[go: up one dir, main page]

EP1357190B1 - Methods and markers for simple transformation and selection of recombinant ciliates - Google Patents

Methods and markers for simple transformation and selection of recombinant ciliates Download PDF

Info

Publication number
EP1357190B1
EP1357190B1 EP03007098A EP03007098A EP1357190B1 EP 1357190 B1 EP1357190 B1 EP 1357190B1 EP 03007098 A EP03007098 A EP 03007098A EP 03007098 A EP03007098 A EP 03007098A EP 1357190 B1 EP1357190 B1 EP 1357190B1
Authority
EP
European Patent Office
Prior art keywords
recombinant
gene
ciliates
cells
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03007098A
Other languages
German (de)
French (fr)
Other versions
EP1357190A1 (en
Inventor
Matthias Dr. Rüsing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonza AG
Original Assignee
Lonza AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza AG filed Critical Lonza AG
Publication of EP1357190A1 publication Critical patent/EP1357190A1/en
Application granted granted Critical
Publication of EP1357190B1 publication Critical patent/EP1357190B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
    • C12Y114/19001Stearoyl-CoA 9-desaturase (1.14.19.1), i.e. DELTA9-desaturase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/19Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
    • C12Y114/19003Linoleoyl-CoA desaturase (1.14.19.3)

Definitions

  • the present invention relates to a process for the production of genetically modified (recombinant) ciliates without the use of negative selection markers and to an efficient process for the production of proteins by means of the so-modified protists.
  • heterologous protein expression represents an alternative to the recovery of proteins from natural sources.
  • Natural sources of proteins that serve, for example, as pharmaceuticals are often limited, very expensive to purify, or simply unavailable. In addition, they can be very problematic due to the risk of toxic or especially infectious contaminants.
  • biotechnology today enables the economical and safe production of a whole range of proteins in sufficient quantities by means of heterologous expression for a wide variety of applications: eg antibodies (for diagnosis, passive immunization and research), hormones (such as insulin, erythropoietin (EPO), Interleukins, etc. for therapeutic use), enzymes (eg for use in food technology, diagnosis, research), blood factors (for the treatment of hemophilia), vaccines, etc. ( Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 10: 227-252 ).
  • a recombinant production of such proteins by heterologous gene expression is to be noted that there are a number of post-translational protein modifications in eukaryotic cells as opposed to bacteria: formation of disulfide bridges, proteolytic cleavage of precursor proteins, modifications of amino acid residues (phosphorylation, acetylation, acylation, sulfation , Carboxylation, myristylation, palmitylation and especially glycosylations).
  • proteins in eukaryotic cells often become first brought into the correct three-dimensional structure through a complex mechanism involving chaperones.
  • Deviations from the natural structure may lead to inactivation of the proteins or have a high allergenic potential.
  • yeasts are sometimes extremely strongly modified with mannose residues.
  • These so-called "high mannose” structures of yeasts consist of about 8-50 mannose residues and thus differ considerably from the mannose-rich glycoprotein structures from mammalian cells which have a maximum of 5-9 mannose residues ( Moremen et al. 1994, Glycobiology 4 (2): 113-125 ).
  • These yeast-typical mannose structures are strong allergens and thus very useful in the production of recombinant glycoproteins for therapeutic use problematic ( Tuite et al. 1999, in Protein Expression - A Practical Approach, Ed. Higgins & Hames, Oxford University Press, Chapter 3: especially page 76 ).
  • no hybrid or complex glycoprotein structures can be formed in yeasts, further limiting their use as an expression system.
  • Such a system should ideally meet the following requirements: 1) Selection markers and regulatory DNA elements (such as transcriptional and translational signals, etc.) must be available. 2) The expression system should enable important eukaryotic post-translational protein modifications and 3) the production of the recombinant proteins should be as simple and economical as possible, e.g. by the possibility of fermentation of the cells or organisms on a production scale (for example, several 1000 L) on simple media and simple workup of the products.
  • eukaryotic expression systems such as yeast mammalian or insect culture cells, protozoa or protists (as definition see eg Henderson's Dictionary of biological terms, 10th ed. 1989, Eleanor Lawrence, Longman Scientific & Technical, Engl and, or Margulis et al. (Eds) 1990. Handbook of Protoctista, Jones & Bartlett, Bost one; van den Hoek et al. 1995, Algae - An introduction to phycology, Cambridge University Press ) represent an interesting alternative. These organisms are one very heterogeneous group of eukaryotic, usually single-celled microorganisms. They have the compartmentation and differentiation typical of eukaryotic cells. Some are relatively closely related to higher eukaryotes but, on the other hand, are more similar to yeasts or even bacteria in terms of culture and growth, and relatively easily ferment at high cell density on simple large scale media.
  • a protist of interest for the expression of heterologous proteins is, for example, the ciliate Tetrahymena , in particular Tetrahymena thermophila . It is a non-pathogenic, unicellular, eukaryotic microorganism that is relatively closely related to higher eukaryotes and has the typical cell differentiation.
  • the posttranslational protein modifications in Tetrahymena are more similar to those in mammalian cells than, for example, those detected in yeast or other eukaryotic expression systems.
  • Tetrahymena no strong antigenic sugar chains are found on glycoproteins, such as in yeast ("high mannose" structures), and plant or lower animal cell culture-based expression systems (xylose residues) (see above).
  • Tetrahymena is a true, complexly differentiated eukaryote, it is more similar to simple yeasts or bacteria in its culturing and growth characteristics, and can be easily fermented on relatively cheap skim milk media on a large scale. Under optimal conditions, the generation time is approximately 1.5-3 h and very high cell densities (2.2 ⁇ 10 7 cells / ml, corresponding to 48 g / l of dry biomass) can be achieved ( Kiy and Tiedke 1992, Appl. Microbiol. Biotechnol. 37: 576-579 ; Kiy and Tiedke 1992, Appl. Microbiol. Biotechnol. 38: 141-146 ). This makes Tetrahymena very attractive for large-scale fermentative production of recombinant proteins.
  • Tetrahymena as expression system Another advantageous aspect of Tetrahymena as expression system is the fact that in Tetrahymena an integration of the heterologous gene by homologous DNA recombination is possible. As a result, mitotically stable transformants can be generated.
  • homologous DNA recombination also enables targeted gene knock-outs ( Bruns & Cassidy-Hanley in: Methods in Cell Biology, Volume 62, Ed. Asai & Forney, Academic Press (1999) 501-512 ; Hai et al. in: Methods in Cell Biology, Volume 62, Ed. Asai & Forney, Academic Press (1999) 514-531 ; Gaertig et al. (1999) Nature Biotech.
  • Tetrahymena can be achieved by microinjection, electroporation or microparticle bombardment. There are a number of vectors, promoters, etc. available. The selection of the transformants is usually carried out by means of a resistance marker. So Tetrahymena z. B. successfully transformed with a rDNA vector. Selection was made in this case by a paromomycin resistance mutation of the rRNA ( Tondravi et al. 1986, PNAS 83: 4396 ; Yu et al. 1989, PNAS 86: 8487-8491 ). In further transformation experiments, cycloheximide or neomycin resistances were successfully expressed in Tetrahymena ( Yao et al.
  • a selective marker is a necessary prerequisite for genetically modifying cells.
  • the selection of transformed cells or organisms by negative selection marker usually the resistance to an antibiotic (eg, ampicillin, kanamycin, tetracycline, neomycin, etc.).
  • antibiotic eg, ampicillin, kanamycin, tetracycline, neomycin, etc.
  • selection is made by introducing an essential gene into a defective cell type that affects this gene product (positive selection or selection by complementation).
  • antibiotics eg, ampicillin, kanamycin, tetracycline, neomycin, etc.
  • selection is made by introducing an essential gene into a defective cell type that affects this gene product (positive selection or selection by complementation).
  • LEU- or URA3-based selection systems in yeasts see Glick & Pasternak, Molecular Biotechnology, Principles and Applications of Recombinant DNA, 1998, 2nd ed., ASM Press, Washington, DC pages 109-169 .
  • Negative selection generally has serious disadvantages.
  • unnecessary DNA has to be added to the production organism for the desired product which may raise concerns about biosafety but, above all, public acceptance.
  • the organisms have to be cultivated in the presence of the corresponding antibiotics during the entire production time in order to maintain the selection pressure, which in turn enormously increases the costs. It is not only the costs of the antibiotic itself, or the disposal of production waste (media, ...) to be considered, but also the processing of the proteins can be much more difficult. But apart from cost-effectiveness, environmental compatibility, biological or genetic engineering safety and, above all, public acceptance are very problematic.
  • problems of a purely technical nature arise when the organism has to be transformed several times. The simultaneous presence of several antibiotics or the simultaneous expression of several antibiotic resistance genes may, if at all possible, have an extremely adverse effect on the organisms or lead to unexpected side effects.
  • a method for the production of recombinant ciliates can be achieved in a surprisingly simple manner by preparing an auxotrophic mutant of the ciliate, then transforming this mutant with recombinant DNA which contains at least one gene for complementation of the corresponding auxotrophy, and finally the resulting recombinant ciliates on a minimal medium, which allows growth only in accordance with complemented ciliates, Ciliates of the genera Paramecium and Tetrahymena are used.
  • Ciliates of the genera Paramecium and Tetrahymena are used.
  • This method in order to permanently maintain the selection pressure, ultimately neither a selection for a resistance against an antibiotic nor even the presence of undesired heterologous genes in the recombinant organism is necessary. An addition of antibiotics to the culture medium can thus be omitted.
  • the method can also be easily applied several times to the same organism strain, transforming it with a variety of desired recombinant genes, without any (over) expression of further ev. Un
  • a method of producing recombinant proteins can be provided in an equally simple manner by preparing recombinant ciliates as described above, the recombinant DNA additionally comprising at least one functional recombinant gene for transforming the ciliates a protein to be expressed.
  • the recombinant ciliates are subsequently cultivated so that the proteins can be expressed and subsequently isolated.
  • the production of the auxotrophic mutant is accomplished by knock-out of an essential gene.
  • the knock-out can be achieved by complete deletion of the corresponding gene or by mutation of the same. Mutations are, for example, insertions, deletions, inversions or even the exchange of individual base pairs.
  • Gene deletions or mutations can be introduced into the target organism by methods known to those skilled in the art. Inter alia, here in vitro mutagenesis, for example, by inaccurate PCR (error-prone PCR) or about the Kunkel method ( Sambrook et al. Molecular Cloning, A Laboratory Manual, Coldspring Harbor, NY ), or exon-shuffling or gene site saturation mutagenization (GSSM) (see eg: www.Diversa.com and www.Maxygen.com)
  • essential genes for the production of an auxotrophic knock-out mutant are understood to be essential metabolic genes, e.g. fatty acid, sterol, amino acid biosynthesis, etc., whose failure can be compensated for by adding the appropriate molecules (fatty acids, sterols, amino acids, etc.) into the culture medium (also called marker).
  • the cells become auxotrophic for products of this metabolic pathway. In the present invention, this is exemplified for sterol and fatty acid biosynthesis.
  • the appropriate metabolite i. Cholesterol, or fatty acids, the cells can survive this knock-out. Without the additives, the cells die quickly.
  • Genes encoding, for example, a triterpenoid cyclase (synonym for tetrahymanol cyclase), a delta-6-desaturase or a delta-9-desaturase are therefore, according to the invention, suitable targets for a knockout to be an auxotrophic mutant of the respective organism manufacture.
  • a preferred gene for a triterpenoid cyclase according to the invention was disclosed in the German patent application DE 199 57 889 A1 described.
  • a preferred gene for a delta-6-desaturase according to the invention was disclosed in the German patent application DE 100 44 468 A1 described.
  • a preferred gene for a delta-9-desaturase according to the invention was obtained from Nakashima S. et al. m Biochem. J. 317, 29-34 (1996 ), the respective sequence can be found in the GenBank under Accession No .: EMBL D83478. See GenBank Benson, DA et al., Nuc. Acid Res., 28 (1), 15-18 (2000 ).
  • a minimal medium is to be understood as a medium which contains all the necessary building blocks which make it possible to survive the cells (carbon source (s), such as, for example, sugar, nitrogen source (s), possibly amino acids, vitamins, trace elements, etc.) just does not contain that metabolite for which the parent organism is auxotrophic.
  • the transformants can be identified without the addition of a selection marker, and moreover the successful stable expression is not dependent on the addition of a selection marker, as described e.g. B. is typically the case with recombinant E. coli .
  • a selection marker as described e.g. B. is typically the case with recombinant E. coli .
  • apart from the target gene to be expressed no foreign DNA is introduced into the cell.
  • the DNA is not randomly integrated into the genome but at a certain position, namely the natural position of the marker gene.
  • auxotrophy can also be complemented by means of corresponding heterologous or in vitro modified genes.
  • transformed ciliates the genera Paramecium or Tetrahymena , particularly preferably the species Tetrahymena thermophila .
  • Recombinant DNA for the transformation of the auxotrophic protist mutant can, for. B. be a vector, ie any kind of nucleic acids, such as. A plasmid, cosmid, virus, an autonomously replicating sequence, a phage, a linear or circular, single or double stranded DNA or RNA molecule which is in the target organism can replicate itself or can be incorporated into the genome, but at least in the target organism contains functional sequences.
  • functional DNA sequences are understood as meaning those DNA segments which can fulfill their respective function in the recombinant organism.
  • a functional gene is understood as meaning, for example, a gene which can be expressed in the target organism.
  • a functional gene therefore comprises, in addition to a coding sequence, a promoter functional in the target organism, which leads to the transcription of the coding sequence.
  • a functional promoter may include , but not limited to, one or more TATA boxes, CCAAT boxes, GC boxes or enhancer sequences.
  • the functional gene may include a functional terminator in the target organism which leads to the termination of the transcription and contains signal sequences that lead to the polyadenylation of the mRNA.
  • the coding sequence of the functional gene also has all the properties necessary for translation in the target organism (for example, start codon (eg ATG), stop codon (eg TGA, in particular Tetrahymena ) A-rich regions before start (Translation initiation sites ), Kozak sequences, poly A site
  • start codon eg ATG
  • stop codon eg TGA, in particular Tetrahymena
  • A-rich regions before start Translation initiation sites
  • Kozak sequences poly A site
  • the gene may also have the specific recombinant organism codonusage (for Tetrahymena see, for example Wuitschick & Karrer, J. Eukaryot. Microbiol. (1999 )).
  • a recombinant gene for a protein to be expressed in a recombinant ciliate in a process for producing recombinant proteins is a homologous or a heterologous gene. If it is a heterologous gene, it is preferably isolated from a vertebrate, more preferably from humans. A preferred example of this is human erythropoietin.
  • recombinant genes which are preferred according to the invention for proteins to be expressed in recombinant ciliates are those from organisms which are capable of inducing diseases in humans or in animals (such as, for example: malaria), with the aid of recombinant proteins or also the biomass containing the recombinant proteins or parts thereof, to be able to achieve an active immunization.
  • Tetrahymena thermophila strains B1868 VII, B2086 II, B * VI, CU428, CU427, CU522, provided by Dr. J. Gaertig, University of Georgia, Athens, GA, USA
  • modified SPP medium 2% proteose peptone , 0.1% yeast extract, 0.2% glucose, 0.003% Fe-EDTA (Gaertig et al.
  • skimmed milk medium 2% skimmed milk powder, 0.5% yeast extract, 1% Glucose, 0.003% Fe-EDTA
  • MYG medium 2% skimmed milk powder, 0.1% yeast extract, 0.2% glucose, 0.003% Fe-EDTA
  • antibiotic solution 100 U / ml penicillin, 100 ⁇ g / ml streptomycin and 0.25 ⁇ g / ml amphotericin B (SPPA medium)
  • Plasmids and phages were propagated and selected in E. coli XL1-Blue MRF ', TOP10F' or JM109 (Stratagene, Invitrogen, GibcoBRL Life Technologies). The bacteria were cultivated under standard conditions in LB or NZY medium, with antibiotics in standard concentrations ( Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring, New York ).
  • the knock-out construct was in the genomic sequence of triterpenoid-cyclase (patent application DE 199 57 889 A1 ) a neo-cassette from the plasmid p4T2-1 ⁇ H3 ( Gaertig et al. (1994) Nucl. Acids Res. 22: 5391-5398 ) advertised. It is the neomycin resistance gene under the control of the Tetrahymena histone H4 promoter and the 3 'flanking sequence of the BTU2 gene. This construct mediates resistance to paromomycin in Tetrahymena .
  • the plasmid p4T2-1 ⁇ H3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment comprising the neo cassette was ligated into the Eco RV cut plasmid pgTHC into the genomic sequence of Tetrahymena triterpenoid cyclase.
  • the plasmid pgTHC :: neo was generated (s. Fig. 2 ).
  • the construct for triterpenoid cyclase was replaced by homologous recombination by this construct, thereby conferring resistance of the cells to paromomycin.
  • homologous recombination replaced the BTU1 gene with these constructs, conferring cell resistance to paclitaxel.
  • Tetrahymena thermophila cells 5 ⁇ 10 6 Tetrahymena thermophila cells (CU522) were used. The cells were cultivated in 50 ml of SPPA medium at 30 ° C. in a 250 ml Erlenmeyer flask on a shaker at 150 rpm to a cell density of about 3-5 ⁇ 10 5 cells / ml. The cells were through Centrifugation (1200 g) for 5 min and the cell pellet was resuspended in 50 ml of 10 mM Tris-HCl (pH 7.5) and centrifuged as before.
  • the cells were taken up in SSPA medium and incubated at 30 ° C without shaking in the Erlenmeyer flask. After 3 h, Paclitaxel® was added at a final concentration of 20 ⁇ M and the cells transferred in 100 ⁇ l aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After 2-3 days, paclitaxel-resistant clones could be identified. Positive clones were inoculated into fresh medium with 25 ⁇ M paclitaxel. By cultivating the cells in increasing paclitaxel concentration (up to 80 ⁇ M), a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved.
  • Paclitaxel® was added at a final concentration of 20 ⁇ M and the cells transferred in 100 ⁇ l aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After 2-3 days,
  • BTUI-5'F (AAAAATAAAAAGTTTGAAAAAAACCTTC (SEQ ID No 3)
  • ca 50 bp before the start codon and BTU1-3'R (GTTTAGCTGACCGATTCAGTTC (SEQ ID No 4)
  • 3 bp behind the stop codon PCR products were uncut and Hind III, Sac I or Pst I, cut on a 1% agarose gel, and complete phenotypic assortment was checked by RT-PCR with the BTU1-specific primers (Gaertig & Kapler (1999)).
  • EXAMPLE 5 Preparation of the delta-6-desaturase knock-out construct pgDES6 :: neo
  • a neo-cassette from the plasmid p4T2-1 ⁇ H3 (patent application DE 100 44 468 A1 ) advertised. It is the neomycin resistance gene under the control of the Tetrahymena histone H4 promoter and the 3 'flanking sequence of the BTU2 gene. This construct mediates resistance to paromomycin in Tetrahymena .
  • the plasmid P4T2-1 ⁇ H3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment of the neo-cassette was inserted into the Eco RV cut plasmid pgDES6 (patent application DE 100 44 468 A1 ) are ligated into the genomic sequence of Tetrahymena delta-6-desaturase (s. Fig. 5 ). This generated the plasmid pgDES6 :: neo.
  • the gene for delta-6-desaturase was replaced by homologous recombination by this construct, conferring resistance of the cells to paromomycin.
  • EXAMPLE 6 Micronucleus and Macronucleus Transformation of Tetrahymena with the Knock Out Constructs pgTHC :: neo and pgDES6 :: neo
  • Tetrahymena strains of different mating type were cultured separately in SPPA medium at 30 ° C with shaking (150 rpm) in Erlenmeyer flasks.
  • the cells were centrifuged for 5 min at room temperature (1200 g). The cells were washed three times with 50 ml of 10 mM Tris-HCl (pH 7.5) and finally resuspended in 50 ml of 10 mM Tris-HCl (pH 7.5) and mixed with antibiotic solution and then shaken in Erlenmeyer flasks at 30 ° C incubated.
  • the cell count of both cultures was determined again and adjusted with 10 mM Tris-HCl (pH 7.5) to 3 x 10 5 cells / ml. Thereafter, the cultures were incubated for a further 16-20 h at 30 ° C. After this starvation phase, the same (absolute) cell number was mixed by both cultures in a 2-L Erlenmeyer flask. The Cells were incubated at 30 ° C (initiation of conjugation) and after 2 h the efficiency of conjugation was determined. For a successful transformation about 30% of the cells should be present as pairs at this time.
  • the transformation was carried out by microparticle bombardment (see below).
  • paromomycin resistance By selecting for paromomycin resistance, transformed cells could be identified.
  • paromomycin 100 ⁇ g / ml final concentration
  • the cells were distributed in aliquots of 100 ⁇ l on 96-well microtiter plates. The cells were incubated in a humid box at 30 ° C. After 2-3 days, resistant clones could be identified.
  • True micronucleus transformants could be distinguished by resistance to 6-methylpurine from macronucleus transformants.
  • paromomycin 100 ⁇ g / ml final concentration
  • the cells were distributed in aliquots of 100 ⁇ l on 96-well microtiter plates. The cells were incubated in a humid box at 30 ° C. After 2-3 days, resistant clones could be identified. Positive clones were inoculated into fresh medium with 120 ⁇ g / ml paromomycin. By culturing the cells in this high paromomycin concentration was after reached a complete "phenotypic assortment" (Gaertig & Kapler (1999)) for several generations.
  • Tetrahymena thermophila was carried out by means of biolistic transformation, as in Bruns & Cassidy-Hanley (Methods in Cell Biology, Vol. 62 (1999) 501-512 ); Gaertig et al. (1999) Nature Biotech. 17: 462-465 ) or Cassidy-Hanley et al. ((1997) Genetics 146: 135-147 ) is described.
  • the handling of the Biolistic® PDS-1000 / He Particle Delivery System (BIO-RAD) is described in detail in the corresponding manual.
  • the gold particles 60 mg of the 0.6 ⁇ m gold particles (Biorad) were resuspended in 1 ml of ethanol. For this purpose, the particles were vigorously mixed 3 times for 1-2 minutes on a vortex. Subsequently, the particles were centrifuged for 1 min (10,000 g) and the supernatant was carefully removed with a pipette. The gold particles were resuspended in 1 ml of sterile water and centrifuged as above. This wash was repeated once, the particles resuspended in 1 ml of 50% glycerol and stored in aliquots of 100 ⁇ l at -20 ° C.
  • the prepared particles were carefully placed with a pipette on the center of a Macrocarriers.
  • the Macrocarrierer was then stored in a box with hygroscopic silica gel until transformation.
  • Tetrahymanol knock-out mutants (see Example 2) of Tetrahymena thermophila were used for the transformation.
  • the cells were cultivated in SPPA medium with the addition of 10 mg / l cholesterol.
  • the genomic fragment of the tetrahymanol cyclase (s. Fig. 1 ) the cells were in SPPA medium taken up without cholesterol and incubated at 30 ° C without shaking in the Erlenmeyer flask. After 3 h, the cells were transferred in aliquots of 100 ⁇ l to 96 well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C.
  • the first cholesterol-autotrophic clones could be identified. After about 5-7 days, the positive clones were inoculated into fresh medium. By daily inoculation of the cells over a period of about 2 weeks and multiple isolation of single cells, a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved. These clones were cultured for control in SPPA medium supplemented with paromomycin. After about 3-5 days, all cultures died. Ie. the clones had lost their resistance to paromomycin, which is due to the loss of the neo gene by homologous recombination.
  • the transformation was carried out analogously to Ex. 4.
  • delta-6 desaturase knock-out mutants see Ex. 5 of Tetrahymena thermophila were used.
  • the cells were cultivated in SPPA medium supplemented with 200 ⁇ g / ml borage oil (20-25% GLA, SIGMA).
  • the genomic delta-6 desaturase DNA fragment s. Fig. 6
  • the cells were taken up in SPPA medium without Borage oil and incubated at 30 ° C without shaking in Erlenmeyer flask. After 3 h, the cells were transferred in aliquots of 100 ⁇ l to 96 well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C.
  • the first GLA autotrophic clones could be identified. After about 5-7 days, the positive clones were inoculated into fresh medium. By daily inoculation of the cells over a period of about 2 weeks and multiple isolation of single cells, a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved. These clones were cultured for control in SPPA medium supplemented with paromomycin. After about 3-5 days died all cultures. Ie. the clones had lost their resistance to paromomycin, which is due to the loss of the neo gene by homologous recombination.
  • EXAMPLE 10 Restoration Transformation with the plasmid pgTHC coupled with the neomycin gene
  • the genomic fragment of tetra-methanol cyclase (pgTHC) was cut with the restriction enzyme Bgl II. This enzyme cleaves the genomic fragment outside of the coding exons at position 4537 in the 3 'untranslated region. After incubation with T4 DNA polymerase to blunt the ends, the neomycin cassette was ligated into the plasmid.
  • the plasmid p4T2-1 ⁇ H3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment comprising the neo-cassette was inserted into the already cut plasmid pgTHC into the 3 'untranslated sequence of the Tetrahymena triterpenoid cyclase ligated.
  • This construct (pgTHC + neo, s. Fig. 4 ) was used for the transformation of the tetrahymanol mutants.
  • the cells were taken up in SPPA medium without cholesterol and incubated at 30 ° C. without shaking in the Erlenmeyer flask. After 3 h, paromomycin was added and the cells transferred in 100 ⁇ l aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After about 2-3 days, the first cholesterol-autotrophic clones were identified that were simultaneously paromomycin-resistant. The positive clones were inoculated into fresh medium without the addition of cholesterol or paromomycin.
  • EXAMPLE 11 Restoration Transformation with the plasmid pgDES6 coupled with the neomycin gene
  • the genomic fragment of delta-6-desaturase (pgDES6) was cut with the restriction enzyme Sna BI. This enzyme cleaves the genomic fragment outside of the coding exons at position 747 in the 5 'untranslated region.
  • the plasmid p4T2-1 ⁇ H3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment comprising the neo-cassette was inserted into the already cut plasmid pgDES6 into the 5'-untranslated sequence of Tetrahymena delta-6 desaturase ligated.
  • This construct (pgDES6 + neo, s. Fig. 7 ) was used for the transformation of the delta-6 desaturase mutants.
  • the cells were taken up in SPPA medium without Borage oil and incubated at 30 ° C without shaking in the Erlenmeyer flask. After 3 h, paromomycin was added and the cells transferred in 100 ⁇ l aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After about 2-3 days, the first cholesterol-autotrophic clones were identified that were simultaneously paromomycin-resistant. The positive clones were inoculated into fresh medium without the addition of cholesterol or paromomycin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von genetisch modifizierten (rekombinanten) Ciliaten ohne den Einsatz von Negativselektionsmarkern und ein effizientes Verfahren zur Herstellung von Proteinen mittels dergestalt modifizierter Protisten.The present invention relates to a process for the production of genetically modified (recombinant) ciliates without the use of negative selection markers and to an efficient process for the production of proteins by means of the so-modified protists.

Die Produktion rekombinanter Proteine durch heterologe Proteinexpression stellt eine Alternative zur Gewinnung von Proteinen aus natürlichen Quellen dar. Natürliche Quellen für Proteine, die beispielsweise als Pharmazeutika dienen, sind oft limitiert, sehr teuer in der Reinigung oder stehen einfach nicht zur Verfügung. Außerdem können sie durch die Gefahr von toxischen oder insbesondere infektiösen Verunreinigungen sehr problematisch sein. Die Biotechnologie ermöglicht dagegen heute eine wirtschaftliche und sichere Produktion von einer ganzen Reihe von Proteinen in ausreichenden Mengen mittels heterologer Expression für verschiedenste Einsatzgebiete: z.B.: Antikörper (für die Diagnose, passive Immunisierung und Forschung), Hormone (wie Insulin, Erythropoietin (EPO), Interleukine usw. für den therapeutischen Einsatz), Enzyme (z.B. für den Einsatz in der Lebensmitteltechnologie, Diagnose, Forschung), Blutfaktoren (zur Behandlung von Hämophilie), Impfstoffe usw. ( Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 10: 227-252 ).The production of recombinant proteins by heterologous protein expression represents an alternative to the recovery of proteins from natural sources. Natural sources of proteins that serve, for example, as pharmaceuticals are often limited, very expensive to purify, or simply unavailable. In addition, they can be very problematic due to the risk of toxic or especially infectious contaminants. On the other hand, biotechnology today enables the economical and safe production of a whole range of proteins in sufficient quantities by means of heterologous expression for a wide variety of applications: eg antibodies (for diagnosis, passive immunization and research), hormones (such as insulin, erythropoietin (EPO), Interleukins, etc. for therapeutic use), enzymes (eg for use in food technology, diagnosis, research), blood factors (for the treatment of hemophilia), vaccines, etc. ( Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 10: 227-252 ).

Proteine für einen medizinischen Einsatz, besonders humane Proteine, müssen in ihren biochemischen, biophysikalischen und funktionalen Eigenschaften identisch mit dem natürlichen Protein sein. Bei einer rekombinanten Herstellung solcher Proteine durch heterologe Genexpression ist dabei zu beachten, dass es in eukaryotischen Zellen im Gegensatz zu Bakterien eine Reihe von posttranslationalen Proteinmodifizierungen gibt: Ausbildung von Disulfidbrücken, proteolytische Spaltung von Vorläuferproteinen, Modifizierungen von Aminosäureresten (Phosphorylierung, Acetylierung, Acylierung, Sulfatisierung, Carboxylierung, Myristylierung, Palmitylierung und insbesondere Glycosylierungen). Darüber hinaus werden Proteine in eukaryotischen Zellen oft erst durch einen komplexen Mechanismus unter Beteiligung von Chaperonen in die richtige dreidimensionale Struktur gebracht.Proteins for medical use, especially human proteins, must be identical in their biochemical, biophysical and functional properties to the natural protein. In a recombinant production of such proteins by heterologous gene expression is to be noted that there are a number of post-translational protein modifications in eukaryotic cells as opposed to bacteria: formation of disulfide bridges, proteolytic cleavage of precursor proteins, modifications of amino acid residues (phosphorylation, acetylation, acylation, sulfation , Carboxylation, myristylation, palmitylation and especially glycosylations). In addition, proteins in eukaryotic cells often become first brought into the correct three-dimensional structure through a complex mechanism involving chaperones.

Diese Modifizierungen spielen eine sehr wichtige Rolle hinsichtlich der spezifischen strukturellen und funktionalen Eigenschaften der Proteine, wie etwa der Aktivität von Enzymen, der Spezifität (Rezeptorbindung, Zellerkennung), Faltung, Löslichkeit etc. des Proteins ( Ashford & Platt 1998, in: Post-Translational Processing - A Practical Approach, Ed. Higgins & Hames, Oxford University Press, Chapter 4: 135-174 ; Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 7: 145-169 ).These modifications play a very important role in the specific structural and functional properties of the proteins, such as the activity of enzymes, the specificity (receptor binding, cell recognition), folding, solubility etc. of the protein ( Ashford & Platt 1998, in: Post-Translational Processing - A Practical Approach, Ed. Higgins & Hames, Oxford University Press, Chapter 4: 135-174 ; Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 7: 145-169 ).

Von der natürlichen Struktur abweichende Modifizierungen können beispielsweise zu Inaktivierung der Proteine führen oder ein hohes allergenes Potential besitzen.Deviations from the natural structure, for example, may lead to inactivation of the proteins or have a high allergenic potential.

Obwohl eine ganze Reihe von bakteriellen und eukaryotischen Expressionssystemen für die Produktion von rekombinanten Proteinen etabliert sind, gibt es kein universelles System, welches dass ganze Spektrum der - insbesondere bei eukaryotischen Proteinen - möglichen Proteinmodifikationen abdeckt und damit universell einsetzbar wäre ( Castillo 1995, Bioprocess Technology 21: 13-45 ; Geise et al. 1996, Prot. Expr. Purif. 8: 271-282 ; Verma et al. 1998 J. Immunological Methods 216: 165-181 ; Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 7: 145-169 ). Eine weiteres Problem besteht darin, dass einige der vielfach genutzen Systeme ungewöhnliche und teilweise unerwünschte posttranslationale Proteinmodifikationen einführen. So sind rekombinant exprimierte Proteine aus Hefen mitunter extrem stark mit Mannoseresten modifiziert. Diese sogenannten "high Mannose" Strukturen aus Hefen bestehen dabei aus ca. 8-50 Mannoseresten und unterscheiden sich damit erheblich von den mannosereichen Glycoproteinstrukturen aus Säugetierzellen, die maximal 5-9 Mannosereste aufweisen ( Moremen et al. 1994, Glycobiology 4(2): 113-125 ). Diese hefetypischen Mannosestrukturen sind starke Allergene und somit bei der Produktion von rekombinanten Glycoproteinen für einen therapeutischen Einsatz sehr problematisch ( Tuite et al. 1999, in Protein Expression - A Practical Approach, Ed. Higgins & Hames, Oxford University Press, Chapter 3: insbesondere Seite 76 ). Außerdem können in Hefen keine hybriden oder komplexen Glycoproteinstrukturen gebildet werden, was deren Einsatz als Expressionssystem weiter einschränkt.Although a whole range of bacterial and eukaryotic expression systems have been established for the production of recombinant proteins, there is no universal system which covers the entire spectrum of possible protein modifications-in particular in the case of eukaryotic proteins-and thus would be universally applicable ( Castillo 1995, Bioprocess Technology 21: 13-45 ; Geise et al. 1996, Prot. Expr. Purif. 8: 271-282 ; Verma et al. 1998 J. Immunological Methods 216: 165-181 ; Glick & Pasternak 1998, Molecular Biotechnology, ASM Press, Washington DC, Chapter 7: 145-169 ). Another problem is that some of the widely used systems introduce unusual and sometimes unwanted post translational protein modifications. Thus, recombinantly expressed proteins from yeasts are sometimes extremely strongly modified with mannose residues. These so-called "high mannose" structures of yeasts consist of about 8-50 mannose residues and thus differ considerably from the mannose-rich glycoprotein structures from mammalian cells which have a maximum of 5-9 mannose residues ( Moremen et al. 1994, Glycobiology 4 (2): 113-125 ). These yeast-typical mannose structures are strong allergens and thus very useful in the production of recombinant glycoproteins for therapeutic use problematic ( Tuite et al. 1999, in Protein Expression - A Practical Approach, Ed. Higgins & Hames, Oxford University Press, Chapter 3: especially page 76 ). In addition, no hybrid or complex glycoprotein structures can be formed in yeasts, further limiting their use as an expression system.

Pflanzen, die in letzter Zeit immer öfter als Produktionssysteme für rekombinante Proteine diskutiert und genutzt werden, weisen dagegen statt der für Säuger typischen Sialinsäure auf den Glykoproteinstrukturen Xylose auf (Ashford & Platt, s.o.). Xylose und die ebenfalls bei Pflanzen nachgewiesene α-1,3 verknüpfte Fucose können ein allergisches Risiko darstellen und sind somit problematisch ( Jenkins et al. 1996, Nature Biotech. 14: 975-981 ).In contrast, plants that have recently been discussed and used more frequently as production systems for recombinant proteins have xylose on the glycoprotein structures instead of mammalian sialic acid (Ashford & Platt, supra). Xylose and the α-1,3-linked fucose also found in plants can pose an allergic risk and are therefore problematic ( Jenkins et al. 1996, Nature Biotech. 14: 975-981 ).

Deshalb besteht gerade für neue, alternative eukaryotische Expressionssysteme ein großer Bedarf, vor allem als Alternative zu der sehr kostenintensiven und aufwendigen Herstellung von rekombinanten Proteinen mittels Säugerkulturzellen.Therefore, there is a great need for new, alternative eukaryotic expression systems, especially as an alternative to the very costly and expensive production of recombinant proteins using mammalian cells.

Ein solches System sollte idealerweise folgende Anforderungen erfüllen: Es müssen 1) Selektionsmarker und regulative DNA-Elemente (wie Transkriptions- und Translationssignale etc.) zur Verfügung stehen. 2) Das Expressionssystem sollte wichtige eukaryotische posttranslationale Proteinmodifizierungen ermöglichen und 3) die Herstellung der rekombinanten Proteine sollte möglichst einfach und wirtschaftlich sein, z.B. durch die Möglichkeit der Fermentation der Zellen oder Organismen im Produktionsmaßstab (beispielsweise mehrere 1000 L) auf einfachen Medien und einfache Aufarbeitung der Produkte.Such a system should ideally meet the following requirements: 1) Selection markers and regulatory DNA elements (such as transcriptional and translational signals, etc.) must be available. 2) The expression system should enable important eukaryotic post-translational protein modifications and 3) the production of the recombinant proteins should be as simple and economical as possible, e.g. by the possibility of fermentation of the cells or organisms on a production scale (for example, several 1000 L) on simple media and simple workup of the products.

Zu den bereits etablierten eukaryotischen Expressionssystemen wie z.B. Hefe-Säuger- oder Insektenkulturzellen könnten Protozoen oder Protisten (als Definition siehe z.B. Hendersons's dictionary of biological terms, 10th ed. 1989, Eleanor Lawrence, Longman Scientific & Technical, Engl and, oder Margulis et al. (Eds) 1990. Handbook of Protoctista, Jones & Bartlett, Bost on; van den Hoek et al. 1995, Algae - An introduction to phycology, Cambridge University Press ) eine interessante Alternative darstellen. Bei diesen Organismen handelt es sich um eine sehr heterogene Gruppe von eukaryotischen, in der Regel einzelligen Mikroorganismen. Sie besitzen die für eukaryotische Zellen typische Kompartimentierung und Differenzierung. Einige sind relativ nah verwandt mit höheren Eukaryoten, ähneln andererseits aber betreffend Kultivierung und Wachstum eher Hefen oder sogar Bakterien und lassen sich relativ leicht bei hoher Zelldichte auf einfachen Medien im großen Maßstab fermentieren.To the already established eukaryotic expression systems, such as yeast mammalian or insect culture cells, protozoa or protists (as definition see eg Henderson's Dictionary of biological terms, 10th ed. 1989, Eleanor Lawrence, Longman Scientific & Technical, Engl and, or Margulis et al. (Eds) 1990. Handbook of Protoctista, Jones & Bartlett, Bost one; van den Hoek et al. 1995, Algae - An introduction to phycology, Cambridge University Press ) represent an interesting alternative. These organisms are one very heterogeneous group of eukaryotic, usually single-celled microorganisms. They have the compartmentation and differentiation typical of eukaryotic cells. Some are relatively closely related to higher eukaryotes but, on the other hand, are more similar to yeasts or even bacteria in terms of culture and growth, and relatively easily ferment at high cell density on simple large scale media.

Ein für die Expression heterologer Proteine interessanter Protist ist beispielsweise der Ciliat Tetrahymena, insbesondere Tetrahymena thermophila. Es handelt sich dabei um einen nicht pathogenen, einzelligen, eukaryotischen Mikroorganismus, der relativ nah verwandt zu höheren Eukaryoten ist und die dafür typischen Zelldifferenzierungen aufweist. Die posttranslationalen Protein-Modifizierungen in Tetrahymena ähneln denen in Säugerzellen stärker, als z.B. die in Hefe oder anderen eukaryotischen Expressionssystemen nachgewiesenen. Beispielsweise findet man bei Tetrahymena keine stark antigenen Zuckerketten auf Glykoproteinen, wie in Hefe ("high-Mannose"-Strukturen), und pflanzlichen oder auf niederen Tierzellkulturen basierenden Expressionssystemen (Xylosereste) (siehe oben). Obwohl Tetrahymena ein echter, komplex differenzierter Eukaryot ist, ähnelt er in seinen Kultivierungs- und Wachstumseigenschaften eher den einfachen Hefen oder Bakterien und lässt sich gut auf relativ billigen Magermilchmedien im großen Maßstab fermentieren. Unter optimalen Bedingungen beträgt die Generationszeit etwa 1,5 - 3 h und es können sehr hohe Zelldichten (2,2 x 107 Zellen/ml, entsprechend 48 g/l Biotrockenmasse) erreicht werden ( Kiy und Tiedke 1992, Appl. Microbiol. Biotechnol. 37: 576-579 ; Kiy und Tiedke 1992, Appl. Microbiol. Biotechnol. 38: 141-146 ). Dadurch ist Tetrahymena für eine fermentative Produktion von rekombinanten Proteinen im großen Maßstab sehr interessant.A protist of interest for the expression of heterologous proteins is, for example, the ciliate Tetrahymena , in particular Tetrahymena thermophila . It is a non-pathogenic, unicellular, eukaryotic microorganism that is relatively closely related to higher eukaryotes and has the typical cell differentiation. The posttranslational protein modifications in Tetrahymena are more similar to those in mammalian cells than, for example, those detected in yeast or other eukaryotic expression systems. For example, in Tetrahymena, no strong antigenic sugar chains are found on glycoproteins, such as in yeast ("high mannose" structures), and plant or lower animal cell culture-based expression systems (xylose residues) (see above). Although Tetrahymena is a true, complexly differentiated eukaryote, it is more similar to simple yeasts or bacteria in its culturing and growth characteristics, and can be easily fermented on relatively cheap skim milk media on a large scale. Under optimal conditions, the generation time is approximately 1.5-3 h and very high cell densities (2.2 × 10 7 cells / ml, corresponding to 48 g / l of dry biomass) can be achieved ( Kiy and Tiedke 1992, Appl. Microbiol. Biotechnol. 37: 576-579 ; Kiy and Tiedke 1992, Appl. Microbiol. Biotechnol. 38: 141-146 ). This makes Tetrahymena very attractive for large-scale fermentative production of recombinant proteins.

Ein weiterer vorteilhafter Aspekt von Tetrahymena als Expressionssystem ist die Tatsache, dass in Tetrahymena eine Integration des heterologen Gens durch homologe DNA-Rekombination möglich ist. Dadurch können mitotisch stabile Transformanten erzeugt werden. Durch die homologe DNA-Rekombination sind darüber hinaus auch gezielte Gen-Ausschaltungen ("Knock-outs") möglich ( Bruns & Cassidy-Hanley in: Methods in Cell Biology, Volume 62, Ed. Asai & Forney, Academic Press (1999) 501-512 ; Hai et al. in: Methods in Cell Biology, Volume 62, Ed. Asai & Forney, Academic Press (1999) 514-531 ; Gaertig et al. (1999) Nature Biotech. 17: 462-465 oder Cassidy-Hanley et al. 1997 Genetics 146:135-147 ). Außerdem kann wahlweise der somatische Makronucleus oder der generative Mikronucleus transformiert werden. Bei der Makronucleustransformation erhält man sterile Transformanten, was aus Sicherheits- oder Akzeptanzfragen vorteilhaft sein kann.Another advantageous aspect of Tetrahymena as expression system is the fact that in Tetrahymena an integration of the heterologous gene by homologous DNA recombination is possible. As a result, mitotically stable transformants can be generated. In addition, homologous DNA recombination also enables targeted gene knock-outs ( Bruns & Cassidy-Hanley in: Methods in Cell Biology, Volume 62, Ed. Asai & Forney, Academic Press (1999) 501-512 ; Hai et al. in: Methods in Cell Biology, Volume 62, Ed. Asai & Forney, Academic Press (1999) 514-531 ; Gaertig et al. (1999) Nature Biotech. 17: 462-465 or Cassidy-Hanley et al. 1997 Genetics 146: 135-147 ). In addition, either the somatic macronucleus or the generative micronucleus can be transformed. In Makronucleustransformation obtained sterile transformants, which may be advantageous for security or acceptance issues.

Die Transformation von Tetrahymena kann durch Mikroinjektion, Elektroporation oder Mikropartikelbeschuss erreicht werden. Dafür stehen eine Reihe von Vektoren, Promotoren etc. zur Verfügung. Die Selektion der Transformanten erfolgt üblicherweise mittels eines Resistenzmarkers. So wurde Tetrahymena z. B. erfolgreich mit einem rDNA-Vektor transformiert. Selektion erfolgte in diesem Fall durch eine Paromomycin-Resistenz-Mutation der rRNA ( Tondravi et al. 1986, PNAS 83:4396 ; Yu et al. 1989, PNAS 86: 8487-8491 ). In weiteren Transformationsexperimenten wurden erfolgreich Cycloheximid- oder Neomycin-Resistenzen in Tetrahymena exprimiert ( Yao et al. 1991, PNAS 88:9493-9497 ; Kahn et al. 1993, PNAS 90: 9295-9299 ). Neben diesen Markergenen haben Gaertig et al. (1999, Nature Biotech. 17: 462-465 ) erfolgreich zwei rekombinante Proteine in Tetrahymena exprimiert (ein Fischparasiten-Antigen und ein partielles Ovalbumin aus dem Huhn). Die Selektion erfolgte mit Hilfe von Paclitaxel (Taxol). Dieses von Gaertig et al. entwickelte System ist zum Patent angemeldet ( WO 00/46381 ).The transformation of Tetrahymena can be achieved by microinjection, electroporation or microparticle bombardment. There are a number of vectors, promoters, etc. available. The selection of the transformants is usually carried out by means of a resistance marker. So Tetrahymena z. B. successfully transformed with a rDNA vector. Selection was made in this case by a paromomycin resistance mutation of the rRNA ( Tondravi et al. 1986, PNAS 83: 4396 ; Yu et al. 1989, PNAS 86: 8487-8491 ). In further transformation experiments, cycloheximide or neomycin resistances were successfully expressed in Tetrahymena ( Yao et al. 1991, PNAS 88: 9493-9497 ; Kahn et al. 1993, PNAS 90: 9295-9299 ). In addition to these marker genes have Gaertig et al. (1999, Nature Biotech. 17: 462-465 ) successfully expressed two recombinant proteins in Tetrahymena (a fish parasite antigen and a chicken partial ovalbumin). The selection was carried out with the aid of paclitaxel (taxol). This by Gaertig et al. developed system is patent pending ( WO 00/46381 ).

Nur für einige wenige weitere Protisten oder Protozoen wurden Verfahren zur Transformation und heterologen Proteinexpression beschrieben. Als weiterer Ciliat sei hier Paramecium ( Boileau et al. 1999, J. Eukaryot. Microbiol. 46: 56-65 ) erwähnt. Verschiedene Versuche zur Transformation und Expression rekombinanter Proteine wurden aber auch in parasitischen Protozoen, wie Trypanosoma, Leishmania, Plasmodium u. a. unternommen (Beverly 2000, WO 00/58483 ). Eine Übersicht darüber gibt Kelly (1997, Advances in Parasitology, Vol 39, 227-270 ). Eine Möglichkeit zur heterologen Proteinexpression wurde auch im Schleimpilz Dictyostelium discoideum gezeigt ( Manstein et al. 1995, Gene 162: 129-134 , Jung und Williams 1997, Biotechnol. Appl. Biochem. 25: 3-8 ) aber auch in photoautotrophen Protisten (Mikroalgen) wie Chlamydomonas ( Hall et al. 1993, Gene 124: 75-81 ), Volvox ( Schiedlmeier et al. 1994, PNAS 91: 5080-5084 ), bestimmten Dinoflagellaten ( ten Lohuis & Miller 1998, Plant Journal 13: 427-435 ) und Diatomeen ( Dunahay et al. 1995, J. Phycol. 31: 1004-1012 ). In den meisten Fällen wurden dabei jedoch lediglich einfache Resistenzmarker oder nicht-humane Selektionsmarker exprimiert.Only a few other protists or protozoans have been described for transformation and heterologous protein expression. Another ciliate is paramecium ( Boileau et al. 1999, J. Eukaryot. Microbiol. 46: 56-65 ) mentioned. However, various attempts have also been made to transform and express recombinant proteins in parasitic protozoa, such as Trypanosoma, Leishmania, Plasmodium and others (Beverly 2000, WO 00/58483 ). An overview of it gives Kelly (1997, Advances in Parasitology, Vol. 39, 227-270 ). One possibility for heterologous protein expression was also shown in the slime mold Dictyostelium discoideum ( Manstein et al. 1995, Gene 162: 129-134 . Jung and Williams 1997, Biotechnol. Appl. Biochem. 25: 3-8 ) but also in photoautotrophic protists (microalgae) like Chlamydomonas ( Hall et al. 1993, Gene 124: 75-81 ), Volvox ( Schiedlmeier et al. 1994, PNAS 91: 5080-5084 ), certain dinoflagellates ( Lohuis & Miller 1998, Plant Journal 13: 427-435 ) and diatoms ( Dunahay et al. 1995, J. Phycol. 31: 1004-1012 ). In most cases, however, only simple resistance markers or non-human selection markers were expressed.

Keiner dieser Organismen wurde bisher in größerem Maßstab für die Produktion von rekombinanten Proteinen eingesetzt. Ein großes Problem für viele dieser und weiterer, möglicherweise interessanter Systeme ist das Fehlen gut etablierter gentechnologischer Methoden und insbesondere von molekularbiologischen "Werkzeugen", wie beispielsweise Vektoren, Markern etc.None of these organisms has been used on a larger scale for the production of recombinant proteins. A major problem for many of these and other potentially interesting systems is the lack of well-established genetic engineering techniques and, in particular, molecular biological "tools" such as vectors, markers, etc.

Dabei ist das Vorhandensein eines selektiven Markers eine notwendige Voraussetzung, um Zellen gezielt genetisch modifizieren zu können. In der Regel erfolgt die Selektion transformierter Zellen oder Organismen durch Negativselektionsmarker, meist die Resistenz gegen ein Antibiotikum (z.B. Ampicillin, Kanamycin, Tetracyclin, Neomycin usw.). Selten kommt die Selektion durch Einbringen eines essentiellen Gens in einen - dieses Genprodukt betreffenden- defekten Zelltyp zum Einsatz (positive Selektion oder Selektion durch Komplementierung). Dazu gehören z.B. LEU- oder URA3- basierte Selektionssysteme bei Hefen (siehe Glick & Pasternak, Molecular Biotechnology, Principles and Applications of Recombinant DNA, 1998, 2nd ed., ASM Press, Washington, D.C. Seiten 109-169 ). Für die noch wenig untersuchten "neuen Organismen" wie die bereits genannten Protisten, steht dieser zweite Ansatz jedoch nicht zur Verfügung. Dadurch ist die Nutzbarkeit dieser Systeme, vor allem für die Herstellung rekombinanter Proteine im Produktionsmaßstab, stark eingeschränkt.The presence of a selective marker is a necessary prerequisite for genetically modifying cells. In general, the selection of transformed cells or organisms by negative selection marker, usually the resistance to an antibiotic (eg, ampicillin, kanamycin, tetracycline, neomycin, etc.). Rarely, selection is made by introducing an essential gene into a defective cell type that affects this gene product (positive selection or selection by complementation). These include, for example, LEU- or URA3-based selection systems in yeasts (see Glick & Pasternak, Molecular Biotechnology, Principles and Applications of Recombinant DNA, 1998, 2nd ed., ASM Press, Washington, DC pages 109-169 ). However, this second approach is not available for the little-studied "new organisms" such as the already mentioned protists. As a result, the usability of these systems, especially for the production of recombinant proteins on a production scale, severely limited.

Die negative Selektion birgt generell gravierende Nachteile. Zum einen muss für das gewünschte Produkt unnötige DNA in den Produktionsorganismus eingebracht werden, was Bedenken hinsichtlich der biologischen Sicherheit, aber vor allem der öffentlichen Akzeptanz hervorrufen kann. Zum anderen müssen die Organismen zur Aufrechterhaltung des Selektionsdrucks während der gesamten Produktionszeit in Gegenwart der entsprechenden Antibiotika kultiviert werden, was die Kosten ev. enorm in die Höhe treibt. Es sind nicht nur die Kosten für das Antibiotikum selbst, bzw. die Entsorgung der Produktionsabfälle (Medien, ...) zu berücksichtigen, sondern auch die Aufarbeitung der Proteine kann sich ungleich schwieriger gestalten. Aber abgesehen von Wirtschaftlichkeit sind Umweltverträglichkeit, biologische, bzw. gentechnologische Sicherheit und wiederum vor allem die öffentliche Akzeptanz als sehr problematisch einzustufen. Zudem stellen sich Probleme rein technischer Natur, wenn der Organismus mehrfach transformiert werden muss. Die gleichzeitige Gegenwart mehrer Antibiotika bzw. die gleichzeitige Expression meherer Antibiotikumresistenzgene kann sich, sofern überhaupt möglich, äußerst nachteilig auf die Organsimen auswirken, bzw. zu ungeahnten Nebeneffekten führen.Negative selection generally has serious disadvantages. On the one hand, unnecessary DNA has to be added to the production organism for the desired product which may raise concerns about biosafety but, above all, public acceptance. On the other hand, the organisms have to be cultivated in the presence of the corresponding antibiotics during the entire production time in order to maintain the selection pressure, which in turn enormously increases the costs. It is not only the costs of the antibiotic itself, or the disposal of production waste (media, ...) to be considered, but also the processing of the proteins can be much more difficult. But apart from cost-effectiveness, environmental compatibility, biological or genetic engineering safety and, above all, public acceptance are very problematic. In addition, problems of a purely technical nature arise when the organism has to be transformed several times. The simultaneous presence of several antibiotics or the simultaneous expression of several antibiotic resistance genes may, if at all possible, have an extremely adverse effect on the organisms or lead to unexpected side effects.

In Anbetracht des Standes der Technik war es nun Aufgabe der vorliegenden Erfindung, ein Verfahren zur positiven Selektion genetisch modifizierter Protisten zur Verfügung zu stellen, das unter anderem eine effiziente Produktion von rekombinanten Proteinen ermöglicht.In view of the prior art, it was therefore an object of the present invention to provide a method for the positive selection of genetically modified protists, which, inter alia, allows efficient production of recombinant proteins.

Gelöst wird diese, sowie weitere nicht explizit genannte Aufgaben, die jedoch aus den hierin einleitend diskutierten Zusammenhängen ohne weiteres ableitbar oder erschließbar sind, durch die in den Patentansprüchen definierten Ausführungformen der vorliegenden Erfindung.This is solved, as well as other tasks not explicitly mentioned, but which are readily derivable or deducible from the contexts discussed hereinbelow by the embodiments of the present invention as defined in the claims.

Ein Verfahren zur Herstellung rekombinanter Ciliaten zur Verfügung zu stellen, gelingt auf erstaunlich einfache Art und Weise, indem man eine auxotrophe Mutante des Ciliaten herstellt, diese Mutante anschliessend mit rekombinanter DNA, die mindestens ein Gen zur Komplementierung der entsprechenden Auxotrophie enthält, transformiert und schließlich die resultierenden rekombinanten Ciliaten auf einem Minimalmedium, das nur entsprechend komplementierten Ciliaten das Wachstum ermöglicht, selektioniert, wobei Ciliaten der Genera Paramecium und Tetrahymena eingesetzt werden. Insbesondere ist für dieses Verfahren, um den Selektionsdruck dauerhaft aufrecht zu erhalten, schlussendlich weder eine Selektion auf eine Resistenz gegen ein Antibiotikum notwendig, noch auch nur die Gegenwart unerwünschter ev. heterologer Gene im rekombinanten Organismus. Eine Zugabe von Antibiotika zum Kultivierungsmedium kann somit unterbleiben. Das Verfahren läßt sich auch problemlos mehrmals auf denselben Organismen-Stamm anwenden, diesen mit verschiedensten gewünschten rekombinanten Genen transformierend, ohne jedwede (Über-) Expression weiterer ev. unerwünschter Gene.A method for the production of recombinant ciliates can be achieved in a surprisingly simple manner by preparing an auxotrophic mutant of the ciliate, then transforming this mutant with recombinant DNA which contains at least one gene for complementation of the corresponding auxotrophy, and finally the resulting recombinant ciliates on a minimal medium, which allows growth only in accordance with complemented ciliates, Ciliates of the genera Paramecium and Tetrahymena are used. Especially For this method, in order to permanently maintain the selection pressure, ultimately neither a selection for a resistance against an antibiotic nor even the presence of undesired heterologous genes in the recombinant organism is necessary. An addition of antibiotics to the culture medium can thus be omitted. The method can also be easily applied several times to the same organism strain, transforming it with a variety of desired recombinant genes, without any (over) expression of further ev. Unwanted genes.

Unter einem anderen Aspekt der vorliegenden Erfindung kann auf ebenso einfache Art und Weise ein Verfahren zur Herstellung rekombinanter Proteine zur Verfügung gestellt werden, indem man in vorgehend beschriebener Weise rekombinante Ciliaten herstellt, wobei die rekombinante DNA zur Transformation der Ciliaten zusätzlich mindestens ein funktionelles rekombinantes Gen für ein zu exprimierendes Protein umfasst. Die rekombinanten Ciliaten werden im Folgenden kultiviert, sodass die Proteine exprimiert werden und anschliessend isoliert werden können.In another aspect of the present invention, a method of producing recombinant proteins can be provided in an equally simple manner by preparing recombinant ciliates as described above, the recombinant DNA additionally comprising at least one functional recombinant gene for transforming the ciliates a protein to be expressed. The recombinant ciliates are subsequently cultivated so that the proteins can be expressed and subsequently isolated.

Bei einer bevorzugten Ausführungsform der vorliegenden Erfindung erfolgt die Herstellung der auxotrophen Mutante durch Knock-out eines essentiellen Gens. Der Knock-out kann durch vollständige Deletion des entsprechenden Gens oder aber durch Mutation desselben erreicht werden. Unter Mutationen versteht man beispielsweise Insertionen, Deletionen, Inversionen oder auch nur den Austausch einzelner Basenpaare. Gen-Deletionen bzw. Mutationen können mittels dem Fachmann bekannten Verfahren in den Zielorgansimus eingeführt werden. Unter anderem bieten sich hier in-vitro Mutagenese, beispielsweise durch ungenaue PCR (error-prone PCR) oder etwa nach der Kunkel-Methode ( Sambrook et al. Molecular Cloning, A Laboratory Manual, Coldspring Harbor, NY ) an, oder Exon-shuffling oder Gene site saturation mutagenization (GSSM) (siehe z.B.: www.Diversa.com und www.Maxygen.com)In a preferred embodiment of the present invention, the production of the auxotrophic mutant is accomplished by knock-out of an essential gene. The knock-out can be achieved by complete deletion of the corresponding gene or by mutation of the same. Mutations are, for example, insertions, deletions, inversions or even the exchange of individual base pairs. Gene deletions or mutations can be introduced into the target organism by methods known to those skilled in the art. Inter alia, here in vitro mutagenesis, for example, by inaccurate PCR (error-prone PCR) or about the Kunkel method ( Sambrook et al. Molecular Cloning, A Laboratory Manual, Coldspring Harbor, NY ), or exon-shuffling or gene site saturation mutagenization (GSSM) (see eg: www.Diversa.com and www.Maxygen.com)

Für die Zwecke der vorliegenden Erfindung versteht man unter essentiellen Genen für die Herstellung einer auxotrophen Knock-out Mutante essentielle Stoffwechselgene, wie z.B. der Fettsäure-, Sterol-, Aminosäurebiosynthese etc., deren Ausfall durch Zugabe der entsprechenden Moleküle (Fettsäuren, Sterole, Aminosäuren etc.) ins Kultivierungsmedium ausgeglichen werden können (dann auch Marker genannt). Durch den gezielten Knock-out solcher Gene werden die Zellen auxotroph für Produkte dieses Stoffwechselweges. In der vorliegenden Erfindung wird dies beispielhaft für den Sterol- und die Fettsäurebiosynthese beschrieben. Durch die Zugabe des entsprechenden Stoffwechselproduktes, d.h. Cholesterol, bzw. Fettsäuren können die Zellen diesen Knock-out überleben. Ohne die Zusätze sterben die Zellen rasch ab.For the purposes of the present invention, essential genes for the production of an auxotrophic knock-out mutant are understood to be essential metabolic genes, e.g. fatty acid, sterol, amino acid biosynthesis, etc., whose failure can be compensated for by adding the appropriate molecules (fatty acids, sterols, amino acids, etc.) into the culture medium (also called marker). By targeted knock-out of such genes, the cells become auxotrophic for products of this metabolic pathway. In the present invention, this is exemplified for sterol and fatty acid biosynthesis. By adding the appropriate metabolite, i. Cholesterol, or fatty acids, the cells can survive this knock-out. Without the additives, the cells die quickly.

Gene, die beispielsweise für eine Triterpenoid-Cyclase (synonym für Tetrahymanol-Cyclase), eine delta-6-Desaturase oder eine delta-9-Desaturase codieren, sind daher erfindungsgemäß geeignete Ziele für einen Knock-out, um eine auxotrophe Mutante des respektiven Organismus herzustellen.Genes encoding, for example, a triterpenoid cyclase (synonym for tetrahymanol cyclase), a delta-6-desaturase or a delta-9-desaturase are therefore, according to the invention, suitable targets for a knockout to be an auxotrophic mutant of the respective organism manufacture.

Ein erfindungsgemäß bevorzugtes Gen für eine Triterpenoid-Cyclase wurde in der Deutschen Patentanmeldung DE 199 57 889 A1 beschrieben. Ein erfindungsgemäß bevorzugtes Gen für eine delta-6-Desaturase wurde in der Deutschen Patentanmeldung DE 100 44 468 A1 beschrieben. Ein erfindungsgemäß bevorzugtcs Gen für eine delta-9-Desaturase wurde von Nakashima S. et al. m Biochem. J. 317, 29-34 (1996 ) beschrieben, die respektive Sequenz findet sich in der GenBank unter der Accession No.: EMBL D83478. Zum Thema GenBank siehe Benson, D.A. et al., Nuc. Acid Res., 28 (1), 15-18 (2000 ).A preferred gene for a triterpenoid cyclase according to the invention was disclosed in the German patent application DE 199 57 889 A1 described. A preferred gene for a delta-6-desaturase according to the invention was disclosed in the German patent application DE 100 44 468 A1 described. A preferred gene for a delta-9-desaturase according to the invention was obtained from Nakashima S. et al. m Biochem. J. 317, 29-34 (1996 ), the respective sequence can be found in the GenBank under Accession No .: EMBL D83478. See GenBank Benson, DA et al., Nuc. Acid Res., 28 (1), 15-18 (2000 ).

Erfindungsgemäß erlangen die Zellen durch das Wiedereinbringen des ausgeschalteten Gens, erneut ihre Autotrophie für dieses Stoffwechselprodukt. In diesem Falle spricht man davon, dass die Auxotrophie komplementiert wird. Die Selektion auf erfolgreich transformierte Zellen erfolgt in Minimalmedium, d. h. im Speziellen unter Weglassung des Stoffwechselproduktes, für das die nicht erfolgreich transformierten Organismen auxotroph sind. Erfindungsgemäß wird unter einem Minimalmedium ein Medium verstanden, das alle notwendigen Bausteine, die ein Überleben der Zellen ermöglichen, enthält (Kohlenstoffquelle(n), wie beispielsweise Zucker, Stickstoffquelle(n), ev. Aminosäuren, Vitamine, Spurenelemente etc.), das aber eben jenes Stoffwechselprodukt nicht enthält, für das der Ausgangsorganismus auxotroph ist.According to the invention, by reintroducing the switched-off gene, the cells regain their autotrophy for this metabolite. In In this case it is said that the auxotrophy is complemented. The selection for successfully transformed cells is carried out in minimal medium, ie in particular omitting the metabolite for which the non-successfully transformed organisms are auxotrophic. According to the invention, a minimal medium is to be understood as a medium which contains all the necessary building blocks which make it possible to survive the cells (carbon source (s), such as, for example, sugar, nitrogen source (s), possibly amino acids, vitamins, trace elements, etc.) just does not contain that metabolite for which the parent organism is auxotrophic.

Wird nun dieses die Auxotrophie komplementierende Gen an ein zu exprimierendes für ein heterologes Protein codierendes Gen gekoppelt, können die Transformanten ohne Zugabe eines Selektionsmarkers identifiziert werden und darüber hinaus ist die erfolgreiche stabile Expression nicht abhängig von der Zugabe eines Selektionsmarkers, wie es z. B. typischerweise bei rekombinanten E. coli der Fall ist. Als weiterer positiver Effekt wird, außer dem zu exprimierenden Zielgen, keinerlei Fremd-DNA in die Zelle eingebracht. Zusätzlich wird bei Organismen, bei denen homologe Rekombination stattfindet (z. B. Tetrahymena), die DNA nicht zufällig im Genom integriert sondern an einer bestimmten Position, nämlich der natürlichen Position des Markergens.When this gene, which complements the auxotrophy, is coupled to a gene coding for a heterologous protein, the transformants can be identified without the addition of a selection marker, and moreover the successful stable expression is not dependent on the addition of a selection marker, as described e.g. B. is typically the case with recombinant E. coli . As a further positive effect, apart from the target gene to be expressed, no foreign DNA is introduced into the cell. In addition, in organisms in which homologous recombination occurs (eg, Tetrahymena ), the DNA is not randomly integrated into the genome but at a certain position, namely the natural position of the marker gene.

Es ist dem Fachmann jedoch klar, dass eine Komplementierung der Auxotrophie auch mittels entsprechender heterologer oder in-vitro modifizierter Gene erfolgen kann.However, it is clear to the person skilled in the art that auxotrophy can also be complemented by means of corresponding heterologous or in vitro modified genes.

Erfindungsgemäß sind für zur Selektion nach dem oben beschriebenen Verfahren geeignete transformierte Ciliaten, der Genera Paramecium oder Tetrahymena, besonders bevorzugt der Spezies Tetrahymena thermophila.According to the invention suitable for selection by the method described above, transformed ciliates, the genera Paramecium or Tetrahymena , particularly preferably the species Tetrahymena thermophila .

Rekombinante DNA zur Transformation der auxotrophen Protistenmutante kann z. B. ein Vektor sein, d. h. jede Art von Nukleinsäre, wie z. B. ein Plasmid, Cosmid, Virus, eine sich autonom replizierende Sequenz, ein Phage, ein lineares oder zirkuläres, einzel- oder doppel-strängiges DNA oder RNA Molekül, das sich im Zielorganismus selbst replizieren kann oder ins Genom eingebaut werden kann, zumindest aber im Zielorganismus funktionelle Sequenzen enthält.Recombinant DNA for the transformation of the auxotrophic protist mutant can, for. B. be a vector, ie any kind of nucleic acids, such as. A plasmid, cosmid, virus, an autonomously replicating sequence, a phage, a linear or circular, single or double stranded DNA or RNA molecule which is in the target organism can replicate itself or can be incorporated into the genome, but at least in the target organism contains functional sequences.

Erfindungsgemäß versteht man unter funktionellen Sequenzen solche DNA Abschnitte, die ihre jeweilige Funktion auch im rekombinbanten Organismus erfüllen können.According to the invention, functional DNA sequences are understood as meaning those DNA segments which can fulfill their respective function in the recombinant organism.

Unter einem funktionellen Gen versteht man für die Zwecke der vorliegenden Erfindung beispielsweise ein Gen, das im Zielorganismus exprimiert werden kann. Insbesondere umfasst ein funktionelles Gen daher neben einer codierenden Sequenz, einen im Zielorganismus funktionellen Promotor, der zur Transkription der codierenden Sequenz führt. Ein dergestalt funktioneller Promotor kann unter anderem eine oder mehrere TATA-Boxen, CCAAT-Boxen, GC-Boxen oder Enhancer-Sequenzen aufweisen. Weiters kann das funktionelle Gen einen im Zielorganismus funktionellen Terminator umfassen der zum Abbruch der Trankription führt und Signalsequenzen enthält, die zur Polyadenylierung der mRNA führen. Die codierende Sequenz des funktionellen Gens weist ferner alle für die Translation im Zielorgansimus notwendigen Eigenschaften auf (beispielsweise Start-Codon (z.B. ATG), Stop-Codon (z.B. TGA, im Speziellen bei Tetrahymena) A-reiche Regionen vor dem Start (Translation initiation sites), Kozak-Sequenzen, Poly-A Stelle. Das Gen kann auch die für den jeweiligen rekombinanten Organismus spezifische Codonusage aufweisen (für Tetrahymena siehe beispielsweise Wuitschick & Karrer, J. Eukaryot. Microbiol. (1999 )).For the purposes of the present invention, a functional gene is understood as meaning, for example, a gene which can be expressed in the target organism. In particular, a functional gene therefore comprises, in addition to a coding sequence, a promoter functional in the target organism, which leads to the transcription of the coding sequence. Such a functional promoter may include , but not limited to, one or more TATA boxes, CCAAT boxes, GC boxes or enhancer sequences. Furthermore, the functional gene may include a functional terminator in the target organism which leads to the termination of the transcription and contains signal sequences that lead to the polyadenylation of the mRNA. The coding sequence of the functional gene also has all the properties necessary for translation in the target organism (for example, start codon (eg ATG), stop codon (eg TGA, in particular Tetrahymena ) A-rich regions before start (Translation initiation sites ), Kozak sequences, poly A site The gene may also have the specific recombinant organism codonusage (for Tetrahymena see, for example Wuitschick & Karrer, J. Eukaryot. Microbiol. (1999 )).

Erfindungsgemäß handelt es sich bei einem rekombinanten Gen für ein in einem rekombinanten Ciliaten zu exprimierendes Protein bei einem Verfahren zur Herstellung rekombinanter Proteine um ein homologes oder ein heterologes Gen. Handelt es sich um ein heterologes Gen wird es bevorzugterweise aus einem Vertebraten isoliert, besonders bevorzugt aus dem Menschen. Ein bevorzugtes Beispiel hierfür ist menschliches Erythropoietin. Weitere erfindungsgemäß bevorzugte rekombinante Gene für in rekombinanten Ciliaten zu exprimierende Proteine sind solche aus Organismen, die beim Menschen oder bei Tieren Krankheiten auslösen können (wie z. B.: Malaria), um mit Hilfe der rekombinanten Proteine oder auch der die rekombinanten Proteine enthaltenden Biomasse oder Teilen davon, eine aktive Immunisierung erreichen zu können.According to the invention, a recombinant gene for a protein to be expressed in a recombinant ciliate in a process for producing recombinant proteins is a homologous or a heterologous gene. If it is a heterologous gene, it is preferably isolated from a vertebrate, more preferably from humans. A preferred example of this is human erythropoietin. Further recombinant genes which are preferred according to the invention for proteins to be expressed in recombinant ciliates are those from organisms which are capable of inducing diseases in humans or in animals (such as, for example: malaria), with the aid of recombinant proteins or also the biomass containing the recombinant proteins or parts thereof, to be able to achieve an active immunization.

Beschreibung der Abbildungen:

  • Abb. 1: Struktur des Tetrahymanol-Gens pgTHC
  • Abb. 2: Tetrahymanol-Knock-out Konstrukt pgTHC::neo
  • Abb. 3: Expressionskonstrukt pBTHC
  • Abb. 4: Struktur des Tetrahymanol-Cyclase/neo Konstruktes pgTHC+neo
  • Abb. 5: Delta-6 Desaturase Knock-out Konstrukt pgDES6::neo
  • Abb. 6: Struktur des genomischen delta-6 Desaturase-Gens pgDES6
  • Abb. 7: Struktur des delta-6 Desaturase/neo Konstruktes pgDES6+neo
Description of the pictures:
  • Fig. 1 : Structure of the Tetrahymanol gene pgTHC
  • Fig. 2 : Tetrahymanol knock-out construct pgTHC :: neo
  • Fig. 3 : Expression construct pBTHC
  • Fig. 4 : Structure of the tetrahymanol cyclase / neo construct pgTHC + neo
  • Fig. 5 : Delta-6 desaturase knock-out construct pgDES6 :: neo
  • Fig. 6 : Structure of the genomic delta-6 desaturase gene pgDES6
  • Fig. 7 : Structure of delta-6 desaturase / neo construct pgDES6 + neo

Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung, ohne die Erfindung auf diese Beispiele einzugrenzen.The following examples serve to illustrate the invention, without limiting the invention to these examples.

BEISPIEL 1: Organismen und Kultivierungsbedingungen EXAMPLE 1: Organisms and Culture Conditions

Tetrahymena thermophila (Stämme B1868 VII, B2086 II, B*VI, CU428, CU427, CU522, zur Verfügung gestellt von Dr. J. Gaertig, University of Georgia, Athens, GA, USA) wurden in modifiziertem SPP-Medium (2% Proteosepeptone, 0,1% Hefeextrakt, 0,2% Glucose, 0,003% Fe-EDTA (Gaertig et al. (1994) PNAS 91:4549-4553)) bzw. Magermilchmedium (2% Magermilchpulver, 0,5% Hefeextrakt, 1% Glucose, 0,003% Fe-EDTA) oder MYG-Medium (2% Magermilchpulver, 0,1% Hefeextrakt, 0,2% Glucose, 0,003% Fe-EDTA) mit Zusatz von Antibiotika-Lösung (100 U/ml Penicillin, 100 µg/ml Streptomycin und 0,25 µg/ml Amphotericin B (SPPA-Medium)) bei 30 °C in 50 ml Volumen in 250 ml Erlenmeyerkolben unter Schütteln (150 U/min) kultiviert. Tetrahymena thermophila (strains B1868 VII, B2086 II, B * VI, CU428, CU427, CU522, provided by Dr. J. Gaertig, University of Georgia, Athens, GA, USA) were prepared in modified SPP medium (2% proteose peptone , 0.1% yeast extract, 0.2% glucose, 0.003% Fe-EDTA (Gaertig et al. (1994) PNAS 91: 4549-4553)) or skimmed milk medium (2% skimmed milk powder, 0.5% yeast extract, 1% Glucose, 0.003% Fe-EDTA) or MYG medium (2% skimmed milk powder, 0.1% yeast extract, 0.2% glucose, 0.003% Fe-EDTA) with addition of antibiotic solution (100 U / ml penicillin, 100 μg / ml streptomycin and 0.25 μg / ml amphotericin B (SPPA medium)) at 30 ° C in 50 ml volume in 250 ml Erlenmeyer flasks with shaking (150 rev / min) cultured.

Plasmide und Phagen wurden in E. coli XL1-Blue MRF', TOP10F' oder JM109 (Stratagene, Invitrogen, GibcoBRL Life Technologies) vermehrt und selektiert. Die Kultivierung der Bakterien erfolgte unter Standardbedingungen in LB- oder NZY-Medium, mit Antibiotika in Standardkonzentrationen ( Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring, New York ).Plasmids and phages were propagated and selected in E. coli XL1-Blue MRF ', TOP10F' or JM109 (Stratagene, Invitrogen, GibcoBRL Life Technologies). The bacteria were cultivated under standard conditions in LB or NZY medium, with antibiotics in standard concentrations ( Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring, New York ).

BEISPIEL 2: Herstellung des Triterpenoid-Cyclase Knock-out Konstruktes EXAMPLE 2: Preparation of Triterpenoid Cyclase Knockout Construct

Für die Herstellung des Knock-out Konstruktes wurde in die genomische Sequenz der Triterpenoid-Cyclase (Patentanmeldung DE 199 57 889 A1 ) eine neo-Kassette aus dem Plasmid p4T2-1ΔH3 ( Gaertig et al. (1994) Nucl. Acids Res. 22:5391-5398 ) inseriert. Dabei handelt es sich um das Neomycin-Resistenzgen unter der Kontrolle des Tetrahymena Histon H4-Promoters und der 3' flankierenden Sequenz des BTU2 Gens. Dieses Konstrukt vermittelt in Tetrahymena eine Resistenz gegenüber Paromomycin. Das Plasmid p4T2-1ΔH3 wurde mit Eco RV/Sma I geschnitten und das ca. 1,4 kb große Fragment, umfassend die neo-Kassette wurde in das mit Eco RV geschnittene Plasmid pgTHC in die genomische Sequenz der Tetrahymena Triterpenoid-Cyclase ligiert. Dadurch wurde das Plasmid pgTHC::neo erzeugt (s. Abb. 2). Bei einer erfolgreichen Transformation wurde durch homologe Rekombination das Gen für die Triterpenoid-Cyclase durch dieses Konstrukt ersetzt, wodurch eine Resistenz der Zellen gegenüber Paromomycin vermittelt wurde.For the production of the knock-out construct was in the genomic sequence of triterpenoid-cyclase (patent application DE 199 57 889 A1 ) a neo-cassette from the plasmid p4T2-1ΔH3 ( Gaertig et al. (1994) Nucl. Acids Res. 22: 5391-5398 ) advertised. It is the neomycin resistance gene under the control of the Tetrahymena histone H4 promoter and the 3 'flanking sequence of the BTU2 gene. This construct mediates resistance to paromomycin in Tetrahymena . The plasmid p4T2-1ΔH3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment comprising the neo cassette was ligated into the Eco RV cut plasmid pgTHC into the genomic sequence of Tetrahymena triterpenoid cyclase. As a result, the plasmid pgTHC :: neo was generated (s. Fig. 2 ). In a successful transformation, the construct for triterpenoid cyclase was replaced by homologous recombination by this construct, thereby conferring resistance of the cells to paromomycin.

BEISPIEL 3: Herstellung des Expressionskonstruktes pBTHC EXAMPLE 3: Production of the Expression Construct pBTHC

Der Vektor pBICH3 ( Gaertig et al. 1999 Nature Biotech. 17: 462-465 , WO 00/46381 ) enthält die kodierende Sequenz des Ichthyophthirius I-Antigen (G1) Präprotein flankiert von den nicht kodierenden, regulativen Sequenzen des Tetrahymena thermophila BTU1-Gens. Ein modifiziertes Plasmid (pBICH3-Nsi) mit einer Nsi I Schnittstelle am Start (zur Verfügung gestellt von J. Gaertig, University of Georgia, Athens, GA, USA) wurde benutzt, um das Tetrahymanol-Cyclase Expressionskonstrukt pBTHC herzustellen. Dazu wurden mittels PCR Nsi I und Bam HI Schnittstellen am Start und Stop der kodierenden Sequenzen der Tetrahymanol-Cyclase von Tetrahymena eingefügt. Für die PCR wurden isolierte Plasmide, welche die vollständigen cDNA-Sequenzen der Tetrahymanol-Cyclase enthalten (pTHC) als Template eingesetzt. Die Primer

  • THC-Nsi-F: 5'- CTCTTTCATACATGCATAAGATACTCATAGGC-3' (SEQ ID No 1) und
  • THC-Bam-R: 5'- GGCTTGGATCCTCAAATATTTTATTTTTATACAGG-3' (SEQ ID No 2)
erzeugten PCR-Produkte, welche die vollständige kodierende Sequenz der Tetrahymanol-Cyclase, flankiert von Nsi I und Bam HI Schnittstellen, enthielten. Die PCR-Produkte und das Plasmid pBICH3-Nsi wurden mit den Restriktionsenzymen Nsi I und Bam HI geschnitten, über ein Agarosegel gereinigt und ligiert (s. Abb. 3). Das so entstandene Expressionskonstrukt pBTHC enthielt die vollständige die Triterpenoid-Cyclase kodierende Sequenz inseriert in einem korrekten Leseraster in die regulatorischen Sequenzen des BTU1 Gens. Für die Transformation von Tetrahymena wurden die Konstrukte durch einen Verdau mit den Restriktionsenzymen Xba I und Sal I linearisiert.The vector pBICH3 ( Gaertig et al. 1999 Nature Biotech. 17: 462-465 . WO 00/46381 ) contains the coding sequence of the Ichthyophthirius I antigen (G1) preprotein flanked by the non-coding, regulatory sequences of the Tetrahymena thermophila BTU1 gene. A modified plasmid (pBICH3-Nsi) with an Nsi I interface at the start (provided by J. Gaertig, University of Georgia, Athens, GA, USA) was used to prepare the tetrahymanol cyclase expression construct pBTHC. For this purpose, by means of PCR Nsi I and Bam HI cleavage sites at the start and stop of the coding sequences of Tetrahymanol cyclase of Tetrahymena were inserted. For the PCR, isolated plasmids containing the complete cDNA sequences of the tetrahymanol cyclase (pTHC) were used as template. The primers
  • THC-Nsi-F: 5'-CTCTTTCATACATGCATAAGATACTCATAGGC-3 '(SEQ ID No 1) and
  • THC-Bam-R: 5'-GGCTTGGATCCTCAAATATTTTATTTTTATACAGG-3 '(SEQ ID No 2)
generated PCR products containing the complete coding sequence of the tetrahymanol cyclase flanked by Nsi I and Bam HI cleavage sites. The PCR products and the plasmid pBICH3-Nsi were cut with the restriction enzymes Nsi I and Bam HI, purified on an agarose gel and ligated (s. Fig. 3 ). The resulting expression construct pBTHC contained the complete triterpenoid cyclase coding sequence inserted in a correct reading frame into the regulatory sequences of the BTU1 gene. For the transformation of Tetrahymena , the constructs were linearized by digestion with the restriction enzymes Xba I and Sal I.

Bei einer erfolgreichen Transformation wurde durch homologe Rekombination das BTU1-Gen durch diese Konstrukte ersetzt, wodurch eine Resistenz der Zellen gegenüber Paclitaxel vermittelt wurde.In a successful transformation, homologous recombination replaced the BTU1 gene with these constructs, conferring cell resistance to paclitaxel.

BEISPIEL 4: Macronucleus-Transformation von Tetrahymena mit dem Tetrahymanol-Cyclase Expressionskonstrukt pBTHC EXAMPLE 4: Macronucleus Transformation of Tetrahymena with the Tetrahymanol Cyclase Expression Construct pBTHC

Für eine Transformation wurden 5 x 106 Tetrahymena thermophila Zellen (CU522) eingesetzt. Die Kultivierung der Zellen erfolgte in 50 ml SPPA-Medium bei 30 °C in einem 250 ml Erlenmeyerkolben auf einem Schüttler bei 150 RPM bis zu einer Zelldichte von ca. 3-5 x 105 Zellen/ml. Die Zellen wurden durch Zentrifugation (1200 g) für 5 min pelletiert und das Zellpellet wurde in 50 ml 10 mM Tris-HCl (pH 7,5) resuspendiert und wie vorher zentrifugiert. Dieser Waschschritt wurde wiederholt und die Zellen in 10 mM Tris-HCl (pH 7,5, plus Antibiotika) bei einer Zelldichte von 3 x 105 Zellen/ml resuspendiert, in einen 250ml Erlenmeyerkolben überführt und für 16-20 h ohne Schütteln bei 30 °C inkubiert (Hungerphase). Nach der Hungerphase wurde erneut die Zellzahl bestimmt, wie oben zentrifugiert und die Zellen mit 10 mM Tris-HCl (pH 7,5) auf eine Konzentration von 5 x 106 Zellen/ml eingestellt. Ein ml der Zell-Suspension wurde für die Transformation benutzt. Die Transformation erfolgte mittels Mikropartikelbeschuss (siehe unten). Zur Regeneration wurden die Zellen in SSPA-Medium aufgenommen und bei 30 °C ohne Schütteln im Erlenmeyerkolben inkubiert. Nach 3 h wurde Paclitaxel® in einer Endkonzentration von 20 µM zugegeben und die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten überführt. Die Zellen wurden in einer feuchten, abgedunkelten Box bei 30 °C inkubiert. Nach 2-3 Tagen konnten Paclitaxel-resistente Klone identifiziert werden. Positive Klone wurden in frisches Medium mit 25 µM Paclitaxel überimpft. Durch Kultivierung der Zellen in steigender Paclitaxel-Konzentration (bis 80 µM) wurde ein komplettes "phenotypic assortment" (Gaertig & Kapler (1999)) erreicht.For a transformation, 5 × 10 6 Tetrahymena thermophila cells (CU522) were used. The cells were cultivated in 50 ml of SPPA medium at 30 ° C. in a 250 ml Erlenmeyer flask on a shaker at 150 rpm to a cell density of about 3-5 × 10 5 cells / ml. The cells were through Centrifugation (1200 g) for 5 min and the cell pellet was resuspended in 50 ml of 10 mM Tris-HCl (pH 7.5) and centrifuged as before. This washing step was repeated and the cells resuspended in 10 mM Tris-HCl (pH 7.5, plus antibiotics) at a cell density of 3 x 10 5 cells / ml, transferred to a 250 ml Erlenmeyer flask and shaken for 30-60 h without shaking ° C incubated (starvation phase). After the starvation phase, the cell count was again determined, centrifuged as above, and the cells were adjusted with 10 mM Tris-HCl (pH 7.5) to a concentration of 5 × 10 6 cells / ml. One ml of the cell suspension was used for the transformation. Transformation was by microparticle bombardment (see below). For regeneration, the cells were taken up in SSPA medium and incubated at 30 ° C without shaking in the Erlenmeyer flask. After 3 h, Paclitaxel® was added at a final concentration of 20 μM and the cells transferred in 100 μl aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After 2-3 days, paclitaxel-resistant clones could be identified. Positive clones were inoculated into fresh medium with 25 μM paclitaxel. By cultivating the cells in increasing paclitaxel concentration (up to 80 μM), a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved.

Zur Analyse der Klone wurden ca. 4 ml Kulturen in SPPA mit Paclitaxel angezogen, DNA isoliert ( Jacek Gaertig et al. (1994) PNAS 91:4549-4553 ) und durch PCR die in den BTU1-Locus integrierte DNA amplifiziert. Als Primer dienten die BTU1 spezifischen PrimerFor analysis of the clones, about 4 ml cultures were grown in SPPA with paclitaxel, DNA isolated ( Jacek Gaertig et al. (1994) PNAS 91: 4549-4553 ) and amplified by PCR the integrated into the BTU1 locus DNA. The primers used were the BTU1-specific primers

BTUI-5'F (AAAAATAAAAAAGTTTGAAAAAAAACCTTC (SEQ ID No 3), ca 50 bp vor dem Startcodon und BTU1-3'R (GTTTAGCTGACCGATTCAGTTC (SEQ ID No 4), 3 bp hinter dem Stopcodon. Die PCR-Produkte wurden ungeschnitten und mit Hind III, Sac I oder Pst I geschnitten auf einem 1%igen Agarosegel analysiert. Vollständiges "phenotypic assortment" wurde über RT-PCR mit den BTU1 spezifischen Primern (Gaertig & Kapler (1999)) überprüft.BTUI-5'F (AAAAATAAAAAGTTTGAAAAAAACCTTC (SEQ ID No 3), ca 50 bp before the start codon and BTU1-3'R (GTTTAGCTGACCGATTCAGTTC (SEQ ID No 4), 3 bp behind the stop codon PCR products were uncut and Hind III, Sac I or Pst I, cut on a 1% agarose gel, and complete phenotypic assortment was checked by RT-PCR with the BTU1-specific primers (Gaertig & Kapler (1999)).

BEISPIEL 5: Herstellung des delta-6-Desaturase Knock-out Konstruktes pgDES6::neo EXAMPLE 5: Preparation of the delta-6-desaturase knock-out construct pgDES6 :: neo

Für die Herstellung des Knock-out Konstruktes wurde in die genomische Sequenz der delta-6-Desaturase eine neo-Kassette aus dem Plasmid p4T2-1ΔH3 (Patentanmeldung DE 100 44 468 A1 ) inseriert. Dabei handelt es sich um das Neomycin-Resistenzgen unter der Kontrolle des Tetrahymena Histon H4-Promoters und der 3' flankierenden Sequenz des BTU2 Gens. Dieses Konstrukt vermittelt in Tetrahymena eine Resistenz gegenüber Paromomycin. Das Plasmid P4T2-1ΔH3 wurde mit Eco RV/Sma I geschnitten und das ca. 1,4 kb große Fragment der neo-Kassette wurde in das mit Eco RV geschnittene Plasmid pgDES6 (Patentanmeldung DE 100 44 468 A1 ) in die genomische Sequenz der Tetrahymena delta-6-Desaturase ligiert (s. Abb. 5). Dadurch wurde das Plasmid pgDES6::neo erzeugt. Bei einer erfolgreichen Transformation wurde durch homologe Rekombination das Gen für die delta-6-Desaturase durch dieses Konstrukt ersetzt, wodurch eine Resistenz der Zellen gegenüber Paromomycin vermittelt wurde.For the production of the knock-out construct, a neo-cassette from the plasmid p4T2-1ΔH3 (patent application DE 100 44 468 A1 ) advertised. It is the neomycin resistance gene under the control of the Tetrahymena histone H4 promoter and the 3 'flanking sequence of the BTU2 gene. This construct mediates resistance to paromomycin in Tetrahymena . The plasmid P4T2-1ΔH3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment of the neo-cassette was inserted into the Eco RV cut plasmid pgDES6 (patent application DE 100 44 468 A1 ) are ligated into the genomic sequence of Tetrahymena delta-6-desaturase (s. Fig. 5 ). This generated the plasmid pgDES6 :: neo. In a successful transformation, the gene for delta-6-desaturase was replaced by homologous recombination by this construct, conferring resistance of the cells to paromomycin.

BEISPIEL 6: Micronucleus- und Macronucleus-Transformation von Tetrahymena mit den Knock-out Konstrukten pgTHC::neo und pgDES6::neo EXAMPLE 6: Micronucleus and Macronucleus Transformation of Tetrahymena with the Knock Out Constructs pgTHC :: neo and pgDES6 :: neo

Tetrahymena Stämme unterschiedlichen Paarungstyps (CU428 VII und B2086 II) wurden getrennt in SPPA-Medium bei 30 °C unter Schütteln (150 Upm) in Erlenmeyerkolben kultiviert. Bei einer Zelldichte von 3-5 x 105 Zellen/ml wurden die Zellen 5 min bei Raumtemperatur zentrifugiert (1200 g). Die Zellen wurden dreimal mit 50 ml 10 mM Tris-HCl (pH 7,5) gewaschen und schließlich in 50 ml 10 mM Tris-HCl (pH 7,5) resuspendiert und mit Antibiotika-Lösung versetzt und daraufhin ohne Schütteln in Erlenmeyerkolben bei 30 °C inkubiert. Nach ca. 4 h wurde die Zellzahl beider Kulturen erneut bestimmt und mit 10 mM Tris-HCl (pH 7,5) auf 3 x 105 Zellen/ml eingestellt. Daraufhin wurden die Kulturen für weitere 16-20 h bei 30 °C inkubiert. Nach dieser Hungerphase wurde von beiden Kulturen die gleiche (absolute) Zellzahl in einem 2-L Erlenmeyerkolben gemischt. Die Zellen wurden bei 30 °C inkubiert (Beginn der Konjugation) und nach 2 h wurde die Effizienz der Konjugation bestimmt. Für eine erfolgreiche Transformation sollten zu diesem Zeitpunkt ca. 30% der Zellen als Paare vorliegen. Tetrahymena strains of different mating type (CU428 VII and B2086 II) were cultured separately in SPPA medium at 30 ° C with shaking (150 rpm) in Erlenmeyer flasks. At a cell density of 3-5 x 10 5 cells / ml, the cells were centrifuged for 5 min at room temperature (1200 g). The cells were washed three times with 50 ml of 10 mM Tris-HCl (pH 7.5) and finally resuspended in 50 ml of 10 mM Tris-HCl (pH 7.5) and mixed with antibiotic solution and then shaken in Erlenmeyer flasks at 30 ° C incubated. After about 4 h, the cell count of both cultures was determined again and adjusted with 10 mM Tris-HCl (pH 7.5) to 3 x 10 5 cells / ml. Thereafter, the cultures were incubated for a further 16-20 h at 30 ° C. After this starvation phase, the same (absolute) cell number was mixed by both cultures in a 2-L Erlenmeyer flask. The Cells were incubated at 30 ° C (initiation of conjugation) and after 2 h the efficiency of conjugation was determined. For a successful transformation about 30% of the cells should be present as pairs at this time.

Für die Micronucleus-Transformation wurden 3 h, 3,5 h, 4 h und 4,5 h nach Beginn der Konjugation jeweils 1 x 107 konjugierende Zellen (5 x 106 Paare) 5 min bei 1200 g zentrifugiert und das Zellpellet in 1 ml 10 mM Tris-HCl (pH 7,5) resuspendiert.For the micronucleus transformation, 1 × 10 7 conjugating cells (5 × 10 6 pairs) were centrifuged for 5 min at 1200 g for 5 h, 3.5 h, 4 h and 4.5 h after the beginning of the conjugation, and the cell pellet in 1 10 mM Tris-HCl (pH 7.5).

Für die Transformation der neuen Macronucleus-Anlagen wurden 11 h nach Beginn der Konjugation Zellen wie oben zentrifugiert und in Tris-HCl resuspendiert.For the transformation of the new Macronucleus plants, cells were centrifuged 11 hours after the start of conjugation as above and resuspended in Tris-HCl.

Die Transformation erfolgte mittels Mikropartikelbeschuss (s. u.).The transformation was carried out by microparticle bombardment (see below).

Für die Kultivierung der Tetrahymanol-Cyclase Knock-out-Mutanten wurden 10 µg/ml Cholesterol zum Medium zugegeben.For the cultivation of the tetrahymanol cyclase knock-out mutants, 10 μg / ml cholesterol was added to the medium.

Für die Kultivierung der delta-6-Desaturase Knock-out-Mutanten wurden 200 µg/ml Borage-Öl (20-25% GLA; SIGMA) zum Medium zugegeben.For the cultivation of the delta-6-desaturase knockout mutants, 200 μg / ml borage oil (20-25% GLA, SIGMA) was added to the medium.

Durch Selektion auf Paromomycinresistenz konnten transformierte Zellen identifiziert werden. Bei der Transformation des Mikronucleus wurde 11 h nach Beginn der Konjugation Paromomycin (100 µg/ml Endkonzentration) zugegeben und die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten verteilt. Die Zellen wurden in einer feuchten Box bei 30 °C inkubiert. Nach 2-3 Tagen konnten resistente Klone identifiziert werden. Echte Mikronucleus-Transformanten konnten anhand der Resistenz gegenüber 6-Methylpurin von Macronucleus-Transformanten unterschieden werden. Bei der Transformation des Macronucleus wurde ca. 4 h nach der Transformation Paromomycin (100 µg/ml Endkonzentration) zugegeben und die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten verteilt. Die Zellen wurden in einer feuchten Box bei 30 °C inkubiert. Nach 2-3 Tagen konnten resistente Klone identifiziert werden. Positive Klone wurden in frisches Medium mit 120 µg/ml Paromomycin überimpft. Durch Kultivierung der Zellen in dieser hohen Paromomycin-Konzentration wurde nach einigen Generationen ein komplettes "phenotypic assortment" (Gaertig & Kapler (1999)) erreicht.By selecting for paromomycin resistance, transformed cells could be identified. In the transformation of the micronucleus, paromomycin (100 μg / ml final concentration) was added 11 hours after the beginning of the conjugation and the cells were distributed in aliquots of 100 μl on 96-well microtiter plates. The cells were incubated in a humid box at 30 ° C. After 2-3 days, resistant clones could be identified. True micronucleus transformants could be distinguished by resistance to 6-methylpurine from macronucleus transformants. In the transformation of the macronucleus, paromomycin (100 μg / ml final concentration) was added about 4 hours after the transformation and the cells were distributed in aliquots of 100 μl on 96-well microtiter plates. The cells were incubated in a humid box at 30 ° C. After 2-3 days, resistant clones could be identified. Positive clones were inoculated into fresh medium with 120 μg / ml paromomycin. By culturing the cells in this high paromomycin concentration was after reached a complete "phenotypic assortment" (Gaertig & Kapler (1999)) for several generations.

Durch Kreuzung der Micronucleus-Transformanten mit einem B*VI-Stamm konnten homozygote Knock-out-Mutanten erzeugt werden ( Bruns & Cassidy-Hanley, Methods in Cell Biology, Volume 62 (1999) 229-240 ).By crossing the micronucleus transformants with a B * VI strain, homozygous knockout mutants could be generated ( Bruns & Cassidy-Hanley, Methods in Cell Biology, Volume 62 (1999) 229-240 ).

BEISPIEL 7: Biolistische Transformation (Mikropartikelbeschuss) EXAMPLE 7: Biolistic Transformation (Microparticle Bombardment)

Die Transformation von Tetrahymena thermophila erfolgte mittels biolistischer Transformation, wie sie bei Bruns & Cassidy-Hanley (Methods in Cell Biology, Volume 62 (1999) 501-512 ); Gaertig et al. (1999) Nature Biotech. 17: 462-465 ) oder Cassidy-Hanley et al. ((1997) Genetics 146:135-147 ) beschrieben ist. Die Handhabung des Biolistic® PDS-1000/He Particle Delivery System (BIO-RAD) ist detailiert im zugehörigen Handbuch beschrieben.The transformation of Tetrahymena thermophila was carried out by means of biolistic transformation, as in Bruns & Cassidy-Hanley (Methods in Cell Biology, Vol. 62 (1999) 501-512 ); Gaertig et al. (1999) Nature Biotech. 17: 462-465 ) or Cassidy-Hanley et al. ((1997) Genetics 146: 135-147 ) is described. The handling of the Biolistic® PDS-1000 / He Particle Delivery System (BIO-RAD) is described in detail in the corresponding manual.

Für die Transformation werden 6 mg Goldpartikel (0,6 µm; BIO-RAD) mit 10 µg linearisierter Plasmid DNA beladen ( Sanford et al. (1991) Biotechniques 3:3-16 ; Bruns & Cassidy-Hanley (1999) Methods in Cell Biology, Volume 62: 501-512 ).For the transformation, 6 mg of gold particles (0.6 μm, BIO-RAD) are loaded with 10 μg of linearized plasmid DNA ( Sanford et al. (1991) Biotechniques 3: 3-16 ; Bruns & Cassidy-Hanley (1999) Methods in Cell Biology, Volume 62: 501-512 ).

Vorbereitung der Goldpartikel: 60 mg der 0,6 µm Goldpartikel (Biorad) wurden in 1 ml Ethanol resuspendiert. Dazu wurden die Partikel 3 mal für je 1-2 min auf einem Vortex kräftig gemixt. Anschließend wurden die Partikel für 1 min zentrifugiert (10000 g) und der Überstand vorsichtig mit einer Pipette abgenommen. Die Goldpartikel wurden in 1 ml sterilem Wasser resuspendiert und wie oben zentrifugiert. Dieser Waschschrill wurde einmal wiederholt, die Partikel in 1 ml 50%igem Glycerol resuspendiert und in Aliquots zu 100 µl bei -20 °C gelagert.Preparation of the gold particles: 60 mg of the 0.6 μm gold particles (Biorad) were resuspended in 1 ml of ethanol. For this purpose, the particles were vigorously mixed 3 times for 1-2 minutes on a vortex. Subsequently, the particles were centrifuged for 1 min (10,000 g) and the supernatant was carefully removed with a pipette. The gold particles were resuspended in 1 ml of sterile water and centrifuged as above. This wash was repeated once, the particles resuspended in 1 ml of 50% glycerol and stored in aliquots of 100 μl at -20 ° C.

Vorbereiten der Transformation: Die Macrocarrierhalter, Macrocarrier und Stopscreens wurden für mehrere Stunden in 100% Ethanol, die Rupture Disks in Isopropanol gelagert. Ein Macrocarrier wurde anschließend in den MacrocarrierHalter eingesetzt und an der Luft getrocknet.Preparing the Transformation: The Macrocarrierhalter, Macrocarrier and Stopscreens were stored for several hours in 100% ethanol, the Rupture Disks in isopropanol. A Macrocarrier was then inserted into the MacrocarrierHalter and dried in the air.

Beladung der Goldpartikel mit DNA: Alle Arbeiten erfolgten bei 4 °C. Goldpartikel, vorbereiteter Vektor, 2,5 M CaCl2, 1 M Spermidine, 70% und 100% Ethanol wurden auf Eis gekühlt. 10 µl der linearisierten Vektor-DNA (1 µg/ml) wurden zu 100 µl vorbereiteten Goldpartikeln gegeben und für 10 sec vorsichtig gevortext. Anschließend wurden erst 100 µl 2,5 M CaCl2 zugegeben, 10 sec gevortext und dann 40 µl 1 M Spermidine zugegeben und 10 min vorsichtig gevortext. Nach Zugabe von 200 µl 70%igem Ethanol wurden die Partikel für 1 min gevortext und dann 1 min bei 10000 g zentrifugiert. Das Pellet wurde in 20 µl 100%igem Ethanol resuspendiert, zentrifugiert und dann in 35 µl 100%igem Ethanol resuspendiert.Loading the gold particles with DNA: All work was done at 4 ° C. Gold particles, prepared vector, 2.5M CaCl 2 , 1M spermidine, 70% and 100% ethanol were chilled on ice. 10 μl of the linearized vector DNA (1 μg / ml) was added to 100 μl of prepared gold particles and gently vortexed for 10 sec. Subsequently, only 100 μl of 2.5 M CaCl 2 were added, vortexed for 10 seconds and then 40 μl of 1 M spermidine added and gently vortexed for 10 min. After adding 200 μl of 70% ethanol, the particles were vortexed for 1 min and then centrifuged at 10,000 g for 1 min. The pellet was resuspended in 20 μl of 100% ethanol, centrifuged and then resuspended in 35 μl of 100% ethanol.

Die so vorbereiteten Partikel wurden vorsichtig mit einer Pipette auf das Zentrum eines Macrocarriers gegeben. Der Macrocarrierer wurde anschließend bis zur Transformation in einer Box mit hygroskopischen Silicagel gelagert.The prepared particles were carefully placed with a pipette on the center of a Macrocarriers. The Macrocarrierer was then stored in a box with hygroscopic silica gel until transformation.

Transformation: Ein ml der vorbereiteten Zellen (siehe oben) wurde in die Mitte eines mit 10 mM Tris-HCl (pH 7,5) angefeuchteten Rundfilters in einer Petrischale gegeben und in die unterste Einschubleiste der Transformationskammer des Biolistic® PDS-1000/He Particle Delivery Systems eingesetzt. Die Transformation erfolgte mit den vorbereiteten Goldpartikeln bei einem Druck von 900 psi (zwei 450 psi Rupture Disks) und einem Vacuum von 27 inches Hg in der Transformationskammer. Anschließend wurden die Zellen sofort in einen Erlenmeyerkolben mit 50 ml SPPA-Medium überführt und bei 30 °C ohne Schütteln inkubiert.Transformation: One ml of the prepared cells (see above) was placed in the center of a 10 micron Tris-HCl (pH 7.5) wetted round filter in a Petri dish and in the bottom shelf of the transformation chamber of the Biolistic® PDS-1000 / He Particle Delivery Systems used. The transformation was carried out with the prepared gold particles at a pressure of 900 psi (two 450 psi rupture disks) and a 27 inches Hg vacuum in the transformation chamber. Subsequently, the cells were immediately transferred to an Erlenmeyer flask with 50 ml SPPA medium and incubated at 30 ° C without shaking.

BEISPIEL 8: Wiederherstellungs-Transformation von Tetrahymanol Knock-out Mutanten mit dem genomischen Tetrahymanol-Cyclase Plasmid pgTHC EXAMPLE 8: Restoration Transformation of Tetrahymanol Knock-out Mutants with the Tetracygenyl Cyclase Genomic Plasmid pgTHC

Die Transformation erfolgte analog zu Bsp. 4. Für die Transformation wurden Tetrahymanol-Knock-out Mutanten (s. Bsp. 2) von Tetrahymena thermophila eingesetzt. Die Kultivierung der Zellen erfolgte in SPPA-Medium mit Zusatz von 10 mg/l Cholesterol. Nach der Transformation (s.o.) mit dem genomischen Fragment der Tetrahymanolcyclase (s. Abb. 1) wurden die Zellen in SPPA-Medium ohne Cholesterol aufgenommen und bei 30 °C ohne Schütteln im Erlenmeyerkolben inkubiert. Nach 3 h wurden die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten überführt. Die Zellen wurden in einer feuchten, abgedunkelten Box bei 30 °C inkubiert. Nach etwa 2-3 Tagen konnten die ersten Cholesterolautotrophen Klone identifiziert werden. Nach ca. 5-7 Tagen wurden die positiven Klone in frisches Medium überimpft. Durch tägliches Umimpfen der Zellen über einen Zeitraum von ca. 2 Wochen und mehrfaches isolieren von Einzellzellen wurde ein komplettes "phenotypic assortment" (Gaertig & Kapler (1999)) erreicht. Diese Klone wurden zur Kontrolle in SPPA-Medium unter Zusatz von Paromomycin kultiviert. Nach ca. 3-5 Tagen starben alle Kulturen ab. D. h. die Klone hatten ihre Resistenz gegenüber Paromomycin verloren, was im Verlust des Neo-Gens durch die homologe Rekombination begründet ist.The transformation was carried out analogously to Example 4. Tetrahymanol knock-out mutants (see Example 2) of Tetrahymena thermophila were used for the transformation. The cells were cultivated in SPPA medium with the addition of 10 mg / l cholesterol. After transformation (see above) with the genomic fragment of the tetrahymanol cyclase (s. Fig. 1 ) the cells were in SPPA medium taken up without cholesterol and incubated at 30 ° C without shaking in the Erlenmeyer flask. After 3 h, the cells were transferred in aliquots of 100 μl to 96 well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After about 2-3 days, the first cholesterol-autotrophic clones could be identified. After about 5-7 days, the positive clones were inoculated into fresh medium. By daily inoculation of the cells over a period of about 2 weeks and multiple isolation of single cells, a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved. These clones were cultured for control in SPPA medium supplemented with paromomycin. After about 3-5 days, all cultures died. Ie. the clones had lost their resistance to paromomycin, which is due to the loss of the neo gene by homologous recombination.

BEISPIEL 9: Wiederherstellungs-Transformation von delta-6 Desaturase Knock-out Mutanten mit dem delta-6 Plasmid pgDES6 EXAMPLE 9: Restoration Transformation of delta-6 desaturase knockout mutants with the delta-6 plasmid pgDES6

Die Transformation erfolgte analog zu Bsp. 4. Für die Transformation wurden delta-6 Desaturase-Knock-out Mutanten (s. Bsp. 5) von Tetrahymena thermophila eingesetzt. Die Kultivierung der Zellen erfolgte in SPPA-Medium mit Zusatz von 200µg/ml Borage-Öl (20-25% GLA; SIGMA). Nach der Transformation (s.o.) mit dem genomischen delta-6 Desaturase DNA-Fragment (s. Abb. 6) wurden die Zellen in SPPA-Medium ohne Borage-Öl aufgenommen und bei 30 °C ohne Schütteln im Erlenmeyerkolben inkubiert. Nach 3 h wurden die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten überführt. Die Zellen wurden in einer feuchten, abgedunkelten Box bei 30 °C inkubiert. Nach etwa 2-3 Tagen konnten die ersten GLA-autotrophen Klone identifiziert werden. Nach ca. 5-7 Tagen wurden die positiven Klone in frisches Medium überimpft. Durch tägliches Umimpfen der Zellen über einen Zeitraum von ca. 2 Wochen und mehrfaches isolieren von Einzellzellen wurde ein komplettes "phenotypic assortment" (Gaertig & Kapler (1999)) erreicht. Diese Klone wurden zur Kontrolle in SPPA-Medium unter Zusatz von Paromomycin kultiviert. Nach ca. 3-5 Tagen starben alle Kulturen ab. D. h. die Klone hatten ihre Resistenz gegenüber Paromomycin verloren, was im Verlust des Neo-Gens durch die homologe Rekombination begründet ist.The transformation was carried out analogously to Ex. 4. For the transformation, delta-6 desaturase knock-out mutants (see Ex. 5) of Tetrahymena thermophila were used. The cells were cultivated in SPPA medium supplemented with 200 μg / ml borage oil (20-25% GLA, SIGMA). After transformation (see above) with the genomic delta-6 desaturase DNA fragment (s. Fig. 6 ), the cells were taken up in SPPA medium without Borage oil and incubated at 30 ° C without shaking in Erlenmeyer flask. After 3 h, the cells were transferred in aliquots of 100 μl to 96 well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After about 2-3 days, the first GLA autotrophic clones could be identified. After about 5-7 days, the positive clones were inoculated into fresh medium. By daily inoculation of the cells over a period of about 2 weeks and multiple isolation of single cells, a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved. These clones were cultured for control in SPPA medium supplemented with paromomycin. After about 3-5 days died all cultures. Ie. the clones had lost their resistance to paromomycin, which is due to the loss of the neo gene by homologous recombination.

BEISPIEL 10: Wiederherstellungs-Transformation mit dem Plasmid pgTHC gekoppelt mit dem Neomycin-Gen EXAMPLE 10: Restoration Transformation with the plasmid pgTHC coupled with the neomycin gene

Die Transformation erfolgte analog zu Bsp. 8. Es wurde ein Vektor eingesetzt, der wie folgt aufgebaut war:The transformation was carried out analogously to Ex. 8. A vector was used which was constructed as follows:

Das genomische Fragment der Tetraymanol-Cyclase (pgTHC) wurde mit dem Restriktionsenzym Bgl II geschnitten. Dieses Enzym schneidet das genomische Fragment außerhalb der kodierenden Exons an Position 4537 im 3'-untranslatierten Bereich. Nach Inkubation mit T4 DNA-Polymerase zum glätten der Enden wurde die Neomycin-Kassette in das Plasmid ligiert. Dazu wurde das Plasmid p4T2-1ΔH3 mit Eco RV/Sma I geschnitten und das ca. 1,4 kb große Fragment, umfassend die neo-Kassette, wurde in das bereits geschnittene Plasmid pgTHC in die 3'-untranslatierte Sequenz der Tetrahymena Triterpenoid-Cyclase ligiert.The genomic fragment of tetra-methanol cyclase (pgTHC) was cut with the restriction enzyme Bgl II. This enzyme cleaves the genomic fragment outside of the coding exons at position 4537 in the 3 'untranslated region. After incubation with T4 DNA polymerase to blunt the ends, the neomycin cassette was ligated into the plasmid. For this, the plasmid p4T2-1ΔH3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment comprising the neo-cassette was inserted into the already cut plasmid pgTHC into the 3 'untranslated sequence of the Tetrahymena triterpenoid cyclase ligated.

Dieses Konstrukt (pgTHC+neo, s. Abb. 4) wurde für die Transformation der Tetrahymanol-Mutanten benutzt. Nach der Transformation (s.o.) wurden die Zellen in SPPA-Medium ohne Cholesterol aufgenommen und bei 30 °C ohne Schütteln im Erlenmeyerkolben inkubiert. Nach 3 h wurde Paromomycin zugegeben und die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten überführt. Die Zellen wurden in einer feuchten, abgedunkelten Box bei 30 °C inkubiert. Nach etwa 2-3 Tagen konnten die ersten cholesterolautotrophen Klone identifiziert werden, die gleichzeitig Paromomycin resistent waren. Die positiven Klone wurden in frisches Medium ohne Zusatz von Cholesterol oder Paromomycin überimpft. Durch tägliches Umimpfen der Zellen über einen Zeitraum von ca. 2 Wochen und mehrfaches isolieren von Einzellzellen wurde ein komplettes "phenotypic assortment" (Gaertig & Kapler (1999)) erreicht. Diese Zellen zeigten gutes Wachstum auch nach Zugabe von Paromomycin.This construct (pgTHC + neo, s. Fig. 4 ) was used for the transformation of the tetrahymanol mutants. After transformation (see above), the cells were taken up in SPPA medium without cholesterol and incubated at 30 ° C. without shaking in the Erlenmeyer flask. After 3 h, paromomycin was added and the cells transferred in 100 μl aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After about 2-3 days, the first cholesterol-autotrophic clones were identified that were simultaneously paromomycin-resistant. The positive clones were inoculated into fresh medium without the addition of cholesterol or paromomycin. By daily inoculation of the cells over a period of about 2 weeks and multiple isolation of single cells, a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved. These cells showed good growth even after adding paromomycin.

BEISPIEL 11: Wiederherstellungs-Transformation mit dem Plasmid pgDES6 gekoppelt mit dem Neomycin-Gen EXAMPLE 11: Restoration Transformation with the plasmid pgDES6 coupled with the neomycin gene

Die Transformation erfolgte analog zu Bsp. 9. Es wurde ein Vektor eingesetzt, der wie folgt aufgebaut war:The transformation was carried out analogously to Ex. 9. A vector was used which was constructed as follows:

Das genomische Fragment der delta-6-Desaturase (pgDES6) wurde mit dem Restriktionsenzym Sna BI geschnitten. Dieses Enzym schneidet das genomische Fragment außerhalb der kodierenden Exons an Position 747 im 5'-untranslatierten Bereich. Das Plasmid p4T2-1ΔH3 wurde mit Eco RV/Sma I geschnitten und das ca. 1,4 kb große Fragment, umfassend die neo-Kassette, wurde in das bereits geschnittene Plasmid pgDES6 in die 5'-untranslatierte Sequenz der Tetrahymena delta-6 Desaturase ligiert.The genomic fragment of delta-6-desaturase (pgDES6) was cut with the restriction enzyme Sna BI. This enzyme cleaves the genomic fragment outside of the coding exons at position 747 in the 5 'untranslated region. The plasmid p4T2-1ΔH3 was cut with Eco RV / Sma I and the approximately 1.4 kb fragment comprising the neo-cassette was inserted into the already cut plasmid pgDES6 into the 5'-untranslated sequence of Tetrahymena delta-6 desaturase ligated.

Dieses Konstrukt (pgDES6+neo, s. Abb. 7) wurde für die Transformation der delta-6 Desaturase-Mutanten benutzt. Nach der Transformation (s.o.) wurden die Zellen in SPPA-Medium ohne Borage-Öl aufgenommen und bei 30 °C ohne Schütteln im Erlenmeyerkolben inkubiert. Nach 3 h wurde Paromomycin zugegeben und die Zellen in Aliquots von 100 µl auf 96er Mikrotiterplatten überführt. Die Zellen wurden in einer feuchten, abgedunkelten Box bei 30 °C inkubiert. Nach etwa 2-3 Tagen konnten die ersten Cholesterolautotrophen Klone identifiziert werden, die gleichzeitig Paromomycin resistent waren. Die positiven Klone wurden in frisches Medium ohne Zusatz von Cholesterol oder Paromomycin überimpft. Durch tägliches Umimpfen der Zellen über einen Zeitraum von ca. 2 Wochen und mehrfaches isolieren von Einzellzellen wurde ein komplettes "phenotypic assortment" (Gaertig & Kapler (1999)) erreicht. Diese Zellen zeigten gutes Wachstum auch nach Zugabe von Paromomycin.This construct (pgDES6 + neo, s. Fig. 7 ) was used for the transformation of the delta-6 desaturase mutants. After transformation (see above), the cells were taken up in SPPA medium without Borage oil and incubated at 30 ° C without shaking in the Erlenmeyer flask. After 3 h, paromomycin was added and the cells transferred in 100 μl aliquots to 96-well microtiter plates. The cells were incubated in a moist, darkened box at 30 ° C. After about 2-3 days, the first cholesterol-autotrophic clones were identified that were simultaneously paromomycin-resistant. The positive clones were inoculated into fresh medium without the addition of cholesterol or paromomycin. By daily inoculation of the cells over a period of about 2 weeks and multiple isolation of single cells, a complete "phenotypic assortment" (Gaertig & Kapler (1999)) was achieved. These cells showed good growth even after adding paromomycin.

Claims (7)

  1. Method for production of recombinant ciliates, comprising the steps:
    a) production of an auxotrophic mutant of the ciliate,
    b) transformation of the mutant with recombinant DNA, containing at least one gene for complementation of the corresponding auxotrophy,
    c) selection of the recombinant ciliates on a minimal medium that permits growth only of the corresponding complemented ciliates,
    wherein ciliates of the genera Paramecium and Tetrahymena are used.
  2. Method according to claim 1, in which production of the auxotrophic mutants occurs by knockout of an essential gene.
  3. Method according to claim 2, in which the knocked out gene codes for a triterpenoid-cyclase, a delta-6-desaturase or a delta-9-desahirase,
  4. Method according to anyone of the claims 1-3, in which the ciliates belong to the genera Paramecium or Tetrahymena, preferably to the species Tetrahymena thermophila.
  5. Method according to anyone of the claims 1-4, in which the recombinant DNA for transformation of the auxotrophic ciliate mutant contains a gene for a triterpenoid-cyclase, a delta-6-desaturase or a delta-9-desaturase.
  6. Method for production of recombinant proteins, comprising the stages:
    a) production of recombinant ciliates according to the method of anyone of the claims 1-5, wherein the recombinant DNA for transformation of the ciliates additionally contains at least one functional recombinant gene for a protein, which is to be expressed,
    b) culturing of the recombinant ciliates and expression of the proteins,
    c) isolation of the proteins.
  7. Protein production method according to claim 6, wherein the recombinant gene for the protein to be expressed was isolated from a vertebrate, preferably from a human.
EP03007098A 2002-03-30 2003-03-28 Methods and markers for simple transformation and selection of recombinant ciliates Expired - Lifetime EP1357190B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10214406 2002-03-30
DE10214406A DE10214406A1 (en) 2002-03-30 2002-03-30 Preparation of recombinant protists, useful for preparation of recombinant proteins, by transforming auxotrophic mutant with DNA that complements the auxotrophy

Publications (2)

Publication Number Publication Date
EP1357190A1 EP1357190A1 (en) 2003-10-29
EP1357190B1 true EP1357190B1 (en) 2011-06-29

Family

ID=27816084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03007098A Expired - Lifetime EP1357190B1 (en) 2002-03-30 2003-03-28 Methods and markers for simple transformation and selection of recombinant ciliates

Country Status (4)

Country Link
US (2) US20030219900A1 (en)
EP (1) EP1357190B1 (en)
JP (1) JP4759693B2 (en)
DE (1) DE10214406A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0416744A (en) * 2003-11-19 2007-01-16 Dow Global Technologies Inc improved protein expression systems
AU2006298855B2 (en) * 2005-09-20 2012-09-27 Cilian Ag Tetrahymena bifunctional dihydrofolate reductase - thymidylate synthase deficiency and its use
GB2471093A (en) * 2009-06-17 2010-12-22 Cilian Ag Viral protein expression in ciliates
GB201003701D0 (en) 2010-03-05 2010-04-21 Cilian Ag System for the expression of a protein

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291245B1 (en) * 1998-07-15 2001-09-18 Roche Diagnostics Gmbh Host-vector system
DE60038542D1 (en) * 1999-02-04 2008-05-21 Univ Georgia RECOMBINANT EXPRESSION OF HETEROLOGIC NUCLEIC ACIDS IN PROTOZOES
WO2000052176A1 (en) * 1999-03-03 2000-09-08 Cilian Ag β-HEXOSAMINIDASE, DNA SEQUENCE FROM CILIATES FOR CODING THE SAME AND USE THEREOF
US20010010928A1 (en) * 1999-03-26 2001-08-02 Stephen M. Beverley Protozoan expression system
DK1214418T3 (en) * 1999-09-10 2008-07-07 Nutrinova Gmbh Tetrahymena nucleic acid encoding a delta-6 desaturase, its preparation and use
CA2388151C (en) * 1999-11-05 2010-01-12 Jena Bioscience Gmbh Protein expression systems for non-pathogenic kinetoplastidae
DE19957889A1 (en) * 1999-12-01 2001-06-21 Axiva Gmbh New nucleic acid encoding triterpenoid-cyclase, useful for producing cyclic triterpenoids and for increasing content of polyunsaturated fatty acids in transgenic organisms

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ADL S.M. ET AL: "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists", JOURNAL OF EUKARYOTIC MICROBIOLOGY, LAWRENCE, KS, US LNKD- DOI:10.1111/J.1550-7408.2005.00053.X, vol. 52, no. 5, 1 January 2005 (2005-01-01), pages 399 - 451, XP003023667, ISSN: 1066-5234 *
ANONYMOUS: "Phylogenetic Tree of Life", 12 May 2009 (2009-05-12), Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Phylogenetic_tree> [retrieved on 20090512] *
DENIS H. LYNN (ED.): "The Ciliated Protozoa", part Chapter 4 2008, SPRINGER, ISBN: 978-1-4020-8238-2, article "Phylum Ciliophora - Conjugating Ciliated Protists with Nuclear Dualism", pages: p. 89 *
HEPFER C.E. ET AL: "Enrichment for Auxotrophic mutants of Tetrahymena using density gradients centrifugation", JOURNAL OF PROTOZOOLOGY, LAWRENCE, KANSAS, US, vol. 27, no. 4, 1 January 1980 (1980-01-01), pages 431 - 434, XP003023670, ISSN: 0022-3921 *
HILL ET AL: "Modulation of membrane fluidity in a fatty acid auxotrophe of Tetrahymena thermophila", BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES, AMSTERDAM, NL LNKD- DOI:10.1016/0005-2736(80)90256-4, vol. 595, no. 1, 12 January 1980 (1980-01-12), pages 140 - 145, XP023361473, ISSN: 0005-2736, [retrieved on 19800112] *
MITTERBAUER R. ET AL: "Saccharomyces cerevisiae URH1 (encoding Uridine-cytidine N-Ribohydrolase): Functional complementation by a nucleoside hydrolase from a protozoan parasite and by a mammalian uridine phosphorylase", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US LNKD- DOI:10.1128/AEM.68.3.1336-1343.2002, vol. 68, no. 3, 1 March 2002 (2002-03-01), pages 1336 - 1343, XP003023671, ISSN: 0099-2240 *
SANFORD Y.M. ET AL: "PHENYLKETONURIC TETRAHYMENA: PHENYLALANINE HYDROXYLASE MUTANTS AND OTHER TYROSINE AUXOTROPHS", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES (PNAS), NATIONAL ACADEMY OF SCIENCE, US LNKD- DOI:10.1073/PNAS.78.12.7614, vol. 78, no. 12, 1 December 1981 (1981-12-01), pages 7614 - 7618, XP009014822, ISSN: 0027-8424 *
THEODOR DINGERMANN (ED.): "Gentechnik Biotechnik", 1999, WISSENSCHAFLICHE VERLAGSGESELLSCHAFT, pages: 131-133 - 163 *

Also Published As

Publication number Publication date
JP4759693B2 (en) 2011-08-31
EP1357190A1 (en) 2003-10-29
DE10214406A1 (en) 2003-10-09
US20030219900A1 (en) 2003-11-27
JP2003299491A (en) 2003-10-21
US20120172576A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
DE69233459T2 (en) PREPARATION OF GAMMA LINOLIC ACID BY A DELTA-6 DESATURASE
WO1998001572A1 (en) Genetic transformation of ciliate cells through microcarrier bombardment with dna-loaded gold particles
CN110317803B (en) Nanometer biological preparation method of ergothioneine
EP1350838B1 (en) Expression of recombinant human proteins in tetrahymena
EP1357190B1 (en) Methods and markers for simple transformation and selection of recombinant ciliates
EP1214418B1 (en) Nucleic acid which is obtained from tetrahymena and which codes for a delta-6-desaturase, the production thereof and use
DE112019000467T5 (en) Recombinant microorganism, process for its production and its use in the production of coenzyme Q10
CA2388151C (en) Protein expression systems for non-pathogenic kinetoplastidae
DE19943383B4 (en) Regulatory sequences and expression cassettes for yeasts
EP1412488B1 (en) Method for producing arachidonic acid in transgenic organisms
EP0469523A2 (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase of Leuconostoc dextranicus
EP1967585B1 (en) Method for gene amplification
EP0300425A2 (en) Method for the production of proteins in a soluble form
EP1130103A2 (en) Nucleic acid from Tetrahymena coding for a trieterpenoid-cyclase, its production and use
DE60133396T2 (en) MODIFIED CELLS AND THEIR USES, ESPECIALLY FOR THE MANUFACTURE OF STEROID DERIVATIVES
US20240229056A1 (en) Toxin-free aloe and methods of making same
EP2298923A1 (en) Method for the production of recombinant proteins by green microalgae
CN119391610A (en) Bacteria for synthesizing progesterone and construction method thereof, method for synthesizing progesterone using the bacteria and application thereof
EP1200600A2 (en) Monocellular or multicellular organisms for the production of riboflavin
EP2280076A1 (en) Method for expressing homologous proteins and/or peptides in dothideomycetes fungi
DE10123857A1 (en) Process for the production of heterologous proteins in a homothallic fungus of the Sordariaceae family

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20031125

AKX Designation fees paid

Designated state(s): BE CH DE FR GB LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NUTRINOVA NUTRITION SPECIALTIES & FOOD INGREDIENTS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NUTRINOVA NUTRITION SPECIALTIES & FOOD INGREDIENTS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LONZA LTD.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313784

Country of ref document: DE

Effective date: 20110818

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120329

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20120327

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313784

Country of ref document: DE

Effective date: 20120330

BERE Be: lapsed

Owner name: LONZA LTD.

Effective date: 20130331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210210

Year of fee payment: 19

Ref country code: FR

Payment date: 20210218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210210

Year of fee payment: 19

Ref country code: GB

Payment date: 20210311

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313784

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220328

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331