[go: up one dir, main page]

EP1413728B1 - Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine - Google Patents

Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine Download PDF

Info

Publication number
EP1413728B1
EP1413728B1 EP20030090353 EP03090353A EP1413728B1 EP 1413728 B1 EP1413728 B1 EP 1413728B1 EP 20030090353 EP20030090353 EP 20030090353 EP 03090353 A EP03090353 A EP 03090353A EP 1413728 B1 EP1413728 B1 EP 1413728B1
Authority
EP
European Patent Office
Prior art keywords
closed
exhaust gas
loop controller
sensor
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030090353
Other languages
German (de)
French (fr)
Other versions
EP1413728A3 (en
EP1413728A2 (en
Inventor
Andreas Berns
Michael Daetz
Hermann Dr. Hahn
Norbert Pelz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1413728A2 publication Critical patent/EP1413728A2/en
Publication of EP1413728A3 publication Critical patent/EP1413728A3/en
Application granted granted Critical
Publication of EP1413728B1 publication Critical patent/EP1413728B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater

Definitions

  • the invention relates to a method and a controller for operating an arranged in an exhaust passage of an internal combustion engine exhaust gas sensor with the features mentioned in the preamble of claims 1 and 19.
  • NO x sensors For example, to determine the NO x content in the exhaust gas of an internal combustion engine usually employed NO x sensors. Such NO x sensors are known in various designs, so that can be dispensed with a more detailed description here. Especially with a lean executable engine it is important to comply with the NO x limit to know the NOx content in the exhaust system behind a NOx storage catalytic converter in order to, for example, determine the time at which a storage of NOx in the NO x storage is no longer possible, that is, the NO x storage is filled, so that a regeneration phase is necessary.
  • a measuring device which is able to measure the NO x concentration in the exhaust gas, so for example a NO x sensor.
  • the measuring accuracy of exhaust gas sensors such as NO x sensors or lambda probes usually depends on external parameters. Therefore, it is important to keep these parameters within the optimum ranges for accurate control, and readjust if necessary.
  • NO x sensors the temperature must be kept constant in order to ensure high accuracy of the signal. The smaller the deviations from the desired temperature of the sensor, the more accurate the sensor signal.
  • GB 2345142 shows a similar system to that described above.
  • a PI controller based on voltage without exhaust gas mass flow-dependent feedforward control is used in this exhaust gas temperature sensor, which operates with a resistance difference as a controller input variable and a voltage as a controller output variable.
  • the weak point of this system is the great inaccuracy in the regulation of the sensor temperature in the event of fluctuations in the exhaust gas mass flow due, among other things, to a missing model of the path to be controlled.
  • the invention is therefore based on the object to provide a controller and a method for controlling an arranged in an exhaust passage of an internal combustion engine exhaust gas sensor, which eliminate the disadvantages mentioned, and in particular to provide a robust controller or a robust method for controlling an exhaust gas sensor.
  • a particular advantage of the method for operating an exhaust gas sensor arranged in an exhaust duct of an internal combustion engine is that the measurement accuracy of exhaust gas sensors is increased by a control of operating parameters of the exhaust gas sensor by a model-based controller and / or an exhaust gas flow dependent pilot control of operating parameters of the exhaust gas sensor.
  • a controller is used, which is characterized in that the controller is designed as a model-based controller and has a predetermined by a model of the controlled system.
  • the operating parameter temperature is controlled and / or controlled during operation of a NO x sensor. It is advantageous if the temperature is determined by measuring an electrical resistance value. It is also advantageous if the control evaluates the difference between the current and the setpoint temperature of the sensor as a controller input variable and the heating power for heating the sensor varies as a controller output variable. This achieves a linear relationship between controller input and output quantity.
  • the exhaust gas flow-dependent pilot control is set up so that the exhaust gas flow-dependent pilot control becomes active in the case of a very rapidly decreasing or increasing exhaust gas flow.
  • this can be realized in that the exhaust gas flow-dependent feedforward control is active when the exhaust gas flow changes faster than graded to the sampling time gradient.
  • the current value of the measured sensor resistance and / or the current value of the measured sensor temperature are taken into account in the release condition of the exhaust-gas-dependent pilot control.
  • a plurality of temporally successive differences of the measured exhaust gas mass flow values are evaluated in a pilot control of the exhaust gas sensor.
  • good results are achieved if the number of temporally successive differences of the measured exhaust gas mass flow values to be evaluated for a precontrol is determined as a function of the sampling time, a higher number being evaluated for short sampling times and a smaller number of differences being evaluated for long sampling times.
  • a pilot control matched to a sampling time of 50 ms becomes active with a low heating power value if three time-sequential differences of the measured exhaust gas mass flow values are greater than the gradient to be applied.
  • a feedforward control with a high heating power value tuned to a sampling time of 50 ms advantageously becomes active if four time-sequential differences of the measured exhaust-gas mass flow values are smaller than the gradient to be applied.
  • a preferred embodiment of the method according to the invention provides that at least at the beginning of deceleration phases, a high heating power precontrol takes place.
  • a particularly robust controller is obtained if the model of the controlled system is based on the parameters time constant T, damping d and static gain k SR .
  • controller is designed as a linear regulator.
  • good control results are obtained even if the controlled system has a linear relationship, that is, if there is a linear relationship between controller input and controller output variables.
  • a preferred embodiment of the regulator according to the invention is characterized in that the controller comprises a Kalman filter and an optimal state feedback. To avoid an undesired "run-up" of the integrator, it is advantageous if the controller has an integrator windup avoiding integrator.
  • the controller comprises a means for measuring the exhaust gas mass flow value, whereby an exhaust gas mass flow-dependent feedforward control is made possible.
  • the controller according to the invention is characterized in that it is based on a new controller structure, which includes a model of the controlled system. Due to this additional information about the controlled system, a higher control accuracy is achieved.
  • the relationship between controller input and output has been linearized to achieve better control results.
  • the controller now varies the heating power and thus controls the heating of the sensor to its setpoint temperature.
  • Regulator input is a temperature difference, which results from the current and the target temperature of the sensor.
  • the new controller structure includes a special integrator whose advantage consists in avoiding an "integrator windup", ie an undesired "startup" of the integrator when the manipulated variable has reached the saturation value of the control loop input.
  • the new controller structure can be combined with an exhaust gas mass flow-dependent pilot control in order to compensate for the dead time due to the position of the NO x sensor far back in the exhaust gas tract.
  • An exemplary embodiment of the model-based controller was designed according to the LQG / LTR (Linear Quadratic Gaussian / Loop Transfer Recovery) method.
  • the LQG / LTR method is a linear continuous-time design method.
  • the exemplary controller designed thereby consists of a Kalman filter as observer and an optimal state feedback.
  • the measured step response 12 was superimposed on the simulated behavior of a PT 2 element 13 T_model. As in FIG. 1 It became clear that a PT 2 member closely approximates the measured behavior.
  • FIG. 2 shows the amplitude and phase response (Bode diagram) of the open chain 20 consisting of the controller according to the invention and the special integrator described above. With a phase margin of around 73 °, the structure has a high degree of robustness.
  • the proposed new controller structure can be combined with an exhaust gas mass flow-dependent pilot control.
  • the pilot control becomes active when the exhaust gas mass flow increases or decreases very rapidly.
  • the underlying idea is that there is information about an imminent cooling or heating of the sensor located farther back in the exhaust tract via the exhaust gas mass flow. If the mass flow changes faster than the gradients matched to the sampling time, the feedforward will be activated by either a high heat-up to prevent the impending cooling or a lowering of the heating power to a low level due to impending heating.
  • the current value of the measured sensor resistance is included in the release condition of the feedforward control in order to avoid too low a heating power precontrol when the sensor temperature is too low, and vice versa.
  • the sensor resistance it is also possible to measure the sensor temperature, the temperature and the resistance being converted into one another on the basis of the abovementioned characteristic curve.
  • the measurement of the exhaust gas mass flow is affected by a measurement noise.
  • it is usually not appropriate to respond to any (small) change in the exhaust gas mass flow with an adjustment of the heating power. Instead, it will be useful, depending on the sampling time, to take into account a higher or lower number of chronologically successive differences of the measured exhaust gas mass flow values for a precontrol.
  • the number of temporally successive differences must be chosen so that a compromise is found between the demarcation against the measurement noise and too long a reaction time. For shorter sampling times, it may be advantageous to increase the number of to consider, taking into account, time-sequential differences of the measured exhaust gas mass flow values; For longer sampling times, it may be necessary to reduce this number.
  • the criterion "three successive differences of the measured exhaust gas mass flow values are greater than the gradient to be applied (corresponds to a response time of 3 * 50 ms)" represent a compromise between avoiding a wrong feedforward and a short reaction time.
  • the compromise in a special embodiment with the sampling time 50 ms for example, by the criterion "four temporally successive differences of the measured exhaust gas mass flow values are smaller than the gradient to be applied (corresponds to a reaction time of 4 * 50ms)" formed become.
  • the sensor At the beginning of a fuel cut-off phase, the sensor usually cools something out. Therefore, it is also possible to switch to maximum heating for overrun phases already via the pilot control, even before this is the case via the control deviation and the controller itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren und einen Regler zum Betrieb eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Abgassensors mit den im Oberbegriff der Ansprüche 1 und 19 genannten Merkmalen.The invention relates to a method and a controller for operating an arranged in an exhaust passage of an internal combustion engine exhaust gas sensor with the features mentioned in the preamble of claims 1 and 19.

Es ist bekannt, dass beispielsweise zur Bestimmung des NOX-Gehaltes im Abgas einer Verbrennungskraftmaschine üblicherweise NOx-Sensoren eingesetzt werden. Solche NOx-Sensoren sind in verschiedensten Ausführungen bekannt, so dass hier auf eine nähere Beschreibung verzichtet werden kann. Speziell bei einem magerlauffähigen Verbrennungsmotor ist es zur Einhaltung der NOx-Grenzwerte wichtig, den NOx-Gehalt im Abgastrakt hinter einem NOx-Speicherkatalysator zu kennen, um zum Beispiel den Zeitpunkt bestimmen zu können, an dem eine Einlagerung von NOx in den NOx-Speicher nicht mehr möglich ist, das heißt der NOx-Speicher gefüllt ist, so dass eine Regenerationsphase notwendig ist.It is known that, for example, to determine the NO x content in the exhaust gas of an internal combustion engine usually employed NO x sensors. Such NO x sensors are known in various designs, so that can be dispensed with a more detailed description here. Especially with a lean executable engine it is important to comply with the NO x limit to know the NOx content in the exhaust system behind a NOx storage catalytic converter in order to, for example, determine the time at which a storage of NOx in the NO x storage is no longer possible, that is, the NO x storage is filled, so that a regeneration phase is necessary.

Dazu befindet sich üblicherweise hinter dem Katalysator im Abgastrakt eines mindestens zeitweilig magerlaufenden Verbrennungsmotors eine Messeinrichtung, die in der Lage ist, die NOx-Konzentration im Abgas zu messen, also beispielsweise ein NOx-Sensor. Die Messgenauigkeit von Abgassensoren wie NOx-Sensoren oder Lambdasonden hängt in der Regel von äußeren Parametern ab. Deshalb ist es wichtig, diese Parameter in den für eine genaue Regelung optimalen Bereichen zu halten und erforderlichenfalls nachzuregeln. So muss beispielsweise bei NOx-Sensoren die Temperatur konstant gehalten werden, um eine hohe Genauigkeit des Signals zu gewährleisten. Je geringer die Abweichungen von der Soll-Temperatur des Sensors sind, desto genauer ist das Sensorsignal.For this purpose, usually located behind the catalyst in the exhaust system of an at least temporarily lean-running internal combustion engine, a measuring device which is able to measure the NO x concentration in the exhaust gas, so for example a NO x sensor. The measuring accuracy of exhaust gas sensors such as NO x sensors or lambda probes usually depends on external parameters. Therefore, it is important to keep these parameters within the optimum ranges for accurate control, and readjust if necessary. For example, with NO x sensors, the temperature must be kept constant in order to ensure high accuracy of the signal. The smaller the deviations from the desired temperature of the sensor, the more accurate the sensor signal.

GB 2345142 zeigt ein ähnliches System zu dem oben beschriebenen. GB 2345142 shows a similar system to that described above.

Bisher wird bei diesem Abgassensor für die Temperaturregelung ein PI-Regler auf Spannungsbasis ohne abgasmassenstromabhängige Vorsteuerung eingesetzt, welcher mit einer Widerstandsdifferenz als Reglereingangsgröße und einer Spannung als Reglerausgangsgröße arbeitet. Schwachstelle dieses Systems ist die große Ungenauigkeit bei der Regelung der Sensortemperatur bei Schwankungen des Abgasmassenstromes aufgrund unter anderem eines fehlenden Modells der zu regelnden Strecke.So far, a PI controller based on voltage without exhaust gas mass flow-dependent feedforward control is used in this exhaust gas temperature sensor, which operates with a resistance difference as a controller input variable and a voltage as a controller output variable. The weak point of this system is the great inaccuracy in the regulation of the sensor temperature in the event of fluctuations in the exhaust gas mass flow due, among other things, to a missing model of the path to be controlled.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Regler und ein Verfahren zur Regelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Abgassensors zu schaffen, die die genannten Nachteile beheben, und insbesondere einen robusten Regler beziehungsweise ein robustes Verfahren zur Regelung eines Abgassensors bereitzustellen.The invention is therefore based on the object to provide a controller and a method for controlling an arranged in an exhaust passage of an internal combustion engine exhaust gas sensor, which eliminate the disadvantages mentioned, and in particular to provide a robust controller or a robust method for controlling an exhaust gas sensor.

Diese Aufgabe wird durch einen Regler und ein Verfahren mit den in den Ansprüchen 1 und 19 genannten Merkmalen gelöst.This object is achieved by a controller and a method having the features mentioned in claims 1 and 19.

Ein besonderer Vorteil des Verfahrens zum Betrieb eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Abgassensors besteht darin, dass die Messgenauigkeit von Abgassensoren erhöht wird, indem eine Regelung von Betriebsparametern des Abgassensors durch einen modellbasierten Regler und/oder eine abgasstromabhängige Vorsteuerung von Betriebsparametern des Abgassensors erfolgt.A particular advantage of the method for operating an exhaust gas sensor arranged in an exhaust duct of an internal combustion engine is that the measurement accuracy of exhaust gas sensors is increased by a control of operating parameters of the exhaust gas sensor by a model-based controller and / or an exhaust gas flow dependent pilot control of operating parameters of the exhaust gas sensor.

Zur Regelung von Betriebsparametern eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Abgassensors wird deshalb ein Regler eingesetzt, der sich dadurch auszeichnet, dass der Regler als modellbasierter Regler ausgebildet ist und eine durch ein Modell der Regelstrecke vorgegebene Struktur aufweist.To control operating parameters of an exhaust gas duct of an internal combustion engine arranged exhaust gas sensor, therefore, a controller is used, which is characterized in that the controller is designed as a model-based controller and has a predetermined by a model of the controlled system.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass beim Betrieb eines NOx-Sensors der Betriebsparameter Temperatur geregelt und/oder gesteuert wird. Dabei ist es von Vorteil, wenn die Temperatur durch Messung eines elektrischen Widerstandswertes ermittelt wird. Es ist außerdem von Vorteil, wenn die Regelung die Differenz aus der aktuellen und der Soll-Temperatur des Sensors 'als Reglereingangsgröße auswertet und die Heizleistung zur Beheizung des Sensors als Reglerausgangsgröße variiert. Damit wird ein linearer Zusammenhang zwischen Reglereinund -ausgangsgröße erreicht.In a preferred embodiment of the method according to the invention, it is provided that the operating parameter temperature is controlled and / or controlled during operation of a NO x sensor. It is advantageous if the temperature is determined by measuring an electrical resistance value. It is also advantageous if the control evaluates the difference between the current and the setpoint temperature of the sensor as a controller input variable and the heating power for heating the sensor varies as a controller output variable. This achieves a linear relationship between controller input and output quantity.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass die abgasstromabhängige Vorsteuerung so eingerichtet ist, dass die abgasstromabhängige Vorsteuerung bei sehr schnell ab- oder zunehmendem Abgasstrom aktiv wird. Speziell kann dies dadurch realisiert werden, dass die abgasstromabhängige Vorsteuerung aktiv wird, wenn sich der Abgasstrom schneller als auf die Abtastzeit abgestimmte Gradienten ändert.In a preferred embodiment of the method according to the invention, it is provided that the exhaust gas flow-dependent pilot control is set up so that the exhaust gas flow-dependent pilot control becomes active in the case of a very rapidly decreasing or increasing exhaust gas flow. Specifically, this can be realized in that the exhaust gas flow-dependent feedforward control is active when the exhaust gas flow changes faster than graded to the sampling time gradient.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass in der Freigabebedingung der abgasstromabhängigen Vorsteuerung der aktuelle Wert des gemessenen Sensor-Widerstandes und/oder der aktuelle Wert der gemessenen Sensor-Temperatur berücksichtigt wird.In a further preferred embodiment of the invention, it is provided that the current value of the measured sensor resistance and / or the current value of the measured sensor temperature are taken into account in the release condition of the exhaust-gas-dependent pilot control.

Als Vorteil erweist es sich, wenn bei schnell fallendem Abgasmassenstrom die Vorsteuerung kurzzeitig mit einer erniedrigten Heizleistung und bei rasch ansteigendem Abgasmassenstrom die Vorsteuerung kurzzeitig mit einer erhöhten Heizleistung reagiert. Damit werden eine unerwünschte Aufheizung beziehungsweise Abkühlung des Sensors kompensiert.It proves to be an advantage if, with rapidly falling exhaust gas mass flow, the precontrol briefly reacts for a short time with a reduced heating power and with rapidly increasing exhaust gas mass flow the pilot control reacts briefly with an increased heating power. This compensates for unwanted heating or cooling of the sensor.

In einer weiteren bevorzugten Ausführungsform' des erfindungsgemäßen Verfahrens ist vorgesehen, dass bei einer Vorsteuerung des Abgassensors mehrere zeitlich aufeinander folgende Differenzen der gemessenen Abgasmassenstromwerte ausgewertet werden. Man erreicht insbesondere dadurch gute Ergebnisse, wenn die Anzahl der für eine Vorsteuerung auszuwertenden, zeitlich aufeinander folgenden Differenzen der gemessenen Abgasmassenstromwerte in Abhängigkeit der Abtastzeit bestimmt wird, wobei bei kurzen Abtastzeiten eine höhere Anzahl, bei langen Abtastzeiten eine geringere Anzahl von Differenzen ausgewertet wird.In a further preferred embodiment of the method according to the invention, it is provided that a plurality of temporally successive differences of the measured exhaust gas mass flow values are evaluated in a pilot control of the exhaust gas sensor. In particular, good results are achieved if the number of temporally successive differences of the measured exhaust gas mass flow values to be evaluated for a precontrol is determined as a function of the sampling time, a higher number being evaluated for short sampling times and a smaller number of differences being evaluated for long sampling times.

Es hat sich außerdem als vorteilhaft erwiesen, dass eine auf eine Abtastzeit von 50 ms abgestimmte Vorsteuerung mit einem niedrigen Heizleistungswert aktiv wird, wenn drei zeitlich aufeinander folgende Differenzen der gemessenen Abgasmassenstromwerte größer als der zu applizierende Gradient sind. Wogegen eine auf eine Abtastzeit von 50 ms abgestimmte Vorsteuerung mit einem hohen Heizleistungswert vorteilhafterweise aktiv wird, wenn vier zeitlich aufeinander folgende Differenzen der gemessenen Abgasmassenstromwerte kleiner als der zu applizierende Gradient sind. Diese beiden Vorgehensweisen stellen jeweils einen Kompromiss dar zwischen der Vermeidung einer Fehlsteuerung und einer kurzen Reaktionszeit.It has also proved to be advantageous that a pilot control matched to a sampling time of 50 ms becomes active with a low heating power value if three time-sequential differences of the measured exhaust gas mass flow values are greater than the gradient to be applied. Whereas a feedforward control with a high heating power value tuned to a sampling time of 50 ms advantageously becomes active if four time-sequential differences of the measured exhaust-gas mass flow values are smaller than the gradient to be applied. These two approaches are each a compromise between the avoidance of a faulty control and a short reaction time.

Um eine unerwünschte Abkühlung des Abgassensors zu verhindern, sieht eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens vor, dass wenigstens zu Beginn von Schubphasen eine hohe Heizleistungsvorsteuerung erfolgt.In order to prevent unwanted cooling of the exhaust gas sensor, a preferred embodiment of the method according to the invention provides that at least at the beginning of deceleration phases, a high heating power precontrol takes place.

Als vorteilhaft erweist es sich, dass der modellbasierte Regler mit Hilfe eines linearen zeitkontinuierlichen Verfahrens ermittelt wird. Dabei hat sich als besonders praktisch herausgestellt, wenn der modellbasierte Regler mit Hilfe des LQG/LTR-Verfahrens (LQG/LTR = Linear Quadratic Gaussian/Loop Transfer Recovery) entworfen wird.It proves to be advantageous that the model-based controller is determined by means of a linear time-continuous method. It has proven to be particularly practical if the model-based controller using the LQG / LTR method (LQG / LTR = Linear Quadratic Gaussian / Loop Transfer Recovery) is designed.

Einen besonders robusten Regler erhält man, wenn dem Modell der Regelstrecke die Parameter Zeitkonstante T, Dämpfung d und statische Verstärkung kSR zugrunde gelegt werden.A particularly robust controller is obtained if the model of the controlled system is based on the parameters time constant T, damping d and static gain k SR .

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens ist vorgesehen, dass die einer zeitdiskreten Realisierung zugrunde liegende Differenzengleichung hno 0 y = k SR HNO 0 U hno 0 u + HNO 1 U hno 1 u + HNO 2 U hno 2 u - - HNO 1 YK hno 1 y + - HNO 2 YK hno 2 y

Figure imgb0001
lautet, wobei

hno0y
die aktuelle Ausgangsgröße,
hno1y
die im vorangegangenen Zeittakt berechnete Ausgangsgröße,
hno2y
die zwei Zeittakte zuvor berechnete Ausgangsgröße,
hno0u
die aktuelle Eingangsgröße,
hno1u
die im vorangegangenen Zeittakt gemessene Eingangsgröße,
hno2u
die zwei Zeittakte zuvor gemessene Eingangsgröße,
kSR
die statische Verstärkung und
HNOij
die Regelparameter (i = 0, 1, 2 und j = U, YK)
darstellen.In a further preferred embodiment of the method according to the invention, it is provided that the difference equation underlying a time-discrete realization ent 0 y = k SR ENT 0 U ent 0 u + ENT 1 U ent 1 u + ENT 2 U ent 2 u - - ENT 1 YK ent 1 y + - ENT 2 YK ent 2 y
Figure imgb0001
is, where
hno0y
the current output,
hno1y
the initial value calculated in the previous cycle,
hno2y
the two clocks previously calculated output,
hno0u
the current input,
hno1u
the input measured in the preceding cycle,
hno2u
the two clocks previously measured input,
k SR
the static amplification and
HNOij
the control parameters (i = 0, 1, 2 and j = U, YK)
represent.

Als besonders vorteilhaft erweist sich, wenn der Regler als linearer Regler ausgebildet ist. Beim Einsatz eines linearen Reglers erhält man gute Regelergebnisse, wenn auch die Regelstrecke einen linearen Zusammenhang aufweist, das heißt, wenn zwischen Reglereingangs- und Reglerausgangsgrößen ein linearer Zusammenhang besteht.Particularly advantageous is when the controller is designed as a linear regulator. When using a linear controller, good control results are obtained even if the controlled system has a linear relationship, that is, if there is a linear relationship between controller input and controller output variables.

Eine bevorzugte Ausführungsform des erfindungsgemäßen Reglers ist dadurch ausgezeichnet, dass der Regler einen Kalman-Filter und eine optimale Zustandsrückführung umfasst. Zur Vermeidung eines unerwünschten "Hochlaufens" des Integrators ist es vorteilhaft, wenn der Regler einen ein Integrator-Windup vermeidenden Integrator aufweist.A preferred embodiment of the regulator according to the invention is characterized in that the controller comprises a Kalman filter and an optimal state feedback. To avoid an undesired "run-up" of the integrator, it is advantageous if the controller has an integrator windup avoiding integrator.

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Reglers ist vorgesehen, dass der Regler ein Mittel zur Messung des Abgasmassenstromwertes umfasst, wodurch eine abgasmassenstromabhängige Vorsteuerung ermöglicht wird.In a further preferred embodiment of the regulator according to the invention provided that the controller comprises a means for measuring the exhaust gas mass flow value, whereby an exhaust gas mass flow-dependent feedforward control is made possible.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Beispielhaft wird dabei ein NOx-Sensor als Abgassensor zugrunde gelegt. Es zeigen:

Figur 1
eine Darstellung der in einem Sprungversuch ermittelten Kennlinien und
Figur 2
eine Darstellung von Amplituden- und Phasengang (Bode-Diagramm) der offenen Kette bestehend aus dem erfindungsgemäßen Regler und einem ein Integrator-Windup vermeidenden Integrator.
The invention will be explained in more detail in embodiments with reference to the accompanying drawings. By way of example, an NO x sensor is used as the exhaust gas sensor. Show it:
FIG. 1
a representation of the determined in a jump test curves and
FIG. 2
a representation of the amplitude and phase response (Bode diagram) of the open chain consisting of the controller according to the invention and an integrator windup avoiding integrator.

Der erfindungsgemäße Regler ist dadurch ausgezeichnet, dass ihm eine neue Reglerstruktur zugrunde liegt, welche ein Modell der Regelstrecke beinhaltet. Aufgrund dieser Zusatzinformation über die Regelstrecke wird eine höhere Regelgenauigkeit erreicht. Zusätzlich zum neuen Regler wurde der Zusammenhang zwischen Reglerein- und -ausgangsgröße linearisiert, um bessere Regelergebnisse zu erzielen. Der Regler variiert nun die Heizleistung und regelt damit die Beheizung des Sensors auf seine Soll-Temperatur. Reglereingangsgröße ist eine Temperaturdifferenz, welche sich aus der aktuellen und der Soll-Temperatur des Sensors ergibt. Zur neuen Reglerstruktur gehört ein spezieller Integrator, dessen Vorteil in der Vermeidung eines "Integrator-Windup", das heißt eines unerwünschten "Hochlaufens" des Integrators, wenn die Stellgröße den Sättigungswert des Regelstreckeneingangs erreicht hat, besteht. Zusätzlich kann die neue Reglerstruktur mit einer abgasmassenstromabhängigen Vorsteuerung kombiniert werden, um die Totzeit, bedingt durch die Position des NOx-Sensors weit hinten im Abgastrakt, auszugleichen.The controller according to the invention is characterized in that it is based on a new controller structure, which includes a model of the controlled system. Due to this additional information about the controlled system, a higher control accuracy is achieved. In addition to the new controller, the relationship between controller input and output has been linearized to achieve better control results. The controller now varies the heating power and thus controls the heating of the sensor to its setpoint temperature. Regulator input is a temperature difference, which results from the current and the target temperature of the sensor. The new controller structure includes a special integrator whose advantage consists in avoiding an "integrator windup", ie an undesired "startup" of the integrator when the manipulated variable has reached the saturation value of the control loop input. In addition, the new controller structure can be combined with an exhaust gas mass flow-dependent pilot control in order to compensate for the dead time due to the position of the NO x sensor far back in the exhaust gas tract.

Eine beispielhafte Ausführungsform des modellbasierten Reglers wurde nach dem LQG/LTR-Verfahren (LQG/LTR = Linear Quadratic Gaussian/Loop Transfer Recovery) entworfen. Das LQG/LTR-Verfahren ist ein lineares zeitkontinuierliches Entwurfsverfahren. Der damit entworfene beispielhafte Regler besteht aus einem Kalman-Filter als Beobachter und aus einer optimalen Zustandsrückführung. Die zugrunde liegende Differenzengleichung für eine zeitdiskrete Realisierung, wie sie beispielsweise in der Software eines Motorsteuergeräts implementiert ist, lautet: hno 0 y = k SR HNO 0 U hno 0 u + HNO 1 U hno 1 u + HNO 2 U hno 2 u - - HNO 1 YK hno 1 y + - HNO 2 YK hno 2 y

Figure imgb0002
mit den oben definierten Größen.An exemplary embodiment of the model-based controller was designed according to the LQG / LTR (Linear Quadratic Gaussian / Loop Transfer Recovery) method. The LQG / LTR method is a linear continuous-time design method. The exemplary controller designed thereby consists of a Kalman filter as observer and an optimal state feedback. The underlying difference equation for a discrete-time realization, as implemented, for example, in the software of an engine control unit, is: ent 0 y = k SR ENT 0 U ent 0 u + ENT 1 U ent 1 u + ENT 2 U ent 2 u - - ENT 1 YK ent 1 y + - ENT 2 YK ent 2 y
Figure imgb0002
with the sizes defined above.

Da die Ordnung des Regelstreckenmodells die Ordnung des modellbasierten Reglers vorgibt, war es erforderlich, ein geeignetes und dennoch einfaches Modell der Regelstrecke zu ermitteln. Dazu wurden Sprungversuche mit der Strecke durchgeführt, wobei Leistungssprünge auf die Strecke gegeben wurden derart, dass die Streckenausgangsgröße, die Sensor-Temperatur, Sprünge um ihren Arbeitspunkt, der Soll-Temperatur durchführt, wie sie im Normalbetrieb zu erwarten sind. In Figur 1 ist das Ergebnis eines durchgeführten Sprungversuches dargestellt. Die Spannungs-Sprunggröße 10 U_sprung, wird über den Heizwiderstand in eine Leistungsgröße umgerechnet. Die Zwischengröße 11 RPVS, das ist der Innenwiderstand des Sensors, und die gewünschte Sprungantwort 12 T_Tip, die Temperatur des Sensorelements, sind zusätzlich in dem Diagramm aufgetragen. Mit Hilfe eines geeigneten Hilfsmittels wurde der gemessenen Sprungantwort 12 das simulierte Verhalten eines PT2-Glieds 13 T_model überlagert. Wie in Figur 1 gut zu erkennen, stellte sich heraus, dass ein PT2-Glied das gemessene Verhalten gut annähert. Die Parameter des beispielhaften Modells lauten: Zeitkonstante T = 4.2s, Dämpfung d = 1.2s und statische Verstärkung kSR = 17°C/W.Since the order of the controlled system model dictates the order of the model-based controller, it was necessary to determine a suitable yet simple model of the controlled system. For this jump tests were carried out with the track, with performance jumps were given to the track such that the track output, the sensor temperature, jumps around its operating point, the target temperature performs, as expected in normal operation. In FIG. 1 is the result of a jump attempt performed. The voltage jump quantity 10 U_sprung, is converted into a power quantity via the heating resistor. The intermediate quantity 11 R PVS , which is the internal resistance of the sensor, and the desired step response 12 T_Tip, the temperature of the sensor element, are additionally plotted in the diagram. With the aid of a suitable auxiliary means, the measured step response 12 was superimposed on the simulated behavior of a PT 2 element 13 T_model. As in FIG. 1 It became clear that a PT 2 member closely approximates the measured behavior. The parameters of the exemplary model are: time constant T = 4.2s, damping d = 1.2s and static gain k SR = 17 ° C / W.

Figur 2 zeigt den Amplituden- und Phasengang (Bode-Diagramm) der offenen Kette 20 bestehend aus dem erfindungsgemäßen Regler und dem oben beschriebenen, speziellen Integrator. Mit einer Phasenreserve von rund 73° weist die Struktur eine hohe Robustheit auf. FIG. 2 shows the amplitude and phase response (Bode diagram) of the open chain 20 consisting of the controller according to the invention and the special integrator described above. With a phase margin of around 73 °, the structure has a high degree of robustness.

Da es sich um einen linearen Regler handelt, wird für ein gutes Regelungsergebnis ein linearer Zusammenhang zwischen Reglerein- und -ausgangsgröße benötigt. Dieses ist der Grund für den Wechsel der Reglereingangsgröße vom gemessenen Sensorwiderstandswert auf einen Sensor-Temperaturwert und vom Heizspannungswert der Reglerausgangsgröße auf einen Heizleistungswert. Der lineare Zusammenhang zwischen der Temperaturerhöhung eines Körpers und der ihm zugeführten Wärmemenge lautet: Δ T 1 m Q

Figure imgb0003
mit der Temperaturerhöhung ΔT in [K] und der Masse m in [kg] des Körpers sowie der ihm zugeführten Wärmemenge Q in [Ws]. Die Umrechnung vom bisher verwendeten Innenwiderstandswert des Sensors in seine Temperatur erfolgt mit Hilfe einer vom Sensorhersteller ermittelten nichtlinearen Kennlinie.Since it is a linear controller, a linear relationship between controller input and output is required for a good control result. This is the reason for changing the controller input from the measured sensor resistance value to a sensor temperature value and from the heater voltage value of the controller output to a heating power value. The linear relationship between the temperature rise of a body and the amount of heat supplied to it is: Δ T ~ 1 m Q
Figure imgb0003
with the temperature increase ΔT in [K] and the mass m in [kg] of the body as well as the amount of heat Q supplied to it in [Ws]. The conversion of the previously used internal resistance value of the sensor into its temperature takes place with the aid of a nonlinear characteristic curve determined by the sensor manufacturer.

Um Schwankungen des Abgasmassenstromes bei der Temperaturregelung des NOx-Sensors besser berücksichtigen zu können, kann die vorgeschlagene neue Reglerstruktur mit einer abgasmassenstromabhängigen Vorsteuerung kombiniert werden. Die Vorsteuerung wird aktiv, wenn der Abgasmassenstrom sehr schnell zu- oder abnimmt. Die dahinter stehende Idee ist, dass über den Abgasmassenstrom eine Information über eine bevorstehende Abkühlung oder Aufheizung des weiter hinten im Abgastrakt befindlichen Sensors vorliegt. Wenn der Massenstrom sich schneller als die auf die Abtastzeit abgestimmten Gradienten ändert, wird die Vorsteuerung aktiv durch entweder ein starkes Aufheizen, um der bevorstehenden Abkühlung zuvorzukommen, oder ein Absenken der Heizleistung auf einen niedrigen Wert wegen einer bevorstehenden Aufheizung. Der aktuelle Wert des gemessenen Sensor-Widerstands geht dabei mit in die Freigabebedingung der Vorsteuerung ein, um zu vermeiden, dass bei einer zu niedrigen Sensortemperatur eine zu geringe Heizleistungsvorsteuerung erfolgt und umgekehrt. Alternativ zum Sensor-Widerstand kann auch die Sensor-Temperatur gemessen werden, wobei Temperatur und Widerstand anhand der oben genannten Kennlinie ineinander umgerechnet werden.In order to be able to better take into account fluctuations in the exhaust gas mass flow in the temperature control of the NO x sensor, the proposed new controller structure can be combined with an exhaust gas mass flow-dependent pilot control. The pilot control becomes active when the exhaust gas mass flow increases or decreases very rapidly. The underlying idea is that there is information about an imminent cooling or heating of the sensor located farther back in the exhaust tract via the exhaust gas mass flow. If the mass flow changes faster than the gradients matched to the sampling time, the feedforward will be activated by either a high heat-up to prevent the impending cooling or a lowering of the heating power to a low level due to impending heating. The current value of the measured sensor resistance is included in the release condition of the feedforward control in order to avoid too low a heating power precontrol when the sensor temperature is too low, and vice versa. As an alternative to the sensor resistance, it is also possible to measure the sensor temperature, the temperature and the resistance being converted into one another on the basis of the abovementioned characteristic curve.

Durch Messungen ist festgestellt worden, dass bei schnell fallendem Abgasmassenstrom im ersten Moment eine unerwünschte Erhöhung der Sensortemperatur stattfindet, auf welche die Vorsteuerung kurzzeitig kompensierend mit einem erniedrigten Heizleistungswert reagiert. Umgekehrt findet bei rasch ansteigendem Abgasmassenstrom im ersten Moment eine Abkühlung des Sensors statt, auf die kurzzeitig die Vorsteuerung wiederum mit einer erhöhten Heizleistung reagiert.It has been determined by measurements that, when the exhaust gas mass flow drops rapidly, an undesired increase in the sensor temperature takes place at the first moment, to which the precontrol reacts for a short time compensatingly with a reduced heating power value. Conversely, when the exhaust gas mass flow increases rapidly, cooling of the sensor takes place at the first moment, to which the precontrol briefly reacts with increased heating power.

Die Messung des Abgasmassenstroms wird durch ein Messrauschen beeinträchtigt. Um sich von diesem Messrauschen abzugrenzen, ist es in der Regel nicht angebracht, auf jede (kleine) Änderung des Abgasmassenstroms mit einer Anpassung der Heizleistung zu reagieren. Stattdessen wird es sinnvoll sein, in Abhängigkeit von der Abtastzeit eine höhere oder geringere Anzahl von zeitlich aufeinander folgenden Differenzen der gemessenen Abgasmassenstromwerte für eine Vorsteuerung zu berücksichtigen. Die Anzahl der zeitlich aufeinander folgenden Differenzen muss dabei so gewählt werden, dass ein Kompromiss gefunden wird zwischen der Abgrenzung gegen das Messrauschen und einer zu langen Reaktionszeit. Für kürzere Abtastzeiten kann es vorteilhaft sein, die Anzahl der zu berücksichtigenden, zeitlich aufeinander folgenden Differenzen der gemessenen Abgasmassenstromwerte zu erhöhen; bei längeren Abtastzeiten kann es sich erforderlich machen, diese Anzahl zu vermindern.The measurement of the exhaust gas mass flow is affected by a measurement noise. In order to differentiate from this measurement noise, it is usually not appropriate to respond to any (small) change in the exhaust gas mass flow with an adjustment of the heating power. Instead, it will be useful, depending on the sampling time, to take into account a higher or lower number of chronologically successive differences of the measured exhaust gas mass flow values for a precontrol. The number of temporally successive differences must be chosen so that a compromise is found between the demarcation against the measurement noise and too long a reaction time. For shorter sampling times, it may be advantageous to increase the number of to consider, taking into account, time-sequential differences of the measured exhaust gas mass flow values; For longer sampling times, it may be necessary to reduce this number.

Für eine Vorsteuerung mit einem niedrigen Heizleistungswert und der speziellen, beispielhaften Abtastzeit von 50 ms kann zum Beispiel das Kriterium "drei zeitlich aufeinander folgende Differenzen der gemessenen Abgasmassenstromwerte sind größer als der zu applizierende Gradient (entspricht einer Reaktionszeit von 3*50ms)" einen Kompromiss darstellen zwischen Vermeidung einer Fehlvorsteuerung und einer kurzen Reaktionszeit.For a precontrol with a low heating power value and the special sample sampling time of 50 ms, for example, the criterion "three successive differences of the measured exhaust gas mass flow values are greater than the gradient to be applied (corresponds to a response time of 3 * 50 ms)" represent a compromise between avoiding a wrong feedforward and a short reaction time.

Für eine Vorsteuerung mit einem hohen Heizleistungswert kann der Kompromiss in einer speziellen Ausführungsform mit der Abtastzeit 50 ms beispielsweise durch das Kriterium "vier zeitlich aufeinander folgende Differenzen der gemessenen Abgasmassenstromwerte sind kleiner als der zu applizierende Gradient (entspricht einer Reaktionszeit von 4*50ms)" gebildet werden.For a pilot control with a high heating power value, the compromise in a special embodiment with the sampling time 50 ms, for example, by the criterion "four temporally successive differences of the measured exhaust gas mass flow values are smaller than the gradient to be applied (corresponds to a reaction time of 4 * 50ms)" formed become.

Zu Beginn einer Schubabschaltungsphase kühlt der Sensor üblicherweise etwas aus. Daher kann auch für Schubphasen schon über die Vorsteuerung auf Maximalbeheizung geschaltet werden, noch bevor über die Regelabweichung und den Regler selbst dieses der Fall ist.At the beginning of a fuel cut-off phase, the sensor usually cools something out. Therefore, it is also possible to switch to maximum heating for overrun phases already via the pilot control, even before this is the case via the control deviation and the controller itself.

Die Erfindung ist nicht beschränkt auf die hier dargestellten Ausführungsbeispiele. Vielmehr ist es möglich, 'durch Kombination und Modifikation der genannten Mittel und Merkmale weitere Ausführungsvarianten zu realisieren, ohne den Rahmen der Erfindung zu verlassen.The invention is not limited to the embodiments shown here. Rather, it is possible 'to realize by combining and modifying the means and features mentioned further variants, without departing from the scope of the invention.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
Spannungs-SprunggrößeVoltage step size
1111
Zwischengrößebetween size
1212
SprungantwortStep response
1313
simuliertes Verhalten eines PT2-Gliedessimulated behavior of a PT 2 -element
2020
offene Ketteopen chain

Claims (22)

  1. Method for operating an exhaust gas sensor which is arranged in an exhaust gas duct of an internal combustion engine, characterized in that
    - close-loop control of operating parameters of the exhaust gas sensor is carried out by means of a model-based closed-loop controller, and
    - if the exhaust gas mass flow increases or decreases more quickly than an applied gradient which is matched to a sampling time of the exhaust gas sensor, an exhaust-gas-flow-dependent pilot control of the operating parameters becomes active.
  2. Method according to Claim 1, characterized in that during the operation of an NOx sensor, closed-loop and/or open-loop control of the temperature as operating parameter is carried out.
  3. Method according to Claim 2, characterized in that the temperature is determined by measuring an electrical resistance value.
  4. Method according to Claim 2, characterized in that the closed-loop control evaluates the difference between the current temperature and the setpoint temperature of the sensor as a closed-loop controller input variable, and the heating power of the heating of the sensor is varied as a closed-loop controller output variable.
  5. Method according to one of the preceding claims, characterized in that
    in a condition for enabling the exhaust-gas-flow-dependent pilot control,
    - the current value of the measured sensor resistance and/or
    - the current value of the measured sensor temperature
    is/are taken into account.
  6. Method according to one of the preceding claims, characterized in that in the case of a rapidly dropping exhaust gas mass flow the pilot control reacts temporarily with a reduced heating power.
  7. Method according to one of the preceding claims, characterized in that in the case of a rapidly rising exhaust gas mass flow the pilot control reacts temporarily with an increased heating power.
  8. Method according to one of the preceding claims, characterized in that in the case of pilot control of the exhaust gas sensor a plurality of chronologically successive differences between the measured exhaust gas mass flow values are evaluated.
  9. Method according to one of the preceding claims, characterized in that the number of chronologically successive differences between the measured exhaust gas mass flow values, which differences are to be evaluated for pilot control, is determined as a function of the sampling time, wherein in the case of short sampling times a relatively high number, and in the case of long sampling times a relatively low number, of differences is evaluated.
  10. Method according to one of the preceding claims, characterized in that a pilot control which is matched to a sampling time of 50 ms becomes active with a low heating power value, if three chronologically successive differences between the measured exhaust gas mass flow values are larger than the gradient to be applied.
  11. Method according to one of the preceding claims, characterized in that a pilot control which is matched to a sampling time of 50 ms becomes active with a high heating power value, if four chronologically successive differences between the measured exhaust gas mass flow values are smaller than the gradient to be applied.
  12. Method according to one of the preceding claims, characterized in that high heating power pilot control takes place at least at the start of overrun phases.
  13. Method according to one of the preceding claims, characterized in that the model-based closed-loop controller is designed using a linear method which is continuous over time.
  14. Method according to one of the preceding claims, characterized in that the model-based closed-loop controller is designed using the LQG/LTR method (LQG/LTR = Linear Quadratic Gaussian/Loop Transfer Recovery).
  15. Method according to one of the preceding claims, characterized in that the model of the closed-loop controlled system is based on the parameters
    - time constant (T),
    - attenuation (d) and
    - static amplification (kSR).
  16. Method according to one of the preceding claims, characterized in that the difference equation on which a time-discrete implementation is based is hno 0 y = k SR HNO 0 U hno 0 u + HNO 1 U hno 1 u + HNO 2 U hno 2 u - - HNO 1 YK hno 1 y + - HNO 2 YK hno 2 y
    Figure imgb0005
    where
    hno0y is the current output variable,
    hno1y is the output variable which is calculated in the preceding clock cycle,
    hno2y is the output variable which is calculated to two clock cycles before,
    hno0u is the current input variable,
    hno1u is the input variable which is measured in the preceding clock cycle,
    hno2u is the input variable which is measured two clock cycles before,
    kSR is the static amplification, and
    HNOij is the closed-loop control parameters (i = 0, 1, 2 and j = U, YK).
  17. Closed-loop controller for operating an exhaust gas sensor which is arranged in an exhaust gas duct of an internal combustion engine, characterized in that the closed-loop controller is configured to carry out the method according to one of Claims 1 to 16 and is embodied as a model-based closed-loop controller and has a structure which is predefined by a model of the controlled system.
  18. Closed-loop controller according to Claim 17, characterized in that the closed-loop controller is embodied as a linear closed-loop controller.
  19. Closed-loop controller according to one of Claims 17 and 18, characterized in that there is a linear relationship between the closed-loop controller input variables and closed-loop controller output variables.
  20. The closed-loop controller as claimed in one of Claims 17 to 19, characterized in that the closed-loop controller comprises a Kalman filter and optimum state feedback.
  21. Closed-loop controller according to one of Claims 17 to 20, characterized in that the closed-loop controller has an integrator-windup-avoiding integrator.
  22. Closed-loop controller according to one of Claims 17 to 21, characterized in that the closed-loop controller comprises means for measuring the exhaust gas mass flow value.
EP20030090353 2002-10-23 2003-10-17 Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine Expired - Lifetime EP1413728B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002150219 DE10250219A1 (en) 2002-10-23 2002-10-23 Regulator and method for regulating a NOx sensor arranged in an exhaust gas duct of an internal combustion engine
DE10250219 2002-10-23

Publications (3)

Publication Number Publication Date
EP1413728A2 EP1413728A2 (en) 2004-04-28
EP1413728A3 EP1413728A3 (en) 2008-03-05
EP1413728B1 true EP1413728B1 (en) 2014-10-15

Family

ID=32049632

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030090353 Expired - Lifetime EP1413728B1 (en) 2002-10-23 2003-10-17 Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine

Country Status (2)

Country Link
EP (1) EP1413728B1 (en)
DE (1) DE10250219A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048859B4 (en) * 2004-10-07 2021-01-21 Robert Bosch Gmbh Method and device for controlling and diagnosing the heating of a lambda probe
DE102005004441B3 (en) 2005-01-31 2006-02-09 Siemens Ag Device and method for determining a manipulated variable of a controller of an internal combustion engine
DE102007035188B4 (en) * 2007-07-27 2009-12-24 Continental Automotive Gmbh Method for heating a gas sensor
FR2983244B1 (en) 2011-11-28 2013-12-20 Peugeot Citroen Automobiles Sa METHOD AND APPARATUS FOR CONTINUOUS ESTIMATING OF THE CYLINDER WEIGHT OF AN ENGINE
FR2989428B1 (en) 2012-04-11 2015-10-02 Peugeot Citroen Automobiles Sa METHOD OF ESTIMATING WEALTH IN A MOTOR VEHICLE COMBUSTION ENGINE
DE102016202854A1 (en) * 2016-02-24 2017-08-24 Volkswagen Aktiengesellschaft Method and device for operating a lambda probe in an exhaust passage of an internal combustion engine
CN113294227B (en) * 2021-07-01 2022-08-19 南昌智能新能源汽车研究院 Device for improving SDPF low-temperature starting performance and control method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738844Y2 (en) * 1988-10-07 1995-09-06 トヨタ自動車株式会社 Heater controller for oxygen sensor
DE4132008C2 (en) * 1991-09-26 2000-04-06 Bosch Gmbh Robert Method and device for checking the functionality of an oxygen probe heater
JP3233526B2 (en) * 1994-03-09 2001-11-26 本田技研工業株式会社 Feedback controller using adaptive control
US5547552A (en) * 1994-06-20 1996-08-20 Nippondenso Co., Ltd. Oxygen concentration detecting apparatus
DE19516239C2 (en) * 1995-05-03 2001-07-19 Siemens Ag Method for parameterizing a linear lambda controller for an internal combustion engine
JP3796333B2 (en) * 1996-12-20 2006-07-12 日本碍子株式会社 Gas sensor
DE19859580C2 (en) * 1998-12-22 2001-03-29 Siemens Ag Method for operating an exhaust gas sensor in the exhaust system of an internal combustion engine
DE19929042A1 (en) * 1999-06-25 2000-12-28 Audi Ag Controlling regeneration phase of a nitrogen oxides storage catalyst involves using measured signal of exhaust gas sensor connected to storage catalyst in exhaust gas pipe to determine ammonia content
DE19936355A1 (en) * 1999-08-03 2001-02-08 Volkswagen Ag Procedure for the plausibility check of engine sizes and sensor sizes using a continuous lambda probe
DE10056320A1 (en) * 2000-11-14 2002-05-16 Volkswagen Ag Process for diagnosing the end stage of a heating device of a gas sensor comprises using a prescribed diagnosis value as a sensor condition signal and/or a prescribed diagnosis value of a heating voltage parameter signal

Also Published As

Publication number Publication date
EP1413728A3 (en) 2008-03-05
DE10250219A1 (en) 2004-05-06
EP1413728A2 (en) 2004-04-28

Similar Documents

Publication Publication Date Title
EP3312405B1 (en) Method for operating a drive device and corresponding drive device
EP1250524B1 (en) METHOD FOR DESULPHURISATION OF AN NOx ACCUMULATOR-CATALYST ARRANGED IN AN EXHAUST SYSTEM OF AN INTERNAL COMBUSTION ENGINE
WO2018091252A1 (en) Method for controlling an exhaust gas component filling level in an accumulator of a catalytic converter
EP1227231B1 (en) Method of operation of a three-way catalyst, which comprises an oxygen storing element
DE102006043447A1 (en) Control device for an internal combustion engine
DE102017216082A1 (en) A method of operating an SCR catalyst system comprising a first SCR catalyst and a second SCR catalyst
DE102018208683A1 (en) Method and control unit for regulating a fill level of a storage tank of a catalytic converter for an exhaust gas component
DE102018251720A1 (en) Method for determining a maximum storage capacity of an exhaust gas component storage device of a catalytic converter
DE102018217307A1 (en) Method and control device for regulating a fill level of a memory of a catalytic converter for an exhaust gas component in overrun mode
EP1413728B1 (en) Controller and method for controlling a NOX-sensor arranged in an exhaust gas channel of an internal combustion engine
DE4125154C2 (en) Method and device for lambda probe monitoring in an internal combustion engine
DE102018210739A1 (en) Method for regulating a filling of an exhaust gas component store of a catalytic converter in the exhaust gas of an internal combustion engine
EP1329627B1 (en) Method and apparatus for controlling of a component protection function
EP3320195B1 (en) Method for operating an exhaust gas aftertreatment system comprising a selective catalytic reduction catalyst
DE102006051834B4 (en) Extended mixture control to reduce exhaust emissions
DE102019201293A1 (en) Method for differentiating between model inaccuracies and lambda offsets for model-based control of the fill level of a catalytic converter
DE4112480C2 (en) Method and device for determining the aging condition of a catalyst
DE102019216520A1 (en) Method for adapting the dosage of reducing agent in an SCR catalytic converter
EP2142784B1 (en) Lambda control with adaptation of characteristic curves
DE102018251719A1 (en) Method and control device for regulating a fill level of a memory of a catalytic converter for an exhaust gas component when the probe is not ready for operation
DE102015200762A1 (en) Method for monitoring an exhaust aftertreatment system of an internal combustion engine and control device for an exhaust aftertreatment system
DE102004058680B4 (en) Storage Catalyst Regeneration Process and Control Unit
DE102018251725A1 (en) Method for regulating a filling of an exhaust gas component store of a catalytic converter
EP1209332B1 (en) Method and device for regenerating a NOx catalytic converter
EP1160425B1 (en) Method and apparatus to for regeneration of an NOx storage catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20080905

17Q First examination report despatched

Effective date: 20081010

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140513

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAETZ, MICHAEL

Inventor name: HAHN, HERMANN, DR.

Inventor name: BERNS, ANDREAS

Inventor name: PELZ, NORBERT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 691809

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315144

Country of ref document: DE

Effective date: 20141127

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315144

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315144

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150807

26N No opposition filed

Effective date: 20150716

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150115

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 691809

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20031017

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141017

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191031

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315144

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501