EP1386187A2 - Cristaux photoniques - Google Patents
Cristaux photoniquesInfo
- Publication number
- EP1386187A2 EP1386187A2 EP02727481A EP02727481A EP1386187A2 EP 1386187 A2 EP1386187 A2 EP 1386187A2 EP 02727481 A EP02727481 A EP 02727481A EP 02727481 A EP02727481 A EP 02727481A EP 1386187 A2 EP1386187 A2 EP 1386187A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- thermal expansion
- glass
- glass ceramic
- photonic crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B5/00—Single-crystal growth from gels
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
- G02B6/1225—Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
Definitions
- the present invention relates to photonic crystals.
- Photonic crystals are generally understood to mean three-dimensional dielectric structures which are opaque to electromagnetic radiation in a specific wavelength range regardless of the direction of incidence. The wavelength range is largely determined by the arrangement, shape and size of the structures.
- An important type of photonic crystals is a regular, for example matrix-like, arrangement of free-standing dielectric
- Microsaules or cylinders with very small diameters and a relatively large height are formed. Typical diameters of microcylinders for visible and IR light are in the range from one hundred to a few hundred nanometers.
- photonic crystals For the production of photonic crystals with micro cylinders, a substrate is required which carries the micro cylinders. For this reason, quartz glass has mostly been used, among other things because of the mechanical and chemical stability.
- photonic crystals is understood to mean the three-dimensional dielectric structure with microscopes or cylinders, including a substrate carrying them.
- photonic crystals are very well suited for the production of optical components such as very narrow-band filters, modulatable filters, add-drop filters and integrated optical structures with 90 ° deflection.
- optical components such as very narrow-band filters, modulatable filters, add-drop filters and integrated optical structures with 90 ° deflection.
- Such components are used in DWDM technology (Dense Wavelength Division Multiplexing)
- BEST ⁇ TIGUMGSKOP ⁇ E electromagnetic radiation of different wavelengths is used as a carrier.
- the channel spacing between adjacent channels used at the same time is 0.4 nm, with wavelengths in the range around 1550 nm being used.
- the channel spacing will decrease to 0.2 nm or less in order to achieve a higher bandwidth when transmitting via an optical fiber. This requires components now with a very high stability of the filter properties, especially in the case of large temperature fluctuations.
- a photonic crystal according to the invention has a substrate whose thermal expansion coefficient in the temperature range between -60 ° C. and 85 ° C. is at least 50% smaller than the amount of the expansion coefficient of quartz glass.
- the thermal expansion of the substrate is kept low even with large temperature fluctuations; however, the distance of the microsaules or cylinders of the photonic crystal carried by the substrate changes only slightly. Therefore, the optical properties of the photonic also change Little crystal, so that the optical properties are much more stable than that of photonic crystals with a quartz glass substrate.
- the thermal expansion coefficients of the substrate and / or the quartz glass are e.g. linear coefficients of thermal expansion.
- the amount of the thermal expansion coefficient of the substrate in the, preferably entire, temperature range between -60 ° C. and 85 ° C. is preferably at least 50% smaller than the amount of the thermal expansion coefficient of quartz glass.
- a substrate with a base body made of a glass ceramic which has a coefficient of thermal expansion which in the temperature range between -60 ° C and 85 ° C is less than 5 x 10 "7 / ° C, less than 4 x 10 ⁇ 7 / ° C , less than 3 X 10 "7 / ° C, less than 2 X 10 ⁇ 7 / ° C, particularly preferably less than 1 X 10 " 7 / ° C and most preferably less than 5 x 10 "8 / ° C or is less than 2 x 10 "8 / ° C.
- a glass ceramic with expansion coefficients within the latter two ranges is complex to manufacture.
- Glass ceramics are basically composite materials with an amorphous glass phase and embedded crystals, which are produced by ceramization, ie controlled devitrification (crystallization) of glasses. They result from the heat treatment of a suitable glass, in which crystals are created. For this purpose, suitable raw material is first melted, rectified, homogenized and then shaped while hot. After cooling and tempering the glass-like blank, a temperature treatment follows, in which the crystallization takes place. During the heat treatment, crystallization nuclei form in the glass on them subsequently the crystals grow at a slightly higher temperature.
- the glass ceramic according to the invention contains more than 50% by weight of SiO 2 . In addition, it can be different
- Contain additives especially z.
- B203 Calcium oxide
- Al oxide aluminum oxide
- PbO lead oxide
- MgO magnesium oxide
- BaO barium oxide
- K20 potassium oxide
- Glass ceramics are mechanically and chemically very stable, which is an advantage in the production of photonic crystals, but also in their later use.
- the invention further relates to a method for producing the photonic crystals according to the invention having the features of claim 8.
- the photonic crystals according to the invention can also be produced with all known methods for the production of photonic crystals with quartz glass substrates.
- additive lithography can be used to manufacture. This procedure is in SPIE Vol. 2849
- the glass ceramic preferably has a glass phase and a crystalline phase distributed therein with a coefficient of thermal expansion which is lower in the temperature range between -60 ° C. and 85 ° C. than that of the glass phase.
- a glass ceramic is particularly preferably used, the crystalline phase of which has a negative coefficient of thermal expansion at least in parts of the temperature range between -60 ° C. and 85 ° C. Because the thermal
- Coefficient of expansion of a composite material depends, among other things, strongly on the thermal expansion coefficient of its components, resulting in a particularly small thermal expansion coefficient of the glass ceramic.
- the proportion by weight of the crystalline phase also influences the thermal expansion coefficient of the glass ceramic. It is therefore preferred in the case that the thermal expansion coefficient of the crystalline phase is smaller than that of the glass phase, in particular negative, the proportion of the crystalline phase chosen so high that the thermal expansion is particularly small in the temperature range between -60 ° C and 85 ° C is.
- the proportion by weight of the crystalline phase in the glass ceramic is preferably between 60 and 90%, particularly preferably 70 and 80%.
- the crystalline phase is preferably largely homogeneously distributed in the glass ceramic.
- Fig. 1 is a schematic perspective view of a section of a preferred embodiment of the photonic crystal according to the invention.
- FIG. 2 shows a plan view of a section of the photonic crystal from FIG. 1.
- FIG. 1 shows the photonic crystal 1 according to the invention, which was produced by means of additive lithography with electron beam-induced deposition or deposition of a three-dimensional structure 2 on a substrate 3.
- a beam current of 100 pA to 20OpA was used for the production.
- the three-dimensional structure 2 is arranged on the substrate 3 and adheres to the substrate.
- the deposited material has grown into a composition of essentially spherical metallic nanocrystals in a matrix of insulating amorphous carbon or polymers from CH X radicals. For example, platinum and / or gold are used as metals.
- the exemplary three-dimensional structure 2 comprises a multiplicity of essentially cylindrical microsaules or rods 4 made of Me 2 Au arranged in a two-dimensional regular matrix.
- the band gap is 1.38 eV, corresponding to a photon wavelength of 900 nm.
- the length h of the rods is approximately 2000 nm.
- the structure 2 is or the rods 4 are nanocrystalline or amorphous.
- the diameter d of the rods 4 is approximately 140 nm and the spacing a of the rods 4 within the regular matrix arrangement in the horizontal and vertical directions is 320 nm from center to center of adjacent rods 4.
- a diameter of the rods in the range from 80 nm to 300 nm can also be produced and / or used.
- shapes other than cylindrical rods can be produced and / or used
- a substrate in particular a glass ceramic, which comprises or consists of microcrystals of a, preferably average, size in the range of approximately 50 nm.
- Micro crystal sizes other than the said ones, for example smaller or larger than 50 nm, can also be used in the context of the invention.
- a substrate 2 is preferably used which is chemically, mechanically and / or in terms of polishability essentially similar or even identical to the quartz glass.
- the substrate 2 has a smooth, e.g. polished surface, which is particularly advantageous in cooperation with the three-dimensional structures of the photonic crystal according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Glass Compositions (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
L'invention concerne des cristaux photoniques, c'est-à-dire des structures diélectriques tridimensionnelles, qui sont opaques au rayonnement électromagnétique dans une plage de longueurs d'onde déterminée, quelle que soit sa direction d'incidence. Un cristal photonique selon l'invention présente par exemple un agencement sous forme de matrice de microcolonnes ou de microcylindres diélectriques isolés présentant un très faible diamètre. Ces microcolonnes ou microcylindres sont placés sur un substrat dont le coefficient de dilatation thermique dans une plage de températures comprise entre - 60 °C et 85 °C est inférieur d'au moins 50 % à celui du verre de quartz. La dilatation thermique du substrat est ainsi maintenue à niveau faible même en cas de fortes variations de température et par conséquent l'écart entre les microcolonnes ou microcylindres, supportés par le substrat, du cristal photonique varie peu, de sorte que les propriétés optiques des cristaux photoniques selon l'invention sont sensiblement plus stables que celles des cristaux photoniques à substrat en verre de quartz. On utilise de préférence comme substrat une vitrocéramique, par exemple ZERODUR®.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10116500A DE10116500A1 (de) | 2001-04-03 | 2001-04-03 | Photonische Kristalle |
DE10116500 | 2001-04-03 | ||
PCT/EP2002/003365 WO2002082135A2 (fr) | 2001-04-03 | 2002-03-26 | Cristaux photoniques |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1386187A2 true EP1386187A2 (fr) | 2004-02-04 |
Family
ID=7680166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02727481A Ceased EP1386187A2 (fr) | 2001-04-03 | 2002-03-26 | Cristaux photoniques |
Country Status (6)
Country | Link |
---|---|
US (1) | US7359605B2 (fr) |
EP (1) | EP1386187A2 (fr) |
JP (1) | JP2004532427A (fr) |
CA (1) | CA2439191A1 (fr) |
DE (1) | DE10116500A1 (fr) |
WO (1) | WO2002082135A2 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1965446B1 (fr) * | 2007-02-28 | 2011-11-16 | Corning Incorporated | Module thermoélectrique en céramique-verre |
DE102007027414B3 (de) | 2007-06-11 | 2009-01-22 | Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung mbH | Mikro- und Nanofluidsystem zur dynamischen Strukturanalyse von linearen Makromolekülen und Anwendungen davon |
EP2180534B1 (fr) * | 2008-10-27 | 2013-10-16 | Corning Incorporated | Dispositifs et procédés de conversion d'énergie |
TW201024800A (en) * | 2008-12-30 | 2010-07-01 | Ind Tech Res Inst | Negative refraction photonic crystal lens |
JP2012064824A (ja) * | 2010-09-17 | 2012-03-29 | Toshiba Corp | 固体撮像素子、その製造方法、カメラ |
US10677965B2 (en) | 2014-01-27 | 2020-06-09 | Forelux Inc. | Optical apparatus for non-visible light applications |
US9651718B2 (en) * | 2014-01-27 | 2017-05-16 | Forelux Inc. | Photonic apparatus with periodic structures |
DE102018109345A1 (de) * | 2018-04-19 | 2019-10-24 | Physik Instrumente (Pi) Gmbh & Co. Kg | Integriert-optisches Funktionselement |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4993032A (en) | 1989-12-28 | 1991-02-12 | General Dynamics Corp., Electronics Divn. | Monolithic temperature stabilized optical tuning circuit for channel separation in WDM systems utilizing tunable lasers |
US5385114A (en) * | 1992-12-04 | 1995-01-31 | Milstein; Joseph B. | Photonic band gap materials and method of preparation thereof |
US5303319A (en) * | 1992-12-28 | 1994-04-12 | Honeywell Inc. | Ion-beam deposited multilayer waveguides and resonators |
US5377285A (en) | 1993-02-11 | 1994-12-27 | Honeywell Inc. | Technique for making ultrastable ring resonators and lasers |
JP2674680B2 (ja) * | 1994-02-23 | 1997-11-12 | 宇都宮大学長 | 超伝導超格子結晶デバイス |
US5600483A (en) * | 1994-05-10 | 1997-02-04 | Massachusetts Institute Of Technology | Three-dimensional periodic dielectric structures having photonic bandgaps |
DE19743296C1 (de) * | 1997-09-30 | 1998-11-12 | Siemens Ag | Verfahren zur Herstellung einer offenen Form |
JP4532738B2 (ja) * | 1998-07-30 | 2010-08-25 | コーニング インコーポレイテッド | フォトニクス構造体の製造方法 |
TWI228179B (en) * | 1999-09-24 | 2005-02-21 | Toshiba Corp | Process and device for producing photonic crystal, and optical element |
DE10014723A1 (de) * | 2000-03-24 | 2001-09-27 | Juergen Carstensen | Herstellung dreidimensionaler photonischer Kristalle mit Porenätzungsverfahren in Silizium |
US20030016895A1 (en) * | 2001-07-23 | 2003-01-23 | Motorola, Inc. | Structure and method for fabricating semiconductor structures and devices utilizing photonic crystals |
US6768256B1 (en) * | 2001-08-27 | 2004-07-27 | Sandia Corporation | Photonic crystal light source |
-
2001
- 2001-04-03 DE DE10116500A patent/DE10116500A1/de not_active Withdrawn
-
2002
- 2002-03-26 US US10/474,073 patent/US7359605B2/en not_active Expired - Fee Related
- 2002-03-26 CA CA002439191A patent/CA2439191A1/fr not_active Abandoned
- 2002-03-26 WO PCT/EP2002/003365 patent/WO2002082135A2/fr not_active Application Discontinuation
- 2002-03-26 JP JP2002579848A patent/JP2004532427A/ja active Pending
- 2002-03-26 EP EP02727481A patent/EP1386187A2/fr not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO02082135A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2002082135A2 (fr) | 2002-10-17 |
DE10116500A1 (de) | 2002-10-17 |
CA2439191A1 (fr) | 2002-10-17 |
US7359605B2 (en) | 2008-04-15 |
US20040109657A1 (en) | 2004-06-10 |
JP2004532427A (ja) | 2004-10-21 |
WO2002082135A3 (fr) | 2003-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60026122T2 (de) | Glaskeramik und Temperaturkompensationselement | |
DE112014001293B4 (de) | Vorrichtung zum Mie-Streuen von Licht aus einer optischen Faser und Verfahren zu deren Herstellung | |
DE10238607B4 (de) | Verfahren zur Formung von Glas oder Glaskeramik und dessen Verwendung | |
DE3607259A1 (de) | Mikrolinsenplatte und verfahren zu ihrer herstellung | |
DE69904904T2 (de) | Glaskeramik mit negativer thermischer Ausdehnung und Verfahren zu dessen Herstellung | |
DE102016119942B4 (de) | Verfahren zur Herstellung einer keramisierbaren Grünglaskomponente sowie keramisierbare Grünglaskomponente und Glaskeramikgegenstand | |
EP1236695A2 (fr) | Vitrocéramique | |
EP0017296B1 (fr) | Procédé de fabrication de microlentilles et élément de couplage comportant une microlentille préparée selon ce procédé | |
EP1430001A2 (fr) | Verre a revetement superficiel poreux antireflechissant, et procede de fabrication d'un tel verre | |
DE102006056088B9 (de) | Verfahren zur Festigkeitssteigerung von Lithium-Alumino-Silikat-Glaskeramik durch Oberflächenmodifikation und durch dieses Verfahren hergestellte Lithium-Alumino-Silikat-Glaskeramik | |
DE102004054392A1 (de) | Verfahren zum Verbinden von Bauteilen aus hochkieselsäurehaltigem Werkstoff, sowie aus derartigen Bauteilen zusammengefügter Bauteil-Verbund | |
DE102007005780A1 (de) | Verbundstruktur für die Mikrolithographie und optische Anordnung | |
WO2016055524A2 (fr) | Stratifié en verre à résistance élevée | |
EP1791796A1 (fr) | Agent d'assemblage pour assembler des elements constitutifs, procede d'assemblage d'elements constitutifs a base d'un materiau contenant de l'acide silicique a haute densite, a l'aide de l'agent d'assemblage et element composite obtenu selon ledit procede | |
DE1800983A1 (de) | Verfahren zum Herstellen duennschichtiger Membranen | |
EP1544176A2 (fr) | Verre alumino-boro-silicaté et procédé de fabrication de lentilles à gradient d'indice exemptes de cristaux | |
DE10302342A1 (de) | Substrat für die EUV-Mikrolithographie und Herstellverfahren hierfür | |
WO2002082135A2 (fr) | Cristaux photoniques | |
WO2004024627A1 (fr) | Procede de production de cristaux hautement organises au moyen de procedes sol-gel | |
DE69600781T2 (de) | Verfahren zur herstellung eines cristobalit enthaltenden quarzglases | |
DE19918001C2 (de) | Hitzbeständiges, synthetisches Quarzglas und Herstellungsverfahren dafür | |
DE102019217977A1 (de) | Glas, Verfahren zur Herstellung eines Glases und Glasschmelzanlage | |
DE112022004003T5 (de) | Glassubstrat für die weltraumbasierte solarstromerzeugung | |
EP2024768B1 (fr) | Procédé pour la fabrication d'un cristal photonique | |
WO1995034091A1 (fr) | Produit semi-fini pour composant semi-conducteur electronique ou optoelectronique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17P | Request for examination filed |
Effective date: 20040527 |
|
17Q | First examination report despatched |
Effective date: 20040706 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20060416 |