EP1410641A1 - Universal docking station for imaging systems in a dental operatory - Google Patents
Universal docking station for imaging systems in a dental operatoryInfo
- Publication number
- EP1410641A1 EP1410641A1 EP01932525A EP01932525A EP1410641A1 EP 1410641 A1 EP1410641 A1 EP 1410641A1 EP 01932525 A EP01932525 A EP 01932525A EP 01932525 A EP01932525 A EP 01932525A EP 1410641 A1 EP1410641 A1 EP 1410641A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- imaging system
- digitally processed
- docking station
- universal docking
- processed imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 131
- 238000003032 molecular docking Methods 0.000 title claims abstract description 63
- 238000012545 processing Methods 0.000 claims abstract description 11
- 239000002131 composite material Substances 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 abstract description 3
- 239000012528 membrane Substances 0.000 description 17
- 230000008901 benefit Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 3
- 210000000214 mouth Anatomy 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 101710088052 Ditrans,polycis-undecaprenyl-diphosphate synthase ((2E,6E)-farnesyl-diphosphate specific) Proteins 0.000 description 1
- 101710130822 Tritrans,polycis-undecaprenyl-diphosphate synthase (geranylgeranyl-diphosphate specific) Proteins 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Definitions
- the present invention is related generally to the field of docking stations for video imaging systems. Specifically, the present invention is related to a single, universal docking station to be used with all video imaging systems used in a dental operatory.
- Today's dental operatory includes many dental imaging systems designed to assist the dentist, each system of which requires various utilities such as power and light for operation. Each of these dental imaging systems also generates an output that is directed to a monitor, recording device or the like for review and assessment by the clinician. Each of the dental imaging systems further requires the entry or inputting of instructions for operation, interaction and control of the dental imaging system.
- the delivery of utilities and control instructions to the dental imaging system and the receipt of output from the dental imaging system is accomplished with a docking station configured for use with that particular dental imaging system.
- the docking station is then typically linked or connected to a computer, monitor, etc. to provide the control instructions to the docking station for the dental imaging system and/or to process or display the output received by the docking station from the dental imaging system for the clinician to review.
- a dental operatory that typically includes a video camera for intra- and extra-oral imaging of dental anatomy, a digital x-ray system, a video surgical microscope, and other systems and subsystems will require a equivalent number of docking stations for use with those systems in the dental operatory.
- the use of multiple docking stations in the dental operatory can be difficult to configure for coordinated operation with a single computer without having any conflicts, can occupy a significant amount of area in the dental operatory and can pose a potential health or safety risk.
- a universal docking station is provided for a dental operatory to manage a plurality of imaging subsystems.
- the universal docking station may provide each of the subsystems with operating utilities, such as power and light, and instructions for controlling operation of the subsystem.
- the universal docking station receives outputs from each of the subsystems for display, processing, recording and/or other uses.
- the universal docking station also provides interfaces for selecting and operating various peripheral systems such as monitors, computers, multiplexers or printers and for digital control and manipulation of images from the imaging subsystems.
- the dental imaging subsystems interfacing with the universal docking station can include video cameras for intra- or extra-oral imaging, video surgical microscopes, x-ray film scanners, digital x-rays and any other imaging system that produces an S-video, composite video or digital video signal output.
- One advantage of the present invention is that all the dental imaging systems used in a dental operatory can be operated and controlled from a single unit in the operatory.
- Another advantage of the present invention is that it provides the clinician with a single compact interface for the various imaging devices he may need in the operatory.
- FIG. 1 is a schematic view of the interaction of dental systems with the universal docking station (UDS) of the present invention
- Figure 2 is a front view of a wall mounted UDS with remote operating panel
- FIG. 3 is an enlarged schematic view of an operating membrane panel of the UDS.
- Figure 4 is a bottom view of the wall mounted UDS of Figure 2.
- FIG. 1 illustrates schematically the interconnections of a universal docking station (UDS) 100 with dental imaging systems and other systems and devices located in a dental operatory.
- the UDS 100 enables the interconnection of several different instruments or systems at a single location.
- Some of the different dental imaging systems that can be docked at the UDS 100 include:
- the UDS 100 functions as an interface between the dental imaging systems described above and other systems or devices located inside or outside of the operatory that are used by the clincian in conjunction with the dental imaging systems. These other systems and devices used by the clinician are also connected to the UDS 100 and can include:
- the UDS 100 includes an integrated printer and multiplexer control system, which avoids the need for additional interface components for the multiplexer 118 and printer 120.
- the UDS 100 also includes the processors, circuits and programming for a high performance freeze frame utility, which enables the UDS 100 to perform a new level of image capture and manipulation.
- the UDS 100 can be mounted on a table top in the operatory or on a wall in the operatory (see Figure 2).
- the connections for the dental imaging systems and the other systems and devices are preferably located on the sides of the UDS 100, but can be located anywhere on the UDS 100.
- a top cover can extend over the areas of the UDS 100 that receives the various power, signal and control connections and can be effective in hiding the wiring when the UDS 100 is wall-mounted.
- the UDS 100 includes a control panel 122 for using and controlling the UDS 100 and the freeze frame utility.
- Figure 3 shows a preferred membrane control panel 122 for operating the various subsystems and performing the functions discussed below.
- the membrane panel 122 is preferably located at the bottom front of the UDS 100 and a filler panel 124 is preferably located in the recess at the top rear of the UDS 100.
- the membrane panel 122 is preferably located at the top of the UDS 100, which corresponds to the top rear of the UDS 100 in the countertop configuration
- the filler panel 124 is preferably located at the bottom of the UDS 100, which corresponds to the bottom front of the UDS 100 in the countertop configuration.
- Figure 4 illustrates a connection panel 400 for the UDS 100, which is located on a front side of the UDS 100 in the countertop configuration or on the bottom side of the UDS 100 in the wall-mounted configuration.
- the connection panel 400 preferably includes:
- the intra-oral camera 102 can be plugged into the UDS 100 via a modified Lemo connector at the modified Lemo receptacle 402 located at the front of the UDS 100 in the countertop configuration or at the bottom of the UDS 100 in the wall- mount configuration.
- the camera cable connecting the inter-oral camera 102 and the UDS 100 includes a light guide that terminates in a stainless steel ferrule, which ferrule replaces the standard coaxial connector in the center of a typical Lemo connector.
- the remaining conductors in the camera cable are terminated to the ten (10) surrounding pins in the Lemo connector.
- the coaxial socket is removed from a standard Lemo receptacle, which permits the light guide ferrule to pass through and to be inserted into a light source when the modified Lemo connector is plugged into the modified Lemo receptacle 402.
- the S-video input connector or receptacle 404 is preferably located adjacent to the modified Lemo receptacle 402 on the connection panel 400.
- the S- video receptacle 404 can receive any standard NTSC, PAL or any other recognized standard video signal, such as from a VCR, video camera, camcorder, DVD, or other various types of video equipment.
- the docking port 406 at the front of the UDS 100 accepts the module 110 connected to the digital x-ray sensor 108.
- the digital x-ray port 406 provides power to the module 110 and receives processed sensor signals.
- the digital x-ray port 406 is directly connected to a universal serial bus (USB) port located on the UDS 100 to transmit the received processed sensor signals to the computer 114.
- the digital x-ray port 406 can provide the power to the module 110 from the computer 114 via the USB connection or from a power supply in the UDS 100, if the module 110 power requirement is low. Otherwise, a receptacle for external power is provided on the .
- UDS 100 and is connected to the digital x-ray port 406.
- the digital x-ray port 406 can be compatible with any wired digital x-ray system because the digital x-ray port 406 is essentially passive, merely providing a docking facility and a signal throughput to the computer 114.
- An additional connection panel for the UDS 100 which is located on the rear side of the UDS 100 in the countertop configuration or on the top side of the UDS 100 in the wall-mounted configuration, preferably can include:
- USB universal serial bus
- the UDS 100 can be linked or connected to the dental imaging systems and the other systems and devices by wireless communication.
- the UDS 100 and the dental imaging systems and the other systems and devices preferably have infrared modules or RF modules for the transmission and receipt of signals and information wirelessly.
- the UDS 100 can transmit control signals wirelessly to the video surgical microscope 104 and can then receive video signals from the video surgical microscope 104 also by wireless communication.
- the UDS 100 can wirelessly transmit image data for display to the video monitor 112.
- the UDS 100 and the dental imaging systems and the other systems and devices can also have analog to digital or digital to analog converters as required for the wireless transmission.
- a remote control panel 202 may be provided to enable control of the UDS 100 from a convenient remote location.
- the remote control panel 202 includes a duplicate of the top cover membrane panel 122 on the UDS 100.
- the connection to the remote panel 202 from the UDS 100 can be by hard- wiring, by radio frequency transmission, or by infrared control.
- the x-ray film scanner 106 enables a standard bite wing film image to be converted to a video signal and displayed on the video monitor 112, or digitized via a computer frame grabber board.
- An x-ray film is inserted into the film scanner 106 and is backlit by a suitable incandescent or fluorescent lamp.
- a lens focuses the backlit image onto a black and white sensor assembly, consisting of a sensor mounted on a camera control unit (CCU) board.
- the film scanner 106 may be powered by a built-in, or external power supply, or from the UDS 100.
- the output video signal from the film scanner 106 is preferably connected to the S-video connector 404 on the UDS 100, but can be connected at any connection panel of the UDS 100.
- VSM video surgical microscope
- the VSM 104 may be powered by a built-in or external power supply, or from the UDS 100.
- the output video signal from the VSM 104 is preferably connected to the S-video connector 404 on the UDS 100, but can be connected at any connection panel of the UDS 100.
- the freeze frame utility includes a freeze frame board and a piggyback isolation board.
- the freeze frame utility enables up to four (4) full frame images to be captured, either by means of a footswitch, or by a membrane control panel button, e.g. capture button 310 shown in Figure 3.
- the captured images can be displayed individually, or in split-4 configuration on the video monitor 112 or on the computer monitor 116.
- the user can control the display of the captured images by selecting an appropriate button on the membrane control panel 122, e.g. image select button 312 shown in Figure 3.
- the freeze frame utility also includes programming and circuitry such that the captured images can be flipped horizontally or vertically, rotated or electronically zoomed by means of appropriate buttons on the membrane control panel 122.
- a user can electronically zoom-in on a captured image by selecting button 302, perform a vertical flip of the captured image by selecting button 304, perform a horizontal flip of the captured image by selecting button 306 and rotate the captured image by selecting button 308.
- the freeze frame utility can accept at least two video inputs, one from the modified Lemo connector 402, which can be connected to the intra-oral camera cable, the other from the S-video connector 404 on the front panel, which can accept video from any standard S-video source.
- An appropriate button on the membrane control panel 122 controls the selection of the video source, e.g. source select button 314 shown in Figure 3.
- source 1 can be from the modified Lemo connector 402 and source 2 can be from the S-video connector 404.
- the printer 120 can be controlled from the membrane panel 122 by selecting an appropriate button for the "print” command, e.g. print button 316 shown in Figure 3, which causes the printer to capture the displayed image and print it.
- the printer 120 can be connected to the UDS 100 through the multiplexer 118 as shown in Figure 1 or can be directly connected to the UDS 100.
- Lights on the membrane control panel 122 indicate the printer status, as follows:
- a two-position footswitch protocol enables the capture, display and printer control functions of the UDS 100 to be accomplished from a remote footswitch.
- the protocol also enables the captured image to be replaced and avoids the need to manually operate the membrane panel controls, which prevents a potential cross contamination problem.
- the membrane control panel 122 also has an appropriate button for a user to control a light source in the UDS 100, e.g. light button 318 shown in Figure 3.
- the light source in the UDS 100 can be used to provide light to the various dental systems connected to the UDS 100.
- the UDS 100 can also include a memory for storing a number of captured images. The user can retrieve the captured images from memory and print and display the images as described above. The user can designate where the image is supplied from, i.e. either from the memory in the UDS 100 or from a connected video source, by selecting an appropriate button on the membrane control panel 122, e.g. button 320 shown in Figure 3.
- a dental office can have a plurality of operatories, with each operatory having its own universal docking station 100.
- the plurality of UDSs 100 can be connected and configured to supply information to a central recording system, which is remotely located from said operatories.
- the central recording system can include a computer(s) and/or a printer(s). Additionally, the central recording system can include one or more analog or digital storage devices.
- the storage devices can include a floppy disk, a hard disk video image recorder, a flash memory card recorder, a CD-ROM recorder, or other similar type of storage device.
- each of the universal docking stations 100 is connected to a multiplexer 118, which receives the video signals and control information from each docking station 100.
- a print command from a particular UDS 100 causes the multiplexer 118 to select the video signal from that docking station 100 and route it to the printer 120. This is followed by a command from the multiplexer 118, which causes the printer 120 to capture and print the selected image.
Landscapes
- Closed-Circuit Television Systems (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/011257 WO2002082819A1 (en) | 2000-04-06 | 2001-04-07 | Universal docking station for imaging systems in a dental operatory |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1410641A1 true EP1410641A1 (en) | 2004-04-21 |
EP1410641A4 EP1410641A4 (en) | 2005-04-13 |
Family
ID=32041237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01932525A Withdrawn EP1410641A4 (en) | 2001-04-07 | 2001-04-07 | Universal docking station for imaging systems in a dental operatory |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1410641A4 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4891695A (en) * | 1988-02-23 | 1990-01-02 | Olympus Optical Co. Ltd. | Electronic endoscope apparatus provided with a plurality of endoscopes having solid state imaging devices with at least one identical pixel forming element |
US5527261A (en) * | 1994-08-18 | 1996-06-18 | Welch Allyn, Inc. | Remote hand-held diagnostic instrument with video imaging |
WO1996031067A1 (en) * | 1995-03-24 | 1996-10-03 | Ppt Vision, Inc. | High speed digital video serial link |
WO2003099111A1 (en) * | 2001-04-06 | 2003-12-04 | Dentsply International Inc. | Universal docking station for imaging systems in a dental operatory |
-
2001
- 2001-04-07 EP EP01932525A patent/EP1410641A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4891695A (en) * | 1988-02-23 | 1990-01-02 | Olympus Optical Co. Ltd. | Electronic endoscope apparatus provided with a plurality of endoscopes having solid state imaging devices with at least one identical pixel forming element |
US5527261A (en) * | 1994-08-18 | 1996-06-18 | Welch Allyn, Inc. | Remote hand-held diagnostic instrument with video imaging |
WO1996031067A1 (en) * | 1995-03-24 | 1996-10-03 | Ppt Vision, Inc. | High speed digital video serial link |
WO2003099111A1 (en) * | 2001-04-06 | 2003-12-04 | Dentsply International Inc. | Universal docking station for imaging systems in a dental operatory |
Non-Patent Citations (1)
Title |
---|
See also references of WO02082819A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP1410641A4 (en) | 2005-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020067407A1 (en) | Universal docking station for imaging systems in a dental operatory | |
JP6859373B2 (en) | Endoscope system | |
US8328793B2 (en) | Device, system and method for integrating different medically applicable apparatuses | |
JP4937136B2 (en) | Endoscopic imaging system | |
JP6490066B2 (en) | Circuit board assembly for multi-view element endoscope | |
JP2019147009A (en) | Endoscopy display system | |
US20060188070A1 (en) | Image capture device and methods | |
JP2005519719A5 (en) | ||
JP2016525905A (en) | Interface unit for multi-view element endoscope system | |
JP2016525378A (en) | Imaging assembly for use in a multi-view element endoscope | |
JP2016522006A (en) | Compact multi-view element endoscope system | |
JP2011139909A (en) | Ultrasonic visualization system | |
JP2016522022A (en) | Video processing in small multi-view element endoscope system | |
EP2432370A2 (en) | Multi-source medical imaging system | |
CN101496714B (en) | Medical support control system | |
JP2016533199A (en) | Circuit board assembly for multi-view element endoscope | |
JP2019520121A (en) | Endoscope system having multiple connection interfaces to interface with different video data signal sources | |
WO2023155907A1 (en) | Ultrasonic imaging system, medical image system and terminal device | |
JP2000271147A (en) | Remote surgery support system | |
WO2002082819A1 (en) | Universal docking station for imaging systems in a dental operatory | |
US7382860B2 (en) | Image capture device and methods | |
EP1410641A1 (en) | Universal docking station for imaging systems in a dental operatory | |
AU2002254574A1 (en) | Universal docking station for imaging systems in a dental operatory | |
US20050195359A1 (en) | Ophthalmic examination and treatment system | |
EP2085904A2 (en) | Medical support control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20050301 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7A 61B 5/00 B Ipc: 7A 61B 1/247 B Ipc: 7H 04N 7/18 A |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050515 |