[go: up one dir, main page]

EP1374971B1 - Filtre à particules pour un moteur de combustion et méthode de sa production - Google Patents

Filtre à particules pour un moteur de combustion et méthode de sa production Download PDF

Info

Publication number
EP1374971B1
EP1374971B1 EP03013732A EP03013732A EP1374971B1 EP 1374971 B1 EP1374971 B1 EP 1374971B1 EP 03013732 A EP03013732 A EP 03013732A EP 03013732 A EP03013732 A EP 03013732A EP 1374971 B1 EP1374971 B1 EP 1374971B1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
gas flow
partitions
cross
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03013732A
Other languages
German (de)
English (en)
Other versions
EP1374971A1 (fr
Inventor
Koichiro Nakatani
Haruo Ooishi
Shuji Watanabe
Shinya Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of EP1374971A1 publication Critical patent/EP1374971A1/fr
Application granted granted Critical
Publication of EP1374971B1 publication Critical patent/EP1374971B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/48Processes of making filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/05Methods of making filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24165Hexagonally shaped cavities

Definitions

  • the present invention relates to a particulate filter for an internal combustion engine and a method for producing the same.
  • a particulate filter for trapping particulates contained in exhaust gas exhausted from an internal combustion engine is disclosed in the official gazette of JP-T-8-508199 ( WO 94/22556 ).
  • This particulate filter is provided with a plurality of exhaust gas flow passages defined by partitions.
  • the partitions defining the exhaust gas flow passages are made of porous material. An opening of each exhaust gas flow passage on the upstream side and an opening of each exhaust gas flow passage on the downstream side are alternately closed, and thus exhaust gas can flow out from the filter after the exhaust gas has passed through the partitions.
  • the partitions in the opening regions of the exhaust gas flow passages are deformed so that they can approach each other and the forward end portions of these partitions are connected with each other, and thus the openings of the exhaust gas flow passages are closed.
  • the partitions can be easily deformed when a quantity of deformation of the partitions to close the openings of the exhaust gas flow passages is small.
  • the mechanical strength of the particulate filter is high.
  • US 4,695,301 A discloses a porous ceramic monolith having inlet bores closed at an outlet end and outlet bores at an inlet end of the filter.
  • This monolith is formed by molding an organic material such as polyurethane foam and then is impregnated with ceramic slurry. After the ceramic slurry has dried, the polyurethane foam is burnt away from the ceramic material.
  • the inlet and outlet bores have open ends diverged axially outwardly of the bores to increase opening ratio in each end of the filter thereby decreasing the pressure loss across the filter.
  • a particulate filter for trapping particulates contained in an exhaust gas discharged from a combustion chamber of an engine, comprising a plurality of exhaust gas flow passages each formed by three porous partitions extending substantially parallel with each other, each of the exhaust gas flow passages having a triangular cross section, wherein the partitions defining one of the adjacent exhaust gas flow passages are deformed by being inclined at one end area of the filter so that the partitions at one end area of the filter approach each other toward one of the ends of the filter, the deformed portions of the partitions are connected to each other at their ends, thereby an opening of one of the adjacent exhaust gas flow passages is at least partially closed, the partitions defining the other exhaust gas flow passage are deformed at the other end area of the filter so that the partitions at the other end area of the filter approach each other toward the other end of the filter, and the deformed portions of the partitions are connected to each other at their ends, thereby an opening of the other exhaust gas flow passage is at least partially closed
  • the openings of the exhaust gas flow passages are completely closed by the deformed portions of the partitions.
  • the openings of the exhaust gas flow passages are partially closed by the deformed portions of the partitions.
  • each of the holes defined by the deformed portions of the partitions which partially close the openings of the exhaust gas flow passages has a size larger than that of a pore defined in the partitions.
  • each of the openings of the triangular cross-section exhaust gas flow passages which are not closed by the deformed portions of the partitions has a hexagonal cross section.
  • the openings of the exhaust gas flow passages are completely closed by the deformed portions of the partitions at one end area of the filter, and the openings of the exhaust gas flow passages are partially closed by the deformed portions of the partitions at the other end area of the filter.
  • each of holes defined by the deformed portions of the partitions which partially close the openings of the exhaust gas flow passages has a size larger than that of a pore defined in the partitions.
  • each of the exhaust gas flow passages has a regular triangular cross section.
  • the deformed portions of the partitions extend obliquely relative to the longitudinal direction of the exhaust gas flow passage.
  • the deformed portions of the partitions which extend obliquely relative to the longitudinal direction of the exhaust gas flow passage define a sharp tip.
  • the filter further comprises a plurality of exhaust gas flow passages each formed by four porous partitions extending substantially parallel with each other, each of the exhaust gas flow passages having a quadrangular cross section, the partitions defining one of the adjacent quadrangular-cross-section exhaust gas flow passages are deformed at one end area of the filter by being inclined so that the partitions at one end area of the filter approach each other toward one of the ends of the filter, the deformed portions of the partitions are connected to each other at their ends, thereby an opening of one of the adjacent quadrangular-cross-section exhaust gas flow passages is at least partially closed, the partitions defining the other quadrangular-cross-section exhaust gas flow passage are deformed at the other end area of the filter by being inclined so that the partitions at the other end area of the filter approach each other toward the other end of the filter, and the deformed portions of the partitions are connected to each other at their ends, whereby an opening of the other quadrangular-cross-section exhaust gas flow passage is at least partially
  • each of the openings of the quadrangular-cross-section exhaust gas flow passages which are not closed by the deformed portions of the partitions has a quadrangular cross section.
  • each of the quadrangular-cross-section exhaust gas flow passages has a square cross section.
  • the deformed portions of the partitions extend obliquely relative to the longitudinal direction of the exhaust gas flow passage.
  • the deformed portions of the partitions which extend obliquely relative to the longitudinal direction of the exhaust gas flow passage define a sharp tip.
  • the triangular-cross-section exhaust gas flow passages are located at an area where the large amount of the exhaust gas flows into, and the quadrangular-cross-section exhaust gas flow passages are located around the area where the triangular-cross-section exhaust gas flow passages are located.
  • the triangular-cross-section and quadrangular-cross-section exhaust gas flow passages are distributed at a predetermined ratio.
  • the triangular-cross-section and quadrangular-cross-section exhaust gas flow passages are located in the manner of a predetermined pattern.
  • the triangular-cross-section exhaust gas flow passages are located around a central axis of the filter, and the quadrangular-cross-section exhaust gas flow passages are located around the area where the triangular-cross-section exhaust gas flow passages are located.
  • the triangular-cross-section exhaust gas flow passages are located around a central axis of the filter and at an area remote from the area around the central axis of the filter, and the quadrangular-cross-section exhaust gas flow passages are located in the remaining area.
  • a method for producing a particulate filter for trapping particulates contained in an exhaust gas discharged from a combustion chamber of an engine comprising steps of:
  • Fig. 1 is a view showing a particulate filter of the first embodiment.
  • the particulate filter 1 of the first embodiment which will be referred to as a filter hereinafter, is cylindrical.
  • the particulate filter 1 includes a plurality of exhaust gas flow passages extending in parallel with the central axis C.
  • Fig. 2 is a view showing an example in which the filter 1 of the first embodiment is used.
  • reference numeral 10 is an internal combustion engine body
  • reference numeral 11 is an intake passage
  • reference numeral 12 is an exhaust passage.
  • the exhaust passage 12 is connected with the casing 13.
  • the filter 1 is arranged in the casing 13.
  • exhaust gas exhausted from a combustion chamber (not shown) formed in the internal combustion engine body 10 flows to the filter 1 via the exhaust passage 12. After the exhaust gas has arrived at the filter 1, it flows into the filter 1 from one circular end face of the filter 1 and flows outside the filter 1 from the other circular end face.
  • one side of the filter 1 into which the exhaust gas flows will be referred to as an upstream side
  • the other side of the filter 1 from which the exhaust gas flows out will be referred to as a downstream side.
  • the filter 1 it is possible for the filter 1 to trap particulates contained in the exhaust gas.
  • An example of the internal combustion engine, on which the above filter to trap particulates is mounted, is a compression ignition type internal combustion engine, in the combustion chamber of which particulates mainly made of carbon are generated.
  • the structure of the filter 1 of the present invention can be applied to not only the filter for trapping particulates contained in the exhaust gas but also a catalyst support for supporting a catalyst to purify specific components contained in the exhaust gas.
  • Fig. 3A is a sectional view showing a portion of the particulate filter taken on line II - II in Figs. 1 and 2 .
  • Fig. 3B is a sectional view of the particulate filter taken on line B - B in Fig. 3A .
  • the filter 1 includes a plurality of partitions 2 extending in parallel with the central axis C (shown in Fig. 1 ). These partitions 2 extend from one circular end face of the filter 1 to the other circular end face.
  • the partitions 2 are made of porous material. Accordingly, there are provided a large number of fine holes in the partitions 2.
  • the filter 3 is provided with a plurality of exhaust gas flow passages 3a, 3b, the cross sections of which are formed into a regular triangle, and these exhaust gas flow passages 3a, 3b are defined by three partitions 2.
  • the exhaust gas flow passage 3a which is one of the two adjoining exhaust gas flow passages 3a, 3b, is completely closed at one end portion
  • the exhaust gas flow passage 3b which is the other of the two adjoining exhaust gas flow passages 3a, 3b, is completely closed at the other end portion.
  • an opening of one end portion of the exhaust gas flow passage 3a and an opening of the other end portion of the exhaust gas flow passage 3b are alternately closed. That is, at one end portion, the opening of the end portion of one exhaust gas flow passage 3a is not closed (the opening of the end portion of one exhaust gas flow passage 3a is opened), and the opening of the end portion of the other exhaust gas flow passage 3b is closed. At the other end portion, the opening of the end portion of one exhaust gas flow passage 3a is closed, and the opening of the end portion of the other exhaust gas flow passage 3b is not closed (the opening of the end portion of the other exhaust gas flow passage 3b is opened).
  • the exhaust gas After the exhaust gas has arrived at the filter 1, first, it flows into the exhaust gas flow passage 3a, the opening of the end portion on the upstream side of which is not closed, which will be referred to as an exhaust gas flow-in passage hereinafter. Then, the exhaust gas passes through the partition 2 and flows into the adjoining exhaust gas flow passage 3b, which will be referred to as an exhaust gas flow-out passage hereinafter. Finally, the exhaust gas flows out from the filter 1 via the opening of the end portion on the downstream side of the exhaust gas flow-out passage 3b. A state of the above exhaust gas flow in the filter 1 is shown by the arrow in Fig. 3B .
  • Fig. 4 is a view showing a portion of the filter end face of the first embodiment, wherein this view is taken from the upstream side.
  • three partitions 2 defining each exhaust gas flow-out passage 3b are connected with each other at the end portions on the upstream side so that the opening of the exhaust gas flow-out passage 3b concerned on the upstream side can be closed.
  • Portions of the partitions 2, which are adjacent to the partition end portions connected with each other, are formed, by being inclined, so that they can approach the filter end face on the upstream side.
  • These inclined portions of the partitions which will be referred to as inclined walls, are formed so that they can gather to a portion shown by reference numeral T in Fig. 4 .
  • the inclined walls are formed in such a manner that the portion shown by reference numeral T in Fig. 4 is a vertex and the inclined walls extend from this vertex T. In other words, the inclined walls are formed into a peaked shape, the vertex of which is the portion T.
  • the partitions 2 defining the exhaust gas flow-out passage 3b of the end portion region on the upstream side are inclined, the partitions 2 defining the exhaust gas flow-in passage 3a of the end portion region on the upstream side are inclined so that they can be separate from each other toward the filter end face on the upstream side, and a cross section of the end opening of the exhaust gas flow-in passage 3a on the upstream side is formed into a regular hexagon.
  • partitions 2 defining the exhaust gas flow-in passage 3a are connected with each other at the end portions on the downstream side so that the opening of the exhaust gas flow-in passage 3a on the downstream side can be closed.
  • Portions of the partitions 2 adjacent to the partition end portions, which are connected with each other, are inclined so that they can approach each other toward the filter end face on the downstream side.
  • these inclined partition portions are formed in such a manner that they extend from the vertex. In other words, they are formed into a peaked shape having the vertex.
  • the partitions 2 defining the exhaust gas flow-in passage 3a of the end portion region on the downstream side are inclined, the partitions 2 defining the exhaust gas flow-out passage 3b of the end portion region on the downstream side are inclined so that they can be separate from each other toward the filter end face on the downstream side, and a cross section of the end opening of the exhaust gas flow-out passage 3b on the downstream side is formed into a regular hexagon.
  • FIGs. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIGs. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIGs. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIGs. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIG. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIG. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIG. 5A to 5C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIG. 5A to 5C are views showing a portion of the filter end face,
  • the forward end portions of the partitions 2 cross each other so that they can be formed into a plurality of regular triangles.
  • the end portions of the partitions 2 are deformed so that the forward end portions of the three partitions 2 defining one exhaust gas flow passage 3b of the two adjoining exhaust gas flow passages 3a, 3b can approach each other.
  • the forward end portions of the three partitions 2 are connected with each other, and as shown in Fig. 5C , the end opening of one exhaust gas flow passage 3b is closed by the partitions 2, and the cross section of the end opening of the other exhaust gas flow passage 3a is formed into a regular hexagon.
  • the filter of the first embodiment provides the following advantages.
  • the partitions 2 defining the exhaust gas flow-in passage 3a in the vicinity of the end opening on the upstream side are inclined, the exhaust gas can easily flow into the exhaust gas flow-in passage 3a. Accordingly, it is possible to reduce a pressure loss caused by the filter 1.
  • the partitions 2 defining the exhaust gas flow-out passage 3b in the vicinity of the end opening on the downstream side are inclined, the exhaust gas can easily flow out from the exhaust gas flow-out passage 3b. Accordingly, it is possible to further reduce a pressure loss caused by the filter 1.
  • the partitions 2 are formed into a regular triangle, the mechanical strength of the filter 1 is higher than that of the filter 1, the partitions of which are formed into a square. Furthermore, in the first embodiment, the partitions 2 deformed to close the end openings of the exhaust gas flow passages 3a, 3b are formed into a regular triangle. Therefore, a quantity of deformation of deforming the partitions 2 so as to close the end openings of the exhaust gas flow passages 3a, 3b is smaller than that in a case in which the partitions are formed into a square. Therefore, according to the first embodiment, there is a low possibility that the partitions 2 are damaged when they are deformed.
  • the partitions cross each other forming a regular triangle.
  • the present invention can provide the same effect as that of the first embodiment.
  • the end opening of the first embodiment, which is not closed is formed into a regular hexagon, however, according to the structure of the partitions, the end opening, which is not closed, may not be formed into a regular hexagon but the end opening, which is not closed, may be simply formed into a hexagon.
  • Fig. 6 is a view showing a portion of the filter end face of the second embodiment, wherein this view is taken from the upstream side.
  • the filter 1 of the second embodiment includes a plurality of exhaust gas flow passages 3a, 3b, the cross sections of which are formed into a regular triangle, which are defined by three partitions 2.
  • the filter 1 of the second embodiment includes a plurality of exhaust gas flow passages 3a, 3b, the cross sections of which are formed into a square, which are defined by four partitions 2.
  • the region in which the exhaust gas flow passages, the cross sections of which are formed into a regular triangle, gather will be referred to as a regular triangle cross section region, and the region in which the exhaust gas flow passages, the cross sections of which are formed into a square, gather will be referred to as a square cross section region.
  • one exhaust gas flow passage 3a of the two adjoining exhaust gas flow passages 3a, 3b is closed at one end portion
  • the other exhaust gas flow passage 3b of the two adjoining exhaust gas flow passages 3a, 3b is closed at the other end portion.
  • the partitions 2 defining the exhaust gas flow-out passage 3b are inclined so that they can approach each other toward the filter end face on the upstream side in the end region on the upstream side. The forward end portions of these inclined partitions are connected with each other. Accordingly, the end opening on the upstream side of the exhaust gas flow passage 3b is closed by these inclined partitions 2.
  • the partitions 2 defining the exhaust gas flow-out passage 3b in the end region on the upstream side are inclined. Therefore, the partitions 2 defining the exhaust gas flow-in passage 3a in the end region on the upstream side are inclined so that they can be separate from each other toward the filter end face on the upstream side.
  • the cross section of the end opening on the upstream side of the exhaust gas flow-in passage 3a is formed into a regular hexagon, however, in the square cross section region, the cross section of the end opening on the upstream side of the exhaust gas flow-in passage 3a is formed into a square.
  • the partitions 2 defining the exhaust gas flow-in passage 3a are inclined so that they can approach each other toward the filter end face on the downstream side in the end region on the downstream side.
  • the forward end portions of these inclined partitions are connected with each other. Accordingly, the end opening on the downstream side of the exhaust gas flow-in passage 3a is closed by these inclined partitions 2.
  • the partitions 2 defining the exhaust gas flow-in passage 3a in the end region on the downstream side are inclined. Therefore, the partitions 2 defining the exhaust gas flow-out passage 3b in the end region on the downstream side are inclined so that they can be separate from each other toward the filter end face on the downstream side.
  • the cross section of the end opening on the downstream side of the exhaust gas flow-out passage 3b is formed into a regular hexagon, however, in the square cross section region, the cross section of the end opening on the downstream side of the exhaust gas flow-out passage 3b is formed into a square.
  • the length of one side of the exhaust gas flow passage, the cross section of which is a regular triangle, is equal to the length of one side of the exhaust gas flow passage, the cross section of which is a square.
  • FIGs. 7A to 7C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • Figs. 7A to 7C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIGs. 7A to 7C are views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • FIG. 7C is views showing a portion of the filter end face, wherein the view is taken from the upstream side.
  • the forward end portions of the partitions on the upstream side are shown by solid lines.
  • the method of closing the end opening of the exhaust gas flow-out passage, the cross section of which is a square, on the upstream side will be explained below.
  • a method of closing the end opening of the exhaust gas flow-in passage, the cross section of which is a square, on the downstream side is the same as the method of closing the end opening of the exhaust gas flow-out passage on the upstream side. Therefore, the explanations of the closing method are omitted here.
  • a method of closing the end opening of the exhaust gas flow passage, the cross section of which is a regular triangle, is the same as the method of closing of the first embodiment. Therefore, explanations of the method of closing will be omitted here.
  • the end portions of the partitions 2 are deformed so that the forward end portions of the four partitions 2 defining one exhaust gas flow passage 3b of the two adjoining exhaust gas flow passages 3a, 3b, the cross section of which is a square, can approach each other.
  • the forward end portions of the four partitions 2 are connected with each other, and as shown in Fig. 7C , the end opening of one exhaust gas flow passage 3b is closed by the partition 2, and the cross section of the end opening of the other exhaust gas flow passage 3a is formed into a square.
  • the exhaust gas is more likely to flow into an exhaust gas flow passage, the cross section of which is a square, than an exhaust gas flow passage, the cross section of which is a regular triangle.
  • a pressure loss caused by the exhaust gas flow passage, the cross section of which is a regular triangle is larger than a pressure loss caused by the exhaust gas flow passage, the cross section of which is a square.
  • the mechanical strength of the filter, which is composed of partitions crossing each other by being formed into a regular triangle is higher than the mechanical strength of the filter, which is composed of partitions crossing each other being formed into a square.
  • the regular triangle cross section region and the square cross section region are arranged in a predetermined pattern at a predetermined ratio of the regular triangle cross section region to the square cross section region.
  • the regular triangle cross section region is arranged in a region in which exhaust gas concentrates, and the square cross section region is arranged round the regular triangle cross section region. Due to the above arrangement, after the exhaust gas has once arrived at the regular triangle cross section region, a portion of the exhaust gas is directed to the square section region because the pressure loss of the regular triangle cross section region is large. This portion of the exhaust gas flows into the square cross section region. Due to the foregoing, the exhaust gas, which has arrived at the filter, flows relatively uniformly into the filter from the overall end face of the filter. Therefore, the overall pressure loss of the filter can be suppressed.
  • the exhaust gas arriving at the filter 1 concentrates in the end face region round the central axis C of the filter 1. Therefore, as shown in Fig. 8B which is a sectional view taken on line B - B in Fig. 8A , the regular triangle cross section region X is arranged round the central axis C of the filter 1. Round the regular triangle cross section region X, that is, in the periphery of the region round the central axis C of the filter 1, the square cross section region Y is arranged.
  • the regular triangle cross section regions X may be arranged in the region round the central axis C of the filter 1 and in the four regions distant from this region, and the square cross section regions may be arranged in the residual regions.
  • the cross section of the exhaust gas flow passage is not limited to a square.
  • the cross section of the exhaust gas flow passage may be a rectangle.
  • an opening on the upstream side of each exhaust gas flow-out passage is completely closed by the partitions.
  • the opening of the upstream end of each exhaust gas flow-out passage is partially closed by the partitions partially connected with each other, and by these partially connected partitions, in the forward end regions of these partitions, that is, in a portion shown by the reference numeral T in Fig. 4 , a small hole, which is larger than the fine hole (average fine hole diameter) of the partition, however, smaller than the exhaust gas flow-out passage concerned, penetrates to the exhaust gas flow-out passage.
  • the present invention can be applied to an embodiment in which the opening on the downstream side of each exhaust gas flow-in passage is partially closed by the partitions partially connected with each other, and by the partitions partially connected with each other, a small hole, which is larger than the fine hole (average fine hole diameter) of the partition and smaller than the exhaust gas flow-in passage, is formed at the forward end region of the partition penetrating to the exhaust gas flow-in passage concerned.
  • the particulate filter is composed of partitions which are formed into triangles. Therefore, the mechanical strength of the overall particulate filter is high.
  • the end portions of the partitions are deformed by being inclined, and the forward end portions of the partitions are connected with each other. However, these partitions are formed into a triangle. Therefore, the quantity of deformation of the end portions of these partitions is relatively small.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Claims (21)

  1. Filtre à particules (1) pour piéger des particules contenues dans des gaz d'échappement déchargés depuis une chambre de combustion d'un moteur (10), caractérisé en ce que le filtre (1) comprend :
    une pluralité de passages d'écoulement de gaz d'échappement (3a, 3b) formés chacun par trois cloisons poreuses (2) s'étendant sensiblement parallèlement les unes aux autres, chacun des passages d'écoulement de gaz d'échappement (3a, 3b) ayant une section transversale triangulaire, dans lequel
    les cloisons (2) définissant l'un des passages d'écoulement de gaz d'échappement adjacents (3a) sont déformées au niveau d'une zone terminale du filtre (1) en étant inclinées de telle façon que les cloisons (2) à une zone terminale du filtre (1) s'approchent de chaque autre vers l'une des extrémités du filtre (1),
    les portions déformées des cloisons (2) sont reliées à chaque autre à leurs extrémités, de telle façon qu'une ouverture de l'un des passages d'écoulement de gaz d'échappement adjacents (3a) est au moins partiellement fermée et qu'une ouverture de l'autre passage d'écoulement de gaz d'échappement (3b) a une section transversale hexagonale,
    les cloisons (2) définissant l'autre passage d'écoulement de gaz d'échappement (3b) sont déformées au niveau de l'autre zone terminale du filtre (1) en étant inclinées de telle façon que les cloisons (2) à l'autre zone terminale du filtre (1) s'approchent de chaque autre vers l'autre extrémité du filtre (1), et
    les portions déformées des cloisons (2) sont reliées à chaque autre à leurs extrémités, de telle façon qu'une ouverture de l'autre passage d'écoulement de gaz d'échappement (3b) est au moins partiellement fermée et qu'une ouverture de l'un des passages d'écoulement de gaz d'échappement (3 a) a une section transversale hexagonale.
  2. Filtre à particules (1) selon la revendication 1, caractérisé en ce que les ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) sont complètement fermées par les portions déformées des cloisons (2).
  3. Filtre à particules (1) selon la revendication 1, caractérisé en ce que les ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) sont partiellement fermées par les portions déformées des cloisons (2).
  4. Filtre à particules (1) selon la revendication 3, caractérisé en ce que chacun des trous définis par les portions déformées des cloisons (2) qui ferment partiellement les ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) a une taille plus grande que celle d'un pore défini dans les cloisons (2).
  5. Filtre à particules (1) selon la revendication 1, caractérisé en ce que chacune des ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire qui ne sont pas fermées par les portions déformées des cloisons (2) a une section transversale hexagonale.
  6. Filtre à particules (1) selon la revendication 5, caractérisé en ce que les ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) sont complètement fermées par les portions déformées des cloisons (2) à une zone terminale du filtre (1), et les ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) sont partiellement fermées par les portions déformées des cloisons (2) à l'autre zone terminale du filtre (1).
  7. Filtre à particules (1) selon la revendication 6, caractérisé en ce que chacun des trous définis par les portions déformées des cloisons (2) qui ferment partiellement les ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) a une taille plus grande que celle d'un pore défini dans les cloisons (2).
  8. Filtre à particules (1) selon la revendication 1, caractérisé en ce que chacun des passages d'écoulement de gaz d'échappement (3a, 3b) a une section transversale triangulaire régulière.
  9. Filtre à particules (1) selon la revendication 1, caractérisé en ce que les portions déformées des cloisons (2) s'étendent en oblique par rapport à la direction longitudinale du passage d'écoulement de gaz d'échappement (3a, 3b).
  10. Filtre à particules (1) selon la revendication 9, caractérisé en ce que les portions déformées des cloisons (2) qui s'étendent en oblique par rapport à la direction longitudinale du passage d'écoulement de gaz d'échappement (3 a, 3b) définissent un embout effilé.
  11. Filtre à particules (1) selon la revendication 1, caractérisé en ce que le filtre (1) comprend en outre
    une pluralité de passages d'écoulement de gaz d'échappement (3a, 3b) formés chacun par quatre cloisons poreuses (2) s'étendant sensiblement parallèlement à chaque autre, chacun des passages d'écoulement de gaz d'échappement (3a, 3b) ayant une section transversale quadrangulaire,
    les cloisons (2) définissant l'un des passages d'écoulement de gaz d'échappement à section transversale quadrangulaire adjacents (3a, 3b) sont déformées en étant inclinées à une zone terminale du filtre (1) de sorte que les cloisons (2) à une zone terminale du filtre (1) s'approchent de chaque autre vers l'une des extrémités du filtre (1),
    les portions déformées des cloisons (2) sont reliées à chaque autre à leurs extrémités, de sorte qu'une ouverture de l'un des passages d'écoulement de gaz d'échappement à section transversale quadrangulaire adjacents (3a, 3b) est au moins partiellement fermée,
    les cloisons (2) définissant l'autre passage d'écoulement de gaz d'échappement à section transversale quadrangulaire (3a, 3b) sont déformées en étant inclinées à l'autre zone terminale du filtre (1) de sorte que les cloisons (2) à l'autre zone terminale du filtre (1) s'approchent de chaque autre vers l'autre extrémité du filtre (1), et
    les portions déformées des cloisons (2) sont reliées à chaque autre à leurs extrémités, grâce à quoi une ouverture de l'autre passage d'écoulement de gaz d'échappement à section transversale quadrangulaire (3a, 3b) est au moins partiellement fermée.
  12. Filtre à particules (1) selon la revendication 11, caractérisé en ce que chacune des ouvertures des passages d'écoulement de gaz d'échappement à section transversale quadrangulaire (3a, 3b) qui ne sont pas fermées par les portions déformées des cloisons (2) a une section transversale quadrangulaire.
  13. Filtre à particules (1) selon la revendication 11, caractérisé en ce que chacun des passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale quadrangulaire a une section transversale carrée.
  14. Filtre à particules (1) selon la revendication 11, caractérisé en ce que les portions déformées des cloisons (2) s'étendent en oblique par rapport à la direction longitudinale du passage d'écoulement de gaz d'échappement (3a, 3b).
  15. Filtre à particules (1) selon la revendication 11, caractérisé en ce que les portions déformées des cloisons (2) qui s'étendent en oblique par rapport à la direction longitudinale du passage d'écoulement de gaz d'échappement (3a, 3b) définissent un embout effilé.
  16. Filtre à particules (1) selon la revendication 11, caractérisé en ce que les passages d'écoulement de gaz d'échappement à section transversale triangulaire (3a, 3b) sont situés à une zone dans laquelle s'écoule la majeure quantité des gaz d'échappement, et les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale quadrangulaire sont situés autour de la zone dans laquelle sont situés les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire.
  17. Filtre à particules (1) selon la revendication 11, caractérisé en ce que les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire et à section transversale quadrangulaire sont distribués selon un rapport prédéterminé.
  18. Filtre à particules (1) selon la revendication 11, caractérisé en ce que les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale quadrangulaire sont situés à la manière d'un motif prédéterminé.
  19. Filtre à particules (1) selon la revendication 18, caractérisé en ce que les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire sont situés autour d'un axe central du filtre (1), et
    les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale rectangulaire sont situés autour de la zone à laquelle sont situés les passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire.
  20. Filtre à particules (1) selon la revendication 18, caractérisé en ce que les passages d'écoulement de gaz d'échappement (3a, 3b) à section triangulaire sont situés autour d'un axe central du filtre (1) et à une zone éloignée de la zone autour de l'axe central du filtre (1), et
    les passages d'écoulement de gaz d'échappement (3a, 3b) à section quadrangulaire sont situés dans la zone restante.
  21. Procédé pour produire un filtre à particules (1) pour piéger des particules contenues dans des gaz d'échappement déchargés depuis une chambre de combustion d'un moteur, caractérisé en ce que le procédé comprend les étapes consistant à :
    préparer un matériau de base ayant une pluralité de passages d'écoulement de gaz d'échappement (3a, 3b) formés chacun par trois cloisons poreuses (2) s'étendant sensiblement parallèlement à chaque autre, chacun des passages d'écoulement de gaz d'échappement (3a, 3b) ayant une section transversale triangulaire,
    déformer les cloisons (2) définissant l'un des passages d'écoulement de gaz d'échappement adjacents (3a, 3b) du matériau de base à une zone terminale du matériau de base en les inclinant de telle façon que les cloisons (2) à une zone terminale du matériau de base s'approchent de chaque autre vers l'une des extrémités du matériau de base pour fermer au moins partiellement une ouverture de l'un des passages d'écoulement de gaz d'échappement adjacents (3a, 3b) et de sorte que chacune des ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire qui ne sont pas fermés par les cloisons (2) a une section transversale hexagonale, et
    déformer les cloisons (2) définissant l'autre passage d'écoulement de gaz d'échappement du matériau de base à l'autre zone terminale du matériau de base en les inclinant de telle façon que les cloisons (2) à l'autre zone terminale du matériau de base s'approchent de chaque autre vers l'autre extrémité du matériau de base pour au moins partiellement fermer une ouverture de l'autre passage d'écoulement de gaz d'échappement et de sorte que chacune des ouvertures des passages d'écoulement de gaz d'échappement (3a, 3b) à section transversale triangulaire qui ne sont pas fermés par les cloisons (2) a une section transversale hexagonale.
EP03013732A 2002-06-18 2003-06-17 Filtre à particules pour un moteur de combustion et méthode de sa production Expired - Lifetime EP1374971B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002177447 2002-06-18
JP2002177447A JP3719232B2 (ja) 2002-06-18 2002-06-18 内燃機関のパティキュレートフィルタ

Publications (2)

Publication Number Publication Date
EP1374971A1 EP1374971A1 (fr) 2004-01-02
EP1374971B1 true EP1374971B1 (fr) 2011-05-11

Family

ID=29717471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03013732A Expired - Lifetime EP1374971B1 (fr) 2002-06-18 2003-06-17 Filtre à particules pour un moteur de combustion et méthode de sa production

Country Status (3)

Country Link
US (1) US7001442B2 (fr)
EP (1) EP1374971B1 (fr)
JP (1) JP3719232B2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032902B2 (ja) * 2002-09-25 2008-01-16 トヨタ自動車株式会社 排気浄化用の基材、および、その製造方法
JP3945452B2 (ja) * 2003-05-30 2007-07-18 株式会社デンソー 排ガス浄化フィルタの製造方法
US7644834B2 (en) * 2004-05-27 2010-01-12 Navilyst Medical, Inc. Splash minimizing lid for liquid waste receptacle
JP4946033B2 (ja) * 2005-03-01 2012-06-06 株式会社デンソー 排ガス浄化フィルタの製造方法
US20080314032A1 (en) * 2007-05-15 2008-12-25 Xuantian Li Segmented Particulate Filter For An Engine Exhaust Stream
JP6140554B2 (ja) * 2013-06-28 2017-05-31 住友化学株式会社 ハニカム構造体の製造方法
DE102014225629A1 (de) 2014-12-11 2016-06-16 Hug Engineering Ag Wabenkörper, Extrusionswerkzeug, Verfahren zur Herstellung eines Wabenkörpers und Verfahren zur Herstellung eines Extrusionswerkzeugs
CN105135660B (zh) * 2015-09-01 2018-03-27 天津贝罗尼生物科技有限公司 一种用于空气净化器的冷触媒过滤网
CN109209575B (zh) * 2018-09-29 2021-05-14 大连理工大学 一种颗粒捕集器过滤体的非对称孔道结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276071A (en) * 1979-12-03 1981-06-30 General Motors Corporation Ceramic filters for diesel exhaust particulates
JPS577217A (en) 1980-06-16 1982-01-14 Ngk Insulators Ltd Ceramic honeycomb filter and preparation thereof
US4416676A (en) * 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
JPS60225651A (ja) 1984-04-24 1985-11-09 Toyota Motor Corp 自動車排気ガス浄化用モノリス触媒
JPH084749B2 (ja) * 1985-01-21 1996-01-24 日本碍子株式会社 セラミツクハニカム構造体
JPS61183182A (ja) * 1985-02-11 1986-08-15 株式会社デンソー 多孔質セラミツク構造体
JPH062204B2 (ja) * 1985-06-24 1994-01-12 日本電装株式会社 セラミツク構造体
DK40293D0 (da) 1993-04-05 1993-04-05 Per Stobbe Method for preparing a filter body
EP0707139B1 (fr) * 1994-10-13 2000-01-19 Sumitomo Electric Industries, Ltd. Filtre à particules
JP3378432B2 (ja) * 1995-05-30 2003-02-17 住友電気工業株式会社 ディーゼルエンジン用パティキュレートトラップ
JPH09187614A (ja) * 1996-01-12 1997-07-22 Toyoda Spinning & Weaving Co Ltd フィルタエレメント
JP2001096113A (ja) 1999-09-30 2001-04-10 Ibiden Co Ltd ハニカムフィルタ、排気ガス浄化装置
JP3803009B2 (ja) 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
JP2001190917A (ja) * 2000-01-13 2001-07-17 Ngk Insulators Ltd 三角セルハニカム構造体
JP4186530B2 (ja) * 2001-08-28 2008-11-26 株式会社デンソー 排ガス浄化フィルタの製造方法
US7326270B2 (en) * 2002-09-13 2008-02-05 Ibiden Co., Ltd. Filter
JP4032902B2 (ja) * 2002-09-25 2008-01-16 トヨタ自動車株式会社 排気浄化用の基材、および、その製造方法
JP2004321848A (ja) * 2003-04-21 2004-11-18 Ngk Insulators Ltd ハニカム構造体及びその製造方法

Also Published As

Publication number Publication date
US7001442B2 (en) 2006-02-21
JP3719232B2 (ja) 2005-11-24
JP2004019588A (ja) 2004-01-22
EP1374971A1 (fr) 2004-01-02
US20030230080A1 (en) 2003-12-18

Similar Documents

Publication Publication Date Title
EP1450015B1 (fr) Filtre en nid d'abeilles et système de purification des gaz d'échappement
US7451594B2 (en) Exhaust flow distribution device
EP1374971B1 (fr) Filtre à particules pour un moteur de combustion et méthode de sa production
US8252082B2 (en) Filter device in particular for an exhaust system of an internal combustion engine
US4234054A (en) Multi-duct muffler
US6800107B2 (en) Exhaust gas purifying filter
CN104033425B (zh) 废气涡轮增压器的消声器
US7762374B2 (en) Turbine engine diffusing exhaust muffler
KR20070112204A (ko) 내부 공동을 구비한 허니콤
CN106164429A (zh) 具有涡轮增压器的内燃发动机的排气净化系统
CN101384799B (zh) 用于分离内燃机废气中所含颗粒的装置
US7708114B2 (en) Sound-attenuating muffler having reduced back pressure
DE19949271B4 (de) Schalldämpfer für die Abgasanlage eines durch einen Verbrennungsmotor angetriebenen Kraftfahrzeugs
JP7066831B2 (ja) 移行構造要素を有する半径方向のハニカム構造体を備えたハニカム体および該ハニカム体用の押出ダイ
EP1917116B1 (fr) Corps creux calcine ou fritte presentant une surface courbee de façon spherique
WO1999009306A1 (fr) Convertisseur catalytique
JP2003254035A (ja) パティキュレートフィルタ
CN104246155B (zh) 机动车用消声器
WO2006056211A3 (fr) Dispositif de filtrage pour l'elimination de particules de gaz d'echappement
KR101708532B1 (ko) 차량용 소음기
EP1215374A1 (fr) Dispositif comprenant un catalyseur pour contrôler les émissions pour un moteur de véhicule automobile
EP3165734B1 (fr) Filtre à particules d'essence à silencieux intégré
CN109209591B (zh) 排放物控制基板
EP0879937A1 (fr) Silencieux pour moteurs à combustion interne
WO2006019286A1 (fr) Silenceux avant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): DE ES FR GB

17Q First examination report despatched

Effective date: 20080709

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60337049

Country of ref document: DE

Effective date: 20110622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60337049

Country of ref document: DE

Effective date: 20120103

26N No opposition filed

Effective date: 20120214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110811