EP1369466B1 - Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst. - Google Patents
Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst. Download PDFInfo
- Publication number
- EP1369466B1 EP1369466B1 EP03291115A EP03291115A EP1369466B1 EP 1369466 B1 EP1369466 B1 EP 1369466B1 EP 03291115 A EP03291115 A EP 03291115A EP 03291115 A EP03291115 A EP 03291115A EP 1369466 B1 EP1369466 B1 EP 1369466B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- support
- elements
- catalyst
- process according
- group vib
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000003054 catalyst Substances 0.000 title claims description 68
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims description 14
- 239000005864 Sulphur Substances 0.000 title claims 2
- 150000001336 alkenes Chemical class 0.000 title description 14
- 229910052751 metal Inorganic materials 0.000 title description 5
- 239000002184 metal Substances 0.000 title description 5
- 150000002739 metals Chemical class 0.000 title description 4
- 238000000034 method Methods 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 238000004523 catalytic cracking Methods 0.000 claims description 16
- 229910052750 molybdenum Inorganic materials 0.000 claims description 14
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 13
- 239000011733 molybdenum Substances 0.000 claims description 13
- 229910052721 tungsten Inorganic materials 0.000 claims description 13
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 12
- 239000010937 tungsten Substances 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 238000004939 coking Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 4
- 238000004230 steam cracking Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000010936 titanium Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 17
- 229910052717 sulfur Inorganic materials 0.000 description 12
- 239000011593 sulfur Substances 0.000 description 12
- 229910021472 group 8 element Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 8
- 238000001994 activation Methods 0.000 description 6
- 239000002243 precursor Substances 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 3
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 150000002898 organic sulfur compounds Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- 241000605059 Bacteroidetes Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102100023055 Neurofilament medium polypeptide Human genes 0.000 description 1
- 101710109612 Neurofilament medium polypeptide Proteins 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- -1 cyclic olefins Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- VLXBWPOEOIIREY-UHFFFAOYSA-N dimethyl diselenide Natural products C[Se][Se]C VLXBWPOEOIIREY-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 238000004231 fluid catalytic cracking Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical class [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
Definitions
- the present invention relates to a catalyst comprising at least one support, at least one group VIB element and at least one group VIII element and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the catalytic cracking gasoline (FCC) type. or catalytic cracking in a fluidized bed).
- the invention more particularly relates to a process for the hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one element of group VIII, at least one element of group VIB, and a specific surface support of less than 200 m 2 / g , wherein the density of Group VIB elements per unit area of the support is between 4.10 -4 and 36.10 -4 g of Group VIB element oxides per m 2 of support.
- the gasoline cuts and more particularly the gasolines from the FCC contain about 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated paraffins or naphthenes type compounds.
- the branched olefins are in the majority with respect to linear and cyclic olefins.
- These gasolines also contain traces of highly unsaturated diolefinic compounds which can deactivate the catalysts by forming gums.
- the patent EP 685 552 B1 proposes to selectively hydrogenate the diolefins, that is to say without transforming the olefins, before carrying out the hydrotreatment for the removal of sulfur.
- the content of sulfur compounds in these species varies widely depending on the type of gasoline (steam cracker, catalytic cracking, coking, etc.) or in the case of catalytic cracking of the severity applied to the process. It can fluctuate between 200 and 5000 ppm S, preferably between 500 and 2000 ppm with respect to the mass of filler.
- the families of thiophene and benzothiophene compounds are the majority, mercaptans being present at very low levels generally between 10 and 100 ppm.
- FCC gasolines also contain nitrogen compounds in proportions generally not exceeding 100 ppm.
- the desulphurisation (hydrodesulfurization) of gasolines and mainly FCC species is therefore of obvious importance for the respect of the specifications.
- the hydrotreating (or hydrodesulphurization) of catalytic cracking gasolines when carried out under standard conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut.
- this method has the major disadvantage of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment. It has therefore been proposed methods for deep desulfurization of FCC gasolines while maintaining the octane number at a high level.
- the U.S. Patent 5,318,690 proposes a process of splitting the gasoline, softening the light fraction and hydrotraying the heavy fraction on a conventional catalyst and then treating it on a zeolite ZSM5 to find approximately the initial octane number.
- the request for WO 01/40409 claims the treatment of an FCC gasoline under conditions of high temperature, low pressure and high hydrogen / charge ratio. Under these particular conditions, the recombination reactions leading to mercaptan formation, involving the H 2 S formed by the desulfurization reaction and the olefins are minimized.
- Patent 5,968,346 proposes a scheme for achieving very low residual sulfur content by a multistage process: hydrodesulphurization on a first catalyst, separation of the liquid and gaseous fractions, and second hydrotreatment on a second catalyst.
- the liquid / gas separation makes it possible to eliminate the H 2 S formed in the first reactor, in order to achieve a better compromise between hydrodesulfurization and octane loss.
- the catalysts used for this type of application are sulphide catalysts containing a group VIB element (Cr, Mo, W) and a group VIII element (Fe, Ru, Os, Co, Rh , Ir, Pd, Ni, Pt). So in the US Patent 5,985,136 , it is claimed that a catalyst having a surface concentration of between 0.5 ⁇ 10 -4 and 3 ⁇ 10 -4 gMoO 3 / m 2 makes it possible to achieve high selectivities in hydrodesulfurization (93% hydrodesulfurization (HDS) against 33% hydrogenation of olefins (HDO)).
- HDS hydrodesulfurization
- HDO olefins
- US Patent 6126814 describes a process for the hydrodesulfurization of naphtha in the presence of a catalyst containing MoO 3 and CoO on a support.
- a catalyst that can be used in a gasoline hydrodesulphurization process and that makes it possible to reduce the total sulfur and mercaptan content of the hydrocarbon cuts, and preferably of FCC gasoline cuts, without any significant loss of carbon dioxide. gasoline and minimizing the decrease in the octane number.
- the invention more specifically relates to a process for the hydrodesulphurisation of gasoline cuts in the presence of a catalyst comprising at least one element of group VIII, at least one element of group VIB, and a support having a specific surface area of less than about 200 m 2 / g, in which the density in Group VIB elements per unit area of the support is between 4.10 -4 and 36.10 -4 g of Group VIB element oxides per m 2 of support.
- the charge to be hydrotreated (or hydrodesulphurized) by means of the process according to the invention is generally a petrol cut containing sulfur; such as for example a section resulting from a coking unit (coking according to the English terminology), visbreaking (visbreaking according to the English terminology), steam cracking (steam cracking according to the English terminology) or cracking catalytic (FCC, Fluid Catalytic Cracking according to the English terminology).
- Said filler preferably consists of a gasoline cut from a catalytic cracking unit whose boiling point range typically extends from the boiling points of hydrocarbons with 5 carbon atoms to 250 ° C. .
- This gasoline may optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline derived from a straight-run distillation or straight-run gasoline according to the English terminology). conversion (coking or steam cracking gasoline).
- the hydrodesulfurization catalysts according to the invention are catalysts comprising at least one element of group VIB and at least one element of group VIII on a suitable support.
- the element or elements of group VIB are preferably chosen from molybdenum and / or tungsten and the group VIII element or elements are preferably chosen from nickel and / or cobalt.
- the catalyst support is usually a porous solid selected from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or in admixture with alumina or silica alumina.
- the support consists essentially of less a transition alumina, that is to say it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of alumina of transition. It may optionally consist solely of a transition alumina.
- the specific surface of the support according to the invention is generally less than 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g boy Wut.
- the carrier may be prepared using any precursor, method of preparation and any shaping tool known to those skilled in the art.
- the catalyst according to the invention can be prepared using any technique known to those skilled in the art, and in particular by impregnation of the elements of groups VIII and VIB on the selected support.
- This impregnation may, for example, be carried out according to the method known to those skilled in the art in the dry-impregnation terminology, in which the quantity of desired elements in the form of soluble salts in the chosen solvent, for example demineralized water, so as to fill the porosity of the support as exactly as possible.
- the support thus filled with the solution is preferably dried.
- This treatment generally aims to convert the molecular precursors of the elements into an oxide phase (for example MoO 3 ). In this case it is an oxidizing treatment but a direct reduction can also be carried out.
- an oxidizing treatment also known as calcination
- this is generally carried out under air or under dilute oxygen, and the treatment temperature is generally between 200 ° C. and 550 ° C., preferably between 300 ° C. C and 500 ° C.
- a reducing treatment this is generally carried out under pure hydrogen or preferably diluted, and the treatment temperature is generally between 200 ° C.
- Group VIB and VIII metal salts which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, ammonium heptamolybdate or ammonium metatungstate. Any other known salt those skilled in the art having sufficient and decomposable solubility during the activation treatment may also be used.
- the catalyst is usually used in a sulfurized form obtained after treatment in temperature in contact with a decomposable organic sulfur compound and generating H 2 S or directly in contact with a gas stream of H 2 S diluted in H 2 . This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.
- the catalysts according to the invention have a density of group VIB elements (chromium, molybdenum, tungsten) of between 4.10 -4 g and 36.10 -4 g of group VIB oxide per m 2 of support, preferably between 4.10 -4 g and 16.10 g -4 oxide of the element from group VIB per m 2 of support, and very preferably between 7.10 -4 g and 15.10 g -4 oxide of element from group VIB per m 2 of support.
- the specific surface of the support should generally not exceed 200 m 2 / g, and should preferably be less than 170 m 2 / g and even more preferably be less than 150 m 2 / g, or even less than 135 m 2 /boy Wut.
- both criteria must be generally fulfilled simultaneously as there is a synergy between these two parameters.
- the element of group VIB and its distribution on the surface intervene in the activation and the reactivity of the molecules. It should be noted that both criteria must generally be met simultaneously because there is a synergy between these two parameters in the activation and reactivity of the molecules.
- the surface of the support can play an important role in the mechanism of activation and surface migration of the molecules, in particular the olefins, as was recently offers [ R Prins Studies in Surface Science and Catalysis 138 p. 1-2 ].
- the content of group VIII elements of the catalyst according to the invention is preferably between 1 and 20% by weight of group VIII element oxides, preferably between 2 and 10% by weight of group elements oxides. VIII and more preferably between 2 and 8% by weight of Group VIII element oxides.
- the group VIII element is cobalt or nickel or a mixture of these two elements, and more preferably the group VIII element consists solely of cobalt and / or nickel.
- the content of Group VIB elements is preferably between 1.5 and 60% by weight of Group VIB element oxides, more preferably between 3 and 50% by weight of Group VIB group oxides.
- the group VIB element is molybdenum or tungsten or a mixture of these two elements, and more preferably the group VIB element consists solely of molybdenum or tungsten.
- the catalyst according to the invention can be used in any process known to those skilled in the art, for desulfurizing hydrocarbon cuts of the type of catalytic cracking gasoline (FCC) for example by maintaining the octane number at high values. . It can be used in any type of reactor operated in fixed bed or mobile bed or bubbling bed, it is however preferably used in a reactor operated in fixed bed.
- FCC catalytic cracking gasoline
- the operating conditions allowing selective hydrodesulphurization of catalytic cracking gasolines are a temperature of between 200 and 400 ° C., preferably between 250 and 350 ° C., a total pressure of between 1 MPa and 3 MPa and more preferably between 1 and 3 MPa.
- VVH Hourly Volumetric Velocity
- VVH is the inverse of the contact time expressed in hours. It is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock by the volume of catalyst charged to the reactor.
- All molybdenum catalysts are prepared according to the same method which consists in carrying out a dry impregnation of a solution of ammonium heptamolybdate and cobalt nitrate, the volume of the solution containing the precursors of the metals being rigorously equal to the pore volume of the support mass.
- the supports used are transition aluminas having specific surface area and variable pore volume pairs: 130 m 2 / g and 1.04 cm 3 / g; 170 m 2 / g and 0.87 cm 3 / g; 220 m 2 / g and 0.6 cm 3 / g; 60 m 2 / g and 0.59 cm 3 / g.
- the precursor concentrations of the aqueous solution are adjusted so as to deposit on the support the desired weight contents.
- the catalyst is then dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
- All tungsten catalysts are prepared by the same method which consists in carrying out a dry impregnation of a solution of ammonium metatungstate and cobalt nitrate, the volume of the solution containing the precursors of metals being strictly equal to porous volume of the support mass.
- the supports used are the same as before.
- the precursor concentrations of the aqueous solution are adjusted so as to deposit on the support the desired weight contents.
- the catalyst is then dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
- a catalytic cracking gasoline (FCC) whose characteristics are summarized in Table 1 is treated by the various catalysts.
- the VVH is variable in order to compare the selectivities obtained (ratio k HDS / k HDO ) to iso conversion to HDS, ie for a hydrodesulphurization conversion equal to about 90% for all the catalysts.
- the catalysts are pretreated at 350 ° C.
- HDS / k HDO speed constant ratio assuming an order 1 with respect to the sulfur compounds for the hydrodesulphurization reaction (HDS) and an order 0 with respect to the olefins for the olefin hydrogenation reaction. (HDO).
- HDS hydrodesulphurization reaction
- HDO olefin hydrogenation reaction.
- Table 1 Characteristics of the FCC gasoline cut. S ppm 732 Aromatic% wt 31.4 Paraffins% wt 30.4 Naphthalic% wt 6.7 Olefins% wt 31.5 PI ° C 70.5 Mp ° C 215.4
- Example 1 (according to the invention):
- the molybdenum catalysts according to the invention are prepared according to the procedure described above and their characteristics (density in gram of molybdenum oxide per square meter of support, contents of cobalt and molybdenum oxides of the calcined catalyst, BET surface area). support) are shown in Table 2.
- the K HDS / K HDO selectivities obtained for conversion to HDS close to 90% at the VVH mentioned are also reported in this table.
- Table 2 Characteristics and performances of the molybdenum catalysts according to the invention.
- the density of molybdenum has been modified in order to leave the density range according to the invention.
- the VVH of the test is also selected in order to operate with a conversion to HDS substantially equal to 90%.
- Table 3 summarizes the characteristics of the catalysts and the selectivities obtained. Table 3: Characteristics and performances of comparative molybdenum catalysts tested on a catalytic cracking gasoline.
- the surface area of the support has been modified to be greater than 200 m 2 / g.
- the VVH test is also selected to operate with a conversion to HDS substantially equal to 90%.
- Table 4 summarizes the characteristics of the catalysts and the selectivities obtained. Table 4: Characteristics and performances of the molybdenum-based comparative catalysts tested on a catalytic cracking gasoline.
- the tungsten catalysts according to the invention are prepared according to the procedure described above and their characteristics (density in grams of tungsten oxide per square meter of support, cobalt and tungsten oxide contents of the calcined catalyst, BET surface area of support) are collated in Table 5.
- the k HDS / k HDO selectivities obtained for an HDS conversion close to 90% at the mentioned VVH are also reported in this table.
- Table 5 Characteristics and performances of tungsten catalysts according to the invention.
- the density of tungsten oxide has been modified in order to leave the density range according to the invention.
- the VVH of the test is also selected in order to operate with a conversion to HDS substantially equal to 90%.
- Table 6 summarizes the characteristics of the catalysts and the selectivities obtained. Table 6: Characteristics and performances of the comparative catalysts based on tungsten tested on a catalytic cracking gasoline.
- the specific surface of the support used is greater than 200 m 2 / g.
- the VVH test is selected to operate with a conversion to HDS substantially equal to 90%.
- Table 7 summarizes the characteristics of the catalysts and the selectivities obtained. Table 7: Characteristics and performances of the comparative catalysts based on tungsten tested on a catalytic cracking gasoline.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
La présente invention concerne un catalyseur comprenant au moins un support, au moins un élément du groupe VIB et au moins un élément du groupe VIII et permettant l'hydrodésulfuration de charges hydrocarbonées, de préférence de type essences de craquage catalytique (FCC, Fluid Catalytic Cracking ou craquage catalytique en lit fluidisé).
L'invention concerne plus particulièrement un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.The present invention relates to a catalyst comprising at least one support, at least one group VIB element and at least one group VIII element and allowing the hydrodesulfurization of hydrocarbon feedstocks, preferably of the catalytic cracking gasoline (FCC) type. or catalytic cracking in a fluidized bed).
The invention more particularly relates to a process for the hydrodesulfurization of gasoline cuts in the presence of a catalyst comprising at least one element of group VIII, at least one element of group VIB, and a specific surface support of less than 200 m 2 / g , wherein the density of Group VIB elements per unit area of the support is between 4.10 -4 and 36.10 -4 g of Group VIB element oxides per m 2 of support.
Les coupes essences et plus particulièrement les essences issues du FCC contiennent environ 20 à 40 % de composés oléfiniques, 30 à 60 % d'aromatiques et 20 à 50 % de composés saturés de type paraffines ou naphtènes. Parmi les composés oléfiniques, les oléfines ramifiées sont majoritaires par rapport aux oléfines linéaires et cycliques. Ces essences contiennent également des traces de composés hautement insaturés de type dioléfiniques et qui sont susceptibles de désactiver les catalyseurs par formation de gommes. Ainsi, le brevet
La production d'essences reformulées répondant aux nouvelles normes d'environnement nécessite notamment que l'on diminue le moins possible leur concentration en oléfines afin de conserver un indice d'octane élevé, mais que l'on diminue de façon importante leur teneur en soufre. Ainsi, les normes environnementales en vigueur et futures contraignent les raffineurs à diminuer la teneur en soufre dans les essences à des valeurs inférieures ou au plus égales à 50 ppm en 2003 et 10 ppm au-delà de 2005. Ces normes concernent la teneur totale en soufre mais également la nature des composés soufrés tels que les mercaptans. Les essences de craquage catalytique, qui peuvent représenter 30 à 50 % du pool essence, présentent des teneurs en oléfines et en soufre élevées. Le soufre présent dans les essences reformulées est imputable, à près de 90 %, à l'essence de FCC. La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de FCC est donc d'une importance évidente pour le respect des spécifications. L'hydrotraitement (ou hydrodésulfuration) des essences de craquage catalytique, lorsqu'il est réalisé dans des conditions classiques connues de l'homme du métier permet de réduire la teneur en soufre de la coupe. Cependant, ce procédé présente l'inconvénient majeur d'entraîner une chute très importante de l'indice d'octane de la coupe, en raison de la saturation de l'ensemble des oléfines au cours de l'hydrotraitement. Il a donc été proposé des procédés permettant de désulfurer profondément les essences de FCC tout en maintenant l'indice d'octane à un niveau élevé.The gasoline cuts and more particularly the gasolines from the FCC contain about 20 to 40% of olefinic compounds, 30 to 60% of aromatics and 20 to 50% of saturated paraffins or naphthenes type compounds. Of the olefinic compounds, the branched olefins are in the majority with respect to linear and cyclic olefins. These gasolines also contain traces of highly unsaturated diolefinic compounds which can deactivate the catalysts by forming gums. Thus, the patent
In particular, the production of reformulated species that meet the new environmental standards requires that their olefin concentration be reduced as little as possible in order to maintain a high octane number, but that significantly decreases their sulfur content. Thus, current and future environmental standards require refiners to reduce the sulfur content in gasolines to values of 50 ppm or less in 2003 and 10 ppm beyond 2005. These standards concern the total sulfur but also the nature of sulfur compounds such as mercaptans. Catalytic cracking gasolines, which can represent 30 to 50% of the gasoline pool, have high olefin and sulfur contents. Sulfur in reformulated gasoline is almost 90% attributable to FCC gasoline. The desulphurisation (hydrodesulfurization) of gasolines and mainly FCC species is therefore of obvious importance for the respect of the specifications. The hydrotreating (or hydrodesulphurization) of catalytic cracking gasolines, when carried out under standard conditions known to those skilled in the art, makes it possible to reduce the sulfur content of the cut. However, this method has the major disadvantage of causing a very significant drop in the octane number of the cut, due to the saturation of all the olefins during the hydrotreatment. It has therefore been proposed methods for deep desulfurization of FCC gasolines while maintaining the octane number at a high level.
Ainsi, le
La demande de
Enfin, le
The request for
Finally,
L'obtention de la sélectivité de réaction recherchée (ratio entre hydrodésulfuration et hydrogénation des oléfines) peut donc être en partie due au choix du procédé mais dans tous les cas l'utilisation d'un système catalytique intrinsèquement sélectif est très souvent un facteur clé.Obtaining the desired reaction selectivity (ratio between hydrodesulfurization and hydrogenation of olefins) may therefore be partly due to the choice of the process, but in all cases the use of an inherently selective catalytic system is very often a key factor.
D'une façon générale, les catalyseurs utilisés pour ce type d'application sont des catalyseurs de type sulfure contenant un élément du groupe VIB (Cr, Mo, W) et un élément du groupe VIII (Fe, Ru, Os, Co, Rh, Ir, Pd, Ni, Pt). Ainsi dans le
Une autre voie permettant d'améliorer la sélectivité intrinsèque des catalyseurs est de tirer bénéfice de la présence de dépôts carbonés à la surface du catalyseur. Ainsi, le
Dans la présente invention, il a été trouvé un catalyseur utilisable dans un procédé d'hydrodésulfuration d'essence et permettant de réduire les teneurs en soufre total et en mercaptans des coupes hydrocarbonées et de préférence de coupes essences de FCC, sans perte importante d'essence et en minimisant la diminution de l'indice d'octane.In the present invention, it has been found a catalyst that can be used in a gasoline hydrodesulphurization process and that makes it possible to reduce the total sulfur and mercaptan content of the hydrocarbon cuts, and preferably of FCC gasoline cuts, without any significant loss of carbon dioxide. gasoline and minimizing the decrease in the octane number.
L'invention concerne plus précisément un procédé d'hydrodésulfuration de coupes essences en présence d'un catalyseur comprenant au moins un élément du groupe VIII, au moins un élément du groupe VIB, et un support de surface spécifique inférieure à environ 200 m2/g, dans lequel la densité en éléments du groupe VIB par unité de surface du support est comprise entre 4.10-4 et 36.10-4 g d'oxydes d'éléments du groupe VIB par m2 de support.The invention more specifically relates to a process for the hydrodesulphurisation of gasoline cuts in the presence of a catalyst comprising at least one element of group VIII, at least one element of group VIB, and a support having a specific surface area of less than about 200 m 2 / g, in which the density in Group VIB elements per unit area of the support is between 4.10 -4 and 36.10 -4 g of Group VIB element oxides per m 2 of support.
La charge à hydrotraiter (ou hydrodésulfurer) au moyen du procédé selon l'invention est généralement une coupe essence contenant du soufre; telle que par exemple une coupe issue d'une unité de cokéfaction (coking selon la terminologie anglo-saxonne ), de viscoréduction (visbreaking selon la terminologie anglo-saxonne), de vapocraquage (steam cracking selon la terminologie anglo-saxonne) ou de craquage catalytique (FCC, Fluid Catalytic Cracking selon la terminologie anglo-saxonne). La dite charge est de préférence constituée d'une coupe essence issue d'une unité de craquage catalytique dont la gamme de points d'ébullition s'étend typiquement des points d'ébullition des hydrocarbures à 5 atomes de carbone jusqu'à 250°C. Cette essence peut éventuellement être composée d'une fraction significative d'essence provenant d'autres procédés de production telle que la distillation atmosphérique (essence issue d'une distillation directe (ou essence straight run selon la terminologie anglo-saxonne) ou de procédés de conversion (essence de cokéfaction ou de vapocraquage).The charge to be hydrotreated (or hydrodesulphurized) by means of the process according to the invention is generally a petrol cut containing sulfur; such as for example a section resulting from a coking unit (coking according to the English terminology), visbreaking (visbreaking according to the English terminology), steam cracking (steam cracking according to the English terminology) or cracking catalytic (FCC, Fluid Catalytic Cracking according to the English terminology). Said filler preferably consists of a gasoline cut from a catalytic cracking unit whose boiling point range typically extends from the boiling points of hydrocarbons with 5 carbon atoms to 250 ° C. . This gasoline may optionally be composed of a significant fraction of gasoline from other production processes such as atmospheric distillation (gasoline derived from a straight-run distillation or straight-run gasoline according to the English terminology). conversion (coking or steam cracking gasoline).
Les catalyseurs d'hydrodésulfuration selon l'invention sont des catalyseurs comprenant au moins un élément du groupe VIB et au moins un élément du groupe VIII sur un support approprié. Le ou les éléments du groupe VIB sont de préférence choisis parmi le molybdène et/ou le tungstène et le ou les éléments du groupe VIII sont de préférence choisis parmi le nickel et/ou le cobalt. Le support du catalyseur est habituellement un solide poreux choisi dans le groupe constitué par : les alumines, la silice, les silices alumine ou encore les oxydes de titane ou de magnésium utilisés seul ou en mélange avec l'alumine ou la silice alumine. Il est de préférence choisi dans le groupe constitué par: la silice, la famille des alumines de transition et les silices alumine, de manière très préférée, le support est essentiellement constitué par au moins une alumine de transition, c'est-à-dire qu'il comprend au moins 51 % poids, de préférence au moins 60 % poids de manière très préféré au moins 80 % poids, voire au moins 90 % poids d'alumine de transition. Il peut éventuellement être constitué uniquement d'une alumine de transition.The hydrodesulfurization catalysts according to the invention are catalysts comprising at least one element of group VIB and at least one element of group VIII on a suitable support. The element or elements of group VIB are preferably chosen from molybdenum and / or tungsten and the group VIII element or elements are preferably chosen from nickel and / or cobalt. The catalyst support is usually a porous solid selected from the group consisting of: aluminas, silica, silica alumina or even titanium or magnesium oxides used alone or in admixture with alumina or silica alumina. It is preferably selected from the group consisting of: silica, the family of transition aluminas and silica alumina, very preferably, the support consists essentially of less a transition alumina, that is to say it comprises at least 51% by weight, preferably at least 60% by weight, very preferably at least 80% by weight, or even at least 90% by weight of alumina of transition. It may optionally consist solely of a transition alumina.
La surface spécifique du support selon l'invention est généralement inférieure à 200 m2/g, de manière préférée inférieure à 170 m2/g et de manière encore plus préférée inférieure à 150 m2/g, voire inférieure à 135 m2/g. Le support peut être préparé en utilisant tout précurseur, toute méthode de préparation et tout outil de mise en forme connus de l'homme de métier.The specific surface of the support according to the invention is generally less than 200 m 2 / g, preferably less than 170 m 2 / g and even more preferably less than 150 m 2 / g, or even less than 135 m 2 / g boy Wut. The carrier may be prepared using any precursor, method of preparation and any shaping tool known to those skilled in the art.
Le catalyseur selon l'invention peut être préparé au moyen de toute technique connu de l'homme du métier, et notamment par imprégnation des éléments des groupes VIII et VIB sur le support sélectionné. Cette imprégnation peut par exemple être réalisée selon le mode connu de l'homme du métier sous la terminologie d'imprégnation à sec, dans lequel on introduit juste la quantité d'éléments désirés sous forme de sels solubles dans le solvant choisi, par exemple de l'eau déminéralisée, de façon à remplir aussi exactement que possible la porosité du support. Le support ainsi rempli par la solution est de préférence séché.The catalyst according to the invention can be prepared using any technique known to those skilled in the art, and in particular by impregnation of the elements of groups VIII and VIB on the selected support. This impregnation may, for example, be carried out according to the method known to those skilled in the art in the dry-impregnation terminology, in which the quantity of desired elements in the form of soluble salts in the chosen solvent, for example demineralized water, so as to fill the porosity of the support as exactly as possible. The support thus filled with the solution is preferably dried.
Après introduction des éléments des groupes VIII et VIB, et éventuellement une mise en forme du catalyseur, celui-ci subi un traitement d'activation. Ce traitement a généralement pour but de transformer les précurseurs moléculaires des éléments en phase oxyde (par exemple MoO3). Il s'agit dans ce cas d'un traitement oxydant mais une réduction directe peut également être effectuée. Dans le cas d'un traitement oxydant, également appelé calcination, celui-ci est généralement mis en oeuvre sous air ou sous oxygène dilué, et la température de traitement est généralement comprise entre 200°C et 550°C, de préférence entre 300°C et 500°C. Dans le cas d'un traitement réducteur, celui-ci est généralement mis en oeuvre sous hydrogène pur ou de préférence dilué, et la température de traitement est généralement comprise entre 200°C et 600°C, de préférence entre 300°C et 500°C.
Des sels de métaux des groupes VIB et VIII utilisables dans le procédé selon l'invention sont par exemple le nitrate de cobalt, le nitrate d'aluminium, l'heptamolybdate d'ammonium ou le métatungstate d'ammonium. Tout autre sel connu de l'homme du métier présentant une solubilité suffisante et décomposable lors du traitement d'activation peut également être utilisé.
Le catalyseur est habituellement utilisé sous une forme sulfurée obtenue après traitement en température au contact d'un composé organique soufré décomposable et générateur d'H2S ou directement au contact d'un flux gazeux d'H2S dilué dans H2. Cette étape peut être réalisée in situ ou ex situ (en dedans ou dehors du réacteur) du réacteur d'hydrodésulfuration à des températures comprises entre 200 et 600°C et plus préférentiellement entre 300 et 500°C.After introduction of the elements of groups VIII and VIB, and possibly forming the catalyst, it undergoes an activation treatment. This treatment generally aims to convert the molecular precursors of the elements into an oxide phase (for example MoO 3 ). In this case it is an oxidizing treatment but a direct reduction can also be carried out. In the case of an oxidizing treatment, also known as calcination, this is generally carried out under air or under dilute oxygen, and the treatment temperature is generally between 200 ° C. and 550 ° C., preferably between 300 ° C. C and 500 ° C. In the case of a reducing treatment, this is generally carried out under pure hydrogen or preferably diluted, and the treatment temperature is generally between 200 ° C. and 600 ° C., preferably between 300 ° C. and 500 ° C. ° C.
Group VIB and VIII metal salts which can be used in the process according to the invention are, for example, cobalt nitrate, aluminum nitrate, ammonium heptamolybdate or ammonium metatungstate. Any other known salt those skilled in the art having sufficient and decomposable solubility during the activation treatment may also be used.
The catalyst is usually used in a sulfurized form obtained after treatment in temperature in contact with a decomposable organic sulfur compound and generating H 2 S or directly in contact with a gas stream of H 2 S diluted in H 2 . This step can be carried out in situ or ex situ (inside or outside the reactor) of the hydrodesulfurization reactor at temperatures between 200 and 600 ° C and more preferably between 300 and 500 ° C.
Les catalyseurs selon l'invention présentent une densité d'éléments du groupe VIB (chrome, molybdène, tungstène) comprise entre 4.10-4 g et 36.10-4 g d'oxyde du élément du groupe VIB par m2 de support, de préférence entre 4.10-4 g et 16.10-4 g d'oxyde du élément du groupe VIB par m2 de support, et de manière très préférée entre 7.10-4 g et 15.10-4 g d'oxyde du élément du groupe VIB par m2 de support. La surface spécifique du support ne doit généralement pas excéder 200 m2/g, et doit de manière préférée être inférieure à 170 m2/g et de manière encore plus préférée être inférieure à 150 m2/g, voire inférieure à 135 m2/g.The catalysts according to the invention have a density of group VIB elements (chromium, molybdenum, tungsten) of between 4.10 -4 g and 36.10 -4 g of group VIB oxide per m 2 of support, preferably between 4.10 -4 g and 16.10 g -4 oxide of the element from group VIB per m 2 of support, and very preferably between 7.10 -4 g and 15.10 g -4 oxide of element from group VIB per m 2 of support. The specific surface of the support should generally not exceed 200 m 2 / g, and should preferably be less than 170 m 2 / g and even more preferably be less than 150 m 2 / g, or even less than 135 m 2 /boy Wut.
Il convient de noter que les deux critères doivent être généralement remplis simultanément car il existe une synergie entre ces deux paramètres.
Sans être lié par une quelconque théorie, l'élément du groupe VIB et sa répartition à la surface interviennent dans l'activation et la réactivité des molécules. Il convient de noter que les deux critères doivent être généralement remplis simultanément car il existe une synergie entre ces deux paramètres dans l'activation et la réactivité des 5 molécules. Par ailleurs, en présence des éléments (également appelés métaux) des groupes VIII et VIB, la surface du support peut jouer un rôle important dans le mécanisme d'activation et de migration de surface des molécules, notamment les oléfines, comme cela a été récemment proposé [
Without being bound by any theory, the element of group VIB and its distribution on the surface intervene in the activation and the reactivity of the molecules. It should be noted that both criteria must generally be met simultaneously because there is a synergy between these two parameters in the activation and reactivity of the molecules. Moreover, in the presence of the elements (also called metals) of the groups VIII and VIB, the surface of the support can play an important role in the mechanism of activation and surface migration of the molecules, in particular the olefins, as was recently offers [
La teneur en éléments du groupe VIII du catalyseur selon l'invention est de préférence comprise entre 1 et 20 % poids d'oxydes d'éléments du groupe VIII, de préférence comprise entre 2 et 10 % poids d'oxydes d'éléments du groupe VIII et de manière plus préférée comprise entre 2 et 8 % poids d'oxydes d'éléments du groupe VIII. De préférence l'élément du groupe VIII est le cobalt ou le nickel ou un mélange de ces deux éléments, et de manière plus préféré l'élément du groupe VIII est constitué uniquement de cobalt et/ou de nickel.The content of group VIII elements of the catalyst according to the invention is preferably between 1 and 20% by weight of group VIII element oxides, preferably between 2 and 10% by weight of group elements oxides. VIII and more preferably between 2 and 8% by weight of Group VIII element oxides. Preferably the group VIII element is cobalt or nickel or a mixture of these two elements, and more preferably the group VIII element consists solely of cobalt and / or nickel.
La teneur en éléments du groupe VIB est de préférence comprise entre 1,5 et 60 % poids d'oxydes d'éléments du groupe VIB, de manière plus préférée entre 3 et 50 % poids d'oxydes d'éléments du groupe VIB. De préférence l'élément du groupe VIB est le molybdène ou le tungstène ou un mélange de ces deux éléments, et de manière plus préféré l'élément du groupe VIB est constitué uniquement de molybdène ou de tungstène.The content of Group VIB elements is preferably between 1.5 and 60% by weight of Group VIB element oxides, more preferably between 3 and 50% by weight of Group VIB group oxides. Preferably the group VIB element is molybdenum or tungsten or a mixture of these two elements, and more preferably the group VIB element consists solely of molybdenum or tungsten.
Le catalyseur selon l'invention peut être utilisé dans tout procédé, connu de l'homme du métier, permettant de désulfurer des coupes hydrocarbonées de type essences de craquage catalytique (FCC) par exemple en maintenant l'indice d'octane à des valeurs élevées. Il peut être mis en oeuvre dans tout type de réacteur opéré en lit fixe ou en lit mobile ou en lit bouillonnant, il est toutefois de préférence utilisé dans un réacteur opéré en lit fixe.The catalyst according to the invention can be used in any process known to those skilled in the art, for desulfurizing hydrocarbon cuts of the type of catalytic cracking gasoline (FCC) for example by maintaining the octane number at high values. . It can be used in any type of reactor operated in fixed bed or mobile bed or bubbling bed, it is however preferably used in a reactor operated in fixed bed.
A titre indicatif, les conditions opératoires permettant une hydrodésulfuration sélective des essences de craquage catalytique sont une température comprise entre 200 et 400°C, préférentiellement entre 250 et 350°C, une pression totale comprise entre 1 MPa et 3 MPa et plus préférentiellement entre 1 MPa et 2,5 MPa avec un ratio : volume d'hydrogène par volume de charge hydrocarbonée, compris entre 100 et 600 litres par litre et plus préférentiellement entre 200 et 400 litres par litre. Enfin, la Vitesse Volumique Horaire (VVH) est l'inverse du temps de contact exprimée en heure. Elle est définie par le rapport du débit volumique de charge hydrocarbonée liquide par le volume de catalyseur chargé dans le réacteur.As an indication, the operating conditions allowing selective hydrodesulphurization of catalytic cracking gasolines are a temperature of between 200 and 400 ° C., preferably between 250 and 350 ° C., a total pressure of between 1 MPa and 3 MPa and more preferably between 1 and 3 MPa. MPa and 2.5 MPa with a ratio: volume of hydrogen per volume of charge hydrocarbon, of between 100 and 600 liters per liter and more preferably between 200 and 400 liters per liter. Finally, the Hourly Volumetric Velocity (VVH) is the inverse of the contact time expressed in hours. It is defined by the ratio of the volume flow rate of liquid hydrocarbon feedstock by the volume of catalyst charged to the reactor.
Tous les catalyseurs à base de molybdène sont préparés selon la même méthode qui consiste à réaliser une imprégnation à sec d'une solution d'heptamolybdate d'ammonium et de nitrate de cobalt, le volume de la solution contenant les précurseurs des métaux étant rigoureusement égal au volume poreux de la masse de support. Les supports utilisés sont des alumines de transition présentant des couples surface spécifique et volume poreux variables: 130 m2/g et 1,04 cm3/g ; 170 m2/g et 0,87 cm3/g; 220 m2/g et 0,6 cm3/g; 60 m2/g et 0,59 cm3/g. Les concentrations en précurseurs de la solution aqueuse sont ajustées de manière à déposer sur le support les teneurs pondérales souhaitées. Le catalyseur est ensuite séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.All molybdenum catalysts are prepared according to the same method which consists in carrying out a dry impregnation of a solution of ammonium heptamolybdate and cobalt nitrate, the volume of the solution containing the precursors of the metals being rigorously equal to the pore volume of the support mass. The supports used are transition aluminas having specific surface area and variable pore volume pairs: 130 m 2 / g and 1.04 cm 3 / g; 170 m 2 / g and 0.87 cm 3 / g; 220 m 2 / g and 0.6 cm 3 / g; 60 m 2 / g and 0.59 cm 3 / g. The precursor concentrations of the aqueous solution are adjusted so as to deposit on the support the desired weight contents. The catalyst is then dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
Tous les catalyseurs à base de tungstène sont préparés selon la même méthode qui consiste à réaliser une imprégnation à sec d'une solution de métatungstate d'ammonium et de nitrate de cobalt, le volume de la solution contenant les précurseurs des métaux étant rigoureusement égal au volume poreux de la masse de support. Les supports utilisés sont les mêmes que précédemment. Les concentrations en précurseurs de la solution aqueuse sont ajustées de manière à déposer sur le support les teneurs pondérales souhaitées. Le catalyseur est ensuite séché pendant 12 heures à 120°C puis calciné sous air à 500°C pendant 2 heures.All tungsten catalysts are prepared by the same method which consists in carrying out a dry impregnation of a solution of ammonium metatungstate and cobalt nitrate, the volume of the solution containing the precursors of metals being strictly equal to porous volume of the support mass. The supports used are the same as before. The precursor concentrations of the aqueous solution are adjusted so as to deposit on the support the desired weight contents. The catalyst is then dried for 12 hours at 120 ° C. and then calcined under air at 500 ° C. for 2 hours.
Une essence de craquage catalytique (FCC) dont les caractéristiques sont rassemblées dans le tableau 1, est traitée par les différents catalyseurs La réaction est effectuée en faisant varier la température en réacteur de type lit traversé dans les conditions suivantes : P=2 MPa, H2/HC=300 litres/litres de charge hydrocarbonée, la température étant fixée à 280°C pour les catalyseurs à base de molybdène, et à 300°C pour les catalyseurs à base de tungstène. La VVH est variable afin de comparer les sélectivités obtenues (rapport kHDS/kHDO) à iso conversion en HDS, soit pour une conversion en hydrodésulfuration égale à environ 90 % pour tous les catalyseurs. Les catalyseurs sont préalablement traités à 350°C par une charge contenant 4 % poids de soufre sous forme de DMDS (diméthyldisulfure) pour assurer la sulfuration des phases oxydes. La réaction se déroule en courant ascendant dans un réacteur tubulaire adiabatique. Dans tous les cas, l'analyse des composés soufrés organiques résiduels se fait après élimination de l'H2S issu de la décomposition. Les effluents sont analysés par chromatographie en phase gazeuse pour la détermination des concentrations en hydrocarbures et par la méthode décrite par la norme NF M 07075 pour la détermination du soufre total. Les résultats sont exprimés en rapport de constante de vitesse kHDS/kHDO en supposant un ordre 1 par rapport aux composés soufrés pour la réaction d'hydrodésulfuration (HDS) et un ordre 0 par rapport aux oléfines pour la réaction d'hydrogénation des oléfines (HDO). Pour les catalyseurs à base de molybdène ou de tungstène, les valeurs sont normalisées en prenant respectivement le catalyseur 2 ou le catalyseur 12 comme référence. Ces valeurs sont données après 96 heures et 200 heures de fonctionnement afin de rendre compte respectivement de l'activité initiale et de la désactivation.
Les catalyseurs à base de molybdène selon l'invention sont préparés selon la procédure décrite précédemment et leurs caractéristiques (densité en gramme d'oxyde de molybdène par mètre carré de support, teneurs en oxydes de cobalt et de molybdène du catalyseur calciné, surface BET du support) sont rassemblées dans le tableau 2. Les sélectivités KHDS/KHDO obtenues pour une conversion en HDS voisine de 90% à la VVH mentionnée sont également reportées dans ce tableau.
Dans cet exemple, la densité de molybdène a été modifiée afin de sortir de la gamme de densités selon l'invention. La VVH du test est également sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90 %. Le tableau 3 résume les caractéristiques des catalyseurs et les sélectivités obtenues.
Dans cet exemple, la surface spécifique du support a été modifiée afin d'être supérieure à 200 m2/g. La VVH de test est également sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90%. Le tableau 4 résume les caractéristiques des catalyseurs et les sélectivités obtenues.
Les catalyseurs à base de tungstène selon l'invention sont préparés selon la procédure décrite précédemment et leurs caractéristiques (densité en gramme d'oxyde de tungstène par mètre carré de support, teneurs en oxydes de cobalt et de tungstène du catalyseur calciné, surface BET du support) sont rassemblées dans le tableau 5. Les sélectivités kHDS/kHDO obtenues pour une conversion en HDS voisine de 90 % à la VVH mentionnée sont également reportées dans ce tableau.
Dans cet exemple, la densité d'oxyde de tungstène a été modifiée afin de sortir de la gamme de densités selon l'invention. La VVH du test est également sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90%. Le tableau 6 résume les caractéristiques des catalyseurs et les sélectivités obtenues.
Dans cet exemple, la surface spécifique du support utilisé est supérieure à 200 m2/g. La VVH de test est sélectionnée afin d'opérer avec une conversion en HDS sensiblement égale à 90 %. Le tableau 7 résume les caractéristiques des catalyseurs et les sélectivités obtenues.
Claims (10)
- A process for the hydrodesulphurization of gasoline cuts in the presence of a catalyst comprising at least one element from group VIII, at least one element from group VIB and a support with a specific surface area of less than 200 m2/g, in which the density of the elements from group VIB per unit surface area of support is in the range 4 x 10-4 to 36 x 10-4 g of oxides of elements from group VIB per m2 of support.
- A hydrodesulphurization process according to claim 1, in which the density of the elements from group VIB per unit surface area of support is in the range 4 x 10-4 g to 16 x 10-4 g of oxides of elements from group VIB per m2 of support.
- A hydrodesulphurization process according to claim 1 or claim 2, in which the quantity of elements from group VIII of the catalyst is in the range 1% to 20% by weight of oxides of elements from group VIII and the quantity of elements from group VIB is in the range 1.5% to 60% by weight of oxides of elements from group VIB.
- A process according to one of claims 1 to 3, in which the catalyst comprises at least one element from group VIII selected from nickel and cobalt.
- A process according to one of claims 1 to 4, in which the catalyst comprises at least one element from group VIB selected from molybdenum and tungsten.
- A process according to one of claims 1 to 5, in which the catalyst support is a porous solid selected from the group constituted by: aluminas, silica, silica aluminas and oxides of titanium or magnesium used alone or as a mixture with alumina or silica alumina.
- A process according to one of claims 1 to 6, in which the catalyst support comprises at least 90% by weight of transition alumina.
- A process according to one of claims 1 to 7, in which the feed to be hydrodesulphurized is a gasoline cut containing sulphur derived from a coking, visbreaking, steam cracking or catalytic cracking unit.
- A process according to one of claims 1 to 8, in which the feed to be hydrodesulphurized is a gasoline cut derived from a catalytic cracking unit with a boiling point range which typically extends from the boiling points of hydrocarbons containing 5 carbon atoms to 250°C.
- A process according to claim 9, in which the hydrodesulphurization operating conditions are a temperature in the range 200°C to 400°C, a total pressure in the range 1 MPa to 3 MPa and a volume of hydrogen per volume of hydrocarbon feed ratio in the range from 100 to 600 litres per litre.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0206815A FR2840315B1 (en) | 2002-06-03 | 2002-06-03 | PROCESS FOR HYDRODESULFURIZING CUTS CONTAINING SULFUR COMPOUNDS AND OLEFINS IN THE PRESENCE OF A SUPPORTED CATALYST COMPRISING GROUPS VIII AND VIB METALS |
FR0206815 | 2002-06-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1369466A1 EP1369466A1 (en) | 2003-12-10 |
EP1369466B1 true EP1369466B1 (en) | 2008-09-10 |
Family
ID=29433307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03291115A Revoked EP1369466B1 (en) | 2002-06-03 | 2003-05-14 | Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst. |
Country Status (6)
Country | Link |
---|---|
US (1) | US7306714B2 (en) |
EP (1) | EP1369466B1 (en) |
JP (1) | JP4452911B2 (en) |
CN (1) | CN1290975C (en) |
DE (1) | DE60323429D1 (en) |
FR (1) | FR2840315B1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE485095T1 (en) * | 2004-08-02 | 2010-11-15 | Shell Int Research | METHOD FOR REMOVAL OF THIOLS FROM AN INERT GAS STREAM |
FR2888583B1 (en) * | 2005-07-18 | 2007-09-28 | Inst Francais Du Petrole | NOVEL METHOD OF DESULFURIZING OLEFINIC ESSENCES FOR LIMITING THE MERCAPTAN CONTENT |
FR2895415B1 (en) * | 2005-12-22 | 2011-07-15 | Inst Francais Du Petrole | SELECTIVE HYDROGENATION PROCESS USING A CATALYST HAVING A SPECIFIC SUPPORT |
FR2895416B1 (en) * | 2005-12-22 | 2011-08-26 | Inst Francais Du Petrole | SELECTIVE HYDROGENATION PROCESS USING A SULFIDE CATALYST |
FR2895414B1 (en) * | 2005-12-22 | 2011-07-29 | Inst Francais Du Petrole | SELECTIVE HYDROGENATION PROCESS USING A CATALYST HAVING CONTROLLED POROSITY |
FR2923837B1 (en) * | 2007-11-19 | 2009-11-20 | Inst Francais Du Petrole | PROCESS FOR TWO-STAGE DESULFURIZATION OF OLEFINIC ESSENCES COMPRISING ARSENIC |
JP5207923B2 (en) * | 2008-11-06 | 2013-06-12 | Jx日鉱日石エネルギー株式会社 | Process for producing refined hydrocarbon oil |
WO2012066572A2 (en) | 2010-11-19 | 2012-05-24 | Indian Oil Corporation Ltd. | Process for deep desulfurization of cracked gasoline with minimum octane loss |
FR3035117B1 (en) | 2015-04-15 | 2019-04-19 | IFP Energies Nouvelles | PROCESS FOR SOFTENING OF SULFIDE COMPOUNDS OF AN OLEFINIC ESSENCE |
FR3049475B1 (en) * | 2016-03-30 | 2018-04-06 | IFP Energies Nouvelles | CATALYST BASED ON CATECHOLAMINE AND ITS USE IN A HYDROTREATMENT AND / OR HYDROCRACKING PROCESS |
FR3049955B1 (en) | 2016-04-08 | 2018-04-06 | IFP Energies Nouvelles | PROCESS FOR TREATING A GASOLINE |
FR3057578B1 (en) | 2016-10-19 | 2018-11-16 | IFP Energies Nouvelles | PROCESS FOR HYDRODESULFURING OLEFINIC ESSENCE |
CN108003932B (en) * | 2016-10-28 | 2020-04-28 | 中国石油化工股份有限公司 | Method for producing gasoline product |
US10526550B2 (en) * | 2016-11-23 | 2020-01-07 | Haldor Topsøe A/S Kgs. | Process for desulfurization of hydrocarbons |
FR3142487A1 (en) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Hydrodesulfurization process for finishing gasolines using a catalyst based on group VIB and VIII metals and phosphorus on an alumina support with low specific surface area |
FR3142362A1 (en) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Finishing hydrodesulfurization catalyst comprising a Group VIB metal, a Group VIII metal and phosphorus on alpha alumina support |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6126814A (en) * | 1996-02-02 | 2000-10-03 | Exxon Research And Engineering Co | Selective hydrodesulfurization process (HEN-9601) |
US6174443B1 (en) * | 1997-04-14 | 2001-01-16 | The Research Foundation Of State University Of New York | Purification of wheat germ agglutinin using macroporous or microporous filtration membrane |
US6315890B1 (en) * | 1998-05-05 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Naphtha cracking and hydroprocessing process for low emissions, high octane fuels |
EP0980908A1 (en) * | 1998-08-15 | 2000-02-23 | ENITECNOLOGIE S.p.a. | Process and catalysts for upgrading of hydrocarbons boiling in the naphtha range |
US6610197B2 (en) * | 2000-11-02 | 2003-08-26 | Exxonmobil Research And Engineering Company | Low-sulfur fuel and process of making |
US6716339B2 (en) * | 2001-03-30 | 2004-04-06 | Corning Incorporated | Hydrotreating process with monolithic catalyst |
-
2002
- 2002-06-03 FR FR0206815A patent/FR2840315B1/en not_active Expired - Lifetime
-
2003
- 2003-05-14 DE DE60323429T patent/DE60323429D1/en not_active Expired - Lifetime
- 2003-05-14 EP EP03291115A patent/EP1369466B1/en not_active Revoked
- 2003-06-02 US US10/449,714 patent/US7306714B2/en not_active Expired - Lifetime
- 2003-06-03 JP JP2003158142A patent/JP4452911B2/en not_active Expired - Lifetime
- 2003-06-03 CN CNB031363806A patent/CN1290975C/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004010892A (en) | 2004-01-15 |
DE60323429D1 (en) | 2008-10-23 |
CN1470611A (en) | 2004-01-28 |
US20040007503A1 (en) | 2004-01-15 |
CN1290975C (en) | 2006-12-20 |
EP1369466A1 (en) | 2003-12-10 |
FR2840315B1 (en) | 2004-08-20 |
US7306714B2 (en) | 2007-12-11 |
FR2840315A1 (en) | 2003-12-05 |
JP4452911B2 (en) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1892039B1 (en) | Method of hydrodesulfuration of cuts containing sulphur compounds and olefins in the presence of a supported catalyst comprising elements from groups VIII and VIB | |
EP2169032B1 (en) | Catalyst capable of at least partially decomposing or hydrogenating unsaturated sulfur compounds | |
EP1174485B1 (en) | Process comprising two gasoline hydrodesulphurisation steps with intermediary elimination of H2S | |
EP1800748B1 (en) | Method of selective hydrogenation using a sulphided catalyst | |
EP1002853B1 (en) | Process for the production of low sulfur gasolines | |
EP1923452B1 (en) | Method of deep sulphur removal from cracked petrol with minimum loss of octane number | |
EP2161076B1 (en) | Selective hydrogenation method using a sulphurated catalyst with a specific composition | |
EP1369466B1 (en) | Hydrodesulfurization of sulphur and olefins containing fractions with a metals of groups VIII and VIB containing supported catalyst. | |
EP3428248B1 (en) | Partially coked catalysts for use in the hydrotreatment of cuts containing sulphurous compounds and olefins | |
EP1612255B1 (en) | Hydrodesulfurization process for naphtha fractions using a catalyst with controled porosity. | |
EP2644683B1 (en) | Method for selective hydrogenation of a gasoline | |
CA2299152C (en) | Process for the production of low-sulfur fuels | |
EP2816094A1 (en) | Method for producing gasoline with low sulphur and mercaptan content | |
EP1369467B1 (en) | Hydrodesulfurization of sulphur and olefins containing fractions with a supported catalyst containing an element of group VIII and tungsten. | |
EP1354930A1 (en) | Process for the preparation of hydrocarbons of low sulfur and mercaptans content. | |
WO2014068209A1 (en) | Process for producing a petrol with low sulphur content | |
WO2016096364A1 (en) | Process for sweetening an olefinic gasoline of sulphide type compounds | |
WO2021185658A1 (en) | Method for producing a gasoline having a low sulfur and mercaptan content | |
WO2021013527A1 (en) | Method for producing a petrol with low sulfur and mercaptans content | |
WO2014037644A1 (en) | Method for the sulfidation of a hydrodesulfurization catalyst | |
EP3283601B1 (en) | Method for sweetening an olefinic petrol of sulphide-type compounds | |
WO2024115275A1 (en) | Process for finishing hydrodesulfurization of gasolines using a chain of catalysts | |
WO2024115276A1 (en) | Finishing hydrodesulfurization catalyst comprising a group vib metal, a group viii metal and phosphorus on an alpha alumina support | |
FR3142487A1 (en) | Hydrodesulfurization process for finishing gasolines using a catalyst based on group VIB and VIII metals and phosphorus on an alumina support with low specific surface area |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20040611 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB IT NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60323429 Country of ref document: DE Date of ref document: 20081023 Kind code of ref document: P |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: EXXON MOBIL RESEARCH Effective date: 20090528 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: EXXON MOBIL RESEARCH |
|
PLAF | Information modified related to communication of a notice of opposition and request to file observations + time limit |
Free format text: ORIGINAL CODE: EPIDOSCOBS2 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100602 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: IFP ENERGIES NOUVELLES |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60323429 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR Effective date: 20110331 Ref country code: DE Ref legal event code: R081 Ref document number: 60323429 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR Effective date: 20110331 |
|
27W | Patent revoked |
Effective date: 20101126 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20101126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110503 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R107 Ref document number: 60323429 Country of ref document: DE Effective date: 20110818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110525 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120531 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120518 Year of fee payment: 10 |