EP1386012B1 - Procede pour ameliorer la qualite metallurgique de produits traites dans un four - Google Patents
Procede pour ameliorer la qualite metallurgique de produits traites dans un four Download PDFInfo
- Publication number
- EP1386012B1 EP1386012B1 EP02735468A EP02735468A EP1386012B1 EP 1386012 B1 EP1386012 B1 EP 1386012B1 EP 02735468 A EP02735468 A EP 02735468A EP 02735468 A EP02735468 A EP 02735468A EP 1386012 B1 EP1386012 B1 EP 1386012B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- product
- furnace
- temperature
- treated
- atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000002708 enhancing effect Effects 0.000 title abstract 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 35
- 239000001301 oxygen Substances 0.000 claims description 35
- 238000010438 heat treatment Methods 0.000 claims description 34
- 239000000446 fuel Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 10
- 239000007800 oxidant agent Substances 0.000 claims description 9
- 230000002829 reductive effect Effects 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 16
- 239000010959 steel Substances 0.000 abstract description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 241000237858 Gastropoda Species 0.000 abstract 1
- 239000000047 product Substances 0.000 description 96
- 229940105847 calamine Drugs 0.000 description 20
- 229910052864 hemimorphite Inorganic materials 0.000 description 20
- 235000014692 zinc oxide Nutrition 0.000 description 20
- 239000011787 zinc oxide Substances 0.000 description 20
- CPYIZQLXMGRKSW-UHFFFAOYSA-N zinc;iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+3].[Fe+3].[Zn+2] CPYIZQLXMGRKSW-UHFFFAOYSA-N 0.000 description 20
- 238000005259 measurement Methods 0.000 description 17
- 239000010410 layer Substances 0.000 description 14
- 238000005261 decarburization Methods 0.000 description 13
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 12
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- 238000003303 reheating Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003517 fume Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005269 aluminizing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001955 cumulated effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000013316 zoning Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories or equipment specially adapted for furnaces of these types
- F27B9/40—Arrangements of controlling or monitoring devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/52—Methods of heating with flames
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories or equipment specially adapted for furnaces of these types
- F27B9/36—Arrangements of heating devices
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
Definitions
- the invention relates to a method for improving the quality metallurgy of products treated in an oven and in particular a furnace of reheating.
- This invention applies to any type of product but more particularly to products treated in a reheating furnace such as, for example, for example, billets, blanks or slabs or any other material used by steelmakers in their production line (such as sheet metal, tubes, etc.).
- the invention relates more particularly to a method of treatment of a metallurgical product in an oven, in which the product to be treat is introduced into the oven and then subjected to the desired treatment and then removed furnace, the furnace comprising heating means and in particular burners allowing to bring to different temperatures the different areas of the oven, the atmosphere in these different areas may have a identical or different composition according to the considered zones of said furnace.
- the weathered area on the surface of these pieces is composed essentially two parts (see Fig 1), one located on the side of the atmosphere (upper scale), and the other in the vicinity of the metal (zone mixed).
- the upper part generally comprises three compact layers of oxides: a layer of oxides Fe 2 O 3 (hematite), very thin (a few microns thick), a layer of magnetite (Fe 3 O 4 ) (4% of the total scale) and a layer of thick oxide FeO (wustite) (95% of the total scale total) more or less porous depending on the duration and the temperature of the reheating.
- a layer of oxides Fe 2 O 3 hematite
- very thin a few microns thick
- Fe 3 O 4 4% of the total scale
- FeO wustite
- This calamine which adopts a parabolic appearance, is controlled by the diffusion of Fe 2+ ions in wustite and magnetite, and by the diffusion of oxygen O 2 - in hematite.
- the lower part, mixed zone, is more or less large depending on the nature of the steel. It is located at the metal / scale interface, consisting of a FeO mixture and FeO reaction products with the oxides of certain alloying elements. This lower part also includes a zone of metal altered by various phenomena such as decarburization or internal oxidation. Decarburization is a phenomenon of solid state diffusion of carbon that reacts with FeO (and / or H 2 O) scale.
- the iron and steel products can be oxidized (calamine) and decarburized (and all the more so for steels with high carbon).
- the steelmaker will have to submit to his parts an additional operation to overcome these surface defects.
- the oxide layer can be removed by different descaling techniques, the decarburization layer, which is an integral part of the part, can not be easily “gummed”: the surface of the product is deprived of a part of its carbon atoms, which causes a loss of the mechanical properties on the surface of the product (longevity, hardness ).
- Oxidation or decarburization of steel in a heating furnace leads to a loss of raw material, which is known as a loss on ignition and degradation of the surface properties of products that are detrimental to the steelmaker.
- Patent EP-A-0767353 also proposes to intervene on the oven atmosphere by zoning the oven, ie by isolating the furnace into several enclosures in which an atmosphere strongly oxidant is recommended in order to control training and quality of the calamine. In this case, the loss on ignition is not diminished but on the contrary increased, only a calamine quality control is assured.
- the species H 2 O and CO 2 also have, according to the Applicant, an oxidizing role on the feedstock and are involved in the scale formation reactions and in the decarburization mechanisms. At present, it is not known to measure these species simply and quickly.
- the operator follows an initial profile of temperature of the given product for a given furnace, depending on the type of load and production. This profile is known to the operator thanks to his know-how, either calculated from charts, or calculated using a adapted software.
- thermocouples located in the vault of the oven. These thermocouples are arranged far from the load and are not representative of the heat flux received by the load, under the burners. An estimate of the relationship connecting the vault temperature (measured) and the temperature of the charge (information useful) is therefore necessary. This relationship is either empirical (knowledge-based operators) is calculated by the furnace control software.
- this measure is a one-off measure usually located on the axis of the furnace and which does not take into account possible variations of the said parameter over the entire width of the oven.
- the object of the present invention is to provide a method of driving of a furnace (temperature, composition of the atmosphere) and a method of associated control, making it possible to optimize both the metallurgical quality of a product, fire loss and thermal efficiency of an oven
- the product to be treated has a temperature which increases between the moment when it is introduced and the moment when it is removed from the oven, the temperature rise curve having a slope which increases in a first interval of time.
- time between the time t 0 for introducing the product into the oven and the instant t 1 at which the product reaches a surface temperature of 650 ° C. a substantially constant slope between the instant t 1 and the instant t 2 at which the product reaches a temperature of about 15% lower than the desired final surface temperature for the product to be treated when it leaves the oven, then a slope that decreases between time t 2 and time t 3 at which the product to be treated leaves the oven, in which process the heating power of the furnace is increased relative to its power when only aero-fuel burners are used so as to increase the slope of the temperature rise curve of the furnace.
- the increase of the furnace heating power is obtained by means of oxy-fuel burners which constitute at least a part of the furnace heating means, in particular a portion of the furnace heating means corresponding to the zone. reached by the product between instants t 1 and t 2 . It is also possible to place this or these burner (s) oxy-fuel (s) in an area adjacent to the above-mentioned area, which indirectly allow to obtain the same power increase (in said area reached between times t 1 and t 2 , by the product).
- the oxidizer supplied to the oxy-fuel burners constituting at least part of the oven heating means has at least 88% oxygen and preferably more than 90% oxygen, more preferably more than 95% oxygen.
- the time of treatment of the product between temperatures of 700 ° C and 800 ° C achieved for the surface of the product is decreased by 15% to 50% of its reference value, preferably from 20 to 35% of its value, while the processing time between the temperatures of 700 ° C and the final temperature of the product surface is decreased between 3 and 25% of its reference value, preferably between 7% and 15% of its reference.
- the atmosphere of the oven varies along the oven depending on the skin temperature of the product metallic.
- the atmosphere of the oven in contact with the product to be treated comprises about 0.5% vol to 5% oxygen and preferably between 1.5 vol at 4 vol vol oxygen when the skin temperature T at the surface of the treated product is greater than or equal to equalization temperature T equ , which is equal to 85% of the temperature at the surface of the product (defatting temperature) at the oven outlet.
- equalization temperature T equ is equal to 85% of the temperature at the surface of the product (defatting temperature) at the oven outlet.
- the soaking temperature T equal is equal to 90% of the temperature of diversion.
- the atmosphere in contact with the product to treat has an oxygen concentration of less than a few hundreds of ppm and a CO concentration between 0.1% and 15%, preferably 0.5% to 5% vol when skin temperature T on the surface the product is above 700 ° C and below the equalization temperature of the product, defined as being equal to 90% of the skin temperature of produced at the outlet of the oven.
- the atmosphere in contact with the product to treat has an oxygen concentration between 0.5% and 4% flight and preferably between 2% and 3% vol when the skin temperature T to the surface of the product to be treated is less than 700 ° C.
- the invention makes it possible to optimize the metallurgical quality of the products by optimizing the heating profile in the oven and improving the control of the composition of the oven atmosphere.
- This control continuously monitors the O 2 and / or H 2 O and / or CO 2 contents of the atmosphere in the different zones of the furnace, and / or the temperature at the surface of the products to be treated, will preferably be carried out at using a laser diode.
- This laser diode system called TDL (Tunable Diode Laser) makes it possible to measure the average concentration of gaseous species over the length of the optical path of the laser beam.
- TDL Tunable Diode Laser
- these laser diodes are sources of laser radiation some of which operate at room temperature while others must be cooled.
- the emitted laser beam is generally adjustable in a wavelength range by varying the injection current in the laser source. It is then sufficient to choose adjustable laser beam sources in wavelength ranges that correspond to at least one of the characteristic lines of the absorption spectrum of the species to be detected.
- the laser diode will preferably be placed close to the surface of the products, at a distance varying between 1 mm and 15 cm, preferably between 2 cm and 6 cm.
- the curve (21) represents the heating curve of the product, for example the skin temperature of a billet or a slab in a reheating furnace.
- this curve it is possible to define the times t 0 , t 1 , t 2 and t 3 respectively corresponding to the time t 0 for charging the product, at time t 1 for which the skin temperature reaches 650 ° C. at time t 2 for which the skin temperature is equal to 85% of the final temperature (or diversion) T out of the skin of the product, and finally at the time t 3 of the product is turned to its final temperature T out .
- This defines a time interval ⁇ 1 corresponding to the time that the product surface passes between t 1 and t 2 . It is also possible to define a time ⁇ 2 corresponding to the time spent by the product between t 1 and t 3 .
- the method according to the invention consists in reducing the time ⁇ 1 from 8% to approximately 40% of its reference value and preferably from 10% to approximately 30% of its reference value. This makes it possible to reduce the thickness of the decarburized layer by at least 20% according to the content of alloying elements and specifically the carbon content, compared with the method of the prior art using either the empirical conduct of the furnace by a skilled in the art is driving the furnace by temperature charts or software adapted. It is in particular the reduction of the time ⁇ 1 resulting in an increase of the slope of the curve 52 with respect to the slope of the curve 51 between the instants t 1 and t 2 corresponding to the temperatures of 650 ° C. and 85 ° C. % of the skin temperature at the furnace outlet which is fundamental according to the method of the invention, because it has been shown that it is in these temperature zones that the slope of the heating curve of the furnace had to be increased. produced if one wanted to obtain the expected gains.
- the invention makes it possible to reduce the time ⁇ 2 between 5% and 30% of its reference value and preferably between 7 and 15% of its reference value. This reduces the mass of the scale between 5 and 30% depending on the nature of the steel.
- This reduction of the times ⁇ 1 and ⁇ 2 is performed, according to the invention, by increasing the energy transferred to the product during the entire period of its stay in the oven.
- This can be achieved by increasing the available energy (adding a source of energy, by open flame burners, radiant tubes or electrical resistors or induction heating) or by increasing the energy efficiency. available (enriching the combustion air with oxygen for example, up to 100% purity), preferably above 90% O 2 vol.
- the maximum reduction of ⁇ 2 is determined by the respect of the thermal homogeneity constraint of the product at the furnace outlet, itself governed by the thermal conduction within the product.
- the reduction of the times ⁇ 1 and ⁇ 2 corresponds either to a shortening of the furnace or to an acceleration of the speed of movement of the given products. products.
- a second aspect of the invention is to control the profile of species compositions of the atmosphere in the oven and throughout the crossing of the oven by the product.
- the composition of the atmosphere ie in particular the content of oxidizing elements in the atmosphere (O 2 , H 2 O, CO 2 ) is a parameter that is involved in the metallurgical quality of the product.
- the quality of the product can be optimized by maintaining a higher or lower oxygen content depending on the zone of the furnace in which it will be located.
- FIG. 3 which represents a reheating furnace, the meaning of circulation of the products (35) as well as that of the fumes is indicated.
- the curve (30) represents the temperature rise curve of the product.
- the load (35) undergoes a first rise in temperature in the zone (32). Then, the temperatures reach a decarb temperature T. This temperature is typically 700 ° C for steels and the decarburization will be more sensitive to this temperature as the carbon steel content is high. Beyond T decarb , and in the presence of oxidizing species, the decarburization and scale formation reactions accelerate: the temperature at which scale formation becomes effective is about 800 ° C for steels.
- the product passes through the zone (33) and then enters the equalization zone (34) when it is at the equalization temperature (typically 1100 ° C.). This zone at very high temperature brings the product to its final temperature ( final T, typically 1200 ° C.) and is particularly critical for the formation of scale.
- the access (36) is located in the equalization area (34), the access (37) is located in the heating zone (33), the access (38) is located in the zone (32) which contains the so-called recovery zone while the access (39) is located in the chimney (31).
- the measurement of the concentration of the species oxidizing is effected by the accesses (36), (37), (38), (39), each access receiving a laser beam (via an optical fiber) or a beam transmitter laser, a receiver being provided on the opposite wall of the oven (or a mirror which returns the beam parallel to the incident beam, the receiver being placed next to the transmitter).
- the fuel and combustive rates of the burners of the zone (32) will have to be adjusted, according to the invention, so as to generate an oxygen content in the atmosphere in this zone (32), measured by the corresponding laser diode, between 0.5% and 4% by volume and preferably between 2 and 3%.
- this correction can be done by adding oxidizer lances, for example oxygen lances, the quantity injected being controlled by measuring the oxygen content of the laser diode.
- the measurement is preferably carried out as close as possible to the product, in this zone (32) by the access (38), or by the access (39), ie in the flue pipe where the same oxygen content is going to be controlled. If the measurement shows an oxygen deficiency, the regulation of burners will have to correct this defect and increase the flow of oxidizer (oxygen) to the burners of the zone (32) or the previous zone.
- a protective layer of Fe 2 O 3 and Fe 3 O 4 will be formed and reinforced by the presence of residual oxygen in the flue gases. These oxides will be formed at the expense of more plastic oxides such as FeO or FeSiO 4 , which in this case lead to a strong adhesion of the scale.
- the protective regime (parabolic stage of oxidation) is established more rapidly for partial pressures of oxygen within the aforementioned range (0.5% to 4% vol.).
- zone (33) temperature greater than T decarb and less than T equalization
- the fuel and combustive rates of the burners of the zone (33) must be adjusted according to the invention so as to generate an oxygen content in the atmosphere. atmosphere close to zero.
- the atmosphere will be deficient in oxygen, therefore in excess of fuel and in particular of CO.
- the burners will be adjusted so that the concentration of O 2 close to zero and the concentration of CO between 0.1% and 15% of volume and preferably between 1 and 10%.
- this zone at higher temperature it is sought to minimize the formation of calamine and decarburization by reducing the concentration of oxidizing species (O 2 , CO 2 , H 2 O).
- the fuel and combustive flows of the burners of the zone (34) will have to be adjusted according to the invention so as to generate an oxygen content in the atmosphere of between 0.5 % and 5% vol. and preferably between 1.5 and 4% vol.
- the measurement of this concentration is carried out closer to the product between 1 mm and 15 cm, by access (36).
- this zone and in the presence of oxygen there is a consumption of the decarburized layer by oxidation which will be accompanied by an increase in porosity of the scale, which will facilitate its removal at the furnace outlet.
- the access (39) makes it possible to check at any time the concentration of CO and O 2 in the fumes before their evacuation.
- the reduction calamine mass obtained is between 5 and 25%, depending on the nature of the steel.
- the thickness of the decarburized layer is generally a reduction of the thickness of the decarburized layer by at least 10%, depending on the alloying elements and specifically the carbon content.
- the gains obtained with the control of the atmosphere can be cumulated with the gains obtained by reducing the times ⁇ 1 and ⁇ 2 described above.
- Figure 4 illustrates the control of the temperature rise of the product according to the invention.
- the invention consists in allowing the control of the rise in product temperature and burner setting by a local measurement, zone per area and a few cm above the load, the temperature of the oven atmosphere through a laser diode system.
- thermocouple (48) shows the location of the product (42) and the thermocouple (48) according to the technique of the prior art.
- the measurement of thermocouple (48) gives a temperature value in the furnace axis and far of the product (42).
- the number of measurement points has here been limited to three. Preferably, between 1 and 10 measurement points will be used in an oven.
- the oven (41) is equipped with accesses (43, 44, 45) located above the product (42).
- the oven operator must respect at most a rising profile in product temperature (47). This profile is provided to the operator, either by experience either by an abacus or by a furnace control software.
- the man of art had only the curve (46) describing the temperature of the vault in the axis of the furnace, of which, for example, the thermocouple (48) provides a measuring point, as shown on the curve.
- the man of art now has access to measurements on the curve (47) that are directly related to the surface temperature of the product. The operator can so act on the power of the burners to find the desired level of temperature on the curve (47). If the measured temperature is too low, then the operator will increase the heating power in the near area the measuring point. Conversely, if the measured temperature is too high, then the operator will reduce the power in the area near the point of measured.
- Some ovens use software called "Level 2" to reproduce whatever the heating conditions a rise in temperature of product, according to a given initial profile. The skilled person did not have until this day of any measurement to validate continuously the effect of the software. It's a Another aspect of the invention is to couple this software with the measurements of the product according to the invention, which makes it possible to have a verification systematically in real time the target temperature of the product.
- FIG. 5 represents the heating curve (51) associated with a furnace for heating long billets.
- the combustion is carried out with burners whose fuel is natural gas and the oxidizer of the preheated air, before implementation of the invention.
- the parameters t 1 ,... And ⁇ 1 ,... are placed in parentheses when they relate to the curve 51, according to the prior art and are noted without parentheses when they refer to the curve 52).
- the implementation of the invention is characterized by the replacement of existing burners whose oxidant is air, by burners whose oxidant has an oxygen concentration of greater than 21% by volume, and preferably greater than 88% . More preferably, the oxidant will be industrially pure oxygen.
- the associated heating curve is the curve (52).
- the times ⁇ 1 and ⁇ 2 are respectively reduced from 2100 to 1700 seconds and from 5300 to 4800 seconds.
- the metallurgical quality of the process obtained according to the curve (52) will be significantly improved, thanks to the monitoring of the heating curve of FIG. 5, with the installation of laser diodes at the locations explained with reference to FIG. 3 and fig. 4, or any other measuring means allowing proper control of this heating profile.
- FIG. 6 represents the quantity of calamine produced with the method described above.
- the amount of scale (61) is associated with the reference situation
- the calamine curve (62) is associated with the implementation of of the invention. Both curves have been normalized by the value maximum thickness of calamine obtained under the conditions (61).
- the embodiment example below was implemented in a furnace of heating billets, 33 MW power and about 30m long.
- the burners initially present on the furnace are so-called aero-fuel burners, the combustion air being preheated to 300 ° C.
- the average concentration of O2 in the fumes can be measured by a standard oxygen sensor, but it may be better to a laser diode (of so-called "TDL" type) whose radius changes to a distance of less than 6 cm from the treated product to control finely and in real time a concentration shift from the above species to the surface of the product in order to better respect the imposed atmosphere profile in adequacy with the heating profile.
- TDL laser diode
- the implementation according to the invention allows reduce the calamine thickness by 11% (Fig. 7). According to the experiences, the thickness of the decarburized layer is reduced between 12 and 20%.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Furnace Details (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Manufacture Of Iron (AREA)
Description
La partie inférieure, zone mixte, est plus ou moins grande selon la nature de l'acier. Elle est située à l'interface métal/calamine, constituée d'un mélange FeO et des produits de réaction de FeO avec les oxydes de certains éléments d'alliage. Cette partie inférieure comporte également une zone de métal altérée par divers phénomènes comme la décarburation ou l'oxydation interne. La décarburation est un phénomène de diffusion à l'état solide du carbone qui réagit avec la calamine FeO (et/ou H2O). La perméabilité de la calamine industrielle aux produits gazeux de l'oxydation du carbone (notamment le CO) rend cette oxydation pratiquement immédiate à la surface du métal. La décarburation est donc limitée par la diffusion du carbone à la température du traitement et est favorisée par l'aptitude des gaz formés (CO) à s'échapper de l'interface calamine-acier.
Une telle disposition permet :
- Une mesure moyenne le long du four, plus représentative du produit qu'une mesure ponctuelle en voûte.
- Une mesure proche du produit donc directement liée à la température de surface du produit qui est à l'équilibre avec la température du gaz en contact avec la dite surface.
- Une quantification de la relation entre température de voûte et température du produit qui était effectuée empiriquement dans l'état de l'art (en conservant le thermocouple de voûte).
- environ 1.5% O2 (à 20 % près) quand la température de peau T est supérieure à la température d'égalisation Tégalisation (définie comme étant comprise entre 85% et 90% de la température de défournement),
- environ 0% d'O2 (jusqu'à quelques centaines de ppm) et une concentration de CO entre environ 0.5% et 3% (à 20 % près) pour Tdécarb < T < T égalisation, Tdécarb étant la température de début de la d écarburation (700°C)
- environ 2% d'O2 (à 20 % près) quand la température de peau T est inférieure à Tdécarb
Claims (11)
- Procédé de traitement d'un produit métallurgique dans un four, dans lequel le produit à traiter est introduit dans le four, puis soumis au traitement souhaité, puis retiré du four, le four comportant des moyens de chauffage et notamment des brûleurs permettant de porter à une température variable les différentes zones du four, l'atmosphère dans ces différentes zones pouvant avoir une composition identique ou différente selon les zones considérées dudit four, procédé dans lequel le produit à traiter a une température qui augmente entre le moment où il est introduit et le moment où il est retiré du four, la courbe de montée en température ayant une pente qui augmente dans un premier intervalle de temps compris entre l'instant t0 d'introduction du produit dans le four et l'instant t1 auquel le produit atteint une température de surface de 650°C, une pente sensiblement constante entre l'instant t1 et l'instant t2 auquel le produit atteint une température d'environ 15 % inférieure à la température de surface finale souhaitée pour le produit à traiter lorsqu'il sort du four, puis une pente qui diminue entre l'instant t2 et l'instant t3 auquel le produit à traiter sort du four, procédé dans lequel on augmente la puissance de chauffe du four par rapport à sa puissance lorsque seuls des brûleurs aéro-combustibles sont utilisés de manière à augmenter la pente de la courbe de montée en température du produit à traiter, au moins pendant certaines périodes de traitement du produit dans le four entre les instants t1 et t2, ce qui engendre une diminution de la durée du traitement du produit à traiter et une diminution corrélative de l'épaisseur de la couche décarburée et/ou de la couche de calamine formée à la surface du produit.
- Procédé selon la revendication 1, caractérisé en ce que l'augmentation de la puissance de chauffe du four est obtenue à l'aide de brûleurs oxy-combustibles qui constituent au moins une partie des moyens de chauffe du four, notamment une partie des moyens de chauffe du four correspondant à la zone atteinte par le produit entre les instants t1 et t2.
- Procédé selon la revendication 2, caractérisé en ce que le comburant fourni aux brûleurs oxy-combustibles constituant une partie au moins des moyens de chauffe du four, comporte au moins 88 % d'oxygène et de préférence plus de 90 % d'oxygène, encore plus préférentiellement plus de 95 % d'oxygène.
- Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le temps de traitement du produit entre les températures de 700°C et de 800°C atteintes pour la surface du produit, est diminué de 15% à 50% de sa valeur de référence, de préférence de 20 à 35% de sa valeur.
- Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le temps de traitement entre les températures de 700°C et la température finale de la surface du produit, est diminué entre 3 et 25% de sa valeur de référence, de préférence entre 7 et 15% de sa valeur de référence.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'atmosphère du four varie le long du four, en fonction de la température de peau du produit métallurgique.
- Procédé selon l'une des revendications 1 à 6, caractérisé en ce que l'atmosphère du four au contact du produit à traiter comporte environ 0,5 % vol à 5 % d'oxygène et de préférence entre 1,5 vol à 4 % vol d'oxygène quand la température de peau T à la surface du produit traité est supérieure ou égale à la température d'égalisation Tegal, qui est égale à 85 % de la température à la surface du produit (température de défournement) à la sortie du four.
- Procédé selon la température7, caractérisé en ce que la température d'égalisation Tegal est égale à 90 % de la température de défournement.
- Procédé selon l'une des revendications 1 à8, caractérisé en ce que l'atmosphère au contact du produit à traiter comporte une concentration en oxygène inférieure à quelques centaines de ppm et une concentration en CO comprise entre 0,1 % et 15 %, de préférence 0,5 % à 5 % vol lorsque la température de peau T à la surface du produit est supérieure à 700°C et inférieure à la température d'égalisation du produit, définie comme étant égale à 90 % de la température de peau du produit à la sortie du four.
- Procédé selon l'une des revendications 1 à 9, caractérisé en ce que l'atmosphère au contact du produit à traiter comporte une concentration en oxygène comprise entre 0,5 % et 4 % vol et de préférence entre 2 % et 3 % vol lorsque la température de peau T à la surface du produit à traiter est inférieure à 700°C.
- Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'on analyse au moins un des paramètres de l'atmosphère dans au moins une zone du four à l'aide d'une diode laser dont le faisceau est situé à une distance minimum de la surface du produit comprise entre 1 cm et 6 cm en au moins un point de la surface dudit produit.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0105633 | 2001-04-26 | ||
FR0105633A FR2824077B1 (fr) | 2001-04-26 | 2001-04-26 | Procede pour ameliorer la qualite metallurgique de produits traites dans un four |
FR0105634A FR2824078B1 (fr) | 2001-04-26 | 2001-04-26 | Procede pour controler le profil d'un four et ameliorer les produits traites |
FR0105634 | 2001-04-26 | ||
PCT/FR2002/001361 WO2002088402A1 (fr) | 2001-04-26 | 2002-04-19 | Procede pour ameliorer la qualite metallurgique de produits traites dans un four |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1386012A1 EP1386012A1 (fr) | 2004-02-04 |
EP1386012B1 true EP1386012B1 (fr) | 2005-03-16 |
Family
ID=26212989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02735468A Expired - Lifetime EP1386012B1 (fr) | 2001-04-26 | 2002-04-19 | Procede pour ameliorer la qualite metallurgique de produits traites dans un four |
Country Status (8)
Country | Link |
---|---|
US (1) | US6955730B2 (fr) |
EP (1) | EP1386012B1 (fr) |
CN (1) | CN1505687A (fr) |
AT (1) | ATE291101T1 (fr) |
CA (1) | CA2444399C (fr) |
DE (1) | DE60203280T2 (fr) |
ES (1) | ES2240752T3 (fr) |
WO (1) | WO2002088402A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2324745C2 (ru) * | 2006-02-26 | 2008-05-20 | Игорь Михайлович Дистергефт | Способ тепловой обработки металла в пламенной печи прямого или косвенного нагрева (варианты), способ сжигания смеси жидкого или газообразного топлива и нагретого воздуха в пламенной печи прямого или косвенного нагрева, устройство отопления (варианты) и регенеративная насадка (варианты) для осуществления способов |
JP5059379B2 (ja) * | 2006-11-16 | 2012-10-24 | 株式会社神戸製鋼所 | 高炉装入原料用ホットブリケットアイアンおよびその製造方法 |
SE531990C2 (sv) * | 2007-01-29 | 2009-09-22 | Aga Ab | Förfarande för värmebehandling av långa stålprodukter |
FR2920438B1 (fr) * | 2007-08-31 | 2010-11-05 | Siemens Vai Metals Tech Sas | Procede de mise en oeuvre d'une ligne de recuit ou de galvanisation en continu d'une bande metallique |
CN104865196A (zh) * | 2014-09-09 | 2015-08-26 | 浙江迪特高强度螺栓有限公司 | 一种网带式热处理炉的炉内碳含量测定方法 |
WO2017053917A1 (fr) * | 2015-09-25 | 2017-03-30 | Radyne Corporation | Pré-chauffage par induction de billettes de grande taille pour processus de corroyage |
CN117212812B (zh) * | 2023-11-09 | 2024-02-23 | 陕西宝昱科技工业股份有限公司 | 一种燃烧机切换机构和燃烧炉系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2174657A1 (en) | 1972-03-06 | 1973-10-19 | Ferodo Sa | Chlutchplate heat treatment - accelerated by heating to alpha iron to austenite change point |
US4357135A (en) * | 1981-06-05 | 1982-11-02 | North American Mfg. Company | Method and system for controlling multi-zone reheating furnaces |
US4415415A (en) * | 1982-11-24 | 1983-11-15 | Allegheny Ludlum Steel Corporation | Method of controlling oxide scale formation and descaling thereof from metal articles |
US4606529A (en) * | 1983-09-20 | 1986-08-19 | Davy Mckee Equipment Corporation | Furnace controls |
TW265286B (fr) | 1993-06-23 | 1995-12-11 | Gas Res Inst | |
IT1281420B1 (it) | 1995-09-13 | 1998-02-18 | Danieli Off Mecc | Procedimento di equalizzazione in un forno di riscaldo con ambiente ad ossidazione controllata e forno di riscaldo |
FR2794132B1 (fr) | 1999-05-27 | 2001-08-10 | Stein Heurtey | Perfectionnements apportes aux fours de rechauffage de produits siderurgiques |
-
2002
- 2002-04-19 DE DE60203280T patent/DE60203280T2/de not_active Expired - Lifetime
- 2002-04-19 US US10/475,149 patent/US6955730B2/en not_active Expired - Fee Related
- 2002-04-19 AT AT02735468T patent/ATE291101T1/de not_active IP Right Cessation
- 2002-04-19 CA CA2444399A patent/CA2444399C/fr not_active Expired - Fee Related
- 2002-04-19 ES ES02735468T patent/ES2240752T3/es not_active Expired - Lifetime
- 2002-04-19 WO PCT/FR2002/001361 patent/WO2002088402A1/fr not_active Application Discontinuation
- 2002-04-19 EP EP02735468A patent/EP1386012B1/fr not_active Expired - Lifetime
- 2002-04-19 CN CNA028089723A patent/CN1505687A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CA2444399A1 (fr) | 2002-11-07 |
CN1505687A (zh) | 2004-06-16 |
US20040140024A1 (en) | 2004-07-22 |
WO2002088402A1 (fr) | 2002-11-07 |
ES2240752T3 (es) | 2005-10-16 |
US6955730B2 (en) | 2005-10-18 |
DE60203280D1 (de) | 2005-04-21 |
CA2444399C (fr) | 2010-08-24 |
EP1386012A1 (fr) | 2004-02-04 |
DE60203280T2 (de) | 2006-03-30 |
ATE291101T1 (de) | 2005-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1386012B1 (fr) | Procede pour ameliorer la qualite metallurgique de produits traites dans un four | |
EP0971171B1 (fr) | Procédé de combustion d'un combustible avec un comburant riche en oxygène | |
EP1322900B1 (fr) | Procede de rechauffage de produits metallurgiques | |
EP2507551B1 (fr) | Procede de correction des reglages de combustion d'un ensemble de chambres de combustionde tubes radiants et installation mettant en oeuvre le procede | |
EP1735116A1 (fr) | Procede de production de bandes en acier inoxydable austenititique d'aspect de surface mat | |
FR2681332A1 (fr) | Procede et dispositif de cementation d'un acier dans une atmosphere a basse pression. | |
FR2828888A1 (fr) | Procede de galvanisation a chaud de bandes metalliques d'aciers a haute resistance | |
EP1721111B1 (fr) | Procede de traitement d'aluminium dans un four rotatif ou reverbere | |
EP1001237A1 (fr) | Procédé de chauffage d'un four à chargement continu notamment pour produits sidérurgiques, et four de chauffage à chargement continu | |
FR2824078A1 (fr) | Procede pour controler le profil d'un four et ameliorer les produits traites | |
FR2824077A1 (fr) | Procede pour ameliorer la qualite metallurgique de produits traites dans un four | |
FR2711374A1 (fr) | Procédé de décokage thermique d'un four de craquage et du refroidisseur de gaz de craquage en aval. | |
EP2181198B1 (fr) | Procede de mise en uvre d'une ligne de recuit ou de galvanisation en continu d'une bande metallique | |
WO2002088680A1 (fr) | Procede de controle d'un produit traite dans un four et four ainsi equipe de moyens de controle | |
WO2011045515A1 (fr) | Traitements thermiques d'aciers martensitiques inoxydables apres refusion sous laitier | |
EP3715717B9 (fr) | Procédé de combustion et brûleur pour sa mise en oeuvre | |
EP1134298A1 (fr) | Perfectionnements apportés au préchauffage de bandes métalliques notamment dans des lignes de galvanisation ou de recuit | |
EP1625241B1 (fr) | Procede de traitement d aluminium dans un four | |
EP0707661B1 (fr) | Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede | |
WO2015124652A1 (fr) | Procédé de traitement thermique à refroidissement continu d'un élément de renfort en acier pour pneumatique | |
WO2015124654A1 (fr) | Procédé de traitement thermique d'un élément de renfort en acier pour pneumatique | |
WO2004097318A2 (fr) | Procede pour ameliorer les performances d'un four de rechauffage et four mettant en oeuvre ce procede | |
EP1647604A2 (fr) | Procedé et dispositif d'amélioration qualitative et quantitative de la production dans un four vertical de traitement de bandes d'acier ou d'aluminium | |
FR2586257A1 (fr) | Procede et appareil pour recuire en continu un acier en teneur extra-basse en carbone pour emboutissage profond | |
JP2005171363A (ja) | 冷延鋼板の製造方法および化成処理性に優れた冷延鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031126 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LOUEDIN, OLIVIER Inventor name: BOCKEL-MACAL, SAVINE Inventor name: DELABROY, OLIVIER Inventor name: CHAMPINOT, CHRISTEL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050316 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050419 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050419 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60203280 Country of ref document: DE Date of ref document: 20050421 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050616 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050616 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050907 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20050316 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2240752 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR Effective date: 20050430 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060228 |
|
26N | No opposition filed |
Effective date: 20051219 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR Effective date: 20050430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050616 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050430 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120424 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130420 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140418 Year of fee payment: 13 Ref country code: IT Payment date: 20140428 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60203280 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150419 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151103 |