondary structures of the receptors preferably comprise a hairpin structure, which is composed of a stem and a loop. In a first embodiment of the method according to the invention, the sequence of the receptor which is bindable with the analyte can be located in the area of the loop of a hairpin. The hairpin structure is opened by binding the loop to the receptor. This hairpin opening can in turn be detected by suitable measures (eg see above). In a particularly preferred embodiment, however, the sequence of the receptor that is specifically bindable with the analyte is located in the stem of the hairpin structure. In this embodiment too, the binding of the analyte to the receptor brings about a detectable dissolution of the hairpin structure. According to a preferred embodiment, the hairpin structures according to the invention with a recognition sequence in the stem (FIGS. 2B, 3A and 3B) comprise complementary sequences A and A * in the stem and a linker unit L in the loop. There are building blocks in the loop of the hairpin that cannot make base pairings (e.g. polyethylene glycol, alkyl, polyethylene glycol phosphate or alkyl phosphate units) or building blocks that can only make weak base pairings (e.g. a T n loop with n = 2- 8th). Both sequence sections A (FIG. 3B) or A * (FIG. 3A) in the stem can serve as recognition sequences. If a hybridization experiment is carried out, for example a sequence A in the sample to be examined competes with the reference sequence A in the stem of the hairpin for the sequence A * (FIG. 3A). This competitive situation is used to increase the specificity of the hybridization. If, for example, sequence A in the sample is not completely complementary to A * (ie mismatches occur), the pairing between the two sequences A and A * is more stable in the hairpin, which has the consequence that the hybridization balance on the left side is shifted to the closed form of the hairpin (FIG. 3A). If a labeled sample A is used for hybridization, this means that no or only a small signal can be detected, since the equilibrium lies on the side of the closed hairpin. Signals can only be detected when the hairpin structure is in the open state, ie a stable pairing between A in the sample to be examined and A * in the hairpin is possible, and the equilibrium is on the right, ie with an open hairpin.
Somit wird neben gebräuchlichen Variablen der Stringenzbedingungen, wie z.B. Salzkonzentration, Temperatur, Sonden- und Target-Konzentration, eine weitere Variable eingeführt, mit der Einfluss auf die Stringenz eines Hybridisierungsexperimentes genommen werden kann. Desweiteren kann das Hybridisierungsgleichgewicht (und damit die Stringenz) der Referenz- Sonde bzw. der Erkennungssequenz u.a. dadurch variiert werden, dass diese Sequenzen Bausteine von Nukleinsäure-Analoga enthalten, die sich dadurch auszeichnen, dass diese stärker mit DNA binden, als DNA mit DNA. Hierfür kommen u.a. PNA oder LNA-Bausteine oder andere dem Fachmann bekannte Bausteine mit den beschriebenen Charakteristika in Frage.In addition to common variables of stringency conditions, such as salt concentration, temperature, probe and target concentration, another variable is introduced with which the stringency of a hybridization experiment can be influenced. Furthermore, the hybridization balance (and thus the stringency) of the reference probe or the recognition sequence can be varied, inter alia, by the fact that these sequences contain building blocks of nucleic acid analogues which are distinguished by the fact that they bind more strongly with DNA than DNA with DNA. PNA or LNA building blocks or other building blocks known to the person skilled in the art having the described characteristics can be used for this purpose.
Durch das beschriebene Vorgehen wird erreicht, dass im Gegensatz zum üblichen Vorgehen (Verwendung von 1 Perfect-Match + 1 Single-Base- Mismatch Sonde) für die Diskriminierung zwischen Perfect-Match und Single-Base-Mismatch nur eine einzige Sonde verwendet werden muss, und somit Stellplätze auf dem Array eingespart werden können bzw. mehr Informationen mit einer vorgegebenen Menge an Stellplätzen abgefragt werden kann. Desweiteren können hierdurch auch terminale Mismatche abgefragt werden, da durch Anwesenheit der Referenzsequenz im gleichen Molekül höhere Stringenzbedingungen eingestellt werden können, als wenn für die Diskriminierung von Perfect-Match und Single-Base-Mismatch 2 separate Sonden verwendet werden.The procedure described ensures that, in contrast to the usual procedure (use of 1 perfect match + 1 single base mismatch probe), only one probe needs to be used for the discrimination between perfect match and single base mismatch, and thus parking spaces on the array can be saved or more information can be queried with a predetermined amount of parking spaces. Furthermore, terminal mismatches can also be queried, since the presence of the reference sequence in the same molecule allows higher stringency conditions to be set than if two separate probes were used to discriminate perfect match and single base mismatch.
In einer weiteren bevorzugten Ausführungsform umfassen die Hairpin- Strukturen zwei komplementäre Sequenzen (A, A*) und zwei nicht komplementäre Einheiten (Z, X) im Stem und eine Linker-Einheit (L) im LoopIn a further preferred embodiment, the hairpin structures comprise two complementary sequences (A, A *) and two non-complementary units (Z, X) in the stem and a linker unit (L) in the loop
(Figur 4). Als Erkennungssequenzen können sowohl die der Festphase nahe(Figure 4). The recognition sequences can both be close to the solid phase
Sequenzabfolge A-Z (Figur 4A) als auch die der Festphase ferneSequence sequence A-Z (Figure 4A) as well as that of the solid phase
Sequenzabfolge A*-Z (Figur 4B) dienen. Von entscheidender Bedeutung ist die Tatsache, dass X und Z nicht miteinander paaren. Hierzu wird erfindungsgemäß vorgeschlagen, dass es sich bei X um einen oder mehrere paarungsfähige Nukleinsäure-Bausteine und bei Z um eine oder mehrere nicht-paarungsfähige Bausteine handelt. Z kann beispielsweise eine „Abasic site" (DNA- oder RNA-Baustein ohne Heterobase) oder ein dem Fachmann bekannter Baustein sein, der zwar keine Basenpaarung eingeht, aber dieSequence sequence A * -Z (Figure 4B) serve. Crucial is the fact that X and Z don't pair up. For this purpose it is proposed according to the invention that X is one or more nucleic acid building blocks capable of pairing and Z is one or more non-pairing building blocks. Z can be, for example, an “abasic site” (DNA or RNA building block without a heterobase) or a building block known to the person skilled in the art which does not enter into base pairing, but does
DNA-Struktur nicht stört. Unter L ist ein Linker zu verstehen, der vorzugsweise aus nicht paarungsfähigen Nukleinsäure-Bausteinen, so z.B. Polyethylenglykolphosphat-Einheiten (R. Micura, Angew. Chemie, 2000, 39(5), 922ff) oder Bausteinen, die nur schwache Basenpaarungen eingehen können (z.B. ein Tn-Loop mit n = 2-8), besteht. Hierdurch wird erreicht, dass besonders terminale Mismatche besser detektierbar werden. Dies erfolgt dadurch, dass in dieser Ausführungsform (Figur 4A) dem Target A- X* weitere Basen zur Paarung zur Verfügung stehen, jedoch der Referenz A-Z nicht. Das bewirkt, dass das Gleichgewicht zwischen geschlossener Form des Hairpins (links) vorteilhaft auf die rechte Seite (offener Hairpin) verschoben wird, wenn eine zusätzliche Basenpaarung vom Target A-X* mit dem Sequenzbereich X im Hairpin erfolgen kann. Treten Fehlpaarungen zwischen Target A-X* und dem Sequenzbereich X im Hairpin auf, ist dies nicht der Fall und das Gleichgewicht wird nicht verstärkt auf die rechte (offene) Seite verschoben.DNA structure does not interfere. L is to be understood as a linker which preferably consists of nucleic acid building blocks which cannot be paired, for example Polyethylene glycol phosphate units (R. Micura, Angew. Chemie, 2000, 39 (5), 922ff) or building blocks that can only form weak base pairs (eg a T n loop with n = 2-8). This ensures that terminal mismatches in particular can be better detected. This is done in that in this embodiment (FIG. 4A) the target A-X * has further bases available for pairing, but not the reference AZ. This has the effect that the balance between the closed form of the hairpin (left) is advantageously shifted to the right side (open hairpin) if an additional base pairing from the target AX * with the sequence region X in the hairpin can take place. If mismatches occur between Target AX * and the sequence area X in the hairpin, this is not the case and the balance is not increasingly shifted to the right (open) side.
Durch Vorhandensein zusätzlicher paarungsfähiger Abschnitte X in der Hairpinstruktur des Rezeptors, die mit dem nachzuweisenden Analyten k o m p l e m e n t ä r s i n d , k a n n s o m i t d i e St r i n g e n z d e s Hybridisierungexperimentes weiter erhöht werden (Figuren 4A und 4B). Auch hier können Nukleinsäure-Analoga, wie zuvor beschrieben, Verwendung finden, die stärker mit DNA binden, als DNA mit DNA.Due to the presence of additional mating sections X in the hairpin structure of the receptor, which can be further increased with the analyte to be detected, the co-p l e m e n t a r s i n d, k a n n s o m i t d i e st r i n g e n s of the hybridization experiment (FIGS. 4A and 4B). Here too, as described above, nucleic acid analogs can be used which bind more strongly with DNA than DNA with DNA.
In einer weiteren Ausführungsform kann Z auch das Gemisch der 4 Basen Adenosin, Guanosin, Cytidin und Thymidin bzw. Uracil sein.In a further embodiment, Z can also be the mixture of the 4 bases adenosine, guanosine, cytidine and thymidine or uracil.
In noch einer weiteren Ausführungsform enthält die Hairpin-Struktur eine im geschlossenen Zustand zumindest teilweise gequenchte Markierungsgruppe, z.B. einen Fluorophor. Durch Auflösung der Hairpinstruktur nimmt das von der Markierungsgruppe stammende Signal zu und man weist diese Signalzunahme nach. So enthält eine erfindungsgemäße Hairpin-Struktur (Figur 5) beispielsweise einen Quencher (Q) und einen Fluorophor (F), die sich an entgegengesetzten Enden der Nukleinsäure-Sequenz des Hairpins befinden. Erfindungsgemäß ist die Fluoreszenz im geschlossenen Hairpin durch die räumliche Nähe von Q und F gelöscht. Im geöffneten Zustand ist Fluoreszenz detektierbar. Molekül- Kombinationen Q und F sind dem Fachmann hinreichend bekannt.In yet another embodiment, the hairpin structure contains a marker group which is at least partially quenched in the closed state, for example a fluorophore. By dissolving the hairpin structure, the signal originating from the marker group increases and this signal increase is demonstrated. A hairpin structure (FIG. 5) according to the invention thus contains, for example, a quencher (Q) and a fluorophore (F), which are located at opposite ends of the hairpin nucleic acid sequence. According to the invention Fluorescence in the closed hairpin is quenched by the spatial proximity of Q and F. Fluorescence can be detected in the open state. Molecule combinations Q and F are well known to those skilled in the art.
In noch einer weiteren Ausführungform kann die Hybridisierung auch mit doppelsträngigen Targets erfolgen (Figur 6 ). Sind beide Stränge markiert, kann somit die für einen Stellplatz detektierbare Leuchtintensität verstärkt werden.In yet another embodiment, hybridization can also be carried out using double-stranded targets (FIG. 6). If both strands are marked, the light intensity detectable for a parking space can be increased.
In einer weiteren Ausführungform kann die Trägeranbindung der Hairpinstrukturen sowohl vom Typ A (Erkennungssequenz im Loop) als auch vom Typ B (Erkennungssequenz im Stem) nicht nur terminal, sondern auch intern erfolgen (Figur 7). Es werden hiermit auch intern an den Träger gebundene Hairpinstrukturen vom Typ A offenbart. Auch Kombinationen von terminal und intern immobilisierten Rezeptoren auf einen Träger sind möglich.In a further embodiment, the hairpin structures of type A (recognition sequence in the loop) and type B (recognition sequence in the stem) can be connected to the carrier not only terminally but also internally (FIG. 7). It also discloses type A hairpin structures internally bonded to the carrier. Combinations of terminally and internally immobilized receptors on a carrier are also possible.
Eine Verbesserung gegenüber dem Stand der Technik wird insbesondere dadurch erzielt, dass die erfindungsgemäße Hairpinstruktur die Erkennungssequenz im Stem beinhaltet. Der zur Erkennungssequenz komplementäre Strang wird als Referenz-Sequenz zur Mismatch- Diskriminierung verwendet. Bei einem Hybrisdisierungsexperiment konkurriert eine in der Probenlösung vorhandene Target-Sequenz mit der Referenz-Sequenz (A*) um die Sondensequenz (A). Ist es erwünscht, kann die Stringenz durch Einbau von besonderen Nukleinsäure-Bausteinen (PNA, LNA) im Referenz-Strang weiter gesteigert werden. Das heißt, es wird nur eine Hybridisierung erfolgen - d.h. der Hairpin in die offene Form wechseln - wenn die in der Probenlösung vorhandene Targetsequenz exakt komplementär zur Sondensequenz ist. Ist dies nicht der Fall, sorgt die im Hairpin integrierte Referenzsequenz dafür, dass der Hairpin nicht in die offene Form wechselt, und somit kein Hybridisierung mit einer Targetsequenz erfolgen kann. Desweiteren erlaubt die erfindungsgemäße Hairpinstruktur die Diskriminierung von terminalen Basenfehlpaarungen. Diese werden über die Hybridisierung der Targetsequenz an die Position X möglich. Basenpaarungen komplementär zu terminalen Position X entscheiden darüber, ob der Hairpin verstärkt in die offene Form wechselt und daraus resultierend ein Hybridisierungs-Ereignis detektiert werden kann.An improvement over the prior art is achieved in particular in that the hairpin structure according to the invention contains the recognition sequence in the stem. The strand complementary to the recognition sequence is used as a reference sequence for mismatch discrimination. In a hybridization experiment, a target sequence in the sample solution competes with the reference sequence (A *) for the probe sequence (A). If desired, the stringency can be further increased by incorporating special nucleic acid building blocks (PNA, LNA) in the reference strand. This means that only hybridization will take place - ie change the hairpin to the open form - if the target sequence in the sample solution is exactly complementary to the probe sequence. If this is not the case, the reference sequence integrated in the hairpin ensures that the hairpin does not change to the open form and therefore no hybridization with a target sequence can take place. Furthermore, the hairpin structure according to the invention allows the discrimination of terminal base mismatches. These are made possible by hybridizing the target sequence to position X. Base pairings complementary to terminal position X decide whether the hairpin changes to the open form and whether a hybridization event can be detected as a result.
Dies hat zur Folge, dass im Gegensatz zu herkömmlichen DNA-Arrays für die Entscheidung, ob es sich um einen „füll match" oder „mismatch" handelt, wesentlich weniger Sequenzen aufgebracht werden müssen. Daraus resultiert, dass mit der a priori gegebenen maximalen Stellplatzdichte eines Array mehr unterschiedliche Targetsequenzen bearbeitet werden können. Dies steigert die Informationsdichte des Arrays signifikant.As a result, in contrast to conventional DNA arrays, significantly fewer sequences have to be applied for deciding whether it is a “fill match” or “mismatch”. The result of this is that with the a priori given maximum parking space density of an array, more different target sequences can be processed. This significantly increases the information density of the array.
Durch Inkorporation von Fluoreszenz- (F) oder/und Quencher (Q) - Bausteinen in die erfindungsgemäße Hairpinstruktur lässt sich außerdem eine markierungsfreie Detektion von DNA-Arrays erreichen (Figur 5).By incorporating fluorescence (F) and / or quencher (Q) building blocks into the hairpin structure according to the invention, it is also possible to achieve a label-free detection of DNA arrays (FIG. 5).
In einer bevorzugten Ausführungsform der Erfindung wird ein integriertes System zur Bestimmung von Analyten bereitgestellt, welches eine hochparallele in situ Herstellung komplexer Populationen von Hairpin- Rezeptoren immobilisiert in Mikrostukturen zum Nachweis von Analyten erlaubt.In a preferred embodiment of the invention, an integrated system for determining analytes is provided, which allows highly parallel in situ production of complex populations of hairpin receptors immobilized in microstructures for the detection of analytes.
Hierzu verwendet man günstigerweise eine Vorrichtung, umfassend:A device comprising:
(i) eine Lichtquellenmatrix,(i) a light source matrix,
(ii) einen mikrofluidischen Träger mit mehreren vorbestimmten(ii) a microfluidic carrier having a plurality of predetermined ones
Positionen, an denen jeweils unterschiedliche Rezeptoren ausgewählt aus Nukleinsäuren und Nukleinsäureanaloga auf dem Träger immobilisiert sind, wobei in einem oder mehreren der vorbestimmtenPositions at which in each case different receptors selected from nucleic acids and nucleic acid analogs are immobilized on the support, in one or more of the predetermined ones
Bereiche die Rezeptoren in Abwesenheit eines damit spezifisch bindefähigen Analyten zumindest teilweise als Sekundärstruktur vorliegen, (iii) Mittel zur Zufuhr von Fluids zum Träger und zur Ableitung von Fluids aus dem Träger und (iv) eine Detektionsmatrix, umfassend mehrere Detektoren, die den vorbestimmten Bereichen auf dem Träger zugeordnet sind.Specific areas of the receptors in the absence of one bindable analytes are at least partially present as a secondary structure, (iii) means for supplying fluids to the carrier and for deriving fluids from the carrier and (iv) a detection matrix comprising a plurality of detectors which are assigned to the predetermined areas on the carrier.
In der erfindungsgemäßen Vorrichtung legen vorzugsweise zumindest die Komponenten (ii), (iii) und (iv) in integrierter Form vor. Besonders bevorzugt ist der Träger zwischen Lichtquellenmatrix und Detektionsmatrix angeordnet. Die Detektoren der Detektionsmatrix sind vorzugsweise aus Fotodetektoren oder/und elektronischen Detektoren, z.B. Elektroden, ausgewählt.In the device according to the invention, preferably at least components (ii), (iii) and (iv) are present in an integrated form. The carrier is particularly preferably arranged between the light source matrix and the detection matrix. The detectors of the detection matrix are preferably made of photodetectors and / or electronic detectors, e.g. Electrodes selected.
Die erfindungsgemäße Vorrichtung kann zur gesteuerten in situ Synthese von Nukleinsäuren, z.B. DNA/RNA-Oligomeren benutzt werden, wobei als temporäre Schutzgruppen fotochemische, fluidchemische, oder/und elektronisch abspaltbare Schutzgruppen, verwendet werden können. Die orts- oder/und zeitaufgelöste Rezeptorsynthese kann durch gezielte Ansteuerung von Elektroden in der Detektionsmatrix, gezielte Fluidzufuhr in definierte Bereiche oder Bereichsgruppen auf dem Träger oder/und gezielte Belichtung über die Lichtquellenmatrix erfolgen.The device according to the invention can be used for the controlled in situ synthesis of nucleic acids, e.g. DNA / RNA oligomers are used, and photochemical, fluid-chemical and / or electronically removable protective groups can be used as temporary protective groups. The location- and / or time-resolved receptor synthesis can be carried out by targeted activation of electrodes in the detection matrix, targeted fluid supply in defined areas or area groups on the support or / and targeted exposure via the light source matrix.
Weiterhin soll die vorliegende Erfindung durch die nachfolgenden Abbildungen erläutert werden:The present invention is further to be illustrated by the following figures:
Figur 1A zeigt schematisch eine Hairpin-Struktur und Figur 1 B zeigt das Gleichgewicht zwischen geschlossener und offener Form des Hairpins.FIG. 1A schematically shows a hairpin structure and FIG. 1B shows the balance between the closed and open form of the hairpin.
Figur 2 zeigt zwei Typen von oberflächengebundenen Hairpin-Strukturen. Gemäß Figur 2A befindet sich die mit dem Analyten bindefähige Erkennungssequenz des Rezeptors im Loop. Gemäß Figur 2B befindet sich die mit dem Analyten bindefähige Erkennungssequenz im Stem. Dabei bestehen zwei Möglichkeiten zur Anordnung der Erkennungssequenz, d.h. oberflächennah (A) oder oberflächenfern (A*). Die in Figur 2B gezeigte Anordnung der Erkennungssequenz stellt eine bevorzugte Ausführungsform der Erfindung dar.Figure 2 shows two types of surface-bound hairpin structures. According to FIG. 2A, the recognition sequence of the receptor that is bindable with the analyte is in the loop. According to Figure 2B there is the recognition sequence in the stem which is bindable with the analyte. There are two options for arranging the recognition sequence, ie near the surface (A) or away from the surface (A * ). The arrangement of the recognition sequence shown in FIG. 2B represents a preferred embodiment of the invention.
Figur 3 zeigt eine Ausführungsform der erfindungsgemäßen Hairpin- Struktur und deren Wirkungsweise, wobei S die Festphase und L eine Linkersequenz bedeutet. In Figur 3A ist A* die mit dem Analyten bindefähige Erkennungssequenz des Rezeptors und A eine dazu komplementäre Sequenz (Referenzsequenz) des Rezeptors. In Figur 3B ist A die mit dem Analyten bindefähige Erkennungssequenz des Rezeptors und A* eine dazu komplementäre Sequenz (Referenzsequenz) des Rezeptors.FIG. 3 shows an embodiment of the hairpin structure according to the invention and its mode of action, where S is the solid phase and L is a linker sequence. In FIG. 3A, A * is the recognition sequence of the receptor which is capable of binding to the analyte and A is a sequence (reference sequence) of the receptor which is complementary thereto. In FIG. 3B, A is the recognition sequence of the receptor which is capable of binding to the analyte and A * is a sequence (reference sequence) of the receptor which is complementary thereto.
Figur 4A und 4B zeigen eine weitere Ausführungsform der erfindungsgemäßen Hairpin-Strukturen mit einer zusätzlichen Erkennungssequenz X und einer dazu nicht komplementären Sequenz Z innerhalb des Sterns bzw. deren Wirkungsweise.FIGS. 4A and 4B show a further embodiment of the hairpin structures according to the invention with an additional recognition sequence X and a sequence Z which is not complementary to it within the star or its mode of action.
Figur 5A und 5B zeigen eine Ausführungsform der erfindungsgemäßen Hairpin-Strukturen, die eine markierungsfreie Detektion, d.h. zum Nachweis von nichtmarkierten Analyten, bzw. deren Wirkungsweise. F bedeutet eine Fluoreszenzmarkierungsgruppe, Q einen Quencher.FIGS. 5A and 5B show an embodiment of the hairpin structures according to the invention, which enables label-free detection, i.e. for the detection of unmarked analytes and their mode of action. F represents a fluorescent labeling group, Q a quencher.
Figur 6 zeigt die Wirkungsweise erfindungsgemäßer Hairpin-Strukturen bei einer Doppelstrang-Hybridisierung, d.h. der zu bestimmende Analyt liegt in Form eines doppelsträngigen Targets vor.Figure 6 shows the mode of action of hairpin structures according to the invention in double-strand hybridization, i.e. the analyte to be determined is in the form of a double-stranded target.
Figur 7 zeigt erfindungsgemäße Hairpin-Strukturen, die nicht über die Enden, sondern im inneren der Sequenz an die Festphase gebunden sind. Gemäß Figur 7A befindet sich die Erkennungssequenz im Loop und gemäß Figur 7B befindet sich die Erkennungssequenz im Stem. Figur 8 zeigt ein Beispiel für eine Hybridisierung auf einem Array mit Hairpin-Strukturen, bei denen sich die Erkennungssequenz im Loop befindet.FIG. 7 shows hairpin structures according to the invention which are not bound to the solid phase via the ends, but inside the sequence. According to FIG. 7A the recognition sequence is in the loop and according to FIG. 7B the recognition sequence is in the stem. FIG. 8 shows an example of a hybridization on an array with hairpin structures in which the recognition sequence is in the loop.
Figur 9 zeigt ein Beispiel für eine Hybridisierung auf einem Array, der Hairpin-Strukturen mit einer Erkennungssequenz im Stem beinhaltet. FIG. 9 shows an example for a hybridization on an array which contains hairpin structures with a recognition sequence in the stem.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10152017A DE10152017A1 (en) | 2001-10-22 | 2001-10-22 | Arrays with hairpin structures |
DE10152017 | 2001-10-22 | ||
PCT/EP2002/011755 WO2003035259A2 (en) | 2001-10-22 | 2002-10-21 | Arrays with hairpin structures |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1440313A2 true EP1440313A2 (en) | 2004-07-28 |
Family
ID=7703271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02782967A Withdrawn EP1440313A2 (en) | 2001-10-22 | 2002-10-21 | Arrays with hairpin structures |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1440313A2 (en) |
AU (1) | AU2002346957A1 (en) |
DE (1) | DE10152017A1 (en) |
WO (1) | WO2003035259A2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008080629A2 (en) * | 2006-12-29 | 2008-07-10 | Febit Holding Gmbh | Improved molecular biological processing system |
CA3074349A1 (en) | 2017-09-29 | 2019-04-04 | Boehringer Ingelheim Vetmedica Gmbh | Sensor apparatus and method for testing a sample |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6596489B2 (en) * | 2001-03-30 | 2003-07-22 | Applied Gene Technologies | Methods and compositions for analyzing nucleotide sequence mismatches using RNase H |
-
2001
- 2001-10-22 DE DE10152017A patent/DE10152017A1/en not_active Withdrawn
-
2002
- 2002-10-21 EP EP02782967A patent/EP1440313A2/en not_active Withdrawn
- 2002-10-21 AU AU2002346957A patent/AU2002346957A1/en not_active Abandoned
- 2002-10-21 WO PCT/EP2002/011755 patent/WO2003035259A2/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO03035259A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2003035259A2 (en) | 2003-05-01 |
AU2002346957A1 (en) | 2003-05-06 |
DE10152017A1 (en) | 2003-04-30 |
WO2003035259A3 (en) | 2003-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3854743T2 (en) | METHOD FOR QUICK BASE SEQUENCING IN DNA AND RNS. | |
DE69928265T3 (en) | MATRICES OF BIOMOLECULES AND THEIR USE IN SEQUENCING | |
DE10393431T5 (en) | Microarrays with multiple oligonucleotides in single array features | |
WO2001036668A1 (en) | Colour labelled oligonucleotide for labelling a nucleic acid molecule | |
DE10036174B4 (en) | Method and apparatus for analyzing chemical or biological samples | |
EP1385617B1 (en) | Hybrid method for the production of carriers for analyte determination | |
DE19612356B4 (en) | Optical detection of hybridization signals | |
EP1448798A1 (en) | Nanostructure, in particular for analysing individual molecules | |
EP1440313A2 (en) | Arrays with hairpin structures | |
DE19806962B4 (en) | Labeling of nucleic acids with special sample mixtures | |
EP1234056B1 (en) | Dynamic determination of analytes using arrays on internal surfaces | |
EP1649045B1 (en) | Incorporation of hapten groups during the production of carriers for the determination of analytes | |
DE102005029811B4 (en) | Oligonucleotide arrangements, methods for their use and their use | |
DE10156433A1 (en) | Methods and devices for the electronic determination of analytes | |
DE102006062089A1 (en) | Molecular biology process system comprises a device for synthesis of receptor arrays, devices for performing fluidic steps, a detection unit and programmable control units | |
DE10208770A1 (en) | Increasing the sensitivity and specificity of hybridization experiments with nucleic acid chips | |
WO2002057013A2 (en) | Analysis chip with a plurality of functional levels for use in electrofocussed spotting | |
WO2005064012A2 (en) | Method for validating and/or calibrating a system for performing hybridisation experiments, microarray, and kit therefor | |
WO2003076655A2 (en) | Method for identifying a nucleic acid analyte | |
DE10318139B4 (en) | Self-configurable biochip | |
WO2020169422A1 (en) | Device for analysing a biological sample | |
WO2008080531A2 (en) | Method, device, and kit for analyzing a liquid sample | |
DE10152925A1 (en) | Asymmetric probes | |
DE10028257A1 (en) | Analysis chip used e.g. in DNA sequencing, comprises baseplate carrying array of electronically-addressable points, with matching perforated plate attached to it | |
EP1420248A2 (en) | Validated design for microarrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040305 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050604 |