EP1352203B1 - Method for refrigerating liquefied gas and installation therefor - Google Patents
Method for refrigerating liquefied gas and installation therefor Download PDFInfo
- Publication number
- EP1352203B1 EP1352203B1 EP01271522A EP01271522A EP1352203B1 EP 1352203 B1 EP1352203 B1 EP 1352203B1 EP 01271522 A EP01271522 A EP 01271522A EP 01271522 A EP01271522 A EP 01271522A EP 1352203 B1 EP1352203 B1 EP 1352203B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fraction
- compressed
- expanded
- natural gas
- lng
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0087—Propane; Propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0219—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0274—Retrofitting or revamping of an existing liquefaction unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/0605—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
- F25J3/061—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0635—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/066—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/08—Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/30—Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/04—Internal refrigeration with work-producing gas expansion loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/18—External refrigeration with incorporated cascade loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/42—Quasi-closed internal or closed external nitrogen refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/60—Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/80—Retrofitting, revamping or debottlenecking of existing plant
Definitions
- the present invention relates, in a general manner and according to a first aspect, to the gas industry, and in particular to a process for refrigerating pressurized gas containing methane and C2 hydrocarbons and higher, with a view to their separation.
- the invention relates to a method according to the preamble of claim 1.
- Refrigeration processes of this type are well known to those skilled in the art and have been in use for many years, particularly in the document US 3646652 .
- the refrigeration process of liquefied natural gas (LNG) according to the preamble above is used in a known manner in order to eliminate the nitrogen sometimes present in large quantities in natural gas.
- the fuel gas obtained by this process is enriched with nitrogen, whereas the refrigerated liquefied natural gas is depleted of nitrogen.
- Natural gas liquefaction plants have well-defined technical characteristics and limitations imposed by the capacity of the elements of production constituting them. As a result, a liquefied natural gas production facility is limited by its maximum production capacity under normal operating conditions. The only way to increase production is to build a new production unit.
- LNG liquefied natural gas
- a first object of the invention is to propose a method, moreover in accordance with the generic definition given in the preamble above, which allows the increase of the capacity of an LNG production unit. , without resorting to the construction of another LNG production unit.
- the subject of the invention is a method according to claim 1 and an installation according to claim 4.
- a first merit of the invention is to have found that a production unit operating at 100% of its capacity, producing a certain flow of liquefied natural gas at a temperature of -160 ° C and a pressure of around 50 bar all other operating parameters being constant, can only increase its flow, and therefore its production, by an increase in the production temperature of the liquefied natural gas.
- the GNI is stored at about -160 ° C at low pressure (less than 1.1 bar absolute), and an increase in its storage temperature would result in an increase in its storage pressure, which represented prohibitive costs, but especially transport difficulties, because of the very large quantities of GEL produced.
- the LNG is prepared at a temperature of -160 ° C prior to storage.
- a second merit of the invention is to present an elegant solution to these production limitations by the use of a process of LNG refrigeration that can adapt to a pre-existing LNG production process, not requiring the use of material and financial resources for the implementation of this process.
- This solution includes the production, by a pre-existing LNG production unit, of LNG at a temperature above approximately -1.60 ° C, then its refrigeration at about -160 ° C by the process according to the invention.
- a third merit of the invention is to have modified a nitrogen-rich liquefied natural gas refrigeration process known and in accordance with the preamble above, and to have allowed its use both with nitrogen-rich LNG and with LNG that is low in nitrogen. In the latter case, the fuel gas obtained by this process contains very little nitrogen, and therefore has a composition close to that of liquefied natural gas deficient in nitrogen.
- the method according to the invention may have one or more of the features of claims 2 to 3
- the plant according to the invention may comprise one or more of the features of claims 5 to 11
- the plant shown is intended to treat, in known manner, a dried natural gas, desulfurized and decarbonated 100, to obtain liquefied natural gas 1, generally available at a temperature below minus 120 ° C.
- This LNG liquefaction facility has two independent refrigeration circuits.
- a first refrigerant circuit 101 corresponding to a propane cycle, makes it possible to obtain a primary cooling at approximately minus 30 ° C. in an exchanger E3 by expansion and vaporization of liquid propane.
- the heated and expanded vapor propane is then compressed in a second stage.
- compressor K2 then the compressed gas obtained 102 is then cooled and liquefied in water coolers 103, 104 and 105.
- a second refrigerant circuit 106 generally corresponding to a cycle using a mixture of nitrogen, methane, ethane and propane, allows a significant cooling of the natural gas to be treated in order to obtain liquefied natural gas 1.
- the fluid coolant present in the second refrigerant cycle is compressed in a third compressor K3 and cooled in water exchangers 118 and 119, and then cooled in a water cooler 114, to obtain a fluid 107.
- the latter is then cooled and liquefied in the exchanger E3 to provide a cooled and liquefied stream 108.
- the latter is then separated into a vapor phase 109 and a liquid phase 110 which are both introduced into the lower part of a cryogenic heat exchanger 111.
- the liquid phase 110 After cooling the liquid phase 110 then leaves the exchanger 111 to be expanded in a turbine X2 coupled to an electric generator.
- the expanded fluid 112 is then introduced into the cryogenic exchanger 111 above its lower part, where it is used to cool the fluids flowing in the lower part of the exchanger, by spraying on conduits carrying fluids. to cool, by means of spray bars.
- the vapor phase 109 circulates in the lower part of the cryogenic exchanger 111 to be cooled and liquefied, then is further cooled by circulation in an upper part of the cryogenic exchanger 111.
- this fraction 109 cooled and liquefied is relaxed in a valve 115, and is used to cool the fluids circulating in the upper part of the cryogenic exchanger 111, by spraying on conduits carrying fluids to be cooled.
- the refrigerant liquids sprayed inside the cryogenic exchanger 111, are then collected at the bottom of the latter to provide the flow 106 which is sent to the compressor K3.
- the dried, desulphurized and decarbonated natural gas 100 is cooled in a propane heat exchanger 113 and then subjected to a desiccation treatment, which may be, for example, a passage over a molecular sieve, for example a zeolite, and a demercurization treatment, for example by passing on a silver foam or other mercury scavenger, in a chamber 116 to supply a purified natural gas 117.
- the latter is then cooled and partially liquefied in the heat exchanger E3, circulates in the lower part, then in the upper part of the cryogenic exchanger 111 to provide a liquefied natural gas 1.
- the latter is usually obtained at a temperature below minus 120 ° C.
- the installation shown is intended to treat, as a known mason, a liquefied natural gas 1 rich in nitrogen, for obtaining, on the one hand, a liquefied natural gas that is cooled and poor in nitrogen 4, and on the other hand of a compressed first fraction 5 which is a nitrogen-rich compressed fuel gas.
- LNG 1 is first expanded and cooled in an X3 expansion turbine which is regulated by a controller LNG flow circulating in the pipe 1, then is again expanded and cooled in a valve 18 whose opening depends on the pressure of the LNG at the output of compressor X3, to provide a stream of liquefied natural gas expanded 2.
- the latter is then separated into a relatively more volatile first head fraction 3 and a relatively less volatile first foot fraction 4 in a V1 flask.
- the first bottom fraction 4 consisting of refrigerated liquefied natural gas is collected and pumped into a pump P1, circulates in a valve 19 whose opening is regulated by a liquid level controller in the bottom of the tank V1, and then leaves the tank. installation and be stored.
- the first head fraction 3 is heated in a first heat exchanger E1 and is then introduced into a low pressure stage 15 of a compressor K1 coupled to a gas turbine GT.
- This compressor K1 comprises a plurality of compression stages 15, 14, 11 and 30, at progressively high pressures, and a plurality of water coolers 31, 32, 33 and 34.
- the compressed gases are cooled by passing through a heat exchanger, preferably with water.
- the first head fraction 3 provides, at the end of the compression and cooling steps, the nitrogen-rich compressed fuel gas 5. This combustible gas is then collected and leaves the installation.
- a small portion of the fuel gas 5 is taken which corresponds to a stream 6.
- This stream 6 is refrigerated in the exchanger E1 by yielding its heat to the first head fraction 3, to give a cooled flow 22.
- This cooled flow 22 flows then in a valve 23 whose opening is controlled by a flow controller at the outlet of the exchanger E2.
- the stream 22 is finally mixed with the expanded liquefied natural gas stream 2.
- the installation shown is intended to treat, in known manner, a liquefied natural gas 1 rich in nitrogen, to obtain, on the one hand, a cooled, nitrogen-poor liquefied natural gas 4, and on the other hand, a compressed first fraction 5 which is a nitrogen-rich compressed fuel gas.
- the separation tank V1 was replaced by a distillation column C1 and a heat exchanger E2.
- the LNG 1 is first expanded and cooled in an expansion turbine X3 whose speed is regulated by an LNG flow controller flowing in the pipe 1, then is cooled in the heat exchanger E2, to provide a cooled flow 20
- the latter circulates in a valve 21, whose opening is controlled by a pressure controller located on the pipe 20, upstream of said valve 21, to provide a stream of liquefied natural gas expanded 2.
- the flow of liquefied natural gas relaxed 2 is then separated into a relatively more volatile first head fraction 3 and a relatively less volatile first foot fraction 4 in column C1.
- the first bottom fraction 4 consisting of refrigerated liquefied natural gas is collected and pumped into a pump P1, circulates in a valve 19 whose opening is regulated by a liquid level controller in the bottom of the tank V1, and then leaves the tank. installation and be stored.
- Column C1 comprises a bottom reboiler 16 which uses liquid contained on a plate 17.
- the flow flowing in the reboiler 16 is heated in the heat exchanger E2 and then introduced into the bottom of the column C1.
- the first top fraction 3 follows the same treatment as presented on the figure 2 , to obtain a first compressed gas fraction 5, which is a nitrogen-rich compressed fuel gas, and a second compressed fraction 6 which is a compressed fuel gas sampling fraction. Similarly, this last fraction is heated in the exchanger E1 to This stream 22 is also mixed with the expanded liquefied natural gas stream 2.
- the installation shown is intended to treat, using a device according to the method of the invention, a liquefied natural gas 1 rich in nitrogen, for obtaining on the one hand, a liquefied natural gas cooled and low in nitrogen 4, and secondly, a nitrogen-rich compressed fuel gas 5.
- This installation has elements common to the figure 3 , in particular the expansion and cooling of the LNG 1 to obtain the expanded LNG stream 2. Similarly, the separation into the first top fraction 3 and the first bottom fraction 4 is carried out similarly in the column C1. Finally, the flow of fuel gas 5 is obtained, as previously, by successive compression and cooling. Unlike the process presented on the figure 3 a second compressed fraction 6 taken from the first fraction of compressed gas 5 feeds a compressor XK1 coupled to an expansion turbine X1 to obtain a third compressed fraction 7. This is cooled in a water cooler 24 , then separated into a compressed fourth fraction 8 and a compressed fifth fraction 9.
- the fourth compressed fraction 8 is cooled in the heat exchanger E1 to provide a fraction 25 which is expanded in the turbine X1.
- the turbine X1 provides a relaxed flow 10 which is heated in the exchanger E1 to give a heated expanded flow 26.
- This heated expanded flow 26 is introduced at a medium pressure stage 11 of the compressor K1.
- the fifth compressed fraction 9 is cooled in the heat exchanger E1 to provide a fraction 22 which is expanded in a valve 23 and is then mixed with the expanded LNG fraction 2.
- the regulator X1 comprises an inlet guide valve 27, allowing, by varying the angle of introduction of the flow 25 on the blades of the turbine X1, to vary the speed of rotation of the latter, and consequently to vary the power delivered to the compressor XK1.
- the installation shown is intended to treat, using a device according to the method of the invention, a liquefied natural gas 1 preferably rich in nitrogen, for obtaining, on the one hand, a gas Liquefied natural gas cooled and poor in nitrogen 4, and secondly, a nitrogen-rich compressed fuel gas 5, in the case where liquefied natural gas 1 contains it.
- This installation has elements common to the figure 4 , especially the production, by a distillation column C1 of a first head fraction 3, and a first foot fraction 4.
- the first head fraction 3 is compressed in a compressor K1 and cooled in refrigerants 31-34 for obtaining a first compressed fraction 5.
- a second sampling fraction 6 is withdrawn from the first compressed fraction 5 to be compressed in a compressor XK1 coupled to an expansion turbine X1, which produces an output of third compressed fraction 7.
- the latter is separated into a compressed fourth fraction 8 and a compressed fifth fraction 9.
- the fourth compressed fraction 8 is cooled in the heat exchanger E1 to provide a fraction 25 which is expanded in the turbine X1.
- the turbine X1 provides a relaxed flow 10 which is heated in the exchanger E1 to give a heated expanded flow 26.
- This heated expanded flow 26 is introduced at a medium pressure stage 11 of the compressor K1.
- the fifth compressed fraction 9 is cooled in the heat exchanger E1 to provide a fraction 22 which is expanded in a valve 23 and is then mixed with the relaxed LNG fraction 2.
- the regulator X1 comprises an inlet guide valve 27, the function of which has been defined in the description of the figure 4 .
- the installation represented on the figure 5 further comprises a separator tank V2 in which the expanded natural gas stream 2 is separated into a second top fraction 12 and a second bottom fraction 13.
- the second head fraction 12 is heated in the exchanger E1 and is introduced into a medium pressure stage 14 of the compressor K1, at an intermediate pressure between the inlet pressure of the low pressure stage 15 and that of the stage medium pressure 11.
- the second bottom fraction 13 is cooled in an exchanger E2 to produce a fraction of cooled LNG 20.
- the latter fraction is expanded and cooled in a valve 28 to produce a fraction of cooled and cooled LNG 29.
- the opening of the valve 28 is controlled by a liquid level controller contained in the balloon V2.
- the stream 29 is then introduced into the column C1 to be separated into the first top fraction 3 and the first bottom fraction 4.
- Column C1 comprises a reboiler 16, which takes liquid contained on a plate 17 of the column C1 to heat it in the exchanger E2 by heat exchange with the flow 13, and introduce it at the bottom of the column.
- the first foot fraction 4 is pumped by a pump P1 and passes through a valve 19 whose opening is controlled by a liquid level controller present in the bottom of the column C1.
- the installation shown is intended to treat, using a device according to the method of the invention, a liquefied natural gas 1 preferably low in nitrogen, for obtaining, on the one hand, a liquefied natural gas cooled and deficient in nitrogen 4, and on the other hand, a nitrogen-rich compressed gas fuel 5, in the case of the use LNG 1 rich in nitrogen.
- This installation has elements common to the figure 2 and to figures 4 and 5 .
- the figure 6 is structurally similar to the figure 4 , except column C1, which has been replaced by a separating balloon V1, and the exchanger E2 which has been omitted, because of the absence of a reboiler when using a separating balloon .
- the expanded LNG stream 2 is then introduced directly into the separator tank V1 to be separated into a first head fraction 3 and a first bottom fraction 4.
- the installation shown is intended to treat, using a device according to the method of the invention, a liquefied natural gas 1, preferably low in nitrogen, for obtaining, on the one hand, a cooled liquefied natural gas 4, and secondly, a compressed combustible gas 5.
- a liquefied natural gas 1 preferably low in nitrogen
- This installation has elements common to the figure 2 and to figures 4 , 5 and 6 .
- the figure 7 is structurally similar to the figure 5 , with the exception of column C1 which has been replaced by a balloon. separator V1, and the exchanger E2 which has been removed, because of the absence of reboiler when using a separating balloon.
- the expanded LNG stream 2 is then introduced directly into the separator tank V2 to be separated into a second head fraction 12 and a second bottom fraction 13.
- the second head fraction 12 is heated in an exchanger E1 and is introduced into a compressor K1 at a medium pressure stage 14, intermediate between a low pressure stage 15 and a medium pressure stage 11, in the same way as described for the figure 5 .
- Power on a shaft line represents the power available on a General Electric GESD, GE6 and GE7 gas turbine shaft. Turbines of this type are coupled to the compressors K1, K2 and K3 represented on the Figures 1-7 .
- the reject temperature will be taken as 310.15 K (37 ° C).
- State 1 will be gas natural at 37 ° C and 51 bar and state 2 will be LNG at T2 temperature and at 50 bar.
- Table 2 shows the evolution of the theoretical work for the liquefaction of natural gas A and B as a function of the LNG temperature at the end of the liquefaction process.
- the capacity of the LNG unit is 125.5% of its capacity at -160 ° C, which is considerable.
- the propane cycle has 4 stages and the refrigeration of the MCR (multicomponent refrigerant, stream 106, fig.1 ) and propane (stream 102, fig.1 ) is performed in the heat exchanger E3, which is a brazed aluminum plate heat exchanger.
- the new use of the known liquefaction process makes it possible to increase the temperature of the LNG 1 obtained at the outlet of the production unit while allowing a substantial increase in the quantity produced, which can be up to about 40% to -130. ° C.
- LNG 1 obtained at the output of a production unit previously described for the figure 1 can be denoted in a unit of denitration as represented on the figure 2 or on the figure 3 .
- This denitrogenation operation is necessary when the natural gas extracted the deposit contains nitrogen in a relatively large proportion, for example from about more than 0.100 mol% to about 5 to 10 mol%.
- the installation schematically represented on the figure 2 is a denitrogen unit of LNG, with final flash.
- the flash is obtained at the time of separation of the expanded LNG 2 into a relatively more volatile, nitrogen-rich first head fraction 3 and a relatively less volatile, nitrogen-poor first foot fraction 4. This separation takes place in a flask V1, as previously described.
- the LNG 1 of composition "B" containing nitrogen, produced at -150 ° C. and 48 bar is expanded in the hydraulic turbine X3 at a pressure of approximately 4 bar and then in a valve 18 at a pressure of 1.15 bar.
- the two-phase mixture obtained 2 is separated in the separator tank V1 on the one hand into the nitrogen-rich flash gas 3, and on the other hand into the refrigerated LNG 4.
- the refrigerated LNG is sent to the storage, as described above. .
- the flash gas 3, which constitutes the first gaseous fraction is heated in the exchanger E1 to -70 ° C before being compressed to 29 bar in the compressor K1.
- the compressor K1 produces a first compressed fraction 5 which constitutes the fuel gas enriched in nitrogen.
- the installation schematically represented on the figure 3 is a unit of denitrogenation of LNG to column of denitrogenation.
- the replacement of the flash in the balloon V1 by a denazotation column C1 allows a significant improvement in the extraction efficiency of the nitrogen contained in the LNG 1.
- the LNG 1 at -145.5 ° C is expanded to 5 bar in the expansion hydraulic turbine X3, and is cooled from -146.2 ° C to -157 ° C in the E2 exchanger by heat exchange with the liquid circulating in the bottom reboiler 16 to obtain a flow of cooled and expanded LNG 20.
- the flow 20 undergoes a second expansion at 1.15 bar in a valve 21 and feeds the column of denitrogenation C1 mixed with LNG - 22 from the partial recycling of the compressed fuel gas 5.
- the LNG contains 0.06% nitrogen, whereas the nitrogen content of the LNG using a final flash was 1.38% ( fig.2 and Table 5).
- This bottom of the column LNG is pumped by a pump P1 and represents a cooled fraction of LNG 4 which is sent to storage.
- the fuel gas 3, which is the first top fraction from the column C1, is warmed to -75 ° C in the exchanger E1, then is compressed to 29 bar in the compressor K1 and cooled by the water coolers 31. 34 to provide a compressed combustible gas 5.
- a stream 6, which represents 23% of the compressed gas 5 is recycled to the column C1 after heating the stream 3 in the exchanger E1.
- the fuel gas produced which represents 1032 GJ / h in the case of the use of a GE6 turbine and a GE7, is substantially identical in total calorific value to that of the final flash unit of the fig.2 . The same is true when using larger LNG production units (2 or 3 GE7).
- compressors which represent a significant investment, both in terms of purchase and from the point of view of energy consumption.
- compressors that require a power of the order of several tens of thousands of kW must be reliable and can be used under optimal performance conditions over a load range as large as possible.
- this remark also applies to the means used to make them work.
- These means being usually here gas turbines, because of the range of commercially available powers.
- Gas turbines to be effective, must be used at full capacity.
- the gas turbine driving the compressor K1 must have a maximum power adapted to the power required by the compressor, in order to obtain the most favorable compression performance possible.
- the method according to the invention proposes in particular to use all of the power available to drive the compressor K1.
- the method according to the invention also makes it possible to increase the temperature at the outlet of the liquefaction process to obtain the flow of LNG 1, and to use the surplus power available on the gas turbine driving K 1 in order to cool the LNG at minus 160 ° C.
- the process according to the invention makes it possible, by virtue of the possibility of increasing the temperature of the LNG 1 produced for example according to the APCI process, to increase the flow rate of LNG cooled to -160 ° C. to a large extent, in some cases, up to about 40%.
- the method of the invention has the merit of being able to be implemented easily, because of the simplicity of the means necessary for its realization.
- LNG 1 is produced at -140.5 ° C by the APCI process shown in FIG. figure 1 .
- This process was implemented using two GE7 gas turbines for the drive of compressors K2 and K3.
- This LNG 1 enters the installation presented on the figure 4 . It is expanded to 6.1 bar in the X3 hydraulic expansion turbine driving an electricity generator, then cooled from -141.2 to -157 ° C in a heat exchanger E2 by heat exchange with a liquid circulating in a bottom reboiler 16, to provide a cooled LNG 21.
- the latter is expanded to 1.15 bar in a valve 21 to obtain a relaxed flow 2 which feeds a column C1 mixed with a stream 22, as indicated above in the description of the figures.
- the flow of LNG 4, withdrawn at the bottom of column C1, comprises 0.00% nitrogen.
- the fuel gas 3 is heated to -34 ° C in the exchanger E1 and is compressed to 29 bar in the compressor K1 to supply a fuel gas network.
- a first difference with the known method comes from the amount of compressed gas 6 taken from the flow of fuel gas 5: it now amounts to about 73%.
- This compressed gas 6 is compressed at 38.2 bar in the compressor XK1 to provide a fraction 7.
- the latter is cooled to 37 ° C in a water exchanger 24 and is separated into two streams 8 and 9.
- the stream 9 which is a minority, which represents 30% of the stream 7, is liquefied and cooled to -160 ° C. and returns to the denitrogenation column C1.
- the fuel gas produced represents 1400 GJ / h, it is identical in total calorific value to that of the final flash unit.
- the use of the denitrogenation technique and the process of the invention made it possible to increase the capacity of the liquefaction train by 11.74%, for a reasonable additional cost.
- the method according to the invention also has a considerable interest for the regulation of the amount of fuel gas produced. Indeed, it is therefore possible to have a sustained production of fuel gas, as shown by a numerical example in Table 8, below: Table 8 Unit 2 GE7 LNG 1 temperature ° C -135 debit kg / h 641176 Refrigerated LNG 4 debit kg / h 546088 specific low thermal value kJ / kg 49454 nitrogen content mol% 0.00 LNG production 4, low thermal value GJ / h 27006 % 113.39 Fuel gas 5 debit kg / h 95092 specific low thermal value kJ / kg 29361 fuel gas production 5, value specific low thermal GJ / h 2792 Unit of denunciation K1 compressor power kW 23900 power of the regulator X1 kW 802 performances Specific output power of LNG 4 kJ / kg 1014 Power ratio of K1 / LNG production 4 0.0205 Additional LNG production kg / h 54103 GJ / h 3188
- FIG. 5 Another embodiment according to the method of the invention, implementing a denitrogenation column C1, is presented on the figure 5 , described above. To the difference from the figure 4 this embodiment involves a separator balloon V2.
- LNG 1 composition "B” obtained at -140.5 ° C, at a pressure of 48.0 bar with a flow rate of 33294 kmol / h, is expanded to 6.1 bar and minus 141.25 ° C in the hydraulic turbine X3, then is again expanded to 5.1 bar and -143.39 ° C in the valve 18, to provide the expanded flow 2.
- Stream 2 (33294 kmol / h) is mixed with stream 35 (2600 kmol / h) to obtain stream 36 (35894 kmol / h) at -146.55 ° C.
- Stream 35 is composed of 42.97% nitrogen, 57.02% methane and 0.01% ethane.
- Stream 36 which is composed of 6.79% nitrogen, 85.83% methane, 4.97% ethane, 1.71% propane, 0.27% isobutane and 0.44% % n-butane, is separated in the flask V2 in the second top fraction 12 (1609 kmol / h), and in the second foot fraction 13 (34285 kmol / h).
- the stream 12 (45.58% of nitrogen, 54.4% of methane and 0.02% of ethane) is heated up to 33 ° C. in the exchanger E1, to provide a stream 37 which supplies, at 4.9 bar, compressor K1 on the medium pressure stage 14.
- Stream 13 (4.97% nitrogen, 87.30% methane, 5.20% ethane, 1.79% propane, 0.28% isobutane and 0.46% n- butane) is cooled in the heat exchanger E2 to provide the stream at -157 ° C and 4.6 bar.
- the latter is expanded in the valve 28 to obtain the stream 29 at -165.21 ° C and 1.15 bar, which is introduced into the column C1.
- the column C1 is equipped with the bottom reboiler 16, which cools the stream 13 to obtain the stream 20.
- the compressor K1 produces the compressed stream 5 at 37 ° C and 29 bar with a flow rate of 11341 kmol / h.
- This flow of combustible gas (42.90% nitrogen and 57.09% methane) is separated into a stream 40, which represents 3041 kmol / h, which leaves the installation, and in a stream 6, which represents 8300 kmol / h, which is compressed in the compressor XK1.
- the compressor XK1 produces the compressed stream 7. at 68.18 ° C and 39.7 bar.
- the stream 7 is cooled to 37 ° C in the water exchanger 24, and is separated into the streams 8 and 9.
- Stream 8 (5700 kmol / h) is cooled in exchanger E1 to give the stream at -74 ° C and 38.9 bar.
- Stream 9 (2600 kmol / h) is cooled in exchanger E1 to give stream 22 at -155 ° C and 38.4 bar. The latter is then expanded in the valve 23 to provide the flow at -168 ° C and 5.1 bar.
- Stream 25 is expanded in the expansion turbine X1 which produces fraction 10 at a temperature of -139.7 ° C and a pressure of 8.0 bar. This fraction is then reheated in exchanger E1 which produces fraction 26 at a temperature of 32 ° C. and a pressure of 7.8 bar.
- Fraction 26 feeds the compressor K1 on the medium-pressure stage 11.
- the compressor K1 and the expander X1 have the following performances: Unit of denunciation K1 compressor power 22007 kW power of the regulator X1 2700 kW
- V2 balloon allows a kid about 2000 kW on the power of the compressor K1.
- the LNG can then be produced directly at -160 ° C and shipped to the storage after expansion in a hydraulic turbine, for example similar to X3: This is the technique of deep subcooling.
- the method according to the invention achieves this goal. It makes it possible to increase the temperature of the LNG at the end of the liquefaction process and consequently to increase the flow rate of cooled LNG 4, produced for storage purposes.
- the LNG 1 at a temperature of -147 ° C. is expanded to 2.7 bar in the hydraulic turbine X3 driving an electric generator, then undergoes a second expansion at 1.15 bar in the valve 18, and supplies the flash ball V1 mixed with LNG from the liquefaction of the compressed fuel gas 5.
- the fuel gas 3, which is the first head fraction, is heated up to 32 ° C in the exchanger E1 before being compressed to 29 bar in the compressor K1 to possibly feed the fuel gas network.
- all of the fuel gas is sent into the compressor XK1 to provide the compressed stream 7 at 41.5 bar.
- This stream is then cooled to 37 ° C in the water exchanger 24, then is divided into two streams 8 and 9.
- the stream 8, which represents 79% of the stream 7, is cooled to -60 ° C. before supplying the turbine X1 coupled to the compressor XK1.
- the turbine X1 provides the expanded gas 10 at a pressure of 9 bar and a temperature of -127 ° C.
- This flow 10 is heated in the exchanger E1 to obtain a heated flow 26 at 32 ° C, then feeds the compressor K1 on the suction of its third stage.
- the stream 9, which represents 21% of the stream 7, is liquefied and cooled to -141 ° C. in the exchanger E1 and returns to the flash tank V1.
- FIG. 7 Another embodiment according to the method of the invention, implementing a denitrogenation column C1, is presented on the figure 7 , described above. To the difference from the figure 6 this embodiment involves a separator balloon V2.
- composition "A” obtained at -147 ° C. under a pressure of 48.0 bar with a flow rate of 30885 kmol / h, is expanded to 2.7 bar and minus 147.63 ° C. in the hydraulic turbine X3, then is again expanded to 2.5 bar and minus 148.33 ° C in the valve 18, to provide the expanded flow 2.
- Stream 2 (30885 kmol / h) is mixed with stream 35 (3127 kmol / h) to obtain stream 36 (34012 kmol / h) at -149.00 ° C.
- the stream is composed of 3.17% nitrogen, 96.82% methane and 0.01% ethane.
- Stream 36 which is composed of 0.38% nitrogen, 91.90% methane, 4.09% ethane, 2.27% propane, 0.54% isobutane and 0.82% % n-butane, is separated in the flask V2 in the second top fraction 12 (562 kmol / h), and in the second foot fraction 13 (33450 kmol / h).
- the stream 12 (5.41% nitrogen, 94.57% methane and 0.02% ethane) is heated up to 34 ° C in the exchanger E1, to provide a stream 37 which feeds, at 2.4 bar, compressor K1 on medium pressure stage 14.
- Stream 13 (0.03% nitrogen, 91.85% methane, 4.16% ethane, 2.31% propane, 0.55% isobutane and 0.83% n butane) is expanded in the valve 28 to obtain the stream 29 at -159,17 ° C and 1.15 bar, which is introduced into the separator tank V1.
- the flask V1 produces at its head the first top fraction 3 (2564 kmol / h) at -159.17 ° C.
- Fraction 3 (2.72% nitrogen, 97.27% methane and 0.01% ethane) is reheated in exchanger E1 to give stream 41 at minus 32.21 ° C and 1.05. bar.
- the flow 41 supplies the low pressure suction 15 of the compressor K1.
- the V1 flask produces the first foot fraction 4 at -159.17 ° C and 1.15 bar with a flow rate of 30886 kmol / h.
- This fraction 4 (0.10% nitrogen, 91.40% methane, 4.50% ethane, 2.50% propane, 0.60% isobutane and 0.90% n- butane) is pumped by the pump P1 to provide a fraction 39 at 4.15 bar and -159.02 ° C, and then leaves the installation.
- the compressor K1 produces the compressed stream 5 at 37 ° C and 29 bar with a flow rate of 13426 kmol / h.
- This flow of fuel gas (3.18% nitrogen, 96.81% methane and 0.01% ethane) is completely compressed in the compressor XK1, without production of fuel gas 40.
- the XK1 compressor produces the compressed stream 7 at 72.51 ° C and 42.7 bar.
- the stream 7 is cooled to 37 ° C in the water exchanger 24, and is separated into the streams 8 and 9.
- Stream 8 (10300 kmol / h) is cooled in exchanger E1 to give the stream at -56 ° C and 41.9 bar.
- Stream 9 (3126 kmol / h) is cooled in exchanger E1 to give stream 22 at -141 ° C and 41.4 bar. The latter is then expanded in the valve 23 to provide the flow at -152.37 ° C and 2.50 bar.
- Stream 25 is expanded in the expansion turbine X1 which produces fraction 10 at a temperature of -129.65 ° C and a pressure of 8.0 bar. This fraction 10 is then reheated in exchanger E1 which produces fraction 26 at a temperature of 34 ° C. and a pressure of 7.8 bar.
- Fraction 26 feeds the compressor K1 on the suction of the medium-pressure stage 11.
- the compressor K1 and the expander X1 have the following performances: K1 denazaction unit K1 compressor power 23034 kW power of the regulator X1 2700 kW
- the use of the balloon V2 allows a gain of about 1000 kW on the power of the compressor K1.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Sampling And Sample Adjustment (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
La présente invention concerne, de façon générale et selon un premier de ses aspects, l'industrie gazière, et en particulier un procédé de réfrigération de gaz sous pression contenant du méthane et des hydrocarbures en C2 et supérieure, en vue de leur séparation.The present invention relates, in a general manner and according to a first aspect, to the gas industry, and in particular to a process for refrigerating pressurized gas containing methane and C2 hydrocarbons and higher, with a view to their separation.
Plus précisément, l'invention concerne un procédé selon le préambule de la revendication 1.More specifically, the invention relates to a method according to the preamble of
Des procédés de réfrigération de ce type sont bien connus de l'homme de l'art et utilisés depuis de nombreuses années, en particulier dans le document
Le procédé de réfrigération de gaz naturel liquéfié (GNL) conforme au préambule ci-dessus est utilisé de façon connue dans le but d'éliminer l'azote présent parfois en grande quantité dans le gaz naturel. Dans ce cas, le gaz combustible obtenu par ce procédé est enrichi en azote, alors que le gaz naturel liquéfié réfrigéré est appauvri en azote.The refrigeration process of liquefied natural gas (LNG) according to the preamble above is used in a known manner in order to eliminate the nitrogen sometimes present in large quantities in natural gas. In this In this case, the fuel gas obtained by this process is enriched with nitrogen, whereas the refrigerated liquefied natural gas is depleted of nitrogen.
Les installations de liquéfaction de gaz naturel ont des caractéristiques techniques bien définies et des limitations imposées par la capacité des éléments de production les constituant. Par conséquent, une installation de production de gaz naturel liquéfier est limitée par sa capacité maximale de production, dans les conditions habituelles de fonctionnement. La seule solution pour augmenter la production consiste à construire une nouvelle unité de production.Natural gas liquefaction plants have well-defined technical characteristics and limitations imposed by the capacity of the elements of production constituting them. As a result, a liquefied natural gas production facility is limited by its maximum production capacity under normal operating conditions. The only way to increase production is to build a new production unit.
Compte tenu des coûts que représentent un tel investissement, il est nécessaire de s'assurer que l'augmentation de production souhaitée sera durable, afin d'en faciliter l'amortissement.Given the costs of such an investment, it is necessary to ensure that the desired increase in production will be sustainable, in order to facilitate depreciation.
Actuellement, il n'existe pas de solution pour augmenter, même temporairement, la production d'une unité de production de gaz naturel liquéfié, lorsqu'elle fonctionnel au maximum de ses capacités, sans avoir recours à un investissement lourd et coûteux consistant en la construction d'une autre unité de production.Currently, there is no solution to increase, even temporarily, the production of a liquefied natural gas production unit, when it is operating at its maximum capacity, without resorting to a heavy and costly investment consisting of construction of another production unit.
La capacité de production de gaz naturel liquéfié (GNL) dépend essentiellement de la puissance des compresseurs utilisés pour permettre la réfrigération et la liquéfaction du gaz naturel.The production capacity of liquefied natural gas (LNG) depends mainly on the power of the compressors used to allow refrigeration and liquefaction of natural gas.
Dans ce contexte, un premier but de l'invention est de proposer un procédé, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, qui permette l'augmentation de la capacité d'une unité de production de GNL, sans avoir recours à la construction d'une autre unité de production de GNL.In this context, a first object of the invention is to propose a method, moreover in accordance with the generic definition given in the preamble above, which allows the increase of the capacity of an LNG production unit. , without resorting to the construction of another LNG production unit.
L'invention a pour objet un procédé selon la revendication 1, et une installation selon la revendication 4.The subject of the invention is a method according to
Un premier mérite de l'invention est d'avoir trouve qu'une unité de production fonctionnant à 100% de ses capacités, produisant un certain débit de gaz naturel liquéfie à une température de -160°C et à une pression voisiné de 50 bar, tous les autres paramètres de fonctionnement étant constante, ne peut augmenter son débit, et donc sa production, que par une augmentations de la température de production du gaz naturel liquéfié.A first merit of the invention is to have found that a production unit operating at 100% of its capacity, producing a certain flow of liquefied natural gas at a temperature of -160 ° C and a pressure of around 50 bar all other operating parameters being constant, can only increase its flow, and therefore its production, by an increase in the production temperature of the liquefied natural gas.
Cependant, le GNI, est stocké à environ -160°C à basse pression (moins de 1,1 bar absolus), et une augmentation de sa température de stockage entraînerait une augmentation de sa pression de stockage, ce qui représentée des coûts prohibitifs, mais surtout des difficultés de transport, du fait des très grandes quantités de GEL produites.However, the GNI is stored at about -160 ° C at low pressure (less than 1.1 bar absolute), and an increase in its storage temperature would result in an increase in its storage pressure, which represented prohibitive costs, but especially transport difficulties, because of the very large quantities of GEL produced.
Par conséquent, il est habituel que le GNL soit préparé à une température voisine de -160°C préalablement à son stockage.Therefore, it is usual that the LNG is prepared at a temperature of -160 ° C prior to storage.
Un second mérite de l'invention est de présenter une solution élégante à ces limitations de production par l'utilisation d'un procécé de réfrigération de GNL pouvant s'adapter à un procédé de production de GNL préexistait, ne nécessitant pas l'utilisation de moyens matériels et financiers importantes pour la mise en oeuvre de ce procédé. Cette solution comprend la production, par une unité de production de GNL préexistante, de GNL à une température supérieure à environ -1.60°C, puis sa réfrigération à environ -160°C par le procédé conforme à l'invention.
Un troisième mérite de l'invention est d'avoir modifié un, procédé de réfrigération de gaz naturel liquéfié riche en azote connu et conforme au préambule ci-dessus, et d'avoir permis son utilisation aussi bien avec du GNL riche en azote qu'avec du GNL pauvre en azote. Dans ce dernier cas, le gaz combustible obtenu par ce procédé contient très peu d'azote, et a donc une composition proche de celle du gaz naturel liquéfié pauvre en azote.A second merit of the invention is to present an elegant solution to these production limitations by the use of a process of LNG refrigeration that can adapt to a pre-existing LNG production process, not requiring the use of material and financial resources for the implementation of this process. This solution includes the production, by a pre-existing LNG production unit, of LNG at a temperature above approximately -1.60 ° C, then its refrigeration at about -160 ° C by the process according to the invention.
A third merit of the invention is to have modified a nitrogen-rich liquefied natural gas refrigeration process known and in accordance with the preamble above, and to have allowed its use both with nitrogen-rich LNG and with LNG that is low in nitrogen. In the latter case, the fuel gas obtained by this process contains very little nitrogen, and therefore has a composition close to that of liquefied natural gas deficient in nitrogen.
Le procédé selon l'invention peut présenter l'une ou plusieurs des caractéristiques des revendications 2 à 3The method according to the invention may have one or more of the features of
L'installation selon invention peut comprendre l'une ou plusieurs des caractéristiques des revendications 5 à 11The plant according to the invention may comprise one or more of the features of
L'invention sera mieux comprise et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description qui va suivre en se référant aux dessins schématiques annexés, donnés iniquement à titre d'exemple non limitatif et dans lesquels :
- La
figure 1 représente un schéma synoptique fonctionnel d'une installation de liquéfaction de gaz naturel conforme à un mode de réalisation de l'art antérieur; - La
figure 2 représente un schéma synoptique fonctionnel d'une installation de déazotation à gaz naturel liquéfié conforme a un premier mode de réalisation de l'art antérieur; - La
figure 3 représente un schéma synoptique fonctionnel d'une installation de déazotation de gaz naturel liquéfié conforme à un deuxième mode de réalisation de l'art antérieur; - Les
figures 4 ,5 ,6 et7 représentent des schémas synoptiques fonctionnels d'installations éventuellement de déazotation de gaz naturel liquéfié conforme à des modes de réalisation préférés de l'invention.
- The
figure 1 represents a functional block diagram of a natural gas liquefaction plant according to an embodiment of the prior art; - The
figure 2 represents a functional block diagram of a liquefied natural gas denitrogenation plant according to a first embodiment of the prior art; - The
figure 3 represents a functional block diagram of a liquefied natural gas denitrogenation plant according to a second embodiment of the prior art; - The
figures 4 ,5 ,6 and7 represent functional block diagrams of installations possibly denitrogenation of liquefied natural gas in accordance with preferred embodiments of the invention.
Sur ces sept figures, on peut notamment livre les symboles « FC. » qui signifie « contrôleur de débit », « GT » qui signifie « turbine à gaz », « GE » qui signifie « générateur électrique », « LC » qui signifie « contrôleur de niveau de liquide », « PC » qui signifie « contrôleur de pression », « SC » qui signifie « contrôleur de vitesse » et « TC » qui signifie « contrôleur de température ».In these seven figures, the symbols "FC. Meaning "flow controller", "GT" meaning "gas turbine", "GE" meaning "power generator", "LC" meaning "liquid level controller", "PC" meaning "controller" "SC" meaning "speed controller" and "TC" meaning "temperature controller".
Par souci de clarté et de concision, les conduites utilisées dans les installations des
En se rapportant à la
Cette installation de liquéfaction de GNL présente deux circuits de réfrigération indépendants. Un premier circuit réfrigérant 101, correspondant à un cycle propane, permet l'obtention d'un refroidissement primaire à environ moins 30°C dans un échangeur E3 par détente et vaporisation de propane liquide le propane vapeur réchauffé et détendu est ensuite compressé dans un deuxième compresseur K2, puis le gaz comprimé obtenu 102 est ensuite refroidi et liquéfié dans des réfrigérants à eau 103, 104 et 105.This LNG liquefaction facility has two independent refrigeration circuits. A
Un second circuit réfrigérant 106, correspondant en général à un cycle utilisant un mélange d'azote, de méthane, d'éthane et de propane, permet un refroidissement important du gaz naturel à traiter pour l'obtention de gaz naturel liquéfié 1. Le fluide caloporteur présent dans le second cycle réfrigérant est comprimé dans un troisième compresseur K3 et refroidi dans des échangeurs à eau 118 et 119, puis est refroidi dans un réfrigérant à eau 114, pour l'obtention d'un fluide 107. Ce dernier est ensuite refroidi et liquéfié dans l'échangeur E3 pour fournir un flux refroidi et liquéfié 108. Ce dernier est alors séparé en une phase vapeur 109 et une phase liquide 110 qui sont toutes les deux introduites dans la partie inférieure d'un échangeur cryogénique 111. Après refroidissement, la phase liquide 110 quitte ensuite l'échangeur 111 pour être détendue dans une turbine X2 couplée à un générateur électrique. Le fluide détendu 112 est ensuite introduit dans l'échangeur cryogénique 111 au dessus de sa partie inférieure, où il est utilisé pour refroidir les fluides circulant dans la partie inférieure de l'échangeur, par pulvérisation sur des conduites transportant des fluides à refroidir, au moyen de rampes de pulvérisation. La phase vapeur 109 circule dans la parte inférieure de l'échangeur cryogénique 111 pour y être refroidie et liquéfiée, puis est encore refroidie par circulation dans une partie supérieure de l'échangeur cryogénique 111. Enfin, cette fraction 109 refroidie et liquéfiée est détendue dans une vanne 115, puis est utilisée pour refroidir les fluides circulant dans la partie supérieure de l'échangeur cryogénique 111, par pulvérisation sur des conduites transportant des fluides à refroidir. Les liquides réfrigérants pulvérisés à l'intérieur de l'échangeur cryogénique 111, sont ensuite collectés en pied de ce dernier pour fournir le flux 106 qui est envoyé vers le compresseur K3.A
Le gaz naturel séché, désulfuré et décarbonaté 100, est refroidi dans un échangeur thermique à propane 113, puis est soumis à un traitement de dessiccation, qui peut être, par exemple, un passage sur un tamis moléculaire, par exemple en zéolithe, et à un traitement de démercurisation, par exemple par passage sur une mousse d'argent ou de tout autre piégeur de mercure, dans une enceinte 116 pour fournir un gaz naturel purifié 117. Ce dernier est ensuite refroidi et partiellement liquéfié dans l'échangeur thermique E3, circule dans la partie inférieure, puis dans la partie supérieure de l'échangeur cryogénique 111 pour fournir un gaz naturel liquéfié 1. Ce dernier est habituellement obtenu à une température inférieure à moins 120°C.The dried, desulphurized and decarbonated
En se rapportant maintenant à la
Le GNL 1 est d'abord détendu et refroidi dans une turbine de détente X3 qui est régulée par un contrôleur de débit de GNL circulant dans la conduite 1, puis est à nouveau détendu et refroidi dans une vanne 18 dont l'ouverture dépend de la pression du GNL en sortie de compresseur X3, pour fournir un flux de gaz naturel liquéfié détendu 2. Ce dernier est alors séparé en une première fraction de tête 3 relativement plus volatile, et une première fraction de pied 4 relativement moins volatile dans un ballon V1. La première fraction de pied 4 constituée de gaz naturel liquéfié réfrigéré est collectée et pompée dans une pompe P1, circule dans une vanne 19 dont l'ouverture est régulée par un contrôleur de niveau de liquide dans le fond du ballon V1, pour ensuite quitter l'installation et être stockée.
La première fraction de tête 3 est réchauffée dans un premier échangeur thermique E1, puis est introduite dans un étage à basse pression 15 d'un compresseur K1 couplé à une turbine à gaz GT. Ce compresseur K1 comprend une pluralité d'étages de compression 15, 14, 11 et 30, à des pressions progressivement élevées, et une pluralité de réfrigérants à eau 31, 32, 33 et 34. Après chaque étape de compression, les gaz compressés sont refroidis par passage dans un échangeur thermique, de préférence à eau. La première fraction de tête 3 fournit, à l'issue des étapes de compression et de refroidissement, le gaz combustible comprimé riche en azote 5. Ce gaz combustible est alors collecté et quitte l'installation.The
On prélève une petite partie du gaz combustible 5 qui correspond à un flux 6. Ce flux 6 est réfrigéré dans l'échangeur E1 en cédant sa chaleur à la première fraction de tête 3, pour donner un flux refroidi 22. Ce flux refroidi 22 circule ensuite dans une vanne 23 dont l'ouverture est commandée par un contrôleur de débit en sortie de l'échangeur E2. Le flux 22 est finalement mélangé au flux de gaz naturel liquéfié détendu 2.A small portion of the
En se rapportant maintenant à la
Le GNL 1 est d'abord détendu et refroidi dans une turbine de détente X3 dont la vitesse est régulée par un contrôleur de débit de GNL circulant dans la conduite 1, puis est refroidi dans l'échangeur thermique E2, pour fournir un flux refroidi 20. Ce dernier circule dans une vanne 21, dont l'ouverture est commandée par un contrôleur de pression situé sur la conduite 20, en amont de ladite vanne 21, pour fournir un flux de gaz naturel liquéfié détendu 2. Le flux de gaz naturel liquéfié détendu 2 est alors séparé en une première fraction de tête 3 relativement plus volatile, et une première fraction de pied 4 relativement moins volatile dans la colonne C1. La première fraction de pied 4 constituée de gaz naturel liquéfié réfrigéré est collectée et pompée dans une pompe P1, circule dans une vanne 19 dont l'ouverture est régulée par un contrôleur de niveau de liquide dans le fond du ballon V1, pour ensuite quitter l'installation et être stockée.The
La colonne C1 comporte un rebouilleur de fond de colonne 16 qui utilise du liquide contenu sur un plateau 17. Le flux circulant dans le rebouilleur 16 est réchauffé dans l'échangeur thermique E2 pour être ensuite introduit dans le fond de la colonne C1.Column C1 comprises a
La première fraction de tête 3 suit le même traitement que présenté sur la
En se rapportant maintenant à la
Cette installation comporte des éléments communs à la
La quatrième fraction comprimée 8 est refroidie dans l'échangeur thermique E1 pour fournir une fraction 25 qui est détendue dans la turbine X1. La turbine X1 fournit un flux détendu 10 qui est réchauffé dans l'échangeur E1 pour donner un flux détendu réchauffé 26. Ce flux détend réchauffé 26 est introduit à un étage à moyenne pression 11 du compresseur K1.The fourth
La cinquième fraction comprimée 9 est refroidie dans l'échangeur thermique E1 pour fournir une fraction 22 qui est détendue dans une vanne 23 puis est mélangée à la fraction de GNL détendue 2.The fifth
Le détendeur X1 comporte une vanne de guidage d'entrée 27, permettant, par la variation de l'angle d'introduction du flux 25 sur les aubes de la turbine X1, de faire varier la vitesse de rotation de cette dernière, et par conséquent de faire varier la puissances délivrée au compresseur XK1.The regulator X1 comprises an
En se rapportant maintenant à la
Cette installation comporte des éléments communs à la
La quatrième fraction comprimée 8 est refroidie dans l'échangeur thermique E1 pour fournir une fraction 25 qui est détendue dans la turbine X1. La turbine X1 fournit un flux détendu 10 qui est réchauffé dans l'échangeur E1 pour donner un flux détendu réchauffé 26. Ce flux détendu réchauffé 26 est introduit à un étage à moyenne pression 11 du compresseur K1.The fourth
La cinquième fraction comprimée 9 est refroidie dans l'échangeur thermique E1 pour fournir une fraction 22 qui est détendue dans une vanne 23 puis est mélangée à la fraction de GNL détendue 2.The fifth
Le détendeur X1 comporte une vanne de guidage d'entrée 27, dont la fonction a été définie dans la description de la
A la différence de la
La deuxième fraction de tête 12 est réchauffée dans l'échangeur E1 puis est introduite dans un étage à moyenne pression 14 du compresseur K1, à une pression intermédiaire entre la pression d'entrée de l'étage basse pression 15 et celle de l'étage moyenne pression 11.The
La deuxième fraction de pied 13 est refroidie dans un échangeur E2 pour produire une fraction de GNL refroidi 20. Cette dernière fraction est détendue et refroidie dans une vanne 28 pour produire une fraction de GNL détendu et refroidi 29. L'ouverture de la vanne 28 est commandée par un contrôleur de niveau de liquide contenu dans le ballon V2. Le flux 29 est alors introduit dans la colonne C1 pour y être séparé en la première fraction de tête 3 et en la première fraction de pied 4.The second
Comme indiqué lors de la description de la
En se rapportant maintenant à la
Cette installation comporte des éléments communs à la
De manière simplifiée, la
Le remplacement de la colonne C1 par le ballon V1 ne modifie pas le déroulement des étapes du procédé tel qu'il a été décrit pour la
En se rapportant à la
Cette installation comporte des éléments communs à la
De manière simplifiée, la
La deuxième fraction de tête 12 est réchauffée dans un échangeur E1 puis est introduite dans un compresseur K1 à un étage à moyenne pression 14, intermédiaire entre un étage basse pression 15 et un étage à moyenne pression 11, de la même façon que décrit pour la
Le remplacement de la colonne C1 par le ballon V1 ne modifie pas le déroulement des étapes du procédé tel qu'il a été décrit pour la
Afin de permettre une appréciation concrète des performances d'une installation fonctionnant selon un procédé conforme à l'invention, des exemple chiffrés sont maintenant présentés, aux fins d'illustration et non de limitation.In order to allow a concrete appreciation of the performance of an installation operating according to a method according to the invention, numerical examples are now presented, for purposes of illustration and not limitation.
Ces exemples sont donnés sur la base de deux gaz naturels différents «A» et « B » dont la composition est donnée ci-après dans le tableau 1 :
Ces gaz sont volontairement exempts d'hydrocarbures en C5 et supérieurs, afin de ne pas alourdir les calculs.These gases are voluntarily free of hydrocarbons in C5 and higher, so as not to weigh down the calculations.
Les autres conditions opératoires sont identiques et conformes à ce qui suit (les chiffres de référence se rapportent à la
- Température du gaz naturel humide 100 : 37°C
- Pression du gaz naturel humide 100 : 54 bar
- Pré-refroidissement par le réfrigérant 113 avant séchage : 23°C
- Température du gaz sec après passage dans l'enceinte 116 : 23,5°C
- Pression du gaz sec : 51 bar
- Température d'eau de refroidissement : 30°C
- Température en sortie d'échangeur à eau : 37°C
- Température de condensation du propane : 47°C.
- Rendement des compresseurs centrifuges K1, K2 et K3 : 82 %
- Rendement de la turbine de détente X2: 85 %
- Rendement du compresseur axial XK1: 86 %
- Puissance sur une ligne d'arbre GE6 : 31570 kW
- Puissance sur une ligne d'arbre GE7 : 63140 kW
- Puissance sur une ligne d'arbre GE5D : 24000 kW
- Temperature of wet natural gas 100: 37 ° C
- Pressure of wet natural gas 100: 54 bar
- Pre-cooling with
coolant 113 before drying: 23 ° C - Dry gas temperature after passage in the chamber 116: 23.5 ° C.
- Dry gas pressure: 51 bar
- Cooling water temperature: 30 ° C
- Water exchanger outlet temperature: 37 ° C
- Condensation temperature of propane: 47 ° C.
- Efficiency of centrifugal compressors K1, K2 and K3: 82%
- Efficiency of the expansion turbine X2: 85%
- Efficiency of axial compressor XK1: 86%
- Power on a GE6 shaft line: 31570 kW
- Power on a GE7 shaft line: 63140 kW
- Power on a GE5D shaft line: 24000 kW
La puissance sur une ligne d'arbre représente la puissance disponible sur un arbre de turbine à gaz Général Electric de référence GESD, GE6 et GE7. Des turbines de ce type sont couplées aux compresseurs K1, K2 et K3 représentés sur les
Les débits de gaz naturel à liquéfier seront choisis de façon à saturer les puissances disponibles sur les lignes d'arbre. Les trois cas suivants sont envisagés (pour un procédé de liquéfaction décrit en
- Utilisation pour l'entraînement d'une turbine GE6 et d'une turbine GE7, ce qui correspond à un débit de GNL produit à -160°
C d'environ 3 millions de tonnes par an. - Utilisation pour l'entraînement de deux turbines GE7, ce qui correspond à un débit de GNL produit à -160°C d'environ 4 millions de tonnes par an.
- Utilisation pour l'entraînement de trois turbines GE7, ce qui correspond à un débit de GNL produit à -160°C d'environ 6 millions de tonnes par an.
- Used for driving a GE6 turbine and a GE7 turbine, which corresponds to a flow of LNG produced at -160 ° C of about 3 million tons per year.
- Use for driving two GE7 turbines, which corresponds to a flow of LNG produced at -160 ° C of about 4 million tons per year.
- Used for driving three GE7 turbines, which corresponds to a flow of LNG produced at -160 ° C of about 6 million tons per year.
Une des voies qui permet de calculer facilement l'influence d'un paramètre sans entrer dans le détail d'un procédé est celle de la notion de Travail Théorique associée à celle d'Exergie.One of the ways to easily calculate the influence of a parameter without going into the details of a process is that of the notion of Theoretical Work associated with that of Exergy.
Le travail théorique qu'il faut fournir à un système pour qu'il passe d'un état 1 à un état 2 est donné par l'équation suivante :
- W1-2 = T0 × (S1 - S2) - (H1 - H2) avec :
- W1-2: travail théorique (kJ/kg)
- T0 : température de rejet de la chaleur (K)
- S1 : entropie dans l'état 1 (kJ/(K.kg))
- S2 : entropie dans l'état 2 (kJ/(K.kg))
- H1 : enthalpie dans l'état 1 (kJ/kg)
- H2 : enthalpie dans l'état 2 (kJ/kg)
- W1-2 = T0 × (S1 - S2) - (H1 - H2) with:
- W1-2: theoretical work (kJ / kg)
- T0: heat rejection temperature (K)
- S1: entropy in state 1 (kJ / (K.kg))
- S2: entropy in state 2 (kJ / (K.kg))
- H1: enthalpy in state 1 (kJ / kg)
- H2: enthalpy in state 2 (kJ / kg)
Dans le cas présent, la température de rejet sera prise égale à 310,15 K (37°C). L'état 1 sera le gaz naturel à 37°C et 51 bar et l'état 2 sera le GNL à la température T2 et à 50 bar.In this case, the reject temperature will be taken as 310.15 K (37 ° C).
Le tableau 2 ci-dessous montre l'évolution du travail théorique pour la liquéfaction des gaz naturels A et B en fonction de la température du GNL en sortie du procédé de liquéfaction. Lorsque la puissance des compresseurs de réfrigération est constante, la diminution du travail théorique se traduit par une augmentation possible de la capacité du cycle de liquéfaction.
On observe que les chiffres obtenus avec les gaz A et B sont très proches. L'augmentation possible de la capacité est d'environ 1,14 % par °C de température du GNL 1 obtenu en sortie d'unité de liquéfaction présentée sur la
La capacité C1 pour une température T1 du GNL produit s'exprime en fonction de la capacité C0 à la température T0, selon l'équation suivante :
Avec :
- C1 : capacité de production de GNL à T1 (kg/h)
- C0 : capacité de production de GNL de référence à T0 (kg/h)
- T1 : Température de production de GNL (°C)
- T2 : Température de production de GNL de référence (°C)
- C1: LNG production capacity at T1 (kg / h)
- C0: Reference LNG production capacity at T0 (kg / h)
- T1: LNG production temperature (° C)
- T2: Reference LNG production temperature (° C)
I1 en résulte qu'à -140°C, la capacité de l'unité de production de GNL est de 125, 5% de sa capacité à -160°C, ce qui est considérable.As a result, at -140 ° C, the capacity of the LNG unit is 125.5% of its capacity at -160 ° C, which is considerable.
Le travail réel d'une unité de production de GNL sera évidemment fonction du procédé choisi. Le procédé présenté sur la
Ce procédé est mis en oeuvre ici d'une façon particulière qui le rend très performant : le cycle propane comporte 4 étages et la réfrigération du MCR (réfrigérant à composants multiples, flux 106,
Les résultats obtenus sont présentés sur le tableau 3 :
On observe que ces résultats corroborent parfaitement ceux qui ont été obtenus avec les calculs de travail théorique présentés dans le tableau 1.It is observed that these results corroborate perfectly those obtained with the theoretical work calculations presented in Table 1.
Le rendement du procédé de liquéfaction peut être calculé à partir du travail réel et du travail théorique. Celui-ci est sensiblement constant et se situe aux environs de 51,5 %, comme cela peut être observé à partir des résultats présentés sur le tableau 4 :
Ce résultat est particulièrement satisfaisant. L'utilisateur du procédé sera toujours assuré de tirer le meilleur parti du procédé de liquéfaction, quelle que soit la température de production de GNL choisie. On constate également que la composition du gaz naturel à liquéfier n'a pas d'importance.This result is particularly satisfying. The user of the process will always be sure to make the most of the liquefaction process, regardless of the chosen LNG production temperature. It is also noted that the composition of the natural gas to be liquefied does not matter.
Ainsi, l'utilisation nouvelle du procédé de liquéfaction connu permet d'augmenter la température du GNL 1 obtenu en sortie d'unité de production tout en permettant une augmentation substantielle de la quantité produite, pouvant aller jusqu'à environ 40 % à -130°C.Thus, the new use of the known liquefaction process makes it possible to increase the temperature of the
Le GNL 1 obtenu en sortie d'unité de production décrite précédemment pour la
L'installation représentée schématiquement sur la
Selon un mode de fonctionnement, le GNL 1 de composition « B » contenant de l'azote, produit à -150°C et 48 bar est détendu dans la turbine hydraulique X3 à une pression d'environ 4 bar puis dans une vanne 18 à une pression de 1,15 bar. Le mélange biphasique obtenu 2 est séparé dans le ballon séparateur V1 d'une part en le gaz de flash riche en azote 3, et d'autre part en le GNL réfrigéré 4. Le GNL réfrigéré est envoyé vers le stockage, comme décrit plus haut. Le gaz de flash 3, qui constitue la première fraction gazeuse, est réchauffé dans l'échangeur E1 jusqu'à -70°C avant d'être comprimé jusqu'à 29 bar dans le compresseur K1. Le compresseur K1 produit une première fraction comprimée 5 qui constitue le gaz combustible enrichi en azote.According to one operating mode, the
Environ 23 % de la première fraction comprimée 5 est recyclée sous la forme d'une fraction 6. Cette dernière est refroidie dans l'échangeur E1 par échange de chaleur avec le gaz de flash 3, puis est mélangée au flux de GNL refroidi et détendu 2.About 23% of the first
Cette disposition permet de liquéfier une partie du gaz de flash (environ 23%) et de réduire la quantité de gaz combustible produite. Les performances d'une unité de déazotation selon ce schéma 2 sont présentées dans le tableau 5 ci-après, dans lequel la colonne intitulée « 1 GE6 + 1 GE7 » correspond à une unité de production de GNL 1 selon le schéma 1, utilisant 1 turbine à gaz GE6 et 1 turbine à gaz GE7 pour les compresseurs K2 et K3, « 2 GE7 » correspond à l'utilisation de 2 turbines GE7 pour la production de GNL 1, et « 3 GE7 » pour l'utilisation de 3 turbines :
L'installation représentée schématiquement sur la
Dans cette installation, le GNL 1 à -145,5°C est détendu jusqu'à 5 bar dans la turbine hydraulique de détente X3, pus est refroidi de -146,2°C à -157°C dans l'échangeur E2 par échange de chaleur avec le liquide circulant dans le rebouilleur de fond de colonne 16 pour l'obtention d'un flux de GNL détendu et refroidi 20. Le flux 20 subit une seconde détente à 1,15 bar dans une vanne 21 et alimente la colonne de déazotation C1 en mélange avec du GNL- 22 provenant du recyclage partiel du gaz combustible comprimé 5.In this installation, the
En fond de colonne de déazotation C1, le GNL comporte 0,06 % d'azote, alors que la teneur en azote du GNL en utilisant un flash final était de 1,38 % (
Le gaz combustible 3, qui est la première fraction de tête issue de la colonne C1, est réchauffée à -75°C dans l'échangeur E1, puis est comprimée à 29 bar dans le compresseur K1 et refroidie par les réfrigérants à eau 31-34 pour fournir un gaz combustible comprimé 5.The
Un flux 6, qui représente 23 % du gaz comprimé 5 est recyclée vers la colonne C1 après avoir réchauffé le flux 3 dans l'échangeur E1.A stream 6, which represents 23% of the
Le gaz combustible produit, qui représente 1032 GJ/h dans le cas de l'utilisation d'une turbine GE6 et d'une GE7, est sensiblement identique en pouvoir calorifique total à celui de l'unité de flash final de la
L'utilisation de la technique de déazotation par colonne a permis d'augmenter de 5,62 % la capacité du train de liquéfaction, pour un surcoût mineur.The use of the column denitrogenation technique increased the capacity of the liquefaction train by 5.62%, for a minor additional cost.
Il faut comprendre que c'est l'association de l'utilisation d'une colonne de déazotation C1 et du recyclage de gaz combustible qui mène à ce résultat très encourageant.It must be understood that it is the combination of the use of a denitrogenation column C1 and the recycling of fuel gas that leads to this very encouraging result.
La puissance du compresseur de gaz combustible K1 dépend de la taille de l'unité. Elle sera de :
- 8087 kW pour une unité de GNL utilisant 1 GE6 associée à 1 GE7,
- 10783 kW pour une unité de GNL utilisant 2 GE7,
- 16174 kW une unité de GNL utilisant 3 GE7.
- 8087 kW for an LNG unit using 1 GE6 associated with 1 GE7,
- 10783 kW for one LNG unit using 2 GE7,
- 16174 kW one LNG unit using 3 GE7.
Les puissances de ces machines et les problèmes de démarrage font qu'il est souhaitable d'utiliser une turbine à gaz pour entraîner le compresseur de gaz combustible K1. Les autres performances du procédé sont présentées sur le tableau 6 :
Un des problèmes principaux rencontrés dans les installations industrielles de traitement et de liquéfaction de gaz a trait notamment à l'utilisation optimale des appareils de compression, qui représentent un investissement important, tant du point de vue de l'achat, que du point de vue de la consommation d'énergie. En effet, des compresseurs qui nécessitent une puissance de l'ordre de plusieurs dizaines de milliers de kW se doivent d'être fiables et de pouvoir être utilisés dans des conditions de rendement optimal sur une plage de charge aussi grande que possible. Bien entendu, cette remarque s'applique aussi aux moyens mis en oeuvre pour les faire fonctionner. Ces moyens étant habituellement ici des turbines à gaz, en raison de la gamme de puissances disponibles commercialemént.One of the main problems encountered in industrial gas treatment and liquefaction plants is the optimal use of compressors, which represent a significant investment, both in terms of purchase and from the point of view of energy consumption. Indeed, compressors that require a power of the order of several tens of thousands of kW must be reliable and can be used under optimal performance conditions over a load range as large as possible. Of course, this remark also applies to the means used to make them work. These means being usually here gas turbines, because of the range of commercially available powers.
Les turbines à gaz, pour être efficaces, doivent être utilisées à pleine capacité. En prenant pour exemple une unité de déazotation fonctionnant selon l'un quelconque des modes de réalisation décrit dans les
Cependant, il peut arriver qu'une turbine à gaz travaille dans des conditions telles que la puissance délivrée au compresseur soit nettement en dessous de ses capacités.However, it may happen that a gas turbine works under conditions such that the power delivered to the compressor is well below its capacity.
C'est le cas par exemple lorsqu'une turbine à gaz GE5d, ayant une puissance de 24000 kW est couplée au compresseur K1 lors de la déazotation par flash final ou par séparation dans une colonne. La conséquence de cette sous-utilisation de la turbine est une diminution du rendement énergétique de la compression relativement à la consommation en énergie de la turbine.This is the case for example when a gas turbine GE5d, having a power of 24000 kW is coupled to the compressor K1 during denazotation by final flash or by separation in a column. The consequence of this underutilization of the turbine is a reduction in the energy efficiency of the compression relative to the energy consumption of the turbine.
Bien entendu, la puissance compresseur K1 varie en fonction de la taille de l'unité, comme cela a été expliqué plus haut. Ainsi, l'utilisation d'une turbine GE5d permet de bénéficier d'un excédent de puissance qui s'élève à :
- 15913 kW pour une unité de GNL utilisant 1 turbine GE6 associée à 1 turbine GE7,
- 13217 kW pour une unité de GNL utilisant 2 turbines GE7,
- 7826 kW pour une unité de GNL utilisant 3 turbines GE7.
- 15913 kW for an LNG unit using 1 GE6 turbine associated with 1 GE7 turbine,
- 13217 kW for one LNG unit using 2 GE7 turbines,
- 7826 kW for one LNG unit using 3 GE7 turbines.
Il est donc souhaitable d'utiliser cet excédant d'énergie disponible. Le procédé conforme à l'invention propose notamment d'utiliser la totalité de la puissance disponible pour entraîner le compresseur K1.It is therefore desirable to use this excess of available energy. The method according to the invention proposes in particular to use all of the power available to drive the compressor K1.
Le procédé selon l'invention permet aussi d'augmenter la température en sortie du procédé de liquéfaction pour l'obtention du flux de GNL 1, et d'utiliser l'excédent de puissance disponible sur la turbine à gaz entraînant K1 afin de refroidir le GNL à moins 160°C.The method according to the invention also makes it possible to increase the temperature at the outlet of the liquefaction process to obtain the flow of
En outre, le procédé conforme à l'invention permet, du fait de la possibilité d'augmenter la température du GNL 1 produit par exemple selon le procédé APCI, d'augmenter le débit de GNL refroidi à -160°C de façon importante, pouvant aller dans certains cas jusqu'à environ 40 %.In addition, the process according to the invention makes it possible, by virtue of the possibility of increasing the temperature of the
Le procédé de l'invention a le mérite de pouvoir être mis en oeuvre de façon aisée, en raison de la simplicité des moyens nécessaires à sa réalisation.The method of the invention has the merit of being able to be implemented easily, because of the simplicity of the means necessary for its realization.
Un mode de réalisation conforme au procédé de l'invention, mettant en oeuvre une colonne de déazotation C1, est présenté sur la
Un GNL 1 est produit à -140,5°C par le procédé APCI représenté sur la
Le flux de GNL 4, soutiré en pied de colonne C1, comporte 0,00% d'azote.The flow of LNG 4, withdrawn at the bottom of column C1, comprises 0.00% nitrogen.
Le gaz combustible 3, est réchauffé à -34°C dans l'échangeur E1 puis est comprimé à 29 bar dans le compresseur K1 pour alimenter un réseau de gaz combustible.The
Une première différence avec le procédé connu provient de la quantité de gaz comprimé 6 prélevé du flux de gaz combustible 5 : elle s'élève maintenant à environ 73 %. Ce gaz comprimé 6 est comprimé à 38,2 bar dans le compresseur XK1 pour fournir une fraction 7. Cette dernière est refroidie à 37°C dans un échangeur à eau 24 puis est séparée en deux courants 8 et 9.A first difference with the known method comes from the amount of compressed gas 6 taken from the flow of fuel gas 5: it now amounts to about 73%. This compressed gas 6 is compressed at 38.2 bar in the compressor XK1 to provide a
Le courant 8, majoritaire, qui représente 70 % du flux 7, est refroidi à -82°C par passage dans l'échangeur E1, puis alimente la turbine X1, couplée au compresseur XK1. Le flux détendu en sortie de turbine 10, à une pression de 9 bar et une température de -138°C est réchauffé dans l'échangeur E1 à 32°C, puis alimente le compresseur K1 à un étage à moyenne pression 11 qui est le troisième étage.Current 8, the majority, which represents 70% of the
Le courant 9, minoritaire, qui représente 30 % du flux 7, est liquéfié et refroidi jusqu'à -160°C et retourne à la colonne de déazotation C1.The
Le gaz combustible produit représente 1400 GJ/h, il est identique en pouvoir calorifique total à celui de l'unité de flash final. L'utilisation de la technique de déazotation et du procédé de l'invention a permis d'augmenter de 11,74 % la capacité du train de liquéfaction, pour un surcoût raisonnable.The fuel gas produced represents 1400 GJ / h, it is identical in total calorific value to that of the final flash unit. The use of the denitrogenation technique and the process of the invention made it possible to increase the capacity of the liquefaction train by 11.74%, for a reasonable additional cost.
Il faut comprendre que c'est l'association d'une utilisation d'une colonne de déazotation, du recyclage de gaz combustible comprimé et du cycle à turbine de détente qui mène à ce résultat très surprenant.It must be understood that it is the combination of a use of a denitrogenation column, the recycling of compressed fuel gas and the expansion turbine cycle which leads to this very surprising result.
Pour les autres tailles d'unité de production de GNL, les résultats sont présentés dans le tableau 7 :
+
1 GE6
+
1
On observe que les augmentations de capacité sont de :
- 14,2 % pour une unité de GNL utilisant une turbine GE7 associée à une turbine GE6,
- 11,7 % pour une unité de GNL utilisant deux turbines GE7,
- 8,21 % pour une unité de GNL utilisant trois turbines GE7.
- 14.2% for an LNG unit using a GE7 turbine associated with a GE6 turbine,
- 11.7% for one LNG unit using two GE7 turbines,
- 8.21% for one LNG unit using three GE7 turbines.
Le procédé selon l'invention présente en outre un intérêt considérable pour la régulation de la quantité de gaz combustible produite. En effet, il est dès lors possible d'avoir une production soutenue de gaz combustible, comme cela est montré par un exemple chiffré dans le tableau 8, ci-après :
thermique basse spécifique
specific low thermal
On constate que lorsque la quantité de gaz combustible passe de 1400 à 2800 GJ/h, il est alors possible d'augmenter la capacité de 13,39 %, c'est à dire que 1,65 % d'augmentation de capacité (13,39 % moins 11,74 %) sont dus à l'augmentation de production de gaz combustible.It can be seen that when the quantity of fuel gas increases from 1400 to 2800 GJ / h, it is then possible to increase the capacity by 13.39%, that is to say that 1.65% increase in capacity (13 , 39% minus 11.74%) are due to the increase in fuel gas production.
Un autre mode de réalisation conforme au procédé de l'invention, mettant en oeuvre une colonne de déazotation C1, est présenté sur la
Le GNL 1, de composition « B » obtenu à -140,5°C, sous une pression de 48,0 bar avec un débit de 33294 kmol/h, est détendu à 6,1 bar et moins 141,25°C dans la turbine hydraulique X3, puis est à nouveau détendu à 5,1 bar et -143,39°C dans la vanne 18, pour fournir le flux détendu 2.
Le flux 2 (33294 kmol/h) est mélangé au flux 35 (2600 kmol/h) pour l'obtention du flux 36 (35894 kmol/h), à -146,55°C.Stream 2 (33294 kmol / h) is mixed with stream 35 (2600 kmol / h) to obtain stream 36 (35894 kmol / h) at -146.55 ° C.
Le flux 35 est composé de 42,97 % d'azote, de 57,02 % de méthane et de 0,01 % d'éthane.
Le flux 36, qui est composé de 6,79 % d'azote, 85,83 % de méthane, 4,97 % d'éthane, 1,71 % de propane, 0,27 % d'isobutane et de 0,44 % de n-butane, est séparé dans le ballon V2 en la deuxième fraction de tête 12 (1609 kmol/h), et en la deuxième fraction de pied 13 (34285 kmol/h).
Le flux 12 (45,58 % d'azote, 54,4 % de méthane et 0,02 % d'éthane) est réchauffé jusqu'à 33°C dans l'échangeur E1, pour fournir un flux 37 qui alimente, à 4,9 bar, le compresseur K1 à l'étage à moyenne pression 14.The stream 12 (45.58% of nitrogen, 54.4% of methane and 0.02% of ethane) is heated up to 33 ° C. in the exchanger E1, to provide a
Le flux 13 (4,97 % d'azote, 87,30 % de méthane, 5,20 % d'éthane, 1,79 % de propane, 0,28 % d'isobutane et de 0,46 % de n-butane) est refroidi dans l'échangeur thermique E2 pour fournir le flux 20 à -157°C et 4,6 bar. Ce dernier est détendu dans la vanne 28 pour l'obtention du flux 29 à -165,21°C et 1,15 bar, qui est introduit dans la colonne C1.Stream 13 (4.97% nitrogen, 87.30% methane, 5.20% ethane, 1.79% propane, 0.28% isobutane and 0.46% n- butane) is cooled in the heat exchanger E2 to provide the stream at -157 ° C and 4.6 bar. The latter is expanded in the
La colonne C1 produit en tête la première fraction de tête 3 (4032 kmol/h) à -165,13°C. La fraction 3 (41,73 % d'azote et 58,27 % de méthane) est réchauffée dans l'échangeur E1 pour donner le flux 41 à -63,7°C et 1,05 bar. Le flux 41 alimente l'aspiration basse pression 15 du compresseur K1.Column C1 produces the first top fraction 3 (4032 kmol / h) at -165.13 ° C. Fraction 3 (41.73% nitrogen and 58.27% methane) is reheated in exchanger E1 to give
La colonne C1 produit la première fraction de pied 4 à -159,01°C et 1,15 bar avec un débit de 30253 kmol/h. Cette fraction 4 (0,07 % d'azote, 91,17 % de méthane, 5,90 % d'éthane, 2,03 % de propane, 0,32 % d'isobutane et de 0,52 % de n-butane) est pompée par la pompe P1 pour fournir une fraction 39 à 4,15 bar et -158,86°C, puis quitte l'installation.Column C1 produces first foot fraction 4 at -159.01 ° C and 1.15 bar with a flow rate of 30253 kmol / h. This fraction 4 (0.07% nitrogen, 91.17% methane, 5.90% ethane, 2.03% propane, 0.32% isobutane and 0.52% n- butane) is pumped by the pump P1 to provide a
La colonne C1 est équipée du rebouilleur de fond de colonne 16, qui refroidit le flux 13 pour l'obtention du flux 20.The column C1 is equipped with the
Le compresseur K1 produit le flux compressé 5 à 37°C et 29 bar avec un débit de 11341 kmol/h. Ce flux de gaz combustible 5 (42,90 % d'azote et 57,09 % de méthane) est séparé en un flux 40, qui représente 3041 kmol/h, qui quitte l'installation, et en un flux 6, qui représente 8300 kmol/h, qui est compressé dans le compresseur XK1.The compressor K1 produces the compressed
Le compresseur XK1 produit le flux comprimé 7. à 68,18°C et 39,7 bar. Le flux 7 est refroidi à 37°C dans l'échangeur à eau 24, puis est séparé en les flux 8 et 9.The compressor XK1 produces the compressed
Le flux 8 (5700 kmol/h) est refroidi dans l'échangeur E1 pour donner le flux 25 à -74°C et 38,9 bar.Stream 8 (5700 kmol / h) is cooled in exchanger E1 to give the stream at -74 ° C and 38.9 bar.
Le flux 9 (2600 kmol/h) est refroidi dans l'échangeur E1 pour donner le flux 22 à -155°C et 38,4 bar. Ce dernier est ensuite détendu dans la vanne 23 pour fournir le flux 35 à -168°C et 5,1 bar.Stream 9 (2600 kmol / h) is cooled in exchanger E1 to give
Le flux 25 est détendu dans la turbine de détente X1 qui produit la fraction 10 à une température de -139,7°C et une pression de 8,0 bar. Cette fraction 10 est ensuite réchauffée dans l'échangeur E1 qui produit la fraction 26 à une température de 32°C et une pression de 7,8 bar.
La fraction 26 alimente le compresseur K1 sur l'étage à moyenne pression 11. Le compresseur K1 et le détendeur X1 ont les performances suivantes :
Unité de déazotation
Unit of denunciation
L'utilisation du ballon V2 permet un gamin d'environ 2000 kW sur la puissance du compresseur K1.The use of the V2 balloon allows a kid about 2000 kW on the power of the compressor K1.
De ces études sur le gaz B, riche en azote, il découle du procédé conforme à l'invention que :
- l'augmentation de la température du GNL en sortie du procédé de liquéfaction permet d'obtenir une augmentation de capacité de production de GNL de 1,2 % par °C,
- l'utilisation d'une colonne de déazotation associée à une liquéfaction d'une partie du gaz combustible produit est beaucoup plus efficace qu'un flash final,
- la saturation de la puissance de la turbine à gaz attelée au compresseur K1 par l'utilisation du nouveau procédé permet d'obtenir un gain important de capacité de production de GNL,
- l'augmentation de la quantité de gaz combustible produit permet d'obtenir une augmentation supplémentaire de la capacité de production de GNL,
- l'ajout du ballon séparateur V2 permet d'améliorer la charge du compresseur K1 et de baisser le coût de son utilisation.
- the increase in the LNG temperature at the outlet of the liquefaction process makes it possible to obtain an increase in LNG production capacity of 1.2% per ° C,
- the use of a denitrogenation column associated with liquefaction of a portion of the fuel gas produced is much more effective than a final flash,
- the saturation of the power of the gas turbine coupled to the compressor K1 by the use of the new process makes it possible to obtain a significant gain in LNG production capacity,
- the increase in the quantity of fuel gas produced makes it possible to obtain an additional increase in the LNG production capacity,
- the addition of the separator tank V2 makes it possible to improve the load of the compressor K1 and to lower the cost of its use.
L'étude suivante concerne l'utilisation du gaz A pauvre en azote, dans laquelle l'unité de flash final ne produit pas de gaz combustible.The following study concerns the use of nitrogen-poor gas A, in which the final flash unit does not produce fuel gas.
De façon connue, du gaz naturel contenant très peu d'azote ne nécessite pas l'utilisation d'un flash final.In known manner, natural gas containing very little nitrogen does not require the use of a final flash.
Le GNL peut alors être produit directement à -160°C et être expédié vers le stockage après détente dans une turbine hydraulique, par exemple semblable à X3 : Il s'agit de la technique du sous-refroidissement poussé.The LNG can then be produced directly at -160 ° C and shipped to the storage after expansion in a hydraulic turbine, for example similar to X3: This is the technique of deep subcooling.
Lorsqu'on choisit le sous refroidissement poussé, les sources de gaz combustible peuvent être d'origines diverses :
- gaz de tête de déméthaniseur,
- gaz de tête de colonne de stabilisation des condensats,
- gaz d'évaporation des bacs de stockage,
- gaz de régénération des sécheurs de gaz naturel, etc.
- demethanizer head gas,
- condensate stabilization column head gas,
- evaporation gas from storage tanks,
- regeneration gas from natural gas driers, etc.
Il n'est alors plus possible d'ajouter une source de gaz combustible sans créer un risque d'excédent de gaz combustible. Si on désire augmenter la capacité de la ligne de production de GNL en augmentant la température du GNL produit par le procédé de liquéfaction, il faut mettre en place un procédé qui ne produise pas ou peu de gaz combustible.It is no longer possible to add a combustible gas source without creating a risk of excess fuel gas. If one wishes to increase the capacity of the LNG production line by increasing the temperature of the LNG produced by the liquefaction process, it is necessary to set up a process that produces no or little fuel gas.
Le procédé conforme à l'invention permet d'atteindre ce but. Il permet d'augmenter la température du GNL en sortie de procédé de liquéfaction et par conséquent d'augmenter le débit de GNL refroidi 4, produit à des fins de stockage.The method according to the invention achieves this goal. It makes it possible to increase the temperature of the LNG at the end of the liquefaction process and consequently to increase the flow rate of cooled LNG 4, produced for storage purposes.
Ce procédé est présenté à la
Le GNL 1 à une température de -147°C est détendu à 2,7 bar dans la turbine hydraulique X3 entraînant un générateur électrique, puis subit une seconde détente à 1,15 bar dans la vanne 18, et alimente le ballon de flash V1 en mélange avec du GNL provenant de la liquéfaction du gaz combustible comprimé 5.The
En fond de ballon V1, le GNL est à -159, 2°C et 1,15 bar. Il quitte alors l'installation pour être stocké.In bottom of balloon V1, the LNG is at -159, 2 ° C and 1.15 bar. He then leaves the installation to be stored.
Le gaz combustible 3, qui est la première fraction de tête, est réchauffé jusqu'à 32°C dans l'échangeur E1 avant d'être comprimé à 29 bar dans le compresseur K1 pour alimenter éventuellement le réseau de gaz combustible. Dans le cas présent, la totalité du gaz combustible est envoyé dans le compresseur XK1 pour fournir le flux comprimé 7 à 41,5 bar. Ce flux est ensuite refroidi à 37°C dans l'échangeur à eau 24, puis est partagé en deux courants 8 et 9.The
Le flux 8, qui représente 79 % du flux 7, est refroidi jusqu'à -60°C avant d'alimenter la turbine X1 attelée au compresseur XK1. La turbine X1 fournit le gaz détendu 10, à une pression de 9 bar et une température de -127°C. Ce flux 10 est réchauffé dans l'échangeur E1 pour l'obtention d'un flux réchauffé 26, à 32°C, puis alimente le compresseur K1 sur l'aspiration de son troisième étage.The
Le flux 9, qui représente 21 % du flux 7, est liquéfié et refroidi jusqu'à -141°C dans l'échangeur E1 et retourne dans le ballon de flash V1.The
L'utilisation du nouveau procédé a permis d'augmenter de 15,82 % la capacité du train de liquéfaction, pour un surcoût raisonnable.The use of the new process increased the capacity of the liquefaction train by 15.82%, for a reasonable additional cost.
Il faut comprendre que c'est l'association du recyclage de gaz combustible comprimé et du cycle à turbine de détente qui mène à ce résultat très surprenant.It should be understood that it is the combination of compressed fuel gas recycling and the expansion turbine cycle that leads to this very surprising result.
Pour des unités de production de GNL de taille différente, les résultats sont présentés dans :
le tableau 9, qui correspond aux caractéristiques d'une unité fonctionnant selon le mode de réalisation du procédé de l'invention tel que présenté sur lafigure 6 ,le tableau 10, donné à titre de comparaison, qui présente les caractéristiques d'une unité de réfrigération de GNL par la technique du sous refroidissement poussé.
- Table 9, which corresponds to the characteristics of a unit operating according to the embodiment of the method of the invention as presented on the
figure 6 , - Table 10, for comparison, which shows the characteristics of an LNG refrigeration unit by the technique of deep subcooling.
Les augmentations de capacité pour l'utilisation d'une installation conforme au procédé de l'invention, par rapport à la technique du sous refroidissement poussé sont les suivantes :
- 19,6 % pour une unité de GNL utilisant 1 turbine GE6 associée à une turbine GE7,
- 15,8 % pour une unité de GNL utilisant 2 turbines GE7,
- 10, 9 % pour une unité de GNL utilisant 3 turbines GE7.
- 19.6% for an LNG unit using 1 GE6 turbine associated with a GE7 turbine,
- 15.8% for an LNG unit using 2 GE7 turbines,
- 10, 9% for an LNG unit using 3 GE7 turbines.
Le mode de réalisation du procédé conforme à l'invention selon la
thermique basse spécifique
specific low thermal
Lorsque la production de gaz combustible passe de 0 à 785 GJ/h, il est alors possible d'augmenter la capacité de 18,13 %, c'est à dire que 2,31 % d'augmentation de capacité (18,13 % moins 15,82 %) sont dus à la production de gaz combustible. Ce résultat est beaucoup plus net que celui obtenu avec une installation de déazotation.When the production of fuel gas goes from 0 to 785 GJ / h, it is then possible to increase the capacity of 18,13%, that is to say that 2,31% increase of capacity (18,13% minus 15.82%) are due to the production of fuel gas. This result is much clearer than that obtained with a denitrogenation plant.
Un autre mode de réalisation conforme au procédé de l'invention, mettant en oeuvre une colonne de déazotation C1, est présenté sur la
Le GNL 1, de composition « A » obtenu à -147°C sous une pression de 48,0 bar avec un débit de 30885 kmol/h, est détendu à 2,7 bar et moins 147,63°C dans la turbine hydraulique X3, puis est à nouveau détendu à 2,5 bar et moins 148,33°C dans la vanne 18, pour fournir le flux détendu 2.
Le flux 2 (30885 kmol/h) est mélangé au flux 35 (3127 kmol/h) pour l'obtention du flux 36 (34012 kmol/h), à -149,00°C.Stream 2 (30885 kmol / h) is mixed with stream 35 (3127 kmol / h) to obtain stream 36 (34012 kmol / h) at -149.00 ° C.
Le flux 35 est composé de 3,17 % d'azote, de 96,82 % de méthane et de 0,01 % d'éthane.The stream is composed of 3.17% nitrogen, 96.82% methane and 0.01% ethane.
Le flux 36, qui est composé de 0,38 % d'azote, 91,90 % de méthane, 4,09 % d'éthane, 2,27 % de propane, 0,54 % d'isobutane et de 0,82 % de n-butane, est séparé dans le ballon V2 en la deuxième fraction de tête 12 (562 kmol/h), et en la deuxième fraction de pied 13 (33450 kmol/h).
Le flux 12 (5,41 % d'azote, 94,57 % de méthane et 0,02 % d'éthane) est réchauffé jusqu'à 34°C dans l'échangeur E1, pour fournir un flux 37 qui alimente, à 2,4 bar, le compresseur K1 à l'étage à moyenne pression 14.The stream 12 (5.41% nitrogen, 94.57% methane and 0.02% ethane) is heated up to 34 ° C in the exchanger E1, to provide a
Le flux 13 (0,03 % d'azote, 91,85 % de méthane, 4,16 % d'éthane, 2,31 % de propane, 0,55 % d'isobutane et de 0,83 % de n-butane) est détendu dans la vanne 28 pour l'obtention du flux 29 à -159,17°C et 1,15 bar, qui est introduit dans le ballon séparateur V1.Stream 13 (0.03% nitrogen, 91.85% methane, 4.16% ethane, 2.31% propane, 0.55% isobutane and 0.83% n butane) is expanded in the
Le ballon V1 produit en tête la première fraction de tête 3 (2564 kmol/h) à -159,17°C. La fraction 3 (2,72 % d'azote, 97,27 % de méthane et 0,01 % d'éthane) est réchauffée dans l'échangeur E1 pour donner le flux 41 à moins 32,21°C et 1,05 bar. Le flux 41 alimente l'aspiration basse pression 15 du compresseur K1.The flask V1 produces at its head the first top fraction 3 (2564 kmol / h) at -159.17 ° C. Fraction 3 (2.72% nitrogen, 97.27% methane and 0.01% ethane) is reheated in exchanger E1 to give
Le ballon V1 produit la première fraction de pied 4 à -159,17°C et 1,15 bar avec un débit de 30886 kmol/h. Cette fraction 4 ( 0,10 % d'azote, 91,40 % de méthane, 4,50 % d'éthane, 2,50 % de propane, 0,60 % d'isobutane et de 0,90 % de n-butane) est pompée par la pompe P1 pour fournir une fraction 39 à 4,15 bar et -159,02°C, puis quitte l'installation.The V1 flask produces the first foot fraction 4 at -159.17 ° C and 1.15 bar with a flow rate of 30886 kmol / h. This fraction 4 (0.10% nitrogen, 91.40% methane, 4.50% ethane, 2.50% propane, 0.60% isobutane and 0.90% n- butane) is pumped by the pump P1 to provide a
Le compresseur K1 produit le flux compressé 5 à 37°C et 29 bar avec un débit de 13426 kmol/h. Ce flux de gaz combustible 5 (3,18 % d'azote, 96,81 % de méthane et 0,01 % d'éthane) est compressé en totalité dans le compresseur XK1, sans production de gaz combustible 40.The compressor K1 produces the compressed
Le compresseur XK1 produit le flux comprimé 7 à 72,51°C et 42,7 bar. Le flux 7 est refroidi à 37°C dans l'échangeur à eau 24, puis est séparé en les flux 8 et 9.The XK1 compressor produces the compressed
Le flux 8 (10300 kmol/h) est refroidi dans l'échangeur E1 pour donner le flux 25 à -56°C et 41,9 bar.Stream 8 (10300 kmol / h) is cooled in exchanger E1 to give the stream at -56 ° C and 41.9 bar.
Le flux 9 (3126 kmol/h) est refroidi dans l'échangeur E1 pour donner le flux 22 à -141°C et 41,4 bar. Ce dernier est ensuite détendu dans la vanne 23 pour fournir le flux 35 à -152,37°C et 2,50 bar.Stream 9 (3126 kmol / h) is cooled in exchanger E1 to give
Le flux 25 est détendu dans la turbine de détente X1 qui produit la fraction 10 à une température de -129,65°C et une pression de 8,0 bar. Cette fraction 10 est ensuite réchauffée dans l'échangeur E1 qui produit la fraction 26 à une température de 34°C et une pression de 7,8 bar.
La fraction 26 alimente le compresseur K1 sur l'aspiration de l'étage à moyenne pression 11. Le compresseur K1 et le détendeur X1 ont les performances suivantes :
Unité de déazotation K1
K1 denazaction unit
L'utilisation du ballon V2 permet un gain d'environ 1000 kW sur la puissance du compresseur K1.The use of the balloon V2 allows a gain of about 1000 kW on the power of the compressor K1.
Enfin, de ces études sur le gaz A, pauvre en azote, il découle du procédé conforme à l'invention que :
- l'augmentation de la température du GNL en sortie du procédé de liquéfaction permet d'obtenir une augmentation de capacité de production de GNL de 1,2 % par °C, ce résultat étant identique à celui obtenu avec le gaz A,
- l'utilisation d'un flash final (ballon V1) et la saturation de la puissance de la turbine à gaz entraînant le compresseur K1 permet d'obtenir, grâce au procédé de l'invention, un gain important de capacité de production de GNL, sans produire de gaz combustible,
- la production de gaz combustible permet d'obtenir une augmentation de la capacité de production de GNL. Ce gain est non négligeable et peut s'avérer un facteur décisif,
- l'ajout du ballon séparateur V2 permet d'améliorer la charge du compresseur K1 et de réduire le coût de son utilisation.
- the increase in the LNG temperature at the outlet of the liquefaction process makes it possible to obtain an increase in LNG production capacity of 1.2% per ° C, this result being identical to that obtained with the gas A,
- the use of a final flash (ball V1) and the saturation of the power of the gas turbine driving the compressor K1 provides, thanks to the method of the invention, a significant gain in LNG production capacity, without producing combustible gas,
- the production of fuel gas makes it possible to obtain an increase in LNG production capacity. This gain is significant and can be a decisive factor,
- the addition of the separator tank V2 makes it possible to improve the load of the compressor K1 and to reduce the cost of its use.
Claims (11)
- Method of refrigerating a pressurised, liquefied natural gas (1) containing methane and C2 and higher hydrocarbons, comprising a first step (I) during which (Ia) said pressurised, liquefied natural gas (1) is expanded in order to obtain a flow of expanded, liquefied natural gas (2), during which (Ib) said expanded, liquefied natural gas (2) is split into a first top fraction (3) which is more volatile relatively speaking, and a first bottom fraction (4) which is less volatile relatively speaking, during which (Ic) the first bottom fraction (4) made up of refrigerated, liquefied natural gas is collected, during which (Id) the first top fraction (3) is heated, compressed in a first compressor (K1) and cooled to obtain a first compressed fraction (5) of combustible gas which is collected, during which (Ie) a second compressed fraction (6) is drawn off from the first compressed fraction (5) which is then cooled and then mixed with the flow of expanded, liquefied natural gas (2), characterised in that it comprises a second step (II) during which (IIa) the second compressed fraction (6) is compressed in a second compressor (XK1) coupled with an expansion turbine (X1) to obtain a third compressed fraction (7), during which (IIb) the third compressed fraction (7) is cooled and then separated into a fourth compressed fraction (8) and a fifth compressed fraction (9), during which (IIc) the fourth compressed fraction (8) is cooled and expanded in the expansion turbine (X1) coupled with the second compressor (XK1) to obtain an expanded fraction (10) which is then heated and then introduced into a first medium-pressure stage (11) of the compressor (K1), and during which (IId) the fifth compressed fraction (9) is cooled and then mixed with the flow of expanded, liquefied natural gas (2).
- Method as claimed in claim 1, characterised in that the expanded, liquefied flow of natural gas (2) is separated into a second top fraction (12) and a second bottom fraction (13) prior to step (Ib), in that the second top fraction (12) is heated and then introduced into the first compressor (K1) at an intermediate, second medium-pressure stage (14) between the first medium-pressure stage (11) and a low-pressure stage (15), and in that the second bottom fraction (13) is separated into the first top fraction (3) and the first bottom fraction (4).
- Method as claimed in claim 1 or claim 2, characterised in that each compression step is followed by a cooling step.
- Installation for refrigerating a pressurised, liquefied natural gas (1) containing methane and C2 and higher hydrocarbons, comprising means for implementing a first step (I) during which (Ia) said pressurised, liquefied natural gas (1) is expanded to obtain a flow of expanded, liquefied natural gas (2), during which (Ib) said expanded, liquefied natural gas (2) is separated into a first top fraction (3) which is more volatile relatively speaking, and a first bottom fraction (4) which is less volatile relatively speaking, during which (Ic) the first bottom fraction (4) made up of refrigerated, liquefied natural gas is collected, during which (Id) the first top fraction (3) is heated, compressed in a first compressor (K1) and cooled to obtain a first compressed fraction (5) of combustible gas which is collected, during which (Ie) a second compressed fraction (6) is drawn off from the first compressed fraction (5) which is then cooled and then mixed with the flow of expanded, liquefied natural gas (2), characterised in that it has means for implementing a second step (II) during which (IIa) the second compressed fraction (6) is compressed in a second compressor (XK1) coupled with an expansion turbine (X1) to obtain a third compressed fraction (7), during which (IIb) the third compressed fraction (7) is cooled and then separated into a fourth compressed fraction (8) and a fifth compressed fraction (9), during which (IIc) the fourth compressed fraction (8) is cooled and expanded in the expansion turbine (X1) coupled with the second compressor (XK1) to obtain an expanded fraction (10) which is then heated and then introduced into a first medium-pressure stage (11) of the compressor (K1), and during which (IId) the fifth compressed fraction (9) is cooled and then mixed with the flow of expanded, liquefied natural gas (2).
- Installation as claimed in claim 4, characterised in that it has means for separating the flow of expanded, liquefied natural gas (2) into a second top fraction (12) and a second bottom fraction (13) prior to step (Ib), and in that it has means for heating the second top fraction (12) and then introducing it into the first compressor (K1) at an intermediate second medium-pressure stage (14) between the first medium-pressure stage (11) and a low-pressure stage (15), and that it has means for separating the second bottom fraction (13) into the first top fraction (3) and the first bottom fraction (4).
- Installation as claimed in claim 4 or claim 5, characterised in that the first top fraction (3) and the first bottom fraction (4) are separated in a first separator balloon (V1).
- Installation as claimed in claim 4 or claim 5, characterised in that the first top fraction (3) and the first bottom fraction (4) are separated in a distillation column (C1).
- Installation as claimed in any one of claims 4 to 7, characterised in that the flow of expanded, liquefied natural gas (2) is separated into the second top fraction (12) and the second bottom fraction (13) in a second separator balloon (V2).
- Installation as claimed in claim 7, characterised in that the distillation column (C1) has at least one lateral reboiler and/or column base (16), in that liquid drawn from a plate (17) of the distillation column (C1) circulating in the reboiler (16) is heated in a heat exchanger (E2) and is then reintroduced into the distillation column (C1) at a stage lower than said plate (17), and in that the flow of expanded, liquefied natural gas (2) is cooled in said heat exchanger (E2).
- Installation as claimed in any one of claims 4 to 9, characterised in that cooling of the first top fraction (3) and expanded fraction (10), and heating of the fourth compressed fraction (8) and fifth compressed fraction (9) take place in a single first heat exchanger (E1).
- Installation as claimed in any one of claims 4 to 10 in combination with claim 5, characterised in that the second top fraction (12) is heated in the first heat exchanger (E1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CY20111101188T CY1112363T1 (en) | 2000-12-18 | 2011-12-02 | LIQUID GAS COOLING METHOD AND ITS INSTALLATION |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0016495 | 2000-12-18 | ||
FR0016495A FR2818365B1 (en) | 2000-12-18 | 2000-12-18 | METHOD FOR REFRIGERATION OF A LIQUEFIED GAS, GASES OBTAINED BY THIS PROCESS, AND INSTALLATION USING THE SAME |
PCT/FR2001/003983 WO2002050483A1 (en) | 2000-12-18 | 2001-12-13 | Method for refrigerating liquefied gas and installation therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1352203A1 EP1352203A1 (en) | 2003-10-15 |
EP1352203B1 true EP1352203B1 (en) | 2011-10-12 |
Family
ID=8857796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01271522A Expired - Lifetime EP1352203B1 (en) | 2000-12-18 | 2001-12-13 | Method for refrigerating liquefied gas and installation therefor |
Country Status (19)
Country | Link |
---|---|
US (1) | US6898949B2 (en) |
EP (1) | EP1352203B1 (en) |
JP (1) | JP3993102B2 (en) |
KR (1) | KR100825827B1 (en) |
CN (1) | CN1266445C (en) |
AT (1) | ATE528602T1 (en) |
AU (2) | AU1930102A (en) |
BR (1) | BR0116288B1 (en) |
CY (1) | CY1112363T1 (en) |
DZ (1) | DZ3483A1 (en) |
EG (1) | EG23286A (en) |
ES (1) | ES2373218T3 (en) |
FR (1) | FR2818365B1 (en) |
GC (1) | GC0000378A (en) |
MX (1) | MXPA03005213A (en) |
NO (1) | NO335843B1 (en) |
PT (1) | PT1352203E (en) |
RU (1) | RU2270408C2 (en) |
WO (1) | WO2002050483A1 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742357B1 (en) * | 2003-03-18 | 2004-06-01 | Air Products And Chemicals, Inc. | Integrated multiple-loop refrigeration process for gas liquefaction |
EP1613909B1 (en) * | 2003-03-18 | 2013-03-06 | Air Products And Chemicals, Inc. | Integrated multiple-loop refrigeration process for gas liquefaction |
US6978638B2 (en) * | 2003-05-22 | 2005-12-27 | Air Products And Chemicals, Inc. | Nitrogen rejection from condensed natural gas |
MY140540A (en) * | 2004-07-12 | 2009-12-31 | Shell Int Research | Treating liquefied natural gas |
AU2005290036B2 (en) * | 2004-09-22 | 2008-06-12 | Fluor Technologies Corporation | Configurations and methods for LPG and power cogeneration |
CN101120220A (en) * | 2005-02-17 | 2008-02-06 | 国际壳牌研究有限公司 | Apparatus and method for liquefaction of natural gas |
FR2891900B1 (en) * | 2005-10-10 | 2008-01-04 | Technip France Sa | METHOD FOR PROCESSING AN LNG CURRENT OBTAINED BY COOLING USING A FIRST REFRIGERATION CYCLE AND ASSOCIATED INSTALLATION |
WO2007131850A2 (en) * | 2006-05-15 | 2007-11-22 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
GB2450666B (en) * | 2006-05-19 | 2011-05-04 | Shell Int Research | Method and apparatus for treating a hydrocarbon stream |
US9400134B2 (en) * | 2006-08-02 | 2016-07-26 | Shell Oil Company | Method and apparatus for liquefying a hydrocarbon stream |
AU2007286291B2 (en) * | 2006-08-14 | 2010-08-12 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for cooling a hydrocarbon stream |
US7967036B2 (en) * | 2007-02-16 | 2011-06-28 | Clean Energy Fuels Corp. | Recipicating compressor with inlet booster for CNG station and refueling motor vehicles |
AU2008277656B2 (en) * | 2007-07-19 | 2011-11-03 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream |
US20090095153A1 (en) * | 2007-10-12 | 2009-04-16 | Paul Roper | Natural gas recovery system and method |
BRPI0820933B1 (en) * | 2007-12-07 | 2020-09-24 | Dresser-Rand Company | SYSTEM FOR COMPRESSING A REFRIGERANT AND METHOD OF COMPRESSING A REFRIGERANT AND CONVERTING A GAS TO A LIQUEFIED GAS |
US20110168377A1 (en) * | 2008-09-19 | 2011-07-14 | Paul Theo Alers | Method of cooling a hydrocarbon stream and an apparatus therefor |
AU2009316236B2 (en) * | 2008-11-17 | 2013-05-02 | Woodside Energy Limited | Power matched mixed refrigerant compression circuit |
FR2943683B1 (en) * | 2009-03-25 | 2012-12-14 | Technip France | PROCESS FOR TREATING A NATURAL LOAD GAS TO OBTAIN TREATED NATURAL GAS AND C5 + HYDROCARBON CUTTING, AND ASSOCIATED PLANT |
FR2944523B1 (en) * | 2009-04-21 | 2011-08-26 | Technip France | PROCESS FOR PRODUCING METHANE-RICH CURRENT AND CUTTING RICH IN C2 + HYDROCARBONS FROM A NATURAL LOAD GAS CURRENT, AND ASSOCIATED PLANT |
US9441877B2 (en) | 2010-03-17 | 2016-09-13 | Chart Inc. | Integrated pre-cooled mixed refrigerant system and method |
WO2012001001A2 (en) * | 2010-06-30 | 2012-01-05 | Shell Internationale Research Maatschappij B.V. | Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor |
TWI593878B (en) * | 2010-07-02 | 2017-08-01 | 艾克頌美孚上游研究公司 | Systems and methods for controlling combustion of a fuel |
CA2805087C (en) * | 2010-07-30 | 2017-02-28 | Exxonmobil Upstream Research Company | Systems and methods for using multiple cryogenic hydraulic turbines |
FR2980564A1 (en) * | 2011-09-23 | 2013-03-29 | Air Liquide | REFRIGERATION METHOD AND INSTALLATION |
CN103031168B (en) * | 2011-09-30 | 2014-10-15 | 新地能源工程技术有限公司 | Dehydration and de-heavy hydrocarbon technology for production of liquefied natural gas from methane-rich mixed gas |
CN102654346A (en) * | 2012-05-22 | 2012-09-05 | 中国海洋石油总公司 | Propane pre-cooling double-mixing refrigerant parallel-connection liquefaction system |
CA2907444C (en) | 2013-03-15 | 2022-01-18 | Douglas A. Ducote, Jr. | Mixed refrigerant system and method |
US11428463B2 (en) | 2013-03-15 | 2022-08-30 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11408673B2 (en) | 2013-03-15 | 2022-08-09 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
JP6033476B2 (en) | 2013-06-28 | 2016-11-30 | 三菱重工コンプレッサ株式会社 | Axial expander |
JP6483106B2 (en) | 2013-06-28 | 2019-03-13 | エクソンモービル アップストリーム リサーチ カンパニー | System and method utilizing an axial flow expander |
EP2957621A1 (en) * | 2014-06-17 | 2015-12-23 | Shell International Research Maatschappij B.V. | De-superheater system and compression system employing such de-superheater system, and method of producing a pressurized and at least partially condensed mixture of hydrocarbons |
EP2957620A1 (en) * | 2014-06-17 | 2015-12-23 | Shell International Research Maatschappij B.V. | Method and system for producing a pressurized and at least partially condensed mixture of hydrocarbons |
CN104101177A (en) * | 2014-07-31 | 2014-10-15 | 银川天佳能源科技股份有限公司 | Horizontal ice chest used for liquefaction of natural gas |
EP3043133A1 (en) * | 2015-01-12 | 2016-07-13 | Shell Internationale Research Maatschappij B.V. | Method of removing nitrogen from a nitrogen containing stream |
AR105277A1 (en) | 2015-07-08 | 2017-09-20 | Chart Energy & Chemicals Inc | MIXED REFRIGERATION SYSTEM AND METHOD |
FR3038964B1 (en) * | 2015-07-13 | 2017-08-18 | Technip France | METHOD FOR RELAXING AND STORING A LIQUEFIED NATURAL GAS CURRENT FROM A NATURAL GAS LIQUEFACTION SYSTEM, AND ASSOCIATED INSTALLATION |
US20170198966A1 (en) * | 2016-01-11 | 2017-07-13 | GE Oil & Gas, Inc. | Reducing refrigeration duty on a refrigeration unit in a gas processing system |
US20190112008A1 (en) | 2016-03-31 | 2019-04-18 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Boil-off gas re-liquefying device and method for ship |
RU2752063C2 (en) * | 2019-01-10 | 2021-07-22 | Андрей Владиславович Курочкин | Plant for natural gas de-ethanization with lng production (options) |
WO2020204218A1 (en) * | 2019-04-01 | 2020-10-08 | 삼성중공업 주식회사 | Cooling system |
WO2022033714A1 (en) * | 2020-08-12 | 2022-02-17 | Cryostar Sas | Simplified cryogenic refrigeration system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1096697A (en) * | 1966-09-27 | 1967-12-29 | Int Research & Dev Co Ltd | Process for liquefying natural gas |
US3503220A (en) * | 1967-07-27 | 1970-03-31 | Chicago Bridge & Iron Co | Expander cycle for natural gas liquefication with split feed stream |
US3677019A (en) * | 1969-08-01 | 1972-07-18 | Union Carbide Corp | Gas liquefaction process and apparatus |
US4548629A (en) * | 1983-10-11 | 1985-10-22 | Exxon Production Research Co. | Process for the liquefaction of natural gas |
DE3822175A1 (en) * | 1988-06-30 | 1990-01-04 | Linde Ag | Process for removing nitrogen from nitrogen-containing natural gas |
FR2682964B1 (en) * | 1991-10-23 | 1994-08-05 | Elf Aquitaine | PROCESS FOR DEAZOTING A LIQUEFIED MIXTURE OF HYDROCARBONS MAINLY CONSISTING OF METHANE. |
TW366411B (en) * | 1997-06-20 | 1999-08-11 | Exxon Production Research Co | Improved process for liquefaction of natural gas |
US6289692B1 (en) * | 1999-12-22 | 2001-09-18 | Phillips Petroleum Company | Efficiency improvement of open-cycle cascaded refrigeration process for LNG production |
FR2826969B1 (en) * | 2001-07-04 | 2006-12-15 | Technip Cie | PROCESS FOR THE LIQUEFACTION AND DEAZOTATION OF NATURAL GAS, THE INSTALLATION FOR IMPLEMENTATION, AND GASES OBTAINED BY THIS SEPARATION |
-
2000
- 2000-12-18 FR FR0016495A patent/FR2818365B1/en not_active Expired - Fee Related
-
2001
- 2001-12-13 RU RU2003122063/06A patent/RU2270408C2/en active
- 2001-12-13 AT AT01271522T patent/ATE528602T1/en not_active IP Right Cessation
- 2001-12-13 EP EP01271522A patent/EP1352203B1/en not_active Expired - Lifetime
- 2001-12-13 DZ DZ013483A patent/DZ3483A1/en active
- 2001-12-13 KR KR1020037007947A patent/KR100825827B1/en active IP Right Grant
- 2001-12-13 MX MXPA03005213A patent/MXPA03005213A/en active IP Right Grant
- 2001-12-13 US US10/451,712 patent/US6898949B2/en not_active Expired - Lifetime
- 2001-12-13 CN CNB018207480A patent/CN1266445C/en not_active Expired - Lifetime
- 2001-12-13 ES ES01271522T patent/ES2373218T3/en not_active Expired - Lifetime
- 2001-12-13 AU AU1930102A patent/AU1930102A/en active Pending
- 2001-12-13 PT PT01271522T patent/PT1352203E/en unknown
- 2001-12-13 WO PCT/FR2001/003983 patent/WO2002050483A1/en active Application Filing
- 2001-12-13 BR BRPI0116288-8A patent/BR0116288B1/en not_active IP Right Cessation
- 2001-12-13 JP JP2002551337A patent/JP3993102B2/en not_active Expired - Lifetime
- 2001-12-13 EG EG20011346A patent/EG23286A/en active
- 2001-12-13 AU AU2002219301A patent/AU2002219301B2/en not_active Expired
- 2001-12-22 GC GCP20011775 patent/GC0000378A/en active
-
2003
- 2003-06-05 NO NO20032543A patent/NO335843B1/en not_active IP Right Cessation
-
2011
- 2011-12-02 CY CY20111101188T patent/CY1112363T1/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2004527716A (en) | 2004-09-09 |
BR0116288B1 (en) | 2010-03-09 |
CN1266445C (en) | 2006-07-26 |
AU1930102A (en) | 2002-07-01 |
CY1112363T1 (en) | 2015-12-09 |
RU2270408C2 (en) | 2006-02-20 |
GC0000378A (en) | 2007-03-31 |
NO20032543D0 (en) | 2003-06-05 |
PT1352203E (en) | 2011-10-20 |
NO20032543L (en) | 2003-08-07 |
ATE528602T1 (en) | 2011-10-15 |
US20040065113A1 (en) | 2004-04-08 |
US6898949B2 (en) | 2005-05-31 |
NO335843B1 (en) | 2015-03-02 |
EG23286A (en) | 2004-10-31 |
FR2818365B1 (en) | 2003-02-07 |
KR20030081349A (en) | 2003-10-17 |
AU2002219301B2 (en) | 2006-10-12 |
DZ3483A1 (en) | 2002-06-27 |
CN1481495A (en) | 2004-03-10 |
RU2003122063A (en) | 2005-01-10 |
FR2818365A1 (en) | 2002-06-21 |
ES2373218T3 (en) | 2012-02-01 |
BR0116288A (en) | 2004-03-09 |
JP3993102B2 (en) | 2007-10-17 |
MXPA03005213A (en) | 2005-06-20 |
WO2002050483A1 (en) | 2002-06-27 |
EP1352203A1 (en) | 2003-10-15 |
KR100825827B1 (en) | 2008-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1352203B1 (en) | Method for refrigerating liquefied gas and installation therefor | |
EP1639062B1 (en) | Method and plant for simultaneous production of a natural gas for liquefaction and a liquid cut from natural gas | |
EP2344821B1 (en) | Method for producing liquid and gaseous nitrogen streams, a helium-rich gaseous stream, and a denitrogened hydrocarbon stream, and associated plant | |
EP0644996B1 (en) | Gas cooling process and plant, especially for natural gas liquefaction | |
EP1118827B1 (en) | Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas | |
FR2675888A1 (en) | PROCESS FOR THE USE OF LIQUEFIED NATURAL GAS (LNG) ASSOCIATED WITH A COLD EXPANDER TO PRODUCE LIQUID NITROGEN | |
EP1946026B1 (en) | Method for treating a liquefied natural gas stream obtained by cooling using a first refrigerating cycle and related installation | |
WO2003004951A1 (en) | Method for the liquefaction and denitrogenation of natural gas, system for carrying out said method | |
EP2205920B1 (en) | Method for liquefying natural gas with high pressure fractioning | |
FR2675890A1 (en) | METHOD FOR THE REFRIGERATION TRANSFER OF NATURAL GAS LIQUEFIED TO A CRYOGENIC AIR SEPARATION UNIT USING THE HIGH PRESSURE NITROGEN CURRENT. | |
FR2772896A1 (en) | METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION | |
CA3029464A1 (en) | Method for liquefying natural gas and for recovering possible liquids from the natural gas, comprising two refrigerant cycles semi-open to the natural gas and a refrigerant cycle closed to the refrigerant gas | |
FR2571129A1 (en) | METHOD AND INSTALLATION OF CRYOGENIC FRACTIONATION OF GASEOUS LOADS | |
CA2756632C (en) | Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation | |
FR2751059A1 (en) | IMPROVED COOLING PROCESS AND INSTALLATION, ESPECIALLY FOR LIQUEFACTION OF NATURAL GAS | |
EP2494295B1 (en) | Method for fractionating a cracked gas flow in order to obtain an ethylene-rich cut and a fuel flow, and associated facility | |
CA2823900C (en) | Production process for a fraction rich in c3+ hydrocarbons and for a stream rich in methane and ethane | |
WO2022106260A1 (en) | Method for producing liquefied natural gas from natural gas, and corresponding plant | |
FR3075940A1 (en) | METHOD FOR LIQUEFACTING A NATURAL GAS CURRENT CONTAINING NITROGEN | |
WO2017103533A1 (en) | Method for liquefying natural gas by means of a refrigerant mixture cycle using a refrigerant distillation column provided with a reboiler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030612 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
17Q | First examination report despatched |
Effective date: 20110715 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20111013 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60145487 Country of ref document: DE Effective date: 20111215 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2373218 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120201 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20110402819 Country of ref document: GR Effective date: 20120117 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 528602 Country of ref document: AT Kind code of ref document: T Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20120713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60145487 Country of ref document: DE Effective date: 20120713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111012 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20131209 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20161117 Year of fee payment: 16 Ref country code: IE Payment date: 20161121 Year of fee payment: 16 Ref country code: CY Payment date: 20161205 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20161122 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161221 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60145487 Country of ref document: DE Representative=s name: LAVOIX MUNICH, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60145487 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171213 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180101 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171213 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180705 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20201217 Year of fee payment: 20 Ref country code: PT Payment date: 20201117 Year of fee payment: 20 Ref country code: FR Payment date: 20201218 Year of fee payment: 20 Ref country code: IT Payment date: 20201210 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20201214 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210107 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20211212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20211222 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20211212 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MK Effective date: 20211213 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20211214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171213 |