[go: up one dir, main page]

EP1387937B1 - Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations - Google Patents

Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations Download PDF

Info

Publication number
EP1387937B1
EP1387937B1 EP02735006A EP02735006A EP1387937B1 EP 1387937 B1 EP1387937 B1 EP 1387937B1 EP 02735006 A EP02735006 A EP 02735006A EP 02735006 A EP02735006 A EP 02735006A EP 1387937 B1 EP1387937 B1 EP 1387937B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
chamber
fuel injection
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02735006A
Other languages
German (de)
French (fr)
Other versions
EP1387937A1 (en
Inventor
Walter Egler
Peter Boehland
Sebastian Kanne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1387937A1 publication Critical patent/EP1387937A1/en
Application granted granted Critical
Publication of EP1387937B1 publication Critical patent/EP1387937B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/165Filtering elements specially adapted in fuel inlets to injector

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, which corresponds to the preamble of claim 1.
  • fuel injectors are known in various embodiments from the prior art.
  • a fuel injection valve is described, which is constantly connected to a high-pressure accumulation chamber in which fuel is provided under high pressure.
  • the fuel injection valve has a housing in which a valve member is longitudinally displaceably arranged in a bore, which controls the opening of at least one injection port by its longitudinal movement, is injected by the fuel from a valve member surrounding the pressure chamber into the combustion chamber of the internal combustion engine.
  • a housing in which a piston-shaped valve member is longitudinally displaceably arranged in a bore, which controls the opening of at least one injection opening with its combustion chamber end facing.
  • the valve member is also surrounded by a pressure chamber, which is connectable by the longitudinal movement of the valve member with the injection openings.
  • the pressure chamber is connected via an inlet channel extending in the housing with a high-pressure fuel source, can be supplied by the fuel under high pressure in the pressure chamber.
  • valve member is acted upon by a mechanical device in the housing of the fuel injection valve, preferably a helical compression spring in the closing direction with a closing force, so that it remains in the closed position in the absence of a corresponding hydraulic counterforce and thus closes the injection openings.
  • a mechanical device in the housing of the fuel injection valve preferably a helical compression spring in the closing direction with a closing force, so that it remains in the closed position in the absence of a corresponding hydraulic counterforce and thus closes the injection openings.
  • pressure oscillations arise in the region of the pressure chamber, in particular at the beginning and end of the injection process, which can lead to mechanical loads and correspondingly continuing oscillations to an indefinite state at the beginning of the next injection and which can impair the quality of the subsequent injections ,
  • an injection valve which has a piston with which the fuel is compressed for injection into the pressure chamber.
  • the compressed fuel is supplied to a storage volume from where the fuel enters the pressure chamber of the injection nozzle.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that quickly successive, precisely defined injection operations are possible. Pressure oscillations that occur in the region of the pressure chamber and thus in the immediate vicinity of the injection openings are damped, so that very quickly after the closing operation of the fuel injection valve in the pressure chamber, a static state is reached again.
  • the pressure chamber is connected via a throttle formed in the housing with a damping chamber formed in the housing. If pressure changes occur in the region of the pressure chamber, as caused, for example, by the opening or closing of the valve member, a higher or lower fuel pressure prevails in the pressure chamber than in the damping chamber.
  • the damping chamber is formed as a trained in the housing of the fuel injection valve blind bore.
  • the blind bore opens directly into the pressure chamber, the throttle preferably being close to the pressure chamber. Due to the design of the damping chamber in the form of a blind bore of the damping chamber in the housing can be easily and inexpensively manufactured.
  • more than one throttle is arranged in the housing, which forms the connection from the damping chamber to the pressure chamber.
  • the valve member is arranged in a valve body, while the damping chamber is formed in a valve holding body, wherein both the valve body and the valve holding body are part of the housing.
  • an intermediate disc is arranged, through which the connection passes from the pressure chamber to the damping chamber.
  • the throttle is arranged so that a replacement of the intermediate disc against an intermediate disc with a modified throttle a slight replacement of the throttle and thus an adaptation of the damping effect to different fuel injection valves is possible without the other construction of the fuel injection valve must be changed.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention, together with the high-pressure fuel supply shown schematically.
  • the fuel injection valve has a housing 12 which includes a valve holding body 15 and a valve body 32.
  • a bore 34 is formed, in which a piston-shaped valve member 35 is arranged longitudinally displaceable.
  • the valve member 35 is sealingly guided in a bore away from the combustion chamber in the bore 34 and tapers to form a pressure shoulder 36 to the combustion chamber.
  • a pressure chamber 37 is formed in the valve body 32 by a radial extension of the bore 34, which continues as a valve member 35 surrounding the annular channel to the combustion chamber end of the bore 34.
  • the valve member 35 controls the opening of at least one injection port 39, which connects the pressure chamber 37 with the combustion chamber of the internal combustion engine.
  • a valve sealing surface 40 is formed at the combustion chamber end of the valve member 35, which cooperates with a formed on the combustion chamber end of the bore 34 valve seat 41.
  • the high pressure port 8 is connected via a high pressure line 7 to a high pressure accumulator 5, in which fuel is present at a predetermined high pressure, the fuel is the high pressure accumulator 5 from a fuel tank 1 via a high pressure pump 2 and a fuel line 4 is supplied.
  • a spring chamber 28 is formed in the valve holding body 15, in which a helical compression spring 30 is arranged.
  • the helical compression spring 30 in this case has a compressive bias and acts with its valve member 35 facing the end of the valve member 35 in the closing direction.
  • a piston bore 27 is formed in the valve holding body, which opens into the spring chamber 28 and in which a piston rod 26 is arranged, which rests with its end facing the combustion chamber on the valve member 35 and the combustion chamber facing away from a control chamber 20 limited.
  • the control chamber 20 is in this case connected via an inlet throttle 19 to the inlet channel 14 and via an outlet throttle 17 with a formed in the valve holding body 15 leakage oil chamber 23 which is connected to a drain oil, not shown in the drawing and thereby constantly has a low pressure.
  • a magnet armature 22 is arranged, which is acted upon by a closing spring 31 in the direction of the control chamber 20 and to which a sealing ball 29 is fixed, which closes the outlet throttle 17.
  • an electromagnet 24 is also arranged, which exerts an attractive force against the force of the closing spring 31 on the armature 22 and moves it away from the control chamber 20, whereby the control chamber 20 is connected to the leakage oil chamber 23 with appropriate energization. If the electromagnet 24 is de-energized, then the armature 22 moves by the force of the closing spring 31 again in the direction of the control chamber 20 and closes with the sealing ball 29, the outlet throttle 17th
  • a damping chamber 46 is formed, which is designed as a blind bore and whose open end is arranged on the valve body 32 facing the end face of the valve holding body 15.
  • the the damping chamber 46 forming blind bore extends parallel to the piston bore 27 and is connected via a valve body 32 formed in the connection 42 with the pressure chamber 37.
  • a throttle 44 is arranged, which is formed by a cross-sectional constriction of the connection 42. If there is a pressure difference between the pressure chamber 37 and the damping chamber 46, fuel can flow from one into the other space via the connection 42 and the throttle 44, thus leading to a pressure equalization.
  • the operation of the fuel injection valve is as follows: Through the connection of the pressure chamber 37 with the high pressure accumulator 5 via the inlet channel 14 and the high pressure line 7 prevails in the pressure chamber 37 is always a high fuel pressure, as it is also maintained in the high-pressure accumulator 5. If an injection takes place, the solenoid 24 is actuated and the armature 22 is in the manner described above, the outlet throttle 17 free. As a result, the fuel pressure in the control chamber 20 decreases, and the hydraulic force to the combustion chamber facing away from the end of the piston rod 26 is reduced, so that the hydraulic force on the pressure shoulder 36 outweighs and the valve member 35 is moved in the opening direction, whereby the injection openings 29 are released.
  • the increase in pressure thus caused leads to a pressure difference between the pressure chamber 37 and damping chamber 46, where at least approximately still prevails the pressure that was present in the pressure chamber 37 before the start of injection.
  • this pressure difference some fuel from the pressure chamber 37 flows through the connection 42 and the throttle 44 in the damping chamber 46 and from there according to the pressure difference between the damping chamber 46 and pressure chamber 37 back into the pressure chamber 37.
  • the throttle 44 friction work must be done , Which dampen these pressure oscillations quickly, so that after a short time in the pressure chamber 37 again a static pressure level is reached. For the subsequent injection thus there is a defined pressure state in the pressure chamber 37, which allows a correspondingly accurate and precise injection.
  • FIG. 2 shows a further embodiment of the fuel injection valve according to the invention is shown in longitudinal section.
  • the damping of the pressure oscillations takes place in this fuel injection valve in the same manner as in the fuel injection valve shown in Figure 1, but the other components and the operation are different.
  • a valve holding body 50 is clamped with the interposition of an intermediate disc 52 by means of a clamping nut 55 against a valve body 54.
  • the valve body 54 has a bore 57 is formed, in which a valve member 60 which is formed piston-shaped, is arranged longitudinally displaceable.
  • the valve member 60 has at its combustion chamber end facing a sealing surface 62 which cooperates with a formed on the combustion chamber end of the bore 57 valve seat 64 and thus controls the opening of at least one arranged in the valve seat 64 injection port 66.
  • a pressure shoulder 61 is formed on the valve member 60, at its height by a cross-sectional widening of the bore 57, a pressure chamber 68 is formed, which is connected via a formed in the valve body 54 of the washer 52 and the valve holding body 50 inlet channel 58 to a high-pressure port 56.
  • the high-pressure connection 56 is connected to a high-pressure fuel source, not shown in the drawing, which can supply fuel under high pressure into the high-pressure connection 56 and through the inlet channel 58 to the pressure chamber 68.
  • valve member 60 Facing away from the combustion chamber, the valve member 60 merges into a spring plate 74, which is arranged in an opening of the intermediate disc 52 and projects into a spring space 70 formed in the valve holding body 50. Between the spring plate 74 and the combustion chamber remote from the end of the spring chamber 70, a closing spring 72 is arranged, which is designed as a helical compression spring and has a compressive bias, so that a closing force is exerted on the valve member 60. In the pressure chamber 68 opens a connection 76 which is connected via a formed in the intermediate disc 52 throttle 78 with a formed in the valve holding body 50 damping chamber 80.
  • the throttle 78 is formed by a cross-sectional reduction of the connection 76, wherein it may also be provided to arrange more than one throttle 78 in the washer 52.
  • the damping chamber 78 is, as already in the embodiment shown in FIG. 1, designed as a blind bore which runs parallel to the longitudinal axis of the spring chamber 70 and the bore 57. The length of the blind bore and thus the volume of the damping chamber 80 can be varied depending on the desired damping effect. If an injection takes place, then fuel is introduced into the high-pressure port 56, so that the fuel flows through the inlet channel 58 to the pressure chamber 68.
  • the design of the throttle 78 in the washer 52 is particularly advantageous because replacement of the washer 52, another throttle 78 can be installed in the connection of the pressure chamber 68 with the damping chamber 80 without further structural changes would be necessary to the fuel injector. Alternatively, however, it may also be provided to arrange the throttle 78 still within the valve body 54, for example directly at the pressure chamber 68.
  • the damping chamber 46 in FIG. 1 or the damping chamber 80 in FIG. 2 is not formed as a blind bore, but as a cavity in the housing of the fuel injection valve, which can be any one Can take shape.
  • the spatial possibilities of the fuel injection valve can be used optimally, without having to make structural changes to the existing functional components.
  • it may be provided to arrange more than one throttle 44, 78 in the connection of the pressure chamber 37, 68 to the damping chamber 46, 80. In this way, an optimal damping behavior of the throttle 44, 78 can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Stand der TechnikState of the art

Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, das der Gattung des Patentanspruchs 1 entspricht. Solche Kraftstoffeinspritzventile sind in verschiedenen Ausführungsformen aus dem Stand der Technik bekannt. Beispielsweise ist in der Schrift DE 196 50 865 A1 ein Kraftstoffeinspritzventil beschrieben, das mit einem Hochdrucksammelraum ständig verbunden ist, in dem Kraftstoff unter hohem Druck bereitgestellt wird. Das Kraftstoffeinspritzventil weist ein Gehäuse auf, in dem ein Ventilglied in einer Bohrung längsverschiebbar angeordnet ist, welches durch seine Längsbewegung die Öffnung wenigstens einer Einspritzöffnung steuert, durch die Kraftstoff aus einem das Ventilglied umgebenden Druckraum in den Brennraum der Brennkraftmaschine eingespritzt wird. Durch die sehr schnellen Schließvorgänge des Ventilglieds, die im Bereich von wenigen Millisekunden ablaufen, ergeben sich sowohl beim Öffnen als auch beim Schließen des Kraftstoffeinspritzventils Druckschwingungen im Druckraum, die einerseits zu starken mechanischen Belastungen des Gehäuses führen und andererseits dazu führen, daß zu Beginn der nächsten Einspritzung ein unbestimmter Druckzustand an den Einspritzöffnungen vorhanden ist, so daß die folgende Einspritzung von einem nicht näher definierten Zustand ausgeht und somit eine genaue Dosierung und ein genauer Zeitpunkt der Einspritzung nicht möglich ist. Insbesondere bei Einspritzvorgängen, die sich in eine Vor-, Haupt- und/oder Nacheinspritzung gliedern, stellt dies ein Problem dar, da moderne Kraftstoffeinspritzsysteme sehr empfindlich auf Mengenschwankungen bei der Einspritzung reagieren.The invention is based on a fuel injection valve for internal combustion engines, which corresponds to the preamble of claim 1. Such fuel injectors are known in various embodiments from the prior art. For example, in Scripture DE 196 50 865 A1 a fuel injection valve is described, which is constantly connected to a high-pressure accumulation chamber in which fuel is provided under high pressure. The fuel injection valve has a housing in which a valve member is longitudinally displaceably arranged in a bore, which controls the opening of at least one injection port by its longitudinal movement, is injected by the fuel from a valve member surrounding the pressure chamber into the combustion chamber of the internal combustion engine. Due to the very fast closing operations of the valve member, which take place in the range of a few milliseconds, arise both when opening and when closing the fuel injection pressure oscillations in the pressure chamber, on the one hand lead to heavy mechanical loads on the housing and on the other hand lead to the beginning of the next Injection of an indefinite pressure state is present at the injection openings, so that the following injection of a not closer defined state and thus an exact dosage and a precise time of injection is not possible. This is a problem, in particular in injection processes which are subdivided into pre-injection, main injection and / or post-injection, since modern fuel injection systems are very sensitive to quantitative fluctuations in the injection.

Darüber hinaus sind aus dem Stand der Technik Kraftstoffeinspritzventile bekannt, wie sie beispielsweise in DE 196 18 650 A1 dargestellt sind. Bei einem solchen Kraftstoffeinspritzventil ist ebenfalls ein Gehäuse vorhanden, in dem in einer Bohrung ein kolbenförmiges Ventilglied längsverschiebbar angeordnet ist, das mit seinem brennraumzugewandten Ende die Öffnung wenigstens einer Einspritzöffnung steuert. Das Ventilglied ist ebenfalls von einem Druckraum umgeben, der durch die Längsbewegung des Ventilgliedes mit den Einspritzöffnungen verbindbar ist. Der Druckraum ist über einen im Gehäuse verlaufenden Zulaufkanal mit einer Kraftstoffhochdruckquelle verbunden, durch die Kraftstoff unter hohem Druck in den Druckraum zuführbar ist. Das Ventilglied wird von einer mechanischen Einrichtung im Gehäuse des Kraftstoffeinspritzventils, vorzugsweise einer Schraubendruckfeder, in Schließrichtung mit einer Schließkraft beaufschlagt, so daß es beim Fehlen einer entsprechenden hydraulischen Gegenkraft in Schließstellung verharrt und somit die Einspritzöffnungen verschließt. Auch bei diesem Kraftstoffeinspritzventil entstehen im Bereich des Druckraums, insbesondere bei Beginn und Ende des Einspritzvorgangs, Druckschwingungen, die dort zu mechanischen Belastungen und bei entsprechend andauernden Schwingungen zu einem unbestimmten Zustand zu Beginn der nächsten Einspritzung führen können und die die Qualität der nachfolgenden Einspritzungen beeinträchtigen können.In addition, from the prior art, fuel injection valves are known, as for example in DE 196 18 650 A1 are shown. In such a fuel injection valve, a housing is also provided, in which a piston-shaped valve member is longitudinally displaceably arranged in a bore, which controls the opening of at least one injection opening with its combustion chamber end facing. The valve member is also surrounded by a pressure chamber, which is connectable by the longitudinal movement of the valve member with the injection openings. The pressure chamber is connected via an inlet channel extending in the housing with a high-pressure fuel source, can be supplied by the fuel under high pressure in the pressure chamber. The valve member is acted upon by a mechanical device in the housing of the fuel injection valve, preferably a helical compression spring in the closing direction with a closing force, so that it remains in the closed position in the absence of a corresponding hydraulic counterforce and thus closes the injection openings. Also in the case of this fuel injection valve, pressure oscillations arise in the region of the pressure chamber, in particular at the beginning and end of the injection process, which can lead to mechanical loads and correspondingly continuing oscillations to an indefinite state at the beginning of the next injection and which can impair the quality of the subsequent injections ,

In der US 5 551 391 ist ein Einspritzventil gezeigt, das einen Kolben aufweist, mit dem der Kraftstoff zur Einspritzung in den Druckraum verdichtet wird. Der verdichtete Kraftstoff wird dabei einem Speichervolumen zugeführt, von wo der Kraftstoff in den Druckraum der Einspritzdüse gelangt.In the US 5 551 391 an injection valve is shown which has a piston with which the fuel is compressed for injection into the pressure chamber. The compressed fuel is supplied to a storage volume from where the fuel enters the pressure chamber of the injection nozzle.

Vorteile der ErfindungAdvantages of the invention

Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß rasch aufeinander folgende, genau definierte Einspritzvorgänge ermöglicht werden. Druckschwingungen, die im Bereich des Druckraums und damit in unmittelbarer Nähe der Einspritzöffnungen auftreten, werden gedämpft, so daß sehr schnell nach dem Schließvorgang des Kraftstoffeinspritzventils im Druckraum wieder ein statischer Zustand erreicht wird. Hierzu ist der Druckraum über eine im Gehäuse ausgebildete Drossel mit einem im Gehäuse ausgebildeten Dämpfungsraum verbunden. Treten im Bereich des Druckraums Druckänderungen auf, wie sie beispielsweise durch das Öffnen oder Schließen des Ventilgliedes verursacht werden, so herrscht im Druckraum ein höherer oder niedrigerer Kraftstoffdruck als im Dämpfungsraum. Aufgrund dieses Druckgefälles wird Kraftstoff durch die Drossel entweder vom Druckraum in den Dämpfungsraum oder aus dem Dämpfungsraum in den Druckraum fließen und so zu einem Druckausgleich zwischen Dämpfungsraum und Druckraum führen. Da der hierbei hin und her fließende Kraftstoff die Drossel passieren muß, werden diese Druckschwingungen durch Reibungsverluste an der Drossel gedämpft, so daß es sehr schnell zu einem Abklingen dieser Druckschwingungen kommt und ein statisches Druckniveau im Druckraum erreicht wird.The fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage that quickly successive, precisely defined injection operations are possible. Pressure oscillations that occur in the region of the pressure chamber and thus in the immediate vicinity of the injection openings are damped, so that very quickly after the closing operation of the fuel injection valve in the pressure chamber, a static state is reached again. For this purpose, the pressure chamber is connected via a throttle formed in the housing with a damping chamber formed in the housing. If pressure changes occur in the region of the pressure chamber, as caused, for example, by the opening or closing of the valve member, a higher or lower fuel pressure prevails in the pressure chamber than in the damping chamber. Due to this pressure gradient fuel will flow through the throttle either from the pressure chamber in the damping chamber or from the damping chamber in the pressure chamber and thus lead to a pressure equalization between the damping chamber and the pressure chamber. Since this flowing back and forth fuel must pass through the throttle, these pressure oscillations are damped by friction losses at the throttle, so that it comes very quickly to a decay of these pressure oscillations and a static pressure level is reached in the pressure chamber.

In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist der Dämpfungsraum als eine im Gehäuse des Kraftstoffeinspritzventils ausgebildete Sackbohrung ausgebildet. Die Sackbohrung mündet hierbei direkt in den Druckraum, wobei die Drossel vorzugsweise nahe am Druckraum liegt. Durch die Ausbildung des Dämpfungsraums in Form einer Sackbohrung kann der Dämpfungsraum im Gehäuse einfach und kostengünstig hergestellt werden.In an advantageous embodiment of the object of the invention, the damping chamber is formed as a trained in the housing of the fuel injection valve blind bore. The blind bore opens directly into the pressure chamber, the throttle preferably being close to the pressure chamber. Due to the design of the damping chamber in the form of a blind bore of the damping chamber in the housing can be easily and inexpensively manufactured.

In einer weiteren vorteilhaften Ausgestaltung ist mehr als eine Drossel im Gehäuse angeordnet, die die Verbindung vom Dämpfungsraum zum Druckraum bildet. Hierdurch kann die Dämpfungswirkung der Drosseln verstärkt werden und durch verschiede Drosseln eine bessere Anpassung an die Erfordernisse des Kraftstoffeinspritzventils erfolgen.In a further advantageous embodiment, more than one throttle is arranged in the housing, which forms the connection from the damping chamber to the pressure chamber. As a result, the damping effect of the throttles can be increased and carried out by different throttles better adaptation to the requirements of the fuel injection valve.

In einer weiteren vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist das Ventilglied in einem Ventilkörper angeordnet, während der Dämpfungsraum in einem Ventilhaltekörper ausgebildet ist, wobei sowohl der Ventilkörper als auch der Ventilhaltekörper Teil des Gehäuses sind. Zwischen dem Ventilkörper und dem Ventilhaltekörper ist eine Zwischenscheibe angeordnet, durch die die Verbindung vom Druckraum zum Dämpfungsraum hindurchtritt. In der Zwischenscheibe ist die Drossel angeordnet, so daß durch einen Austausch der Zwischenscheibe gegen eine Zwischenscheibe mit einer veränderten Drossel ein leichtes Austauschen der Drossel und damit eine Anpassung der Dämpfungswirkung an verschiedene Kraftstoffeinspritzventile möglich ist, ohne daß die sonstige Konstruktion des Kraftstoffeinspritzventils geändert werden muß.In a further advantageous embodiment of the subject of the invention, the valve member is arranged in a valve body, while the damping chamber is formed in a valve holding body, wherein both the valve body and the valve holding body are part of the housing. Between the valve body and the valve holding body, an intermediate disc is arranged, through which the connection passes from the pressure chamber to the damping chamber. In the intermediate disc, the throttle is arranged so that a replacement of the intermediate disc against an intermediate disc with a modified throttle a slight replacement of the throttle and thus an adaptation of the damping effect to different fuel injection valves is possible without the other construction of the fuel injection valve must be changed.

Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.Further advantages and advantageous embodiments of the subject matter of the invention are the description, the drawings and the claims removable.

Zeichnungdrawing

In der Zeichnung sind zwei Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils gezeigt. In

  • Figur 1 ist ein Kraftstoffeinspritzventil im Längsschnitt gezeigt zusammen mit der schematisch dargestellten Kraftstoffhochdruckversorgung und in
  • Figur 2 ist ein Längsschnitt durch ein weiteres erfindungsgemäßes Kraftstoffeinspritzventil dargestellt.
In the drawing, two embodiments of the fuel injection valve according to the invention are shown. In
  • Figure 1 is a fuel injection valve shown in longitudinal section together with the high-pressure fuel supply shown schematically and in
  • FIG. 2 shows a longitudinal section through a further fuel injection valve according to the invention.

Beschreibung der AusführungsbeispieleDescription of the embodiments

In Figur 1 ist ein Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil gezeigt, zusammen mit der schematisch dargestellten Kraftstoffhochdruckversorgung. Das Kraftstoffeinspritzventil weist ein Gehäuse 12 auf, das einen Ventilhaltekörper 15 und einen Ventilkörper 32 umfaßt. Im Ventilkörper 32 ist eine Bohrung 34 ausgebildet, in der ein kolbenförmiges Ventilglied 35 längsverschiebbar angeordnet ist. Das Ventilglied 35 ist in einem brennraumabgewandten Abschnitt in der Bohrung 34 dichtend geführt und verjüngt sich unter Bildung einer Druckschulter 36 zum Brennraum hin. Auf Höhe der Druckschulter 36 ist durch eine radiale Erweiterung der Bohrung 34 ein Druckraum 37 im Ventilkörper 32 ausgebildet, der sich als ein das Ventilglied 35 umgebender Ringkanal bis zum brennraumseitigen Ende der Bohrung 34 fortsetzt. Mit seinem brennraumseitigen Ende steuert das Ventilglied 35 die Öffnung wenigstens einer Einspritzöffnung 39, die den Druckraum 37 mit dem Brennraum der Brennkraftmaschine verbindet. Hierzu ist am brennraumseitigen Ende des Ventilglieds 35 eine Ventildichtfläche 40 ausgebildet, die mit einem am brennraumseitigen Ende der Bohrung 34 ausgebildeten Ventilsitz 41 zusammenwirkt. Über einen im Gehäuse 12 ausgebildeten Zulaufkanal 14 ist der Druckraum 37 mit einem Hochdruckanschluß 8 verbunden. Der Hochdruckanschluß 8 ist dabei über eine Hochdruckleitung 7 mit einem Hochdrucksammelraum 5 verbunden, in dem Kraftstoff mit einem vorgegebenen hohen Druck vorhanden ist, wobei der Kraftstoff dem Hochdrucksammelraum 5 aus einem Kraftstofftank 1 über eine Hochdruckpumpe 2 und eine Kraftstoffleitung 4 zugeführt wird.FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention, together with the high-pressure fuel supply shown schematically. The fuel injection valve has a housing 12 which includes a valve holding body 15 and a valve body 32. In the valve body 32, a bore 34 is formed, in which a piston-shaped valve member 35 is arranged longitudinally displaceable. The valve member 35 is sealingly guided in a bore away from the combustion chamber in the bore 34 and tapers to form a pressure shoulder 36 to the combustion chamber. At the level of the pressure shoulder 36, a pressure chamber 37 is formed in the valve body 32 by a radial extension of the bore 34, which continues as a valve member 35 surrounding the annular channel to the combustion chamber end of the bore 34. With its combustion chamber end, the valve member 35 controls the opening of at least one injection port 39, which connects the pressure chamber 37 with the combustion chamber of the internal combustion engine. For this purpose, a valve sealing surface 40 is formed at the combustion chamber end of the valve member 35, which cooperates with a formed on the combustion chamber end of the bore 34 valve seat 41. About a formed in the housing 12 inlet channel 14 of the pressure chamber 37 is connected to a high pressure port 8. The high pressure port 8 is connected via a high pressure line 7 to a high pressure accumulator 5, in which fuel is present at a predetermined high pressure, the fuel is the high pressure accumulator 5 from a fuel tank 1 via a high pressure pump 2 and a fuel line 4 is supplied.

Brennraumabgewandt zum Ventilglied 35 ist im Ventilhaltekörper 15 ein Federraum 28 ausgebildet, in dem eine Schraubendruckfeder 30 angeordnet ist. Die Schraubendruckfeder 30 weist hierbei eine Druckvorspannung auf und beaufschlagt mit ihrem dem Ventilglied 35 zugewandten Ende das Ventilglied 35 in Schließrichtung. Koaxial zur Bohrung 34 und brennraumabgewandt zum Federraum 28 ist im Ventilhaltekörper 15 eine Kolbenbohrung 27 ausgebildet, die in den Federraum 28 mündet und in der eine Kolbenstange 26 angeordnet ist, die mit ihrem brennraumzugewandten Ende am Ventilglied 35 anliegt und die mit ihrer brennraumabgewandten Stirnseite einen Steuerraum 20 begrenzt. Der Steuerraum 20 ist hierbei über eine Zulaufdrossel 19 mit dem Zulaufkanal 14 verbunden und über eine Ablaufdrossel 17 mit einem im Ventilhaltekörper 15 ausgebildeten Leckölraum 23, der mit einem in der Zeichnung nicht dargestellten Leckölsystem verbunden ist und dadurch ständig einen niedrigen Druck aufweist. Im Leckölraum 23 ist ein Magnetanker 22 angeordnet, der durch eine Schließfeder 31 in Richtung des Steuerraums 20 beaufschlagt ist und an dem eine Dichtkugel 29 befestigt ist, die die Ablaufdrossel 17 verschließt. Im Leckölraum 23 ist darüber hinaus ein Elektromagnet 24 angeordnet, der bei geeigneter Bestromung eine anziehende Kraft entgegen der Kraft der Schließfeder 31 auf den Magnetanker 22 ausübt und diesen vom Steuerraum 20 wegbewegt, wodurch der Steuerraum 20 mit dem Leckölraum 23 verbunden wird. Wird der Elektromagnet 24 stromlos geschaltet, so bewegt sich der Magnetanker 22 durch die Kraft der Schließfeder 31 wieder in Richtung des Steuerraums 20 und verschließt mit der Dichtkugel 29 die Ablaufdrossel 17.Facing away from the combustion chamber to the valve member 35, a spring chamber 28 is formed in the valve holding body 15, in which a helical compression spring 30 is arranged. The helical compression spring 30 in this case has a compressive bias and acts with its valve member 35 facing the end of the valve member 35 in the closing direction. Coaxially to the bore 34 and away from the combustion chamber to the spring chamber 28, a piston bore 27 is formed in the valve holding body, which opens into the spring chamber 28 and in which a piston rod 26 is arranged, which rests with its end facing the combustion chamber on the valve member 35 and the combustion chamber facing away from a control chamber 20 limited. The control chamber 20 is in this case connected via an inlet throttle 19 to the inlet channel 14 and via an outlet throttle 17 with a formed in the valve holding body 15 leakage oil chamber 23 which is connected to a drain oil, not shown in the drawing and thereby constantly has a low pressure. In the leakage oil chamber 23, a magnet armature 22 is arranged, which is acted upon by a closing spring 31 in the direction of the control chamber 20 and to which a sealing ball 29 is fixed, which closes the outlet throttle 17. In the leakage oil chamber 23, an electromagnet 24 is also arranged, which exerts an attractive force against the force of the closing spring 31 on the armature 22 and moves it away from the control chamber 20, whereby the control chamber 20 is connected to the leakage oil chamber 23 with appropriate energization. If the electromagnet 24 is de-energized, then the armature 22 moves by the force of the closing spring 31 again in the direction of the control chamber 20 and closes with the sealing ball 29, the outlet throttle 17th

Im Ventilhaltekörper 15 ist ein Dämpfungsraum 46 ausgebildet, der als Sackbohrung ausgeführt ist und dessen offenes Ende an der dem Ventilkörper 32 zugewandten Stirnseite des Ventilhaltekörpers 15 angeordnet ist. Die den Dämpfungsraum 46 bildende Sackbohrung verläuft hierbei parallel zur Kolbenbohrung 27 und ist über eine im Ventilkörper 32 ausgebildete Verbindung 42 mit dem Druckraum 37 verbunden. In der Verbindung 42 ist eine Drossel 44 angeordnet, die durch eine Querschnittverengung der Verbindung 42 ausgebildet ist. Herrscht eine Druckdifferenz zwischen Druckraum 37 und Dämpfungsraum 46, so kann über die Verbindung 42 und die Drossel 44 Kraftstoff von einem in den anderen Raum strömen und so zu einem Druckausgleich führen.In the valve holding body 15, a damping chamber 46 is formed, which is designed as a blind bore and whose open end is arranged on the valve body 32 facing the end face of the valve holding body 15. The the damping chamber 46 forming blind bore extends parallel to the piston bore 27 and is connected via a valve body 32 formed in the connection 42 with the pressure chamber 37. In the connection 42, a throttle 44 is arranged, which is formed by a cross-sectional constriction of the connection 42. If there is a pressure difference between the pressure chamber 37 and the damping chamber 46, fuel can flow from one into the other space via the connection 42 and the throttle 44, thus leading to a pressure equalization.

Die Funktionsweise des Kraftstoffeinspritzventils ist wie folgt: Durch die Verbindung des Druckraums 37 mit dem Hochdrucksammelraum 5 über den Zulaufkanal 14 und die Hochdruckleitung 7 herrscht im Druckraum 37 stets ein hoher Kraftstoffdruck, wie er auch im Hochdrucksammelraum 5 vorgehalten wird. Soll eine Einspritzung erfolgen, so wird der Elektromagnet 24 betätigt und der Magnetanker 22 gibt in der oben beschriebenen weise die Ablaufdrossel 17 frei. Hierdurch sinkt der Kraftstoffdruck im Steuerraum 20, und die hydraulische Kraft auf die brennraumabgewandte Stirnseite der Kolbenstange 26 wird reduziert, so daß die hydraulische Kraft auf die Druckschulter 36 überwiegt und das Ventilglied 35 in Öffnungsrichtung bewegt wird, wodurch die Einspritzöffnungen 29 freigegeben werden. Zum Beenden der Einspritzung wird die Bestromung des Elektromagneten 24 entsprechend geändert und der Magnetanker 22 verschließt, angetrieben durch die Schließfeder 31, wieder die Ablaufdrossel 17 mit der Dichtkugel 29. Durch den durch die Zulaufdrossel 19 nachfließenden Kraftstoff baut sich im Steuerraum 20 wieder der Kraftstoffhochdruck auf, wie er auch im Zulaufkanal 14 herrscht, so daß die hydraulische Kraft auf die Kolbenstange 26 größer wird als die hydraulische Kraft auf die Druckschulter 36, und das Ventilglied 35 fährt in die Schließposition zurück. Durch den Schließvorgang wird der Kraftstoff, der in Druckraum 37 in Richtung der Einspritzöffnungen 29 während der Einspritzung fließt, abrupt abgebremst, so daß die Bewegungsenergie des Kraftstoffs in Kompressionsarbeit umgewandelt wird. Dadurch entsteht eine Druckwelle, die sich im Druckraum 37 ausbreitet. Die so verursachte Druckerhöhung führt zu einer Druckdifferenz zwischen Druckraum 37 und Dämpfungsraum 46, wo zumindest näherungsweise noch der Druck herrscht, der vor Beginn der Einspritzung auch im Druckraum 37 vorhanden war. Durch diese Druckdifferenz fließt etwas Kraftstoff aus dem Druckraum 37 durch die Verbindung 42 und die Drossel 44 in den Dämpfungsraum 46 und von dort gemäß dem Druckunterschied zwischen Dämpfungsraum 46 und Druckraum 37 wieder zurück in den Druckraum 37. Beim Passieren der Drossel 44 muß Reibungsarbeit verrichtet werden, die diese Druckschwingungen rasch abdämpfen, so daß bereits nach kurzer Zeit in Druckraum 37 wieder ein statisches Druckniveau erreicht wird. Für die nachfolgende Einspritzung liegt somit ein definierter Druckzustand im Druckraum 37 vor, der eine entsprechend genaue und präzise Einspritzung ermöglicht.The operation of the fuel injection valve is as follows: Through the connection of the pressure chamber 37 with the high pressure accumulator 5 via the inlet channel 14 and the high pressure line 7 prevails in the pressure chamber 37 is always a high fuel pressure, as it is also maintained in the high-pressure accumulator 5. If an injection takes place, the solenoid 24 is actuated and the armature 22 is in the manner described above, the outlet throttle 17 free. As a result, the fuel pressure in the control chamber 20 decreases, and the hydraulic force to the combustion chamber facing away from the end of the piston rod 26 is reduced, so that the hydraulic force on the pressure shoulder 36 outweighs and the valve member 35 is moved in the opening direction, whereby the injection openings 29 are released. To stop the injection, the energization of the electromagnet 24 is changed accordingly and the armature 22 closes, driven by the closing spring 31, again the outlet throttle 17 with the sealing ball 29. By the nachfließenden through the inlet throttle 19 fuel in the control chamber 20 again the high fuel pressure as it also prevails in the inlet channel 14, so that the hydraulic force on the piston rod 26 is greater than the hydraulic force on the pressure shoulder 36, and the valve member 35 returns to the closed position. By the closing operation of the fuel flowing in the pressure chamber 37 in the direction of the injection openings 29 during the injection, abruptly braked, so that the kinetic energy of the fuel is converted into compression work. This creates a pressure wave that propagates in the pressure chamber 37. The increase in pressure thus caused leads to a pressure difference between the pressure chamber 37 and damping chamber 46, where at least approximately still prevails the pressure that was present in the pressure chamber 37 before the start of injection. By this pressure difference, some fuel from the pressure chamber 37 flows through the connection 42 and the throttle 44 in the damping chamber 46 and from there according to the pressure difference between the damping chamber 46 and pressure chamber 37 back into the pressure chamber 37. When passing the throttle 44 friction work must be done , Which dampen these pressure oscillations quickly, so that after a short time in the pressure chamber 37 again a static pressure level is reached. For the subsequent injection thus there is a defined pressure state in the pressure chamber 37, which allows a correspondingly accurate and precise injection.

In Figur 2 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils im Längsschnitt dargestellt. Die Dämpfung der Druckschwingungen erfolgt bei diesem Kraftstoffeinspritzventil in gleicher Art und Weise wie bei dem in Figur 1 dargestellten Kraftstoffeinspritzventil, jedoch sind die sonstigen Komponenten und die Arbeitsweise verschieden. Ein Ventilhaltekörper 50 ist unter Zwischenlage einer Zwischenscheibe 52 mittels einer Spannmutter 55 gegen einen Ventilkörper 54 verspannt. Im Ventilkörper 54 ist eine Bohrung 57 ausgebildet, in der ein Ventilglied 60, das kolbenförmig ausgebildet ist, längsverschiebbar angeordnet ist. Das Ventilglied 60 weist an seinem brennraumzugewandten Ende eine Dichtfläche 62 auf, die mit einem am brennraumseitigen Ende der Bohrung 57 ausgebildeten Ventilsitz 64 zusammenwirkt und so die Öffnung wenigstens einer im Ventilsitz 64 angeordneten Einspritzöffnung 66 steuert. Durch eine Verjüngung des Ventilglieds 60 zum Brennraum hin ist am Ventilglied 60 eine Druckschulter 61 ausgebildet, auf deren Höhe durch eine Querschnittserweiterung der Bohrung 57 ein Druckraum 68 ausgebildet ist, der über einen im Ventilkörper 54 der Zwischenscheibe 52 und dem Ventilhaltekörper 50 ausgebildeten Zulaufkanal 58 mit einem Hochdruckanschluß 56 verbunden ist. Der Hochdruckanschluß 56 ist mit einer in der Zeichnung nicht dargestellten Kraftstoffhochdruckquelle verbunden, die Kraftstoff unter hohem Druck in den Hochdruckanschluß 56 und durch den Zulaufkanal 58 dem Druckraum 68 zuführen kann.2 shows a further embodiment of the fuel injection valve according to the invention is shown in longitudinal section. The damping of the pressure oscillations takes place in this fuel injection valve in the same manner as in the fuel injection valve shown in Figure 1, but the other components and the operation are different. A valve holding body 50 is clamped with the interposition of an intermediate disc 52 by means of a clamping nut 55 against a valve body 54. In the valve body 54 has a bore 57 is formed, in which a valve member 60 which is formed piston-shaped, is arranged longitudinally displaceable. The valve member 60 has at its combustion chamber end facing a sealing surface 62 which cooperates with a formed on the combustion chamber end of the bore 57 valve seat 64 and thus controls the opening of at least one arranged in the valve seat 64 injection port 66. By a taper of the valve member 60 to the combustion chamber a pressure shoulder 61 is formed on the valve member 60, at its height by a cross-sectional widening of the bore 57, a pressure chamber 68 is formed, which is connected via a formed in the valve body 54 of the washer 52 and the valve holding body 50 inlet channel 58 to a high-pressure port 56. The high-pressure connection 56 is connected to a high-pressure fuel source, not shown in the drawing, which can supply fuel under high pressure into the high-pressure connection 56 and through the inlet channel 58 to the pressure chamber 68.

Brennraumabgewandt geht das Ventilglied 60 in einen Federteller 74 über, der in einer Öffnung der Zwischenscheibe 52 angeordnet ist und bis in einen im Ventilhaltekörper 50 ausgebildeten Federraum 70 ragt. Zwischen dem Federteller 74 und dem brennraumabgewandten Ende des Federraums 70 ist eine Schließfeder 72 angeordnet, die als Schraubendruckfeder ausgebildet ist und eine Druckvorspannung aufweist, so daß eine Schließkraft auf das Ventilglied 60 ausgeübt wird. In den Druckraum 68 mündet eine Verbindung 76, die über eine in der Zwischenscheibe 52 ausgebildete Drossel 78 mit einem im Ventilhaltekörper 50 ausgebildeten Dämpfungsraum 80 verbunden ist. Die Drossel 78 ist durch eine Querschnittsverringerung der Verbindung 76 ausgebildet, wobei es auch vorgesehen sein kann, mehr als eine Drossel 78 in der Zwischenscheibe 52 anzuordnen. Der Dämpfungsraum 78 ist, wie bereits bei dem in Fig. 1 gezeigten Ausführungsbeispiel, als Sackbohrung ausgebildet, die parallel zur Längsachse des Federraums 70 bzw. der Bohrung 57 verläuft. Die Länge der Sackbohrung und damit das Volumen des Dämpfungsraums 80 kann, je nach erwünschter Dämpfungswirkung, variiert werden. Soll eine Einspritzung erfolgen, so wird Kraftstoff in den Hochdruckanschluß 56 eingeführt, so daß der Kraftstoff durch den Zulaufkanal 58 dem Druckraum 68 zufließt. Übersteigt die durch den Kraftstoffdruck im Druckraum 68 ausgeübte hydraulische Kraft auf die Druckschulter 61 die Schließkraft der Schließfeder 72, so bewegt sich das Ventilglied 60 vom Ventilsitz 64 weg und gibt die Einspritzöffnungen 66 frei. Wird die Kraftstoffzufuhr zum Druckraum 68 unterbrochen, so sinkt dort der Kraftstoffdruck, und die Kraft der Schließfeder 72 überwiegt beim Unterschreiten eines gewissen Drucks im Druckraum 68 gegenüber der hydraulischen Kraft auf das Ventilglied 60, worauf dieses in seine Schließposition zurückkehrt. Durch das Schließen des Kraftstoffeinspritzventils entstehen im Druckraum 68 in der bereits oben geschilderten Art und Weise Druckschwingungen. Diese führen zu einem Kraftstofffluß zwischen dem Druckraum 68 und dem Dämpfungsraum 80 über die Drossel 78, so daß die Druckschwingungen durch diesen Vorgang rasch abgedämpft werden. Die Ausbildung der Drossel 78 in der Zwischenscheibe 52 ist hierbei besonders vorteilhaft, da durch Austausch der Zwischenscheibe 52 eine andere Drossel 78 in die Verbindung des Druckraums 68 mit dem Dämpfungsraum 80 eingebaut werden kann, ohne daß weitere bauliche Veränderungen am Kraftstoffeinspritzventil nötig wären. Alternativ kann es aber auch vorgesehen sein, die Drossel 78 noch innerhalb des Ventilkörpers 54 anzuordnen, zum Beispiel unmittelbar am Druckraum 68.Facing away from the combustion chamber, the valve member 60 merges into a spring plate 74, which is arranged in an opening of the intermediate disc 52 and projects into a spring space 70 formed in the valve holding body 50. Between the spring plate 74 and the combustion chamber remote from the end of the spring chamber 70, a closing spring 72 is arranged, which is designed as a helical compression spring and has a compressive bias, so that a closing force is exerted on the valve member 60. In the pressure chamber 68 opens a connection 76 which is connected via a formed in the intermediate disc 52 throttle 78 with a formed in the valve holding body 50 damping chamber 80. The throttle 78 is formed by a cross-sectional reduction of the connection 76, wherein it may also be provided to arrange more than one throttle 78 in the washer 52. The damping chamber 78 is, as already in the embodiment shown in FIG. 1, designed as a blind bore which runs parallel to the longitudinal axis of the spring chamber 70 and the bore 57. The length of the blind bore and thus the volume of the damping chamber 80 can be varied depending on the desired damping effect. If an injection takes place, then fuel is introduced into the high-pressure port 56, so that the fuel flows through the inlet channel 58 to the pressure chamber 68. Exceeds the force exerted by the fuel pressure in the pressure chamber 68 hydraulic force the pressure shoulder 61, the closing force of the closing spring 72, the valve member 60 moves away from the valve seat 64 and the injection openings 66 free. If the fuel supply to the pressure chamber 68 is interrupted, then the fuel pressure drops there, and the force of the closing spring 72 outweighs falling below a certain pressure in the pressure chamber 68 against the hydraulic force on the valve member 60, whereupon this returns to its closed position. By closing the fuel injection valve arise in the pressure chamber 68 in the manner already described above pressure oscillations. These lead to a fuel flow between the pressure chamber 68 and the damping chamber 80 via the throttle 78, so that the pressure oscillations are damped by this process quickly. The design of the throttle 78 in the washer 52 is particularly advantageous because replacement of the washer 52, another throttle 78 can be installed in the connection of the pressure chamber 68 with the damping chamber 80 without further structural changes would be necessary to the fuel injector. Alternatively, however, it may also be provided to arrange the throttle 78 still within the valve body 54, for example directly at the pressure chamber 68.

Alternativ zu den in den Figuren 1 und 2 gezeigten Ausführungsbeispielen kann es auch vorgesehen sein, den Dämpfungsraum 46 in Fig. 1 bzw. den Dämpfungsraum 80 in Fig. 2 nicht als Sackbohrung auszubilden, sondern als einen Hohlraum im Gehäuse des Kraftstoffeinspritzventils, der jede beliebige Form annehmen kann. So können die räumlichen Möglichkeiten des Kraftstoffeinspritzventils optimal genutzt werden, ohne daß an den bestehenden funktionellen Komponenten bauliche Änderungen vorgenommen werden müssen. Darüber hinaus kann es vorgesehen sein, mehr als eine Drossel 44;78 in der Verbindung des Druckraums 37;68 zum Dämpfungsraum 46;80 anzuordnen. Hierdurch kann ein optimales Dämpfungsverhalten der Drossel 44;78 erzielt werden.As an alternative to the exemplary embodiments shown in FIGS. 1 and 2, it may also be provided that the damping chamber 46 in FIG. 1 or the damping chamber 80 in FIG. 2 is not formed as a blind bore, but as a cavity in the housing of the fuel injection valve, which can be any one Can take shape. Thus, the spatial possibilities of the fuel injection valve can be used optimally, without having to make structural changes to the existing functional components. In addition, it may be provided to arrange more than one throttle 44, 78 in the connection of the pressure chamber 37, 68 to the damping chamber 46, 80. In this way, an optimal damping behavior of the throttle 44, 78 can be achieved.

Claims (5)

  1. Fuel injection valve for internal combustion engines having a housing (12; 48), in which a piston-shaped valve element (35; 60) is arranged in a longitudinally displaceable manner in a hole (34; 57), which piston-shaped valve element (35; 60) is surrounded at least over part of its length by a pressure space (37; 68) which is formed in the housing (12; 48) and can be filled with highly pressurized fuel, the valve element (35; 60) controlling the connection of the pressure space (37; 68) to at least one injection opening (39; 66), characterized in that the pressure space (37; 68) is connected via at least one throttle (44; 78) which is arranged in the housing (12; 48) to a damping space (46; 80) which is formed in the housing (12; 48), the damping space (46; 80) being closed apart from its connection to the pressure space (37; 68) and the throttle (44; 78) being formed by a cross-sectional constriction in the connection of the damping space (46; 80) and the pressure space (37; 68).
  2. Fuel injection valve according to Claim 1, characterized in that the damping space (46; 80) is formed by a blind bore which is formed in the housing (12; 48) and opens directly into the pressure space (37; 68).
  3. Fuel injection valve according to Claim 2, characterized in that the blind bore extends at least substantially parallel to the longitudinal axis of the valve element (35; 60).
  4. Fuel injection valve according to Claim 1, characterized in that the pressure space (37; 68) is connected via more than one throttle (44; 78) which is arranged in the housing (12; 48) to a damping space (46; 80) which is formed in the housing (12; 48).
  5. Fuel injection valve according to Claim 1, characterized in that the housing (48) comprises a valve body (54) and a valve holding body (50), the valve element (60) being arranged in the valve body (54) which is clamped against the valve holding body (50) with the interposition of a washer (52), and in that the damping space (80) is formed in the valve holding body (50) which is connected to the pressure space (68) by a connection which is formed in the washer (52) and in the valve body (54), the throttle (78) being formed in the washer (52).
EP02735006A 2001-05-05 2002-03-22 Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations Expired - Lifetime EP1387937B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10121891A DE10121891A1 (en) 2001-05-05 2001-05-05 Fuel injection valve for internal combustion engines
DE10121891 2001-05-05
PCT/DE2002/001037 WO2002090753A1 (en) 2001-05-05 2002-03-22 Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations

Publications (2)

Publication Number Publication Date
EP1387937A1 EP1387937A1 (en) 2004-02-11
EP1387937B1 true EP1387937B1 (en) 2007-08-22

Family

ID=7683740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02735006A Expired - Lifetime EP1387937B1 (en) 2001-05-05 2002-03-22 Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations

Country Status (5)

Country Link
US (1) US7172140B2 (en)
EP (1) EP1387937B1 (en)
JP (1) JP4154243B2 (en)
DE (2) DE10121891A1 (en)
WO (1) WO2002090753A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10232193A1 (en) * 2002-07-16 2004-02-05 Robert Bosch Gmbh Fuel injector
DE10352736A1 (en) * 2003-11-12 2005-07-07 Robert Bosch Gmbh Fuel injector with direct needle injection
DE102004024926A1 (en) * 2004-05-19 2005-12-15 Volkswagen Mechatronic Gmbh & Co. Kg Pump-nozzle unit
DE102007025617A1 (en) * 2007-06-01 2008-12-04 Robert Bosch Gmbh Fuel injector with low wear
DE102008012637A1 (en) * 2008-03-05 2009-09-10 Robert Bosch Gmbh Fuel injector for injecting fuel into combustion chamber of internal-combustion engine, has injector body, which has fuel inlet, injection opening, nozzle needle and nozzle area
EP2295787B1 (en) * 2009-07-29 2012-04-04 Delphi Technologies Holding S.à.r.l. Fuel Injector
US9897058B2 (en) 2009-07-29 2018-02-20 Delphi International Operations S.A.R.L. Fuel injector
AT509877B1 (en) * 2010-11-02 2011-12-15 Bosch Gmbh Robert DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE
DE102010064057A1 (en) 2010-12-23 2012-06-28 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
AT512960B1 (en) * 2012-05-22 2014-03-15 Bosch Gmbh Robert Injector of a modular common rail fuel injection system
GB201420051D0 (en) * 2014-11-11 2014-12-24 Delphi International Operations Luxembourg S.�.R.L. Fuel injector
DE102016218669A1 (en) * 2016-09-28 2018-03-29 Robert Bosch Gmbh Holding body for a fuel injector, fuel injector with holding body and method for producing a holding body
RU2731155C1 (en) * 2019-07-05 2020-08-31 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский политехнический университет" (Московский Политех) Electrically-hydraulic control nozzle
CN114458498B (en) * 2022-02-24 2022-10-28 哈尔滨工程大学 High-pressure common rail oil injector for realizing high-stability injection based on throttling resistance-capacitance effect
CN116006366B (en) * 2023-03-24 2023-06-09 哈尔滨工程大学 An Electronically Controlled Fuel Injector Based on Adaptive Adjustment of Resistance and Capacitance Parts to Realize Stable Fuel Injection
CN116085159B (en) * 2023-03-31 2023-07-21 哈尔滨工程大学 A Common Rail Injector Realizing Stable Injection Based on Multi-stage Self-adjusting Pressure Dissipation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332808A1 (en) * 1983-09-12 1985-03-28 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION NOZZLE FOR INTERNAL COMBUSTION ENGINES
US5467754A (en) * 1988-02-03 1995-11-21 Servojet Electronic Systems, Ltd. Accumulator fuel injection system
US5241935A (en) * 1988-02-03 1993-09-07 Servojet Electronic Systems, Ltd. Accumulator fuel injection system
DE4340305C2 (en) * 1993-11-26 1998-02-19 Daimler Benz Ag Fuel injection nozzle for an internal combustion engine
DE4440182C2 (en) * 1994-11-10 2003-09-18 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
US5752659A (en) * 1996-05-07 1998-05-19 Caterpillar Inc. Direct operated velocity controlled nozzle valve for a fluid injector
GB9906092D0 (en) * 1999-03-18 1999-05-12 Lucas France Fuel injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2004519596A (en) 2004-07-02
US7172140B2 (en) 2007-02-06
US20040061002A1 (en) 2004-04-01
JP4154243B2 (en) 2008-09-24
EP1387937A1 (en) 2004-02-11
WO2002090753A1 (en) 2002-11-14
DE50210758D1 (en) 2007-10-04
DE10121891A1 (en) 2002-11-07

Similar Documents

Publication Publication Date Title
EP1387940B1 (en) Fuel injection valve for internal combustion engines
EP1332282B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1387937B1 (en) Fuel injection valve for internal combustion engines with damping chamber reducing pressure oscillations
EP1259729B1 (en) Electromagnetic valve for controlling an injection valve of an internal combustion engine
EP1342005B1 (en) Fuel injection system for internal combustion engines
EP1234112A1 (en) Fuel injection system for internal combustion engines
EP1867868B1 (en) Fuel injector with safety operating valve
WO2005015002A1 (en) Control valve for a fuel injector comprising a pressure exchanger
EP2743493A2 (en) Fuel injector
EP1483499A1 (en) Installation for the pressure-modulated formation of the injection behavior
WO2003004861A1 (en) Fuel injector comprising a force-balanced control valve
WO2009074427A1 (en) On-off valve for injectors
DE10113008A1 (en) Solenoid valve for controlling an injection valve of an internal combustion engine
CH689267A5 (en) An injection valve for a fuel injection system of an internal combustion engine, especially a diesel engine.
EP2655850B1 (en) Fuel injection valve for internal combustion engines
DE10019767A1 (en) Valve for controlling liquids
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
DE102007011788A1 (en) Fuel injector for injecting fuel into combustion chamber of diesel engine, has pressure accumulator volume subjecting nozzle needle or control rod with closing pressure, which is larger than pressure dropping when needle is opened
DE102008002526A1 (en) Fuel injector, particularly, common-rail injector for injecting fuel into combustion chamber of internal combustion engine, has multi-part injection valve element adjustable between closed position and open position
EP1606511B1 (en) Fuel injection device for a combustion engine
WO2008086941A1 (en) Fuel injector comprising a coupler
DE102007001366A1 (en) Injector particularly common rail injector for injecting fuel into combustion chamber in internal combustion engine, has valve element, which is axially adjustable between closing position and open position to enable flow of fuel
DE10329732A1 (en) Fuel injection system for internal combustion engines
DE10309078A1 (en) Fuel injection valve for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50210758

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071129

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130329

Year of fee payment: 12

Ref country code: GB

Payment date: 20130318

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140322

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170529

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210758

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002