EP1369467A1 - Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène - Google Patents
Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène Download PDFInfo
- Publication number
- EP1369467A1 EP1369467A1 EP03291116A EP03291116A EP1369467A1 EP 1369467 A1 EP1369467 A1 EP 1369467A1 EP 03291116 A EP03291116 A EP 03291116A EP 03291116 A EP03291116 A EP 03291116A EP 1369467 A1 EP1369467 A1 EP 1369467A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- group viii
- tungsten
- support
- hydrodesulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 100
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 28
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000010937 tungsten Substances 0.000 title claims abstract description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims description 13
- 150000001336 alkenes Chemical class 0.000 title description 10
- 239000005864 Sulphur Substances 0.000 title 1
- 238000000034 method Methods 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 19
- 229910021472 group 8 element Inorganic materials 0.000 claims abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 17
- 229910052717 sulfur Inorganic materials 0.000 claims description 12
- 239000011593 sulfur Substances 0.000 claims description 12
- 229910017052 cobalt Inorganic materials 0.000 claims description 11
- 239000010941 cobalt Substances 0.000 claims description 11
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 238000004523 catalytic cracking Methods 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 8
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 8
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 238000004939 coking Methods 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 238000009835 boiling Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000004230 steam cracking Methods 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims 1
- 235000012245 magnesium oxide Nutrition 0.000 claims 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims 1
- 239000003208 petroleum Substances 0.000 claims 1
- 239000010936 titanium Substances 0.000 claims 1
- 229910052719 titanium Inorganic materials 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000005470 impregnation Methods 0.000 description 7
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 7
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000000686 essence Substances 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 238000005984 hydrogenation reaction Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004231 fluid catalytic cracking Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- WGLLSSPDPJPLOR-UHFFFAOYSA-N 2,3-dimethylbut-2-ene Chemical compound CC(C)=C(C)C WGLLSSPDPJPLOR-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 150000001868 cobalt Chemical class 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- -1 cyclic olefins Chemical class 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000007928 solubilization Effects 0.000 description 2
- 238000005063 solubilization Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/104—Light gasoline having a boiling range of about 20 - 100 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
Definitions
- the present invention relates to a catalyst comprising at least one support, at least one element of group VIII and tungsten, and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the gasoline type of catalytic cracking (FCC, Fluid Catalytic Cracking or catalytic cracking in fluidized bed).
- the invention relates more particularly to a process for hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / ( element of group VIII + tungsten) is greater than 0.15 and less than 0.50.
- Essence cuts and more particularly essences from FCC contain approximately 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated compounds of paraffin or naphthene type.
- olefinic compounds branched olefins are predominant compared to linear and cyclic olefins.
- These essences also contain traces of highly unsaturated compounds of the diolefin type which are capable of deactivating the catalysts by the formation of gums.
- patent EP 685 552 B1 proposes to selectively hydrogenate the diolefins, that is to say without transforming the olefins, before carrying out the hydrotreatment for the elimination of sulfur.
- the sulfur compounds content of these gasolines is very variable depending on the type of gasoline (steam cracker, catalytic cracking, coking ...) or in the case of catalytic cracking of the severity applied to the process. It can fluctuate between 200 and 5000 ppm of S, preferably between 500 and 2000 ppm relative to the mass of filler.
- the families of thiophenic and benzothiophenic compounds are in the majority, the mercaptans being present only at very low levels generally between 10 and 100 ppm.
- FCC gasolines also contain nitrogen compounds in proportions generally not exceeding 100 ppm.
- Desulfurization (hydrodesulfurization) of gasolines and mainly FCC gasolines is therefore of obvious importance for compliance with the specifications.
- Hydrotreating (or hydrodesulfurization) of catalytic cracking gasolines when carried out under conventional conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut.
- this process has the major drawback of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment.
- Methods have therefore been proposed which make it possible to deeply desulfurize FCC gasolines while maintaining the octane number at a high level.
- US Pat. No. 5,318,690 proposes a process consisting of fractionating the gasoline, softening the light fraction and hydrotreating the heavy fraction on a conventional catalyst and then treating it on a ZSM5 zeolite to approximately find the initial octane number.
- Patent application WO 01/40409 claims the treatment of an FCC gasoline under conditions of high temperature, low pressure and high hydrogen / charge ratio. Under these particular conditions, the recombination reactions leading to the formation of mercaptans, involving the H 2 S formed by the desulfurization reaction and the olefins are minimized.
- 5,968,346 proposes a scheme making it possible to achieve very low residual sulfur contents by a process in several stages: hydrodesulfurization on a first catalyst, separation of the liquid and gaseous fractions, and second hydrotreatment on a second catalyst.
- the liquid / gas separation makes it possible to eliminate the H 2 S formed in the first reactor, in order to achieve a better compromise between hydrodesulfurization and octane loss.
- the catalysts used for this type of application are sulfide type catalysts containing an element of group VIB (Cr, Mo, W) and an element of group VIII (Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt).
- a catalyst having a surface concentration of between 0.5.10 -4 and 3.10 -4 gMoO 3 / m 2 achieves high selectivities in hydrodesulfurization (hydrodesulfurization 93% (HDS) against 33% hydrogenation of olefins (HDO)).
- a catalyst has been found which can be used in a process. gasoline hydrodesulfurization and making it possible to reduce the total sulfur contents and in mercaptans of hydrocarbon cuts and preferably of gasoline cuts FCC, without significant loss of gasoline and minimizing the decrease in the index octane.
- the invention relates more precisely to a process for hydrodesulfurization of sections gasolines in the presence of a catalyst comprising at least one support, at least one element of group VIII and tungsten, in which the atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50, preferably greater than 0.20 and less than 0.50.
- the feed to be hydrotreated (or hydrodesulfurized) by means of the process according to the invention is generally a gasoline cut containing sulfur; such as for example a section from a coking unit (coking according to Anglo-Saxon terminology), visbreaking (visbreaking according to Anglo-Saxon terminology), steam cracking (steam cracking according to Anglo-Saxon terminology) or catalytic cracking (FCC, Fluid Catalytic Cracking according to Anglo-Saxon terminology).
- the said charge is preferably made of a petrol cut from a cracking unit catalytic whose range of boiling points typically extends from points boiling of hydrocarbons with 5 carbon atoms up to about 250 ° C.
- This gasoline can possibly be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline from direct distillation (or straight run gasoline according to terminology Anglo-Saxon) or conversion processes (essence of coking or steam cracking).
- the hydrodesulfurization catalysts according to the invention are catalysts comprising tungsten and at least one element of group VIII on an appropriate support.
- the OR the elements of group VIII are preferably chosen from nickel and / or cobalt.
- the catalyst support is usually a porous solid chosen from the group consisting of: aluminas, silica, alumina silicas or titanium oxides or magnesium used alone or as a mixture with alumina or silica alumina.
- the support is essentially constituted by at least one transition alumina, that is to say that it comprises at least 51% by weight, preferably at least 60% by weight very preferred at least 80% by weight, or even at least 90% by weight of transition alumina. he can optionally consist only of a transition alumina.
- the specific surface of the support according to the invention is generally less than approximately 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g.
- the support can be prepared using any precursor, any preparation method and any shaping tool known to those skilled in the art.
- the catalyst according to the invention can be prepared using any known technique skilled in the art, and in particular by impregnating the elements of groups VIII and tungsten on the selected support.
- This impregnation can for example be carried out according to the method known to those skilled in the art under terminology dry impregnation, in which we just introduce the quantity of elements desired under form of salts soluble in the chosen solvent, for example demineralized water, so as to fill the porosity of the support as exactly as possible.
- the support as well filled with the solution is preferably dried.
- This treatment generally aims to transform the molecular precursors of the elements in the oxide phase. In this case it is an oxidizing treatment but a direct reduction can also be carried out.
- an oxidizing treatment also called calcination
- this is generally carried out in air or under dilute oxygen, and the treatment temperature is generally between 200 ° C and 550 ° C, preferably between 300 ° C and 500 ° C.
- a reducing treatment this is generally carried out under pure or preferably diluted hydrogen, and the treatment temperature is generally between 200 ° C and 600 ° C, preferably between 300 ° C and 500 ° C.
- Salts of group VIII elements and tungsten which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, or ammonium metatungstate. Any other salt known to a person skilled in the art having sufficient solubility and which can be broken down during the activation treatment can also be used.
- the catalyst is usually used in a sulfurized form obtained after temperature treatment in contact with a decomposable sulfur-containing organic compound and generator of H 2 S or directly in contact with a gaseous flow of H 2 S diluted in H 2 .
- This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.
- the use of a support with a large specific surface is sometimes problematic in the case of highly olefinic fillers. Indeed, the surface acidity increasing with the specific surface of the supports, the catalyzed acido reactions will be favored for the supports of large specific surface. Thus, the polymerization or coking reactions leading to the formation of gums or coke and ultimately to the premature deactivation of the catalyst will in this case be greater on supports with a high specific surface. Better stability of the catalysts will then be obtained for supports with a small specific surface area.
- the specific surface of the support should preferably not exceed approximately 300 m 2 / g and should more preferably be less than 280 m 2 / g, or even less than 150 m 2 / g.
- the content of group VIII elements in the catalyst according to the invention is preferably between 1% by weight and 20% by weight of oxides of elements of group VIII, of preferably between 2% by weight and 8% by weight of oxides of elements from group VII.
- the element of group VIII is cobalt or nickel or a mixture of these two elements, and more preferably the element of group VIII consists only cobalt and / or nickel.
- the tungsten content is preferably between 1.5% by weight and 60% by weight tungsten oxide, more preferably between 3% by weight and 50% by weight of oxide of tungsten.
- the atomic ratio (element of group VIII) / (element of group VIII + tungsten) is greater than 0.15 and less than 0.50, preferably greater than 0.20 and less than 0.50, more preferably greater than 0.20 and less than or equal to 0.45, or even greater than 0.30 and less than or equal to 0.45. Very preferably, said atomic ratio is greater than or equal to 0.35 and less than or equal to 0.40.
- the catalyst according to the invention can be used in any process known to man of the trade, making it possible to desulfurize hydrocarbon cuts of the gasoline type catalytic cracking (FCC) for example by keeping the octane number at values high. It can be used in any type of reactor operated in a fixed bed or in a bed mobile or in a bubbling bed, it is however preferably used in a reactor operated on a fixed bed.
- FCC gasoline type catalytic cracking
- the operating conditions allowing a selective hydrodesulfurization of the catalytic cracking essences are a temperature between approximately 200 ° C and approximately 400 ° C, preferably between approximately 250 ° C and approximately 350 ° C, a total pressure ranging between 1 MPa and 3 MPa and more preferably between approximately 1 MPa and approximately 2.5 MPa with a ratio: volume of hydrogen per volume of hydrocarbon feedstock, between approximately 100 and approximately 600 liters per liter and more preferably between approximately 200 and approximately 400 liters per liter.
- the hourly volume velocities (VVH) are between 1 and 15 h -1 .
- the VVH is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock to the volume of catalyst loaded into the reactor.
- Molybdenum-based catalyst A is prepared by adding cobalt and molybdenum to an alumina support which is in the form of a "ball". These two elements are introduced simultaneously by dry impregnation of the support.
- the cobalt salt used is cobalt nitrate, the molybdenum precursor being ammonium heptamolybdate tetrahydrate.
- the solution is then impregnated dropwise on the alumina.
- catalyst A The characteristics of catalyst A are provided in table 1 below: characteristics of catalyst A (non-compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Area density MoO 3 mole / m 2 Co / (Co + Mo) SCM139XL 135 3.56.10 -6 6.40.10 -6 0.36
- Catalyst B (non-compliant):
- Molybdenum-based catalyst B is prepared in the same manner as catalyst A, with a high surface area alumina to decrease the surface density of molybdenum oxide.
- the characteristics of catalyst B are provided in Table 2 below. characteristics of catalyst B (non-compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Area density MoO 3 mole / m 2 Co / (Co + Mo) GSFG 273 3.14.10 -6 4.60.10 -6 0.40
- Catalyst C based on tungsten is prepared by adding cobalt and tungsten to an alumina support which is in the form of a ball. The two elements are introduced simultaneously by dry impregnation of the support.
- the cobalt salt used is Co nitrate, the precursor of tungsten being ammonium metatungstate.
- the characteristics of catalyst C are given in table 3 below. characteristics of catalyst C (compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 3.88.10 -6 6.21.10 -6 0.38
- Catalyst D based on tungsten is prepared in the same way as catalyst C, with an alumina with a high specific surface to decrease the surface density of tungsten oxide.
- the characteristics of catalyst D are given in table 4 below. characteristics of catalyst D (compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) GSFG 273 3.14.10 -6 4.66.10 -6 0.40
- Catalyst E is prepared in the same way as catalyst C.
- the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced.
- the characteristics of catalyst E are given in the table below. characteristics of catalyst E (non-compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 6.90.10 -7 6.21.10 -6 0.10
- Catalyst F is prepared in the same way as catalyst C.
- the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced.
- the characteristics of catalyst F are given in the table below. characteristics of catalyst F (compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 1.27.10 -6 6.21.10 -6 0.17
- Catalyst G is prepared in the same way as catalyst C.
- the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is reduced.
- the characteristics of catalyst G are given in the table below. characteristics of catalyst G (compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 1.75.10 -6 6.21.10 -6 0.22
- Catalyst H is prepared in the same way as catalyst C.
- the surface density of tungsten oxide is identical to that of catalyst C (conform), while that of cobalt is increased.
- the characteristics of catalyst H are given in the table below. characteristics of catalyst H (compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 5.08.10 -6 6.21.10 -6 0.45
- Catalyst I is prepared in the same way as catalyst C.
- the surface density of tungsten oxide is identical to that of catalyst C (conforming), while that of cobalt is increased.
- the characteristics of catalyst I are provided in the table below. characteristics of catalyst 1 (non-compliant).
- Support S BET of the support m 2 / g Areal density CoO mole / m 2 Areal density WO 3 mole / m 2 Co / (Co + W) SCM139XL 135 7.00.10 -6 6.21.10 -6 0.53
- the performances of the CoMo and CoW catalysts were compared for surface densities close to Mo and W, as well as for comparable Co / Co + atomic ratios (Mo or W).
- the catalysts A, B, C and D previously described were tested in the reaction for the selective desulfurization of a model charge of the gasoline type of FCC.
- the test is carried out in a Grignard reactor (batch) at 200 ° C. under a hydrogen pressure of 3.5 MPa kept constant.
- the model charge is constituted by 1000 ppm of 3-methyl-thiophene and 10% by weight of 2,3-dimethyl-2-butene in n-heptane.
- the volume of solution is 210 cc when cold, the mass of catalyst tested being 4 grams (before sulfurization).
- the catalyst Before testing, the catalyst is sulphurized beforehand in a sulphurization bench, under H 2 S / H 2 mixture (4l / h, 15% vol H 2 S) at 500 ° C for two hours (ramp of 5 ° C / min) then reduced under pure H 2 at 200 ° C for two hours. The catalyst is then transferred to the Grignard reactor, sheltered from air. The tests are continued up to HDS (conversion of 3-methylthiophene) levels close to 90%.
- HDS conversion of 3-methylthiophene
- the rate constant (normalized per g of catalyst) is calculated by considering an order 1 for the desulfurization reaction (k HDS ), and a order 0 for the hydrogenation reaction (k HDO ).
- the selectivity of a catalyst is defined by the ratio of its rate constants, k HDS / k HDO .
- the rate constants relative to catalyst A of catalysts A, B, C and D as well as their selectivity are reported in Table 9 below.
- tungsten catalysts are more selective, with iso-surface density, than molybdenum catalysts. catalytic properties of catalysts A, B, C and D.
- Catalyst k HDS k HDO k HDS / k HDO Co / Co + (W or Mo) Surface density MoO 3 or WO 3 mole / m 2 A (MB) 1.00 1.62 0.62 0.36 6.40.10 -6 B (MB) 1.26 2.29 0.55 0.40 4.60.10 -6 C (W) 0.75 1.05 0.71 0.38 6.21.10 -6 D (W) 1.07 1.67 0.64 0.40 4.66.10 -6
- Catalysts C, E, F, G, H, I are tested on model charge, according to the same protocol as described in Example 1.
- the relative rate constants of the catalysts as well as their selectivity are reported in Table 10 below. below. catalytic properties of catalysts C, E, F, G, H, I.
- Catalyst E sees its selectivity greatly decrease for a Co / (Co + W) ratio of 0.10. Likewise, the catalyst l having a too high Co / (Co + W) ratio (0.53) sees its selectivity decrease.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
L'invention concerne plus particulièrement un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un support, au moins un élément du groupe VIII et du tungstène, dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,15 et inférieur à 0,50.
La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue le moins possible leur concentration en oléfines afin de conserver un indice d'octane élevé, mais que l'on diminue de façon importante leur teneur en soufre. Ainsi, les normes environnementales en vigueur et futures contraignent les raffineurs à diminuer la teneur en soufre dans les essences à des valeurs inférieures ou au plus égales à 50 ppm en 2003 et 10 ppm au-delà de 2005. Ces normes concernent la teneur totale en soufre mais également la nature des composés soufrés tels que les mercaptans. Les essences de craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées. Le soufre présent dans les essences reformulées est imputable, à près de 90 %, à l'essence de FCC. La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de FCC est donc d'une importance évidente pour le respect des spécifications. L'hydrotraitement (ou hydrodésulfuration) des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques connues de l'homme du métier permet de réduire la teneur en soufre de la coupe. Cependant, ce procédé présente l'inconvénient majeur d'entraíner une chute très importante de l'indice d'octane de la coupe, en raison de la saturation de l'ensemble des oléfines au cours de l'hydrotraitement. Il a donc été proposé des procédés permettant de désulfurer profondément les essences de FCC tout en maintenant l'indice d'octane à un niveau élevé.
La demande de brevet WO 01/40409 revendique le traitement d'une essence de FCC dans des conditions de haute température, faible pression et fort ratio hydrogène/charge. Dans ces conditions particulières, les réactions de recombinaison conduisant à la formation des mercaptans, mettant en jeu l'H2S formé par la réaction de désulfuration et les oléfines sont minimisées.
Enfin, le brevet US 5 968 346 propose un schéma permettant d'atteindre de teneurs résiduelles en soufre très faibles par un procédé en plusieurs étapes: hydrodésulfuration sur un premier catalyseur, séparation des fractions liquides et gazeuses, et second hydrotraitement sur un deuxième catalyseur. La séparation liquide/gaz permet d'éliminer l'H2S formé dans le premier réacteur, afin d'aboutir à un meilleur compromis entre hydrodésulfuration et perte octane.
Des sels d'éléments du groupe VIII et du tungstène utilisables dans le procédé selon l'invention sont par exemple le nitrate de cobalt, le nitrate d'aluminium, ou le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé.
caractéristiques du catalyseur A (non conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique MoO3 mole/m2 | Co/(Co+Mo) |
SCM139XL | 135 | 3,56.10-6 | 6,40.10-6 | 0,36 |
caractéristiques du catalyseur B (non conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique MoO3 mole/m2 | Co/(Co+ Mo) |
GFSA | 273 | 3,14.10-6 | 4,60.10-6 | 0,40 |
caractéristiques du catalyseur C (conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+ W) |
SCM139XL | 135 | 3,88.10-6 | 6,21.10-6 | 0,38 |
caractéristiques du catalyseur D (conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+ W) |
GFSA | 273 | 3,14.10-6 | 4,66.10-6 | 0,40 |
caractéristiques du catalyseur E (non conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+W) |
SCM139XL | 135 | 6,90.10-7 | 6,21.10-6 | 0,10 |
caractéristiques du catalyseur F (conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+W) |
SCM139XL | 135 | 1,27.10-6 | 6,21.10-6 | 0,17 |
caractéristiques du catalyseur G (conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+W) |
SCM139XL | 135 | 1,75.10-6 | 6,21.10-6 | 0,22 |
caractéristiques du catalyseur H (conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+W) |
SCM139XL | 135 | 5,08.10-6 | 6,21.10-6 | 0,45 |
caractéristiques du catalyseur 1 (non conforme). | ||||
Support | SBET du support m2/g | Densité surfacique CoO mole/m2 | Densité surfacique WO3 mole/m2 | Co/(Co+ W) |
SCM139XL | 135 | 7,00.10-6 | 6,21.10-6 | 0,53 |
Les catalyseurs A, B, C et D précédemment décrits ont été testés dans la réaction de désulfuration sélective d'une charge modèle type essence de FCC. Le test est effectué en réacteur Grignard (batch) à 200°C sous une pression d'hydrogène de 3,5 MPa maintenue constante. La charge modèle est constituée par 1000 ppm de méthyl-3 thiophène et 10% pds de diméthyl-2,3 butène-2 dans du n-heptane. Le volume de solution est de 210 cc à froid, la masse de catalyseur testée étant de 4 grammes (avant sulfuration). Avant test, le catalyseur est préalablement sulfuré en banc de sulfuration, sous mélange H2S/H2 (4l/h, 15% vol H2S) à 500°C durant deux heures (rampe de 5°C/min) puis réduit sous H2 pur à 200°C durant deux heures. Le catalyseur est ensuite transféré dans le réacteur Grignard à l'abri de l'air.
Les tests sont poursuivis jusqu'à des taux d'HDS (conversion du méthyl-3 thiophène) voisins de 90 %.
propriétés catalytiques des catalyseurs A, B, C et D. | |||||
Catalyseur | k HDS | k HDO | k HDS / k HDO | Co/Co+ (W ou Mo) | Densité surfacique MoO3 ou WO3 mole/m2 |
A (Mo) | 1,00 | 1,62 | 0,62 | 0,36 | 6,40.10-6 |
B (Mo) | 1,26 | 2,29 | 0,55 | 0,40 | 4,60.10-6 |
C (W) | 0,75 | 1,05 | 0,71 | 0,38 | 6,21.10-6 |
D (W) | 1,07 | 1,67 | 0,64 | 0,40 | 4,66.10-6 |
propriétés catalytiques des catalyseurs C, E, F, G, H, I. | |||||
Catalyseur | k HDS | k HDO | k HDS / k HDO | Co/(Co+W) | Densité surfacique WO3 mole/m2 |
C | 0,75 | 1,05 | 0,71 | 0,38 | 6,21.10-6 |
E | 0,39 | 0,80 | 0,49 | 0,10 | 6,21.10-6 |
F | 0,53 | 0,88 | 0,60 | 0,17 | 6,21.10-6 |
G | 0,60 | 0,91 | 0,66 | 0,22 | 6,21.10-6 |
H | 0,65 | 0,95 | 0,68 | 0,45 | 6,21.10-6 |
I | 0,50 | 0,93 | 0,54 | 0,53 | 6,21.10-6 |
Claims (10)
- Procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un support, au moins un élément du groupe VIII et du tungstène, dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,15 et inférieur à 0,50.
- Procédé d'hydrodésulfuration selon la revendication 1 dans lequel le rapport atomique (élément du groupe VIII) / (élément du groupe VIII + tungstène) est supérieur à 0,20 et inférieur ou égal à 0,45.
- Procédé d'hydrodésulfuration selon l'une des revendications 1 ou 2 dans lequel la teneur en éléments du groupe VIII du catalyseur est comprise entre 1 et 10% poids d'oxydes d'éléments du groupe VIII et la teneur en tungstène est comprise entre 1,5 % poids et 60 % poids d'oxyde de tungstène.
- Procédé selon l'une des revendications 1 à 3 dans lequel le catalyseur comprend au moins un élément du groupe VIII choisi parmi le nickel et le cobalt.
- Procédé selon l'une des revendications 1 à 4 dans lequel le support du catalyseur est un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine.
- Procédé selon l'une des revendications 1 à 5 dans lequel le support du catalyseur comprend au moins 90% poids d'alumine de transition.
- Procédé selon l'une des revendications 1 à 6 dans lequel la charge à hydrodésulfurer est une coupe essence contenant du soufre issue d'une unité de cokéfaction, de viscoréduction, de vapocraquage, ou de craquage catalytique.
- Procédé selon l'une des revendications 1 à 7 dans lequel la charge à hydrodésulfurer est une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à environ 250°C.
- Procédé selon la revendication 8 dans lequel les conditions opératoires d'hydrodésulfuration sont une température comprise entre environ 200 et environ 400°C, une pression totale comprise entre 1 MPa et 3 MPa, et un ratio : volume d'hydrogène par volume de charge hydrocarbonée, compris entre environ 100 et environ 600 litres par litre.
- Procédé selon l'une des revendications 7 à 9 dans lequel la charge à hydrodésulfurer est une coupe essence fortement oléfinique et la surface spécifique du catalyseur n'excède pas 300 m2/g.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0206816 | 2002-06-03 | ||
FR0206816A FR2840316B1 (fr) | 2002-06-03 | 2002-06-03 | Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur comprenant un element du groupe viii et du tungstene |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1369467A1 true EP1369467A1 (fr) | 2003-12-10 |
EP1369467B1 EP1369467B1 (fr) | 2016-03-09 |
Family
ID=29433308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03291116.6A Expired - Lifetime EP1369467B1 (fr) | 2002-06-03 | 2003-05-14 | Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène |
Country Status (5)
Country | Link |
---|---|
US (1) | US7223333B2 (fr) |
EP (1) | EP1369467B1 (fr) |
JP (1) | JP2004010893A (fr) |
CN (2) | CN102358845A (fr) |
FR (1) | FR2840316B1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE485095T1 (de) * | 2004-08-02 | 2010-11-15 | Shell Int Research | Verfahren zur entfernung von thiolen aus einem inertgasstrom |
FR2895415B1 (fr) * | 2005-12-22 | 2011-07-15 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant un support specifique |
FR2895414B1 (fr) * | 2005-12-22 | 2011-07-29 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur presentant une porosite controlee |
FR2895416B1 (fr) * | 2005-12-22 | 2011-08-26 | Inst Francais Du Petrole | Procede d'hydrogenation selective mettant en oeuvre un catalyseur sulfure |
FR2904242B1 (fr) * | 2006-07-28 | 2012-09-28 | Inst Francais Du Petrole | Procede d'hydrodesulfuration de coupes contenant des composes soufres et des olefines en presence d'un catalyseur supporte comprenant des elements des groupes viii et vib |
US20110294782A1 (en) | 2006-11-10 | 2011-12-01 | Massachusetts Institute Of Technology | Small molecule pak inhibitors |
FR2969646B1 (fr) | 2010-12-22 | 2012-12-28 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de coupes essences utilisant un catalyseur a base d'heteropolyanions pieges dans un support silicique mesostructure |
CN103143366B (zh) | 2011-12-06 | 2015-05-13 | 中国石油天然气股份有限公司 | 一种不饱和化合物选择加氢催化剂 |
US8764854B1 (en) * | 2012-03-20 | 2014-07-01 | GM Global Technology Operations LLC | Reference fuel composition |
FR2998488B1 (fr) | 2012-11-29 | 2015-02-06 | Ifp Energies Now | Catalyseur d hydrotraitement a partir d alumine gel et methode de preparation d un tel catalyseur |
FR3049955B1 (fr) | 2016-04-08 | 2018-04-06 | IFP Energies Nouvelles | Procede de traitement d'une essence |
FR3057578B1 (fr) | 2016-10-19 | 2018-11-16 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une essence olefinique. |
FR3111827B1 (fr) * | 2020-06-29 | 2022-08-19 | Ifp Energies Now | Catalyseur trimetallique a base de nickel, molybdene et tungstene et son utilisation dans un procede d'hydrotraitement et/ou d'hydrocraquage |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113603A (en) * | 1977-10-19 | 1978-09-12 | The Lummus Company | Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes |
US4334982A (en) * | 1979-05-21 | 1982-06-15 | Institut Francais Du Petrole | Process for the selective desulfurization of olefinic cuts |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126814A (en) * | 1996-02-02 | 2000-10-03 | Exxon Research And Engineering Co | Selective hydrodesulfurization process (HEN-9601) |
US5807477A (en) * | 1996-09-23 | 1998-09-15 | Catalytic Distillation Technologies | Process for the treatment of light naphtha hydrocarbon streams |
-
2002
- 2002-06-03 FR FR0206816A patent/FR2840316B1/fr not_active Expired - Lifetime
-
2003
- 2003-05-14 EP EP03291116.6A patent/EP1369467B1/fr not_active Expired - Lifetime
- 2003-06-02 US US10/449,725 patent/US7223333B2/en not_active Expired - Fee Related
- 2003-06-03 CN CN2011102617021A patent/CN102358845A/zh active Pending
- 2003-06-03 JP JP2003158147A patent/JP2004010893A/ja active Pending
- 2003-06-03 CN CNA031409024A patent/CN1467263A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113603A (en) * | 1977-10-19 | 1978-09-12 | The Lummus Company | Two-stage hydrotreating of pyrolysis gasoline to remove mercaptan sulfur and dienes |
US4334982A (en) * | 1979-05-21 | 1982-06-15 | Institut Francais Du Petrole | Process for the selective desulfurization of olefinic cuts |
Also Published As
Publication number | Publication date |
---|---|
FR2840316B1 (fr) | 2005-08-26 |
EP1369467B1 (fr) | 2016-03-09 |
CN102358845A (zh) | 2012-02-22 |
FR2840316A1 (fr) | 2003-12-05 |
CN1467263A (zh) | 2004-01-14 |
JP2004010893A (ja) | 2004-01-15 |
US7223333B2 (en) | 2007-05-29 |
US20040007504A1 (en) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1892039B1 (fr) | Procédé d'hydrodesulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des éléments des groupes VIII et VIB | |
EP1923452B1 (fr) | Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane | |
EP1746144B1 (fr) | Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans | |
EP2161076B1 (fr) | Procédé d'hydrogénation sélective mettant en oeuvre un catalyseur sulfuré de composition spécifique | |
EP3428248B1 (fr) | Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines | |
EP1369466B1 (fr) | Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur supporté comprenant des métaux des groupes VIII et VIB | |
EP2644683B1 (fr) | Procédé d'hydrogenation selective d'une essence | |
CA2510668C (fr) | Procede d'hydrodesulfuration des essences mettant en oeuvre un catalyseur a porosite controlee | |
EP1800748A2 (fr) | Procédé d'hydrogénation sélectrive mettant en oeuvre un catalyseur sulfure | |
EP1369467B1 (fr) | Procédé d'hydrodésulfuration de coupes contenant des composés soufrés et des oléfines en présence d'un catalyseur comprenant un élément du groupe VIII et du tungstène | |
EP1849850A1 (fr) | Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration | |
CA2299152C (fr) | Procede de production d'essences a faible teneur en soufre | |
EP2072607A1 (fr) | Procédé de désulfuration en deux étapes d'essences oléfiniques comprenant de l'arsenic | |
WO2016096364A1 (fr) | Procede d'adoucissement en composes du type sulfure d'une essence olefinique | |
WO2014068209A1 (fr) | Procédé de production d'une essence a basse teneur en soufre | |
EP2886629B1 (fr) | Procédé d'hydrodesulfuration de coupes d'hydrocarbures | |
WO2006114510A1 (fr) | Procede de desulfuration d'essences olefiniques | |
EP1508370B1 (fr) | Utilisation d'un catalyseur comprenant un support en carbure de silicium beta dans un procédé d'hydrodésulfuration selective | |
EP3283601B1 (fr) | Procede d'adoucissement en composes du type sulfure d'une essence olefinique | |
FR2994864A1 (fr) | Procede de sulfuration d'un catalyseur d'hydrodesulfuration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040611 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20071214 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151014 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60348621 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160509 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160309 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160531 Year of fee payment: 14 Ref country code: GB Payment date: 20160512 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60348621 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160309 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20161212 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170519 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60348621 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 |