[go: up one dir, main page]

EP1349807A1 - Composes mineraux, leur procede de preparation et leur utilisation dans les materiaux thermoplastiques - Google Patents

Composes mineraux, leur procede de preparation et leur utilisation dans les materiaux thermoplastiques

Info

Publication number
EP1349807A1
EP1349807A1 EP01965341A EP01965341A EP1349807A1 EP 1349807 A1 EP1349807 A1 EP 1349807A1 EP 01965341 A EP01965341 A EP 01965341A EP 01965341 A EP01965341 A EP 01965341A EP 1349807 A1 EP1349807 A1 EP 1349807A1
Authority
EP
European Patent Office
Prior art keywords
compound
titanium
zirconium phosphate
zirconium
functions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01965341A
Other languages
German (de)
English (en)
Inventor
Emmanuelle Bougelot
Dominique Dupuis
Gilles Robert
Jo[L Varlet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodianyl SAS
Original Assignee
Rhodianyl SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodianyl SAS filed Critical Rhodianyl SAS
Publication of EP1349807A1 publication Critical patent/EP1349807A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a mineral compound with a lamellar structure, its preparation process, and its use for the reinforcement of macromolecular materials. It relates more precisely to a compound based on zirconium phosphate and / or titanium.
  • thermomechanical properties of macromolecular materials it is known to use mineral particles. It is thus possible to modify, for example, the modulus of the materials, the impact resistance, the ductility, the dimensional stability, the deformation temperature under load, the resistance to abrasion or the abrasive power. It is known to reinforce macromolecular materials, and in particular thermoplastic materials, with platelet particles of nanometric thickness. Such particles can for example be obtained by exfoliation from an inorganic compound with a lamellar structure. This is the case for example for the particles obtained from montmorillonite.
  • montmorillonite which has a lamellar structure
  • an organic swelling agent which is inserted between the lamellae and separates them from one another, in order to promote their exfoliation.
  • the organic agent often comprises an ammonium group, and at least one relatively long chain.
  • the preferred ammoniums are quaternary ammoniums.
  • Japan JP05306370 describes the use of platelet particles obtained by exfoliation from a compound based on zirconium phosphate with a lamellar structure.
  • the compound with a lamellar structure is treated with an organic swelling agent, before incorporation into polyamide, in order to ensure its exfoliation.
  • exfoliation of these mineral compounds with a lamellar structure is important for improving the thermomechanical properties of the macromolecular materials in which they are introduced. This exfoliation is favored in particular by the prior treatment of the mineral compounds with often bulky organic swelling agents, as indicated in the state of the art described above.
  • the preliminary treatment of the mineral compound with these organic blowing agents can sometimes have drawbacks. On the one hand, this involves an additional step in the process of manufacturing the final material, between the synthesis or the extraction of the compound with a lamellar structure, and its use for example as reinforcement.
  • the presence of the organic swelling agent can induce difficulties during the incorporation of the compound, or during the processes for shaping the materials.
  • the organic swelling agent can be degraded during these operations and thus either deteriorate the quality of the macromolecular compound in which it is used, or lose its potential for assisting exfoliation.
  • the compounds used are generally smelly, which makes their handling unpleasant, or requires high investment to overcome the odor. This is a particular case for agents comprising an ammonium group.
  • the object of the present invention is to provide new lamellar compounds based on zirconium phosphate and / or titanium having good exfoliation properties, and a process for preparing this compound comprising a treatment which does not have the drawbacks mentioned above. above. It also aims to propose new macromolecular materials comprising these lamellar compounds.
  • the invention firstly provides a compound based on zirconium phosphate and / or titanium comprising a compound according to the following formula (I): A-R-B (I) in which
  • a and B are functions, identical or different, capable of reacting with the acid functions of zirconium phosphate and / or titanium
  • R is an aliphatic, cycloaliphatic or aromatic hydrocarbon radical, substituted or not, comprising from 2 to 20 atoms of carbon, and which may include heteroatoms characterized in that the molar ratio ⁇ between the number of moles of functions A and B and the number of moles of zirconium phosphate and / or titanium being between 0.1 and 0.8.
  • a process for preparing the above compound optionally dispersed in a liquid comprising the following successive steps: a) Precipitation in an acid medium of a compound based on zirconium phosphate and / or titanium, starting from phosphoric acid and a zirconium compound and / or a titanium-based compound or mixed titanium-zirconium-based compounds, the titanium and / or zirconium being at oxidation state IV b) Crystallization of the compound c) Treatment of the crystallized compound, in a liquid medium, at a pH between 3 and 9.
  • compositions comprising a macromolecular material, preferably a thermoplastic polymer and, the lamellar compound, dispersed at least partially under form of sheets in the composition.
  • a process for manufacturing compositions comprising a thermoplastic matrix and a lamellar compound, as well as the compositions obtained according to this process, the lamellar compound being dispersed at least partially in the form of sheets in the composition.
  • the compound of formula (I), present in the compound based on zirconium phosphate and / or titanium of the first subject of the invention, comprises two functions A and B capable of reacting with the acid functions of zirconium phosphate and / or titanium.
  • the functions A and B can for example be basic functions capable of reacting with the protons of zirconium phosphate and / or of titanium. Functions A and B and
  • B are preferably in neutral or positively charged form.
  • functions A and B which may be suitable for the invention, mention may be made of amines, ammoniums, phosphoniums.
  • the functions A and B are amino functions.
  • the compound (I) is chosen from hexamethylene diamine, methyl-2-pentamethylene diamine, metaxylene diamine.
  • the molar ratio ⁇ between the number of moles of functions A and B and the number of moles of zirconium and / or titanium phosphate is between 0.1 and 0.8.
  • number of moles of functions A and B is meant the sum of the number of moles of functions A and the number of moles of functions B.
  • one mole of compound of formula (I) corresponds to two moles of functions A and B .
  • number of moles of zirconium and / or titanium phosphate is meant the number of moles of phosphorus element.
  • one mole of zirconium phosphate compound generally corresponds to two moles of phosphorus element.
  • the molar ratio ⁇ is between 0.4 and 0.6.
  • the molar ratio ⁇ is substantially equal to 0.5.
  • the compound based on zirconium phosphate and / or titanium has a interleaf distance less than or equal to 15 ⁇ .
  • the radical R is not reactive with respect to the acid functions of zirconium phosphate and / or titanium, nor with respect to phosphate in general.
  • the second object of the invention relates to a process for the preparation of the above compound.
  • the preparation process according to the invention comprises at least the three successive stages a), b), and c). It may include other steps or phases of the process before, after or between these steps. These are, for example, washing, purification, filtration, dilution, centrifugation, addition of compounds in order to regulate certain process parameters such as pH, ionic strength.
  • steps or phases of the process before, after or between these steps are, for example, washing, purification, filtration, dilution, centrifugation, addition of compounds in order to regulate certain process parameters such as pH, ionic strength.
  • the implementation of such process phases will appear in particular in the light of the examples which are presented below.
  • Step a) consists of a precipitation of a compound based on zirconium phosphate and / or titanium.
  • the preparation of such precipitates is known to those skilled in the art. It is carried out from phosphoric acid and a zirconium compound and / or a titanium compound, the zirconium and / or titanium being at the oxidation state IV. Mention is made of zirconium and / or titanium tetra-halides, zirconium and / or titanium oxyhalides, in particular zirconium oxychloride and titanium oxychloride. Mixed compounds based on zirconium and titanium can also be used.
  • a simplified assessment of the precipitation reaction is, for example, as follows: 2 H 3 P0 4 + ZrOCI 2 ⁇ Zr (H + , PO 4 3 " ) 2 + 2 HCI
  • the precipitation is preferably carried out in an aqueous medium.
  • the use of phosphoric acid induces an acidity of the precipitation medium.
  • the precipitation can advantageously be carried out at acid pH, preferably controlled, for example between
  • An acid can be used for this purpose, in addition to the precursors of the precipitate. Mention is made, for example, of hydrochloric acid.
  • the precipitate can crystallize in a lamellar structure, at room temperature, without it being necessary to carry out a crystallization operation distinct from the precipitation step.
  • the crystallization can be carried out by hot treatment in water or in an aqueous solution, for example by immersion of the compound in water at a temperature between 100 ° C and 200 ° C.
  • the crystallization is preferably carried out in an acidic aqueous solution, for example a phosphoric acid solution.
  • the crystallization time can be several hours.
  • the crystallization step is advantageously preceded by a phase for washing the precipitate, making it possible inter alia to eliminate the ionic species resulting from the precipitation reaction.
  • the crystallization step is advantageously followed by a washing and centrifugation phase.
  • the pH measured in the aqueous phase of a dispersion comprising the crystallized compound, at 20% by weight in dry extract is between 0.5 and 2.
  • the lamellar compound is never dried, the only operations for removing water being filtration or centrifugation operations.
  • drying operation is understood here to mean an operation during which the compound is introduced into a hot atmosphere and devoid of water, for a period greater than 15 minutes, for example in an oven.
  • the compound crystallizes in the ⁇ phase of zirconium phosphate.
  • the structure of this phase has for example been described in J. Inorg. Nucl. Chem vol 26, p 117-129.
  • This phase has a lamellar structure, with protons interposed between the lamellae. Without wishing to be bound by any theory, it is believed that these protons can be exchanged by a positively charged chemical species.
  • Treatment step c) consists in treating the compound, crystallized, in a liquid medium, at a pH of between 3 and 9.
  • the liquid medium is preferably an aqueous solution, in which the zirconium phosphate-based compound is dispersed.
  • the aqueous solution comprises a mineral or organic compound of a nature and / or in an amount such that the pH is between 3 and 9. According to a preferred characteristic, the pH is between 4 and 7.
  • the mineral or organic compound is chosen from the compounds which, in aqueous solution, have a pH greater than 3, preferably greater than 7.
  • the compound is generally the compound of formula (I) described above, corresponding to the compound based on zirconium phosphate and / or titanium which it is desired to prepare.
  • the use of these organic compounds can be very particularly indicated for the use of the compound with a lamellar structure for the reinforcement of polyamides.
  • the organic compound is hexamethylene diamine.
  • the mineral compound for the treatment at a pH of between 2 and 7 can also be chosen from hydroxides of metals, alkalis, or alkaline earths, for example sodium hydroxide; the mineral compounds of the ammonium ion, such as ammonium hydroxide; lithium, sodium, potassium cations in the presence, optionally, of a basic agent.
  • the organic compound can be for example caprolactam or ammonia. These compounds may be indicated for the use of the compound with a lamellar structure for the reinforcement of polyamides.
  • the compound can be washed and / or separated from the liquid medium, for example by filtration, evaporation of the liquid medium, preferably evaporation of water. It can also be dried.
  • a mineral compound with a lamellar structure is thus obtained which can easily exfoliate into platelet particles.
  • the compound can be packaged in different forms. It can be packaged in powder form, after elimination of the liquid medium, and optionally drying. It can be packaged in the form of a dispersion in a liquid medium, for example water.
  • the form of packaging generally depends on the use for which it is intended.
  • the compound can be advantageously introduced in the form of a dispersion in the medium for synthesis of the polymer.
  • the compound is introduced in the form of a dispersion into the medium containing the monomers at the origin of the synthetic polymer.
  • the third subject of the invention relates to compositions comprising a matrix consisting of a macromolecular material, and a lamellar compound based on zirconium phosphate and / or titanium, dispersed at least partly in the form of sheets in the matrix.
  • the lamellar compound is the compound described above.
  • the macromolecular material can be of different natures: elastomeric, thermoplastic, thermoset.
  • the macromolecular material is preferably a thermoplastic polymer.
  • polymers which may be suitable, mention is made of: polylactones such as poly (pivalolactone), poly (caprolactone) and polymers of the same family; polyurethanes obtained by reaction between diisocyanates such as 1,5-naphthalene diisocyanate; p-phenylene diisocyanate, m-phenylene diisocyanate, 2,4-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, 3,3'-dimethyl-4,4'-diphenylmethane diisocyanate, 3, 3-'dimethyl-4,4'-biphenyl diisocyanate, 4,4'- diphenylisopropylidene diisocyanate, 3,3'-dimethyl-4,4'-dipheny
  • polyamides are particularly preferred, such as polyamide 6, polyamide 66, semi-aromatic polyamides, PVC, PET, PPO and mixtures and copolymers based on these polymers.
  • compositions can also comprise other additives, such as for example stabilizers, plasticizers, flame retardants, dyes, lubricants, catalysts. This list is in no way limiting. They may also include other reinforcing additives such as impact resistance modifiers such as optionally grafted elastomers, mineral reinforcements such as clays, kaolin, fibrous reinforcements such as glass fibers, aramids, carbon fibers.
  • additives such as for example stabilizers, plasticizers, flame retardants, dyes, lubricants, catalysts. This list is in no way limiting. They may also include other reinforcing additives such as impact resistance modifiers such as optionally grafted elastomers, mineral reinforcements such as clays, kaolin, fibrous reinforcements such as glass fibers, aramids, carbon fibers.
  • a first method consists in mixing the lamellar compound in a thermoplastic material in molten form and optionally subjecting the mixture to significant shearing, for example in a twin-screw extrusion device, in order to achieve good dispersion.
  • Another method consists in mixing the compound to be dispersed with the monomers in the polymerization medium, then in carrying out the polymerization.
  • Another method consists in mixing with a thermoplastic polymer in molten form, a concentrated mixture of a thermoplastic polymer and dispersed particles, prepared for example according to one of the methods described above.
  • the lamellar compound is introduced into the synthesis medium of the macromolecular compound, or in a molten thermoplastic polymer. It can for example be introduced in the form of a solid powder or in the form of a dispersion in water or in an organic dispersant.
  • an advantageous embodiment consists in introducing into the polymerization medium a dispersion in water of the lamellar compound based on zirconium phosphate.
  • the dispersion can be introduced into the medium comprising the monomers of the polyamide to be manufactured.
  • the polymerization processes used in the context of this embodiment are the usual processes.
  • the proportion by weight of the lamellar compound in the composition is preferably less than or equal to 5%.
  • the fourth subject of the invention relates to a process for manufacturing a composition comprising a thermoplastic matrix and a compound based on zirconium phosphate and / or titanium according to which a compound based on zirconium phosphate and / or titanium having a interleaf distance of less than or equal to 15 ⁇ in the matrix or in the polymerization medium of the matrix.
  • This compound based on zirconium phosphate and / or titanium comprises an inorganic or organic compound comprising at least one function capable of reacting with the acid functions of zirconium phosphate and / or titanium.
  • an inorganic or organic compound can be in the form of a cation.
  • mineral compound in cationic form there may be mentioned, by way of example, metal cations, alkaline cations such as Na + , K + , Li + , the ammonium ion NH 4 + . Without wishing to be bound by any theory, it is believed that such cations can be exchanged with the protons of zirconium and / or titanium phosphate.
  • a cation such as Na + , K + , Li + or NH 4 + corresponds to a function capable of reacting with the acid functions of zirconium and / or titanium phosphate.
  • the mineral compound is the Na + ion.
  • the mineral or organic compound comprises a function capable of reacting with the acid functions of zirconium and / or titanium phosphate.
  • This function can be a basic function.
  • basic function one can cite for example the amino function.
  • the function can for example be in a neutral form or positively charged.
  • the organic compound is a monoamine. It may for example be an aliphatic monoamine such as n-butylamine.
  • the organic compound is an amino acid or a lactam. Mention may be made, for example, of caprolactam.
  • the mineral or organic compound comprises two functions capable of reacting with the acid functions of zirconium and / or titanium phosphate.
  • organic compound is a compound according to the following formula (II): ARB (II) in which
  • a and B are functions, identical or different, capable of reacting with the acid functions of zirconium phosphate and / or titanium,
  • R is an aliphatic, cycloaliphatic or aromatic hydrocarbon radical, substituted or not, comprising from 2 to 20 atoms of carbon, and may include heteroatoms
  • the molar ratio ⁇ between the number of moles of functional groups capable of reacting with the mineral or organic compound and the number of moles of zirconium and / or titanium phosphate is between 0, 1 and 0.8.
  • number of moles of functions capable of reacting means the sum of the number of moles of each function of the mineral or organic compound capable of reacting.
  • the number of moles of functions capable of reacting corresponds to the number of moles of the compound.
  • the number of moles of functions capable of reacting corresponds to twice the number of moles of the compound.
  • number of moles of zirconium and / or titanium phosphate is meant the number of moles of phosphorus element.
  • one mole of zirconium phosphate compound generally corresponds to two moles of phosphorus element.
  • the ⁇ molar ratio is between 0.4 and 0.6.
  • the molar ratio ⁇ is substantially equal to 0.5.
  • the compound based on zirconium phosphate and / or titanium having an interleaf distance less than or equal to 15 ⁇ is obtained by the process for preparing the second object of the invention.
  • the inorganic or organic compound of treatment step c) is suitably chosen as a function of the compound based on zirconium phosphate and / or titanium which it is desired to prepare.
  • the invention also relates to the compositions obtained by the process for manufacturing the fourth object of the invention, at least part of the compound based on zirconium phosphate and / or titanium being dispersed in the form of sheets in the composition. All that has been described above concerning the compositions of the third object of the invention is valid here identically for the compositions obtained by the method of the fourth object of the invention, in particular what relates to the nature of the matrix, to the proportion of the compound based on zirconium phosphate and / or titanium in the composition, and to the addition of other additives.
  • the invention also relates in a fifth object to the articles shaped from the compositions of the invention described above in the third and the fourth object of the invention.
  • the articles can be shaped by molding or spinning.
  • the methods of manufacturing molded articles that can be used are, for example, injection, extrusion, extrusion blow-molding methods.
  • the invention also relates to yarns, fibers or filaments consisting of a composition of the invention.
  • the spun articles, threads, fibers or filaments are produced according to the usual spinning techniques from a material comprising a thermoplastic polymer and the compound based on zirconium phosphate and / or titanium. Spinning can be carried out immediately after the polymerization of the thermoplastic polymer, the latter being in molten form. It can be produced from a granulated composite comprising the compound and the polymer. The compound can be incorporated into the molten polymer before the spinning operation, as a concentrated mixture in a polymer. All modes of incorporating the compound into a spinning polymer can be used.
  • the yarns, fibers or filaments according to the invention can be subjected to all the treatments that can be carried out in steps subsequent to the spinning step. They can in particular be stretched, textured, crimped, heated, twisted, dyed, sized, cut, etc. These additional operations can be carried out continuously and can be integrated after the spinning device or be carried out discontinuously.
  • the list of post-spinning operations has no limiting effect.
  • the yarns, fibers or filaments according to the invention can be used in woven, knitted or non-woven form.
  • the fibers according to the invention are in particular suitable for the manufacture of felts for paper machines. They can also be used for the manufacture of carpet yarns.
  • platelet particles based on zirconium phosphates makes it possible to improve the abrasion resistance of a material. This improvement is particularly advantageous in the context of the use of the material in the form of threads, fibers or filaments.
  • the precipitate is washed by centrifugation at 4500 rpm, with 1200 ml of H 3 PO 20 g / L then with deionized water, until a conductivity of 6.5 mS (supernatant) is reached. A cake of the precipitate based on zirconium phosphate is obtained.
  • the cake is dispersed in 1 liter of 10 M aqueous phosphoric acid solution, the dispersion thus obtained is transferred to a 2 liter reactor and then heated to 115 ° C. This temperature is maintained for 5 hours.
  • the dispersion obtained is washed by centrifugation with deionized water to a conductivity of less than 1 mS (supernatant).
  • the cake from the last centrifugation is redispersed so as to obtain a dry extract close to 20%, the pH of the dispersion is between 1 and 2.
  • a dispersion of a crystallized compound based on zirconium phosphate is obtained, of which the characteristics are as follows:
  • Examples 2-3 Treatment of the compound with a mineral base (Step c) 805 g (in dry extract) of product from Example 1 are centrifuged. The centrifugation pellet is redispersed in an aqueous sodium hydroxide solution at 10 "3 mol / L (500 ml). Three washes are carried out under these same conditions. The cake resulting from the last centrifugation is redispersed in 500 ml of sodium hydroxide solution. 10 "3 mol / L. The pH is adjusted to 5 (example 2) or to 3 (example 3) by adding 8 mol / l sodium hydroxide. The dispersion is centrifuged and the pellet is redispersed in 300 ml of purified water (dry extract: 30% by weight). The final conductivity of the suspension is less than 1 mS.
  • Example 2 The product from Example 1 is neutralized by adding hexamethylene diamine: To the dispersion is added an aqueous solution of HMD at 70% until a pH of 5 is obtained. The dispersion thus obtained is homogenized with using an Ultraturax. The final dry extract is adjusted by adding deionized water (dry extract: 15% by weight).
  • Example 5 Treatment of the compound with caprolactam (Step c)) Caprolactam is incorporated into the mineral sol obtained according to example 1 (33% by weight of caprolactam relative to the dry extract). The pH measured in the solution is 3.3. Then by distillation of the water, a powder is recovered containing the corresponding fraction of caprolactam.
  • Examples 6-10 Compositions comprising platelet particles based on zirconium phosphate.
  • a polyamide 6 is synthesized from caprolactam according to a conventional process, by introducing into the polymerization medium an aqueous dispersion obtained in examples 2 to 4, or the powder obtained in example 5. The proportion of compound based of zirconium phosphate introduced is 2% by weight.
  • a polymer is also synthesized that does not contain the compound (Example 10, comparative). After polymerization, the polymer is formed into granules. These are washed to remove the residual caprolactam (the granules are immersed in an excess of water at 90 ° C for a few hours) and are then dried under primary vacuum ( ⁇ 0.5 mbar) for 16 hours at 110 ° C.
  • Tensile tests are carried out on extruded rods and conditioned for 30 days at 50% RH and 23 ° C.
  • the diameter of the rods is between 0.5 and 1 mm.
  • An INSTRON 1185 traction machine is used with a force sensor with a capacity of 100 N.
  • the nominal stress is reported (ratio of the force measured over the section evaluated by diameter measurement with Palmer) as a function of the relative deformation applied. The results are reported in Table 1.
  • a composition based on polyamide is obtained whose elongation at break is greater than that of a polyamide not comprising the mineral compound, and whose modulus is improved.
  • FIG. 1 represents a photograph of a composition observed under the microscope comprising the zirconium phosphate compound corresponding to example 2.
  • FIG. 2 represents a photograph of a composition observed under the microscope comprising the zirconium phosphate compound corresponding to example 4.
  • Example 11-14 Filaments Monofilaments with a diameter of approximately 250 ⁇ m are spun at low speed from a composition according to Example 9, or from a pure polyamide according to Example 10. The monofilaments are stretched. in recovery at different drawing rates. The mechanical properties and the abrasion resistance of the monofilaments are evaluated according to the following tests:
  • the initial length of the wires is 50 mm and the crosshead speed is 50 mm / min.
  • a simultaneous friction is imposed on 15 stationary wires, the tension of which is kept constant at 15 wires by 3 brass rollers ensuring interlocking.
  • the point of application of the lashing area is moved along the wires over an amplitude of 90 mm at a frequency of 220 cycles per minute.
  • Abrasion resistance is defined by the number of cycles (back and forth) required to break 13 of the 15 wires. The measurements presented are the average of the values obtained on three tests with similar wires.
  • the characteristics of the yarns produced are presented in Table 2.
  • the properties measured are presented in Table 3.
  • Examples 15-17 Compositions comprising platelet particles based on zirconium phosphate.
  • a polyamide 6 is synthesized from caprolactam according to a conventional process, by introducing into the polymerization medium an aqueous dispersion obtained in Example 4.
  • the proportion of compound based on zirconium phosphate introduced is 1 (Example 16) or 2 (example 17)% by weight.
  • a polymer is also synthesized that does not contain the compound (Example 15, comparative).
  • the polymer After polymerization, the polymer is formed into granules. These are washed to remove the residual caprolactam (the granules are immersed in an excess of water at
  • HDT-Heat Deflection Temperature HDT-Heat Deflection Temperature
  • Polyamide-based compositions are obtained whose tensile strength, modulus and deformation temperature under load are higher than those of a polyamide not comprising the mineral compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)

Abstract

La présente invention concerne un composé minéral à structure lamellaire, son procédé de préparation, et son utilisation pour le renfort de matériaux macromoléculaires. Elle concerne plus précisément un composé à base de phosphate de zirconium et/ou de titane. Le procédé de préparation du composé comprend une étape de traitement à pH compris entre 3 et 9.

Description

Composés minéraux, leur procédé de préparation et leur utilisation dans les matériaux thermoplastiques
La présente invention concerne un composé minéral à structure lamellaire, son procédé de préparation, et son utilisation pour le renfort de matériaux macromoléculaires. Elle concerne plus précisément un composé à base de phosphate de zirconium et/ou de titane.
Pour modifier les propriétés thermomécaniques des matériaux macromoléculaires, il est connu d'utiliser des particules minérales. Il est ainsi possible de modifier, par exemple, le module des matériaux, la résistance au choc, la ductilité, la stabilité dimensionnelle, la température de déformation sous charge, la résistance à l'abrasion ou le pouvoir abrasif. II est connu de renforcer les matériaux macromoléculaires, et en particulier les matériaux thermoplastiques, par des particules plaquettaires d'épaisseur nanométrique. De telles particules peuvent par exemple être obtenues par exfoliation à partir d'un composé minéral à structure lamellaire. C'est le cas par exemple pour les particules obtenues à partir de montmorillonite. Pour cela, la montmorillonite, qui présente une structure lamellaire, est traitée par un agent organique de gonflement, qui s'intercale entre les lamelles et les écarte les une des autres, afin de favoriser leur exfoliation. L'agent organique comprend souvent un groupement ammonium, et au moins une chaîne relativement longue. Les ammoniums préférés sont les ammoniums quaternaires.
La demande de brevet au Japon JP05306370 décrit l'utilisation de particules plaquettaires obtenues par exfoliation à partir d'un composé à base de phosphate de zirconium à structure lamellaire. Le composé à structure lamellaire est traité par un agent de gonflement organique, avant incorporation dans du polyamide, afin d'assurer son exfoliation.
L'exfoliation de ces composés minéraux à structure lamellaire est importante pour l'amélioration des propriétés thermomécaniques des matériaux macromoléculaires dans lesquels ils sont introduits. Cette exfoliation est favorisée notamment par le traitement préalable des composés minéraux par des agents de gonflement organiques souvent volumineux, comme indiqué dans l'état de l'art décrit ci-dessus.
Le traitement préalable du composé minéral par ces agents de gonflement organiques peut parfois présenter des inconvénients. D'une part cela implique une étape supplémentaire dans le processus de fabrication du matériau final, entre la synthèse ou l'extraction du composé à structure lamellaire, et son utilisation par exemple comme renfort. D'autre part la présence de l'agent de gonflement organique peut induire des difficultés lors de l'incorporation du composé, ou lors des procédés de mise en forme des matériaux. L'agent de gonflement organique peut être dégradé lors de ces opérations et ainsi, soit détériorer la qualité du composé macromoléculaire dans lequel il est utilisé, soit perdre son potentiel d'aide à l'exfoliation. Enfin, les composés utilisés sont généralement malodorants, ce qui rend leur manipulation désagréable, ou nécessite de forts investissements pour s'affranchir de l'odeur. C'est un particulier le cas pour les agents comprenant un groupement ammonium.
La présente invention a pour objet de proposer de nouveaux composés lamellaires à base de phosphate de zirconium et/ou de titane présentant de bonnes propriétés d'exfoliation, et un procédé de préparation de ce composé comprenant un traitement ne présentant pas les inconvénients cités ci-dessus. Elle a aussi pour objet de proposer de nouveaux matériaux à base macromoléculaire comprenant ces composés lamellaires.
A cet effet l'invention propose en premier lieu un composé à base de phosphate de zirconium et/ou de titane comprenant un composé selon la formule (I) suivante : A-R-B (I) dans laquelle
A et B sont des fonctions, identiques ou différentes, susceptibles de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane, R est un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes caractérisé en ce que le rapport molaire α entre le nombre de moles de fonctions A et B et le nombre de moles du phosphate de zirconium et/ou de titane étant compris entre 0,1 et 0,8.
Elle propose en deuxième lieu un procédé de préparation du composé ci-dessus éventuellement dispersé dans un liquide, comprenant les étapes successives suivantes: a) Précipitation en milieu acide d'un composé à base de phosphate de zirconium et/ou de titane, à partir d'acide phosphorique et d'un composé du zirconium et/ou d'un composé à base de titane ou de composés mixtes à base de titane et de zirconium, le titane et/ou le zirconium étant au degré d'oxydation IV b) Cristallisation du composé c) Traitement du composé cristallisé, en milieu liquide, à pH compris entre 3 et 9. Elle propose en troisième lieu des compositions comprenant un matériau macromoléculaire, de préférence un polymère thermoplastique et, le composé lamellaire, dispersé au moins partiellement sous forme de feuillets dans la composition. Elle propose en quatrième lieu un procédé de fabrication de compositions comprenant une matrice thermoplastique et un composé lamellaire, ainsi que les compositions obtenues selon ce procédé, le composé lamellaire étant dispersé au moins partiellement sous forme de feuillets dans la composition. Elle propose en cinquième lieu des articles mis en forme à partir des compositions, par exemple par moulage, ou par filage.
Elle propose enfin l'utilisation de particules à base de phosphate de zirconium à titre de modificateur de la résistance à l'abrasion de fils, fibres ou filaments.
Le composé de formule (I), présent dans le composé à base de phosphate de zirconium et/ou de titane du premier objet de l'invention, comprend deux fonctions A et B susceptibles de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane.
Les fonctions A et B peuvent par exemple être des fonctions basiques susceptibles de réagir avec les protons du phosphate de zirconium et/ou de titane. Les fonctions A et
B se présentent de préférence sous une forme neutre ou chargée positivement. A titre d'exemple de fonctions A et B pouvant convenir pour l'invention, on peut citer les aminés, les ammoniums, les phosphoniums.
Selon un mode préférentiel du premier objet de l'invention, les fonctions A et B sont des fonctions aminés. De préférence le composé (I) est choisi parmi l'hexaméthylène diamine, la méthyl-2-pentaméthylène diamine, la métaxylène diamine.
Selon le premier objet de l'invention, le rapport molaire α entre le nombre de moles de fonctions A et B et le nombre de moles du phosphate de zirconium et/ou de titane est compris entre 0,1 et 0,8. Par nombre de moles de fonctions A et B, on entend la somme du nombre de moles de fonctions A et du nombre de moles de fonctions B. Par exemple une mole de composé de formule (I) correspond à deux moles de fonctions A et B.
Par nombre de moles du phosphate de zirconium et/ou de titane, on entend le nombre de moles d'élément phosphore. Par exemple une mole de composé phosphate de zirconium correspond en général à deux moles d'élément phosphore.
De préférence le rapport molaire α est compris entre 0,4 et 0,6. Avantageusement le rapport molaire α est sensiblement égal à 0,5.
Selon une caractéristique particulière du premier objet de l'invention, le composé à base de phosphate de zirconium et/ou de titane présente une distance interfeuillets inférieureou égale à 15Â. De manière générale, le radical R n'est pas réactif vis-à-vis des fonctions acides du phosphate de zirconium et/ou de titane, ni vis-à-vis du phosphate en général.
Le second objet de l'invention concerne un procédé de préparation du composé ci- dessus. Le procédé de préparation selon l'invention comprend au moins les trois étapes successives a), b), et c). Il peut comporter d'autres étapes ou phases de procédé avant, après ou entre ces étapes. Il s'agit par exemple de phases de lavage, de purification, de filtration, de dilution, de centrifugation, d'ajout de composés afin de réguler certains paramètres de procédé comme le pH, la force ionique. La mise en œuvre de telles phases de procédé apparaîtra notamment au vu des exemples qui sont présentés ci- dessous.
L'étape a) consiste en une précipitation d'un composé à base de phosphate de zirconium et/ou de titane. La préparation de tels précipités est connue de l'homme du métier. Elle est effectuée à partir d'acide phosphorique et d'un composé du zirconium et/ou d'un composé du titane, le zirconium et/ou le titane étant au degré d'oxydation IV. On cite les tetra-halogénures de zirconium et/ou de titane, les oxyhalogénures de zirconium et/ou de titane, en particulier l'oxychlorure de zirconium et l'oxychlorure de titane. On peut également utiliser des composés mixtes à base de zirconium et de titane Un bilan de la réaction de précipitation, simplifié, est par exemple le suivant: 2 H3P04 + ZrOCI2 → Zr(H+, PO4 3")2 + 2 HCI
La précipitation est de préférence réalisée en milieu aqueux. L'utilisation de l'acide phosphorique induit une acidité du milieu de précipitation. On peut avantageusement réaliser la précipitation à pH acide, de préférence contrôlé, par exemple compris entre
0,5 et 2. On peut utiliser à cet effet, en complément des précurseurs du précipité, un acide. On cite à titre d'exemple l'acide chlorhydrique.
Le précipité peut cristalliser en une structure lamellaire, à température ambiante, sans qu'il soit nécessaire d'effectuer une opération de cristallisation distincte de l'étape de précipitation.
Il peut être toutefois avantageux de mettre en œuvre une étape de cristallisation distincte. Une telle étape permet d'obtenir pour le composé précipité une structure lamellaire plus marquée et/ou plus régulière. La cristallisation peut être mise en œuvre par traitement à chaud dans de l'eau ou dans une solution aqueuse, par exemple par immersion du composé dans de l'eau à une température comprise entre 100°C et 200°C. La cristallisation est de préférence réalisée dans une solution aqueuse acide, par exemple une solution d'acide phosphorique. La durée de cristallisation peut être de plusieurs heures. L'étape de cristallisation est avantageusement précédée d'une phase de lavage du précipité, permettant entre autre d'éliminer les espèces ioniques issues de la réaction de précipitation.
L'étape de cristallisation est avantageusement suivie d'une phase de lavage et centrifugation. Selon une caractéristique préférée, le pH mesuré dans la phase aqueuse d'une dispersion comprenant le composé cristallisé, à 20% en poids en extrait sec, est compris entre 0,5 et 2.
Selon une caractéristique préférée du procédé, toutes les étapes du procédé sont ainsi réalisées à pH acide, compris entre 0,5 et 2. Selon une autre caractéristique préférée le composé lamellaire n'est jamais séché, les seules opérations d'élimination d'eau étant des opérations de filtration ou de centrifugation. On entend ici par opération de séchage, une opération au cours de laquelle le composé est introduit dans une atmosphère chaude et dépourvue d'eau, pendant une durée supérieure à 15 minutes, par exemple dans une étuve. Le composé cristallise dans la phase α du phosphate de zirconium. La structure de cette phase a par exemple été décrite dans J. Inorg. Nucl. Chem vol 26, p 117-129. Cette phase présente une structure lamellaire, avec des protons intercalés entre les lamelles. Sans vouloir se lier à une quelconque théorie, on pense que ces protons peuvent être échangés par une espèce chimique chargée positivement. L'étape de traitement c) consiste à traiter le composé, cristallisé, en milieu liquide, à un pH compris entre 3 et 9.
Le milieu liquide est de préférence une solution aqueuse, dans laquelle le composé à base de phosphate de zirconium est dispersé. La solution aqueuse comprend un composé minéral ou organique de nature et/ou en quantité telles que le pH soit compris entre 3 et 9. Selon une caractéristique préférentielle, le pH est compris entre 4 et 7.
Le composé minéral ou organique est choisi parmi les composés qui, en solution aqueuse, présentent un pH supérieur à 3, de préférence supérieur à 7.
Le composé est généralement le composé de formule (I) décrit ci-dessus, correspondant au composé à base de phosphate de zirconium et/ou de titane que l'on souhaite préparer. L'emploi de ces composés organiques peut être tout particulièrement indiqué pour l'utilisation du composé à structure lamellaire pour le renfort des polyamides.
Selon un mode préférentiel de réalisation du second objet de l'invention, le composé organique est l'hexaméthylène diamine.
A titre d'exemple, le composé minéral pour le traitement à pH compris entre 2 et 7 peut également être choisi parmi les hydroxydes de métaux, d'alcalins, ou d'alcalino- terreux, par exemple l'hydroxyde de sodium; les composés minéraux de l'ion ammonium, comme l'hydroxyde d'ammonium; les cations lithium, sodium, potassium en présence éventuellement d'un agent basique. Le composé organique peut être par exemple le caprolactame ou l'ammoniaque. Ces composés peuvent être indiqués pour l'utilisation du composé à structure lamellaire pour le renfort des polyamides. Après l'étape de traitement, le composé peut être lavé et/ou séparé du milieu liquide, par exemple par filtration, évaporation du milieu liquide, de préférence évaporation d'eau. Il peut être également séché.
On obtient ainsi un composé minéral à structure lamellaire pouvant s'exfolier facilement en des particules plaquettaires. Le composé peut être conditionné sous différentes formes. Il peut être conditionné sous forme de poudre, après élimination du milieu liquide, et éventuellement séchage. Il peut être conditionné sous forme d'une dispersion dans un milieu liquide, par exemple de l'eau.
La forme du conditionnement dépend généralement de l'utilisation à laquelle il est destiné. Ainsi, pour l'utilisation pour le renfort de polymères synthétiques, le composé peut être avantageusement introduit sous forme d'une dispersion dans le milieu de synthèse du polymère. De préférence le composé est introduit sous forme de dispersion dans le milieu contenant les monomères à l'origine du polymère synthétique.
Le troisième objet de l'invention concerne des compositions comprenant une matrice constituée d'un matériau macromoléculaire, et un composé lamellaire à base de phosphate de zirconium et/ou de titane, dispersé au moins en partie sous forme de feuillets dans la matrice. Le composé lamellaire est le composé décrit ci-dessus.
Le matériau macromoléculaire peut être de différentes natures : élastomérique, thermoplastique, thermodur. Le matériau macromoléculaire est de préférence un polymère thermoplastique. A titre d'exemple de polymères pouvant convenir, on cite: les polylactones telles que la poly(pivalolactone), la poly(caprolactone) et les polymères de la même famille; les polyuréthanes obtenus par réaction entre des diisocyanates comme le 1 ,5-naphtalène diisocyanate; le p-phénylène diisocyanate, le m-phénylène diisocyanate, le 2,4-toluène diisocyanate, le 4,4'-diphénylméthane diisocyanate, le 3,3'-diméthyl-4,4'-diphényl- méthane diisocyanate, le 3,3-'diméthyl-4,4'-biphényl diisocyanate, le 4,4'- diphénylisopropylidène diisocyanate, le 3,3'-diméthyl-4,4'-diphényl diisocyanate, le 3,3'- diméthyl-4,4'-diphénylméthane diisocyanate, le 3,3'-diméthoxy-4,4'-biphényl diisocyanate, le dianisidine diisocyanate, le toluidine diisocyanate, le héxaméthylène diisocyanate, le 4,4'-diisocyanatodiphénylméthane et composés de la même famille et les diols à longues chaînes linéaires comme le poly(tétraméthylène adipate), le poly(éthylène adipate), le poly(1 ,4 -butylène adipate), le poly(éthylène succinate), le poly(2,3-butylène succinate), les polyéther diols et composés de la même famille; les polycarbonates comme le poly[méthane bis(4-phényl) carbonate], le poly[1 ,1-éther bis(4-phényl) carbonate], le polyfdiphénylméthane bis(4-phényl)carbonate], le poly[1,1-cyclohexane bis(4- phényl)carbonate] et polymères de la même famille; les polysulfones; les polyéthers; les polycétones; les polyamides comme le poly(4-amino butyrique acide), le poly(héxaméthylène adipamide), le poly(acide 6-aminohéxanoïque), le poly(m-xylylène adipamide), le poly(p-xylylène sébacamide), le poly(2,2,2-triméthyl héxamethylene téréphtalamide), le poly(métaphénylène isophtalamide), le poly(p-phénylène téréphtalamide), et polymères de la même famille; les polyesters comme le poly(éthylène azélate), le poly(éthylène-1 ,5-naphtalate, le poly(1 ,4-cyclohexane diméthylène téréphtalate), le poly(éthylène oxybenzoate), le poly(para-hydroxy benzoate), le poly(1 ,4- cyclohéxylidène diméthylène téréphtalate), le poly(1 ,4-cyclohéxylidène diméthylène téréphtalate), le polyéthylène téréphtalate, le polybutylène téréphtalate et les polymères de la même famille; les poly(arylène oxydes) comme le poly(2,6-diméthyl-1 ,4-phénylène oxyde), le poly(2,6-diphényl-1,4-phénylène oxyde) et les polymères de la même famille ; les poly(arylène sulfides) comme le poly(phénylène sulfide) et les polymères de la même famille; les polyétherimides; les polymères vinyliques et leurs copolymères comme l'acétate de polyvinyle, l'alcool polyvinylique, le chlorure de polyvinyle; le polyvinyle butyral, le chlorure de polyvinylidène, les copolymères éthylène- acétate de vinyle, et les polymères de la même famille; les polymères acryliques, les polyacrylates et leurs copolymères comme l'acrylate de polyéthyle, le poly(n-butyl acrylate), le polyméthylméthacrylate, le polyéthyl méthacrylate, le poly(n-butyl méthacrylate), le poly(n-propyl méthacrylate), le polyacrylamide, le polyacrylonitrile, le poly(acide acrylique), les copolymères éthylène- acide acrylique, les copolymères éthylène- alcool vinylique, les copolymères de l'acrylonitrile, les copolymères méthacrylate de méthyle - styrène , les copolymères éthylène-acrylate d'éthyle, les copolymères méthacrylate- butadiène-styrène, l'ABS, et les polymères de la même famille; les polyoléfines comme le poly(éthylène) basse densité, le poly(propylène), le poly(éthylène) chloré basse densité, le poly(4-méthyl-1-pentène), le poly(éthylène), le poly (styrène), et les polymères de la même famille; les ionomeres; les poly(épichlorohydrines); les poly(uréthane) tels que produits de polymérisation de diols comme la glycérine, le triméthylol-propane, le 1 ,2,6- hexanetriol, le sorbitol, le pentaérythritol, les polyéther polyols, les polyester polyols et composés de la même famille avec des polyisocyanates comme le 2,4-tolylène diisocyanate, le 2,6-tolylène diisocyanate, le 4,4'-diphénylméthane diisocyanate, le 1 ,6- héxamethylene diisocyanate, le 4,4'-dicycohéxylméthane diisocyanate et les composés de la même famille; et les polysulfones telles que les produits de réaction entre un sel de sodium du 2,2-bis(4-hydroxyphényl) propane et de la 4,4'-dichlorodiphényl sulfone; les résines furane comme le poly(furane); les plastiques cellulose-ester comme l'acétate de cellulose, l'acétate-butyrate de cellulose, propionate de cellulose et les polymères de la même famille; les silicones comme le poly(diméthyl siloxane), le poly(diméthyl siloxane co-phénylméthyl siloxane), et les polymères de la même famille; les mélanges d'au moins deux des polymères précédents.
Parmi ces polymères thermoplastiques, on préfère tout particulièrement les polyamides, tels que le polyamide 6, le polyamide 66, les polyamides semi-aromatiques, le PVC, le PET, le PPO et les mélanges et copolymères à base de ces polymères.
Les compositions peuvent également comprendre d'autres additifs, tels que par exemple des stabilisants, plastifiants, ignifugeants, colorants, lubrifiants, catalyseurs. Cette liste n'a aucun caractère limitatif. Elles peuvent en outre comprendre d'autres additifs de renfort tels que des modificateurs de la résistance aux chocs tels que des élastomères éventuellement greffés, des renforts minéraux tels que les argiles, kaolin, des renforts fibreux tels que les fibres de verre, les fibres d'aramides, les fibres de carbone.
Toute méthode permettant d'obtenir une dispersion de composés dans un matériau macromoléculaire peut être utilisée pour réaliser la composition. Un premier procédé consiste à mélanger le composé lamellaire dans un matériau thermoplastique sous forme fondue et à éventuellement soumettre le mélange à un cisaillement important, par exemple dans un dispositif d'extrusion bi-vis, afin de réaliser une bonne dispersion. Un autre procédé consiste à mélanger le composé à disperser aux monomères dans le milieu de polymérisation, puis à effectuer la polymérisation. Un autre procédé consiste à mélanger à un polymère thermoplastique sous forme fondue, un mélange concentré d'un polymère thermoplastique et de particules dispersées, préparé par exemple selon l'un des procédés décrits précédemment.
Il n'y a pas de limitation à la forme sous laquelle le composé lamellaire est introduit dans le milieu de synthèse du composé macromoléculaire, ou dans un polymère thermoplastique fondu. Il peut par exemple être introduit sous forme de poudre solide ou sous forme de dispersion dans de l'eau ou dans un dispersant organique. Dans le cadre de compositions à base de polyamide, un mode de réalisation avantageux consiste à introduire dans le milieu de polymérisation une dispersion dans de l'eau du composé lamellaire à base de phosphate de zirconium. En particulier la dispersion peut être introduite dans le milieu comprenant les monomères du polyamide à fabriquer. Les procédés de polymérisation mis en œuvre dans le cadre de ce mode de réalisation sont les procédés usuels.
La proportion en poids du composé lamellaire dans la composition est de préférence inférieure ou égale à 5 %. Le quatrième objet de l'invention concerne un procédé de fabrication d'une composition comprenant une matrice thermoplastique et un composé à base de phosphate de zirconium et/ou de titane selon lequel on introduit un composé à base de phosphate de zirconium et/ou de titane présentant une distance interfeuillets inférieure ou égale à 15Â dans la matrice ou dans le milieu de polymérisation de la matrice.
Tout ce qui a été décrit précédemment concernant la méthode d'introduction de composés dans un matériau macromoléculaire pour le troisième objet de l'invention, est valable ici à l'identique pour le quatrième objet de l'invention.
Le composé à base de phosphate de zirconium et/ou de titane, introduit dans la matrice selon le quatrième objet de l'invention, présente de préférence une distance interfeuillets inférieure ou égale à 13Â.
Ce composé à base de phosphate de zirconium et/ou de titane comprend un composé minéral ou organique comprenant au moins une fonction susceptible de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane. Par exemple un tel composé minéral ou organique peut être sous la forme d'un cation. Comme composé minéral sous forme cationique on peut citer à titre d'exemple des cations métalliques, des cations alcalins tels que Na+, K+, Li+, l'ion ammonium NH4 +. Sans vouloir se lier à une quelconque théorie, on pense que de tels cations peuvent être échangés avec les protons du phosphate de zirconium et/ou de titane. Un cation tel que Na+, K+, Li+ ou NH4 + correspond à une fonction susceptible de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane.
De préférence le composé minéral est l'ion Na+.
Selon un mode de réalisation particulier du quatrième objet de l'invention, le composé minéral ou organique comprend une fonction susceptible de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane.
Cette fonction peut être une fonction basique. Comme fonction basique on peut citer par exemple la fonction aminé. La fonction peut par exemple être sous une forme neutre ou chargée positivement.
Selon un mode préférentiel le composé organique est une monoamine. Il peut s'agir par exemple d'une monoamine aliphatique telle que la n-butylamine.
Selon un autre mode avantageux, le composé organique est un aminoacide ou un lactame. On peut citer par exemple le caprolactame.
Selon un autre mode de réalisation particulier du quatrième objet de l'invention, le composé minéral ou organique comprend deux fonctions susceptibles de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane.
En particulier le composé organique est un composé selon la formule (II) suivante : A-R-B (II) dans laquelle
A et B sont des fonctions, identiques ou différentes, susceptibles de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane, R est un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes
Tout ce qui a été décrit ci-dessus concernant le composé de formule (I), notamment la nature des fonctions A et B et du radical R, pour le premier objet de l'invention, est valable ici à l'identique pour le quatrième objet de l'invention.
Selon un mode préférentiel du quatrième objet de l'invention, le rapport molaire β entre le nombre de moles de fonctions susceptibles de réagir du composé minéral ou organique et le nombre de moles du phosphate de zirconium et/ou de titane est compris entre 0,1 et 0,8. Par nombre de moles de fonctions susceptibles de réagir on entend la somme du nombre de moles de chaque fonction du composé minéral ou organique susceptible de réagir. Par exemple pour un composé comprenant une seule fonction susceptible de réagir, le nombre de moles de fonctions susceptibles de réagir correspond au nombre de moles du composé. Pour un composé comprenant deux fonctions susceptibles de réagir, le nombre de moles de fonctions susceptibles de réagir correspond à deux fois le nombre de moles du composé.
Par nombre de moles du phosphate de zirconium et/ou de titane, on entend le nombre de moles d'élément phosphore. Par exemple une mole de composé de phosphate de zirconium correspond en général à deux moles d'élément phosphore. De préférence le rapport molaire β est compris entre 0,4 et 0,6. Avantageusement le rapport molaire β est sensiblement égal à 0,5.
Selon une variante particulière du quatrième objet de l'invention, le composé à base de phosphate de zirconium et/ou de titane présentant une distance interfeuillets inférieure ou égale à 15Â est obtenu par le procédé de préparation du second objet de l'invention. Le composé minéral ou organique de l'étape de traitement c) est choisi de manière adéquate en fonction du composé à base de phosphate de zirconium et/ou de titane que l'on souhaite préparer.
L'invention concerne également les compositions obtenues par le procédé de fabrication du quatrième objet de l'invention, au moins une partie du composé à base de phosphate de zirconium et/ou de titane étant dispersé sous forme de feuillets dans la composition. Tout ce qui a été décrit ci-dessus concernant les compositions du troisième objet de l'invention est valable ici à l'identique pour les compositions obtenues par le procédé du quatrième objet de l'invention, notamment ce qui est relatif à la nature de la matrice, à la proportion du composé à base de phosphate de zirconium et/ou de titane dans la composition, et à l'ajout d'autres additifs.
L'invention concerne également dans un cinquième objet les articles mis en forme à partir des compositions de l'invention décrites ci-dessus dans le troisième et le quatrième objet de l'invention. Les articles peuvent être mis en forme par moulage ou filage.
Les procédés de fabrication d'articles moulés pouvant être utilisés sont par exemple les procédés d'injection, d'extrusion, d'extrusion-soufflage.
L'invention concerne également des fils, fibres ou filaments constitués d'une composition de l'invention.
Les articles filés, fils, fibres ou filaments sont réalisés selon les techniques usuelles de filage à partir d'un matériau comportant un polymère thermoplastique et le composé à base de phosphate de zirconium et/ou de titane. Le filage peut être réalisé immédiatement après la polymérisation du polymère thermoplastique, celui-ci étant sous forme fondue. Il peut être réalisé à partir d'un composite granulé comportant le composé et le polymère. Le composé peut être incorporé au polymère fondu avant l'opération de filage, sous forme de mélange concentré dans un polymère. Tous les modes d'incorporation de composé dans un polymère à filer peuvent être utilisés.
Les fils, fibres ou filaments selon l'invention peuvent être soumis à tous les traitements pouvant être effectués dans des étapes ultérieures à l'étape de filage. Ils peuvent en particulier être étirés, textures, frisés, chauffés, retordus, teints, ensimés, coupés etc.. Ces opérations complémentaires peuvent être réalisées de façon continue et être intégrées après le dispositif de filage ou être réalisées de façon discontinue. La liste des opérations ultérieures au filage n'a aucun effet limitatif.
Les fils, fibres, ou filaments selon l'invention, peuvent être utilisés sous forme tissée, tricotée ou non tissée. Les fibres selon l'invention sont en particulier adaptées pour la fabrication de feutres pour machines à papier. Ils peuvent être utilisés également pour la fabrication de fils pour moquettes.
L'utilisation de particules plaquettaires à base de phosphates de zirconium permet d'améliorer la résistance à l'abrasion d'un matériau. Cette amélioration est particulièrement avantageuse dans le cadre de l'utilisation du matériau sous forme de fils, fibres, ou filaments.
D'autres détails ou avantages de l'invention apparaîtront plus clairement au vu des exemples ci-dessous donnés uniquement à titre indicatif. Exemples 1-: Préparation d'un composé à base de phosphate de zirconium cristallisé.
On utilise les réactifs suivants:
- acide chlorhydrique (Prolabo 36 % d =1.19) - acide phosphorique (prolabo 85 % d=1.695)
- eau désionisée
- oychlorure de zirconium (sous forme poudre) à 32.8% en ZrO2.
Etape a): précipitation On prépare au préalable une solution aqueuse d'oxychlorure de zirconium à 2,1 mol/L en ZrO2.
Dans un réacteur agité de 1 litre on ajoute à température ambiante les solutions suivantes :
- Acide chlorhydrique 50 ml - Acide phosphorique 50 ml
- Eau désionisée 150 ml
Après agitation du mélange on ajoute de façon continue avec un débit de 5.7 mL/min
140 mL de la solution aqueuse d'oxychlorure de zirconium à 2.1 M.
L'agitation est maintenue pendant 1 heure après la fin d'ajout de la solution d'oxychlorure de zirconium.
Après élimination des eaux-mères on lave le précipité par centrifugation à 4500 t/min, avec 1200 ml de H3PO 20 g/L puis avec de l'eau désionisée, jusqu'à atteindre une conductivité de 6.5 mS (surnageant). On obtient un gâteau du précipité à base de phosphate de zirconium.
Etape b): Cristallisation
Le gâteau est dispersé dans 1 litre de solution aqueuse d'acide phosphorique 10 M, la dispersion ainsi obtenue est transférée dans un réacteur de 2litres puis chauffée à 115 °C. Cette température est maintenue pendant 5 heures. La dispersion obtenue est lavée par centrifugation avec de l'eau désionisée jusqu'à une conductivité inférieure à 1 mS (surnageant). Le gâteau issu de la dernière centrifugation est redispersé de façon à obtenir un extrait sec voisin de 20 %, le pH de la dispersion est compris entre 1 et 2. On obtient une dispersion d'un composé cristallisé à base de phosphate de zirconium, dont les caractéristiques sont les suivantes:
- Taille et morphologie des particules : L'analyse au Microscope Electronique à Transmission (MET) met en évidence l'obtention d'une structure lamellaire dont les lamelles présentent une forme hexagonale avec une taille comprise entre 200 et 500 nm. Les particules sont constituées d'un empilement de plaquettes sensiblement parallèles, l'épaisseur des empilements selon la direction perpendiculaire aux plaquettes étant d'environ 200 nm. - L'analyse DRX met en évidence l'obtention de la phase cristallisée Zr(HPO4)2, 1 H20
- Extrait Sec: 18,'9% (en poids) - pH : 1 ,8
- Conductivité : 8 mS
Exemples 2-3: Traitement du composé par une base minérale (Etape c) 805 g (en extrait sec) de produit issu de l'exemple 1 sont centrifugés. Le culot de centrifugation est redispersé dans une solution aqueuse de soude à 10"3 mol/L (500 ml). Trois lavages sont effectués suivant ces mêmes conditions. Le gâteau issu de la dernière centrifugation est redispersé dans 500 mL de solution de soude à 10"3 mol/L. Le pH est ajusté à 5 (exemple 2) ou à 3 (exemple 3) par ajout de soude 8 mol/L. La dispersion est centrifugée et le culot est redispersé dans 300 mL d'eau épurée (extrait sec: 30 % en poids). La conductivité finale de la suspension est inférieure à 1 mS.
Exemple 4: Traitement du composé par une base organique (Etape c))
Le produit issu de l'exemple 1 est neutralisé par ajout d'héxaméthylène diamine: A la dispersion on ajoute une solution aqueuse de HMD à 70% jusqu'à obtention d'un pH de 5. La dispersion ainsi obtenue est homogénéisée à l'aide d'un Ultraturax. L'extrait sec final est ajusté par ajout d'eau désionisée (extrait sec: 15 % en poids).
Exemple 5: Traitement du composé par du caprolactame (Etape c)) On incorpore du caprolactame dans le sol minéral obtenu selon l'exemple 1 (33% en poids de caprolactame par rapport à l'extrait sec). Le pH mesuré dans la solution est de 3,3. Puis par distillation de l'eau, on récupère une poudre contenant la fraction correspondante de caprolactame.
Exemples 6-10: Compositions comprenant des particules plaquettaires à base de phosphate de zirconium.
On synthétise un polyamide 6 à partir de caprolactame selon un procédé classique, en introduisant dans le milieu de polymérisation une dispersion aqueuse obtenue aux exemples 2 à 4, ou la poudre obtenue à l'exemple 5. La proportion de composé à base de phosphate de zirconium introduite est de 2% en poids. On synthétise également un polymère ne comportant pas le composé (exemple 10, comparatif). Après polymérisation, le polymère est mis en forme de granulés. Ceux ci sont lavés pour élimination du caprolactame résiduel (les granulés sont immergés dans un excès d'eau à 90°C pendant quelques heures) puis sont séchés sous vide primaire (< 0.5 mbar) pendant 16 heures à 110°C.
On réalise des essais de traction sur des joncs extrudés et conditionnés 30 jours à HR 50% et 23°C. Le diamètre des joncs est compris entre 0.5 et 1 mm. On utilise une machine de traction INSTRON 1185 avec capteur de force de capacité 100 N. On reporte la contrainte nominale (rapport de la force mesurée sur la section évaluée par mesure de diamètre avec Palmer) en fonction de la déformation relative appliquée. Les résultats sont reportés en tableau 1.
Tableau 1
On obtient une composition à base de polyamide dont l'allongement à la rupture est supérieur à celui d'un polyamide ne comprenant pas le composé minéral, et dont le module est amélioré.
On observe au MET des compositions obtenues comme ci-dessus comprenant du PA 6 et 5% en poids de composé à base de phosphate de zirconium, sur des coupes d'épaisseur moyenne 0.1 μm. On observe la présence de très nombreuses lamelles minérales dispersées, d'épaisseur nanométrique et de largeur 50 à 100 nm. La figure 1 représente une photographie d'une composition observée au microscope comprenant le composé de phosphate de zirconium correspondant à l'exemple 2.
La figure 2 représente une photographie d'une composition observée au microscope comprenant le composé de phosphate de zirconium correspondant à l'exemple 4.
On observe la présence de très nombreuses lamelles minérales dispersées, d'épaisseur nanométrique et de largeur 50 à 100 nm.
Exemple 11-14: Filaments On file à basse vitesse des monofilaments d'un diamètre d'environ 250 μm à partir d'une composition selon l'exemple 9, ou d'un polyamide pur selon l'exemple 10. On étire les monofilaments en reprise à différents taux d'étirage. On évalue les propriétés mécaniques et la résistance à l'abrasion des monofilaments selon les tests suivants:
- Caractérisation mécanique (Allongement rupture, contrainte rupture) : effectuée sur une machine de traction Erichsen placée sous local climatisé à 50% HR et
23°C après conditionnement des fils pendant 72 heures dans ces conditions. La longueur initiale des fils est de 50 mm et la vitesse de traverse est de 50 mm/min.
- Résistance à l'abrasion : On impose un frottement simultané à 15 fils immobiles dont la tension est maintenue constante à 15 fils par 3 galets en laiton assurant un embarrage. Le point d'application de la zone d'embarrage est déplacé le long des fils sur une amplitude de 90 mm à une fréquence de 220 cycles par minutes. La résistance à l'abrasion est définie par le nombre de cycles (aller et retour) nécessaires pour casser 13 des 15 fils. Les mesures présentées sont la moyennes des valeurs obtenues sur trois essais avec des fils similaires.
Les caractéristiques des fils réalisés sont présentés en tableau 2. Les propriétés mesurées sont présentées en tableau 3.
Tableau 2
Tableau 3
Exemples 15-17: Compositions comprenant des particules plaquettaires à base de phosphate de zirconium.
On synthétise un polyamide 6 à partir de caprolactame selon un procédé classique, en introduisant dans le milieu de polymérisation une dispersion aqueuse obtenue à l'exemple 4. La proportion de composé à base de phosphate de zirconium introduite est de 1 (exemple 16) ou 2 (exemple 17) % en poids. On synthétise également un polymère ne comportant pas le composé (exemple 15, comparatif).
Après polymérisation, le polymère est mis en forme de granulés. Ceux ci sont lavés pour élimination du caprolactame résiduel (les granulés sont immergés dans un excès d'eau à
90°C pendant quelques heures) puis sont séchés sous vide primaire (< 0.5 mbar) pendant 16 heures à 110°C.
Evaluations
Différents tests ont été réalisés sur les compositions :
-Contrainte à la rupture selon la norme ISO 527, mesurée après conditionnement de l'éprouvette à 23°C et à une humidité relative de 50%.
-Module de traction selon la norme ISO 527, mesuré après conditionnement de l'éprouvette à 23°C et à une humidité relative de 50%.
-Module de flexion selon la norme ISO 178, mesuré après conditionnement de l'éprouvette à 23°C et à une humidité relative de 50%.
-Température de déformation sous charge (HDT-Heat Deflection Température) selon la norme ISO 75, sous charge de 1,81 N/mm2.
Les différentes compositions et les évaluations sont présentées dans le tableau 4 ci- dessous. Tableau 4
On obtient des compositions à base de polyamide dont la contrainte à la rupture, le module et la température de déformation sous charge sont supérieurs à ceux d'un polyamide ne comprenant pas le composé minéral.

Claims

REVENDICATIONS
1. Composé à base de phosphate de zirconium et/ou de titane comprenant un composé selon la formule (I) suivante :
A-R-B (I) dans laquelle
A et B sont des fonctions, identiques ou différentes, susceptibles de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane, R est un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes caractérisé en ce que le rapport molaire α entre le nombre de moles de fonctions A et B et le nombre de moles du phosphate de zirconium et/ou de titane étant compris entre 0,1 et 0,8.
2. Composé selon la revendication 1 , caractérisé en ce que le rapport molaire α est compris entre 0,4 et 0,6.
3. Composé selon la revendication 2, caractérisé en ce que le rapport molaire α est sensiblement égal à 0,5.
4. Composé selon l'une des revendications 1 à 3, caractérisé en ce que les fonctions A et B sont des fonctions aminés.
5. Composé selon la revendication 4, caractérisé en ce que le composé (I) est choisi parmi l'hexaméthylène diamine, la méthyl-2-pentaméthylène diamine, la métaxylène diamine
6. Composé selon l'une des revendications précédentes, caractérisé en ce que la distance interfeuillets du composé est inférieure ou égale à 15Â.
7. Procédé de préparation d'un composé selon l'une des revendications précédentes, éventuellement dispersé dans un liquide, comprenant les étapes successives suivantes: d) Précipitation en milieu acide d'un composé à base de phosphate de zirconium et/ou de titane, à partir d'acide phosphorique et d'un composé du zirconium et/ou d'un composé à base de titane ou de composés mixtes à base de titane et de zirconium, le titane et/ou le zirconium étant au degré d'oxydation IV e) Cristallisation du composé f) Traitement du composé cristallisé, en milieu liquide, à pH compris entre 3 et 9.
8. Procédé selon la revendication 7 caractérisé en ce que le traitement consiste à immerger le composé cristallisé dans un liquide comprenant un composé minéral ou organique qui, en solution aqueuse présente un pH supérieur à 3.
9. Procédé selon la revendication 8 caractérisé en ce que le liquide est une solution aqueuse.
10. Procédé selon l'une des revendications 7 à 9 caractérisé en ce que le liquide comprend de l'hexaméthylène diamine.
11. Procédé selon l'une des revendications 7 à 10, caractérisé en ce qu'il comprend une phase de lavage d) après l'étape c)
12. Procédé selon l'une des revendications 7 à 11 caractérisé en ce qu'il comprend une étape de séchage e) après l'étape d).
13. Procédé selon l'une des revendications 7 à 12 caractérisé en ce que l'étape a) est réalisée en milieu aqueux, à pH inférieur à 2, et en ce que le composé de zirconium est l'oxychlorure de zirconium, le composé de titane est l'oxychlorure de titane.
14. Procédé selon l'une des revendications 7 à 13 caractérisé en ce que l'étape de cristallisation est réalisée dans l'acide phosphorique.
15. Composé à base de phosphate de zirconium et/ou de titane susceptible d'être obtenu par un procédé selon l'une des revendications 7 à 14.
16. Dispersion dans de l'eau d'un composé selon l'une des revendications 1 à 6 ou d'un composé obtenu par le procédé selon l'une des revendications 7 à 14.
17. Composition comprenant une matrice thermoplastique et un composé selon l'une des revendications 1 à 16, au moins une partie du composé étant dispersé dans la matrice sous forme de feuillets.
18. Composition selon la revendication 17, caractérisée en ce qu'elle est obtenue par introduction d'une solution aqueuse selon la revendication 16 dans le milieu de polymérisation de la matrice.
19. Procédé de fabrication d'une composition comprenant une matrice thermoplastique et un composé à base de phosphate de zirconium et/ou de titane, caractérisé en ce que l'on introduit un composé à base de phosphate de zirconium et/ou de titane présentant une distance interfeuillets inférieure ou égale à 15À dans la matrice ou dans le milieu de polymérisation de la matrice.
20. Procédé selon la revendication 19, caractérisé en ce que la distance interfeuillets du composé à base de phosphate de zirconium et/ou de titane est inférieure ou égale à
13 Â
21. Procédé selon la revendication 19 ou 20, caractérisé en ce que le composé à base de phosphate de zirconium et/ou de titane comprend un composé minéral ou organique comprenant au moins une fonction susceptible de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane.
22. Procédé selon la revendication 21 , caractérisé en ce que le composé minéral ou organique sous forme cationique.
23. Procédé selon la revendication 22, caractérisé en ce que le composé minéral est l'ion Na+.
24. Procédé selon l'une des revendications 21 à 23, caractérisé en ce que le composé minéral ou organique comprend une fonction susceptible de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane.
25. Procédé selon la revendication 24, caractérisé en ce que la fonction susceptible de réagir est une fonction aminé.
26. Procédé selon la revendication 25, caractérisé en ce que le composé organique est une monoamine.
27. Procédé selon la revendication 25, caractérisé en ce que le composé organique est un aminoacide ou un lactame.
28. Procédé selon l'une des revendications 21 à 23, caractérisé en ce que le composé organique est un composé selon la formule (II) suivante :
A-R-B (II) dans laquelle
A et B sont des fonctions, identiques ou différentes, susceptibles de réagir avec les fonctions acides du phosphate de zirconium et/ou de titane,
R est un radical hydrocarboné aliphatique, cycloaliphatique ou aromatique, substitué ou non, comprenant de 2 à 20 atomes de carbone, et pouvant comprendre des hétéroatomes
29. Procédé selon la revendication 28, caractérisé en ce que les fonctions A et B sont des aminés.
30. Procédé selon la revendication 29, caractérisé en ce que le composé (II) est choisi parmi l'hexaméthylène diamine, la méthyl-2-pentaméthylène diamine, la métaxylène diamine
31. Procédé selon l'une des revendications 21 à 30, caractérisé en ce que le rapport molaire β entre le nombre de moles de fonctions susceptibles de réagir du composé minéral ou organique et le nombre de moles du phosphate de zirconium et/ou de titane étant compris entre 0,1 et 0,8
32. Procédé selon la revendication 31 , caractérisé en ce que le rapport β est compris entre 0,4 et 0;6
33. Procédé selon la revendication 32, caractérisé en ce que le rapport β est sensiblement égal à 0,5.
34. Procédé selon l'une des revendications 19 à 33; caractérisé en ce que le composé à base de phosphate de zirconium et/ou de titane est obtenu par le procédé selon l'une des revendications 7 à 14.
35. Procédé selon l'une des revendications 19 à 34, caractérisé en ce que l'on introduit une solution aqueuse du composé à base de phosphate de zirconium et/ou de titane dans le milieu de polymérisation de la matrice.
36. Composition susceptible d'être obtenue par le procédé selon l'une des revendications 19 à 35, au moins une partie du composé étant dispersé sous forme de feuillets.
37. Composition selon l'une des revendications 17, 18 ou 36, caractérisée en ce que la matrice est choisie parmi le polyamide 6, le polyamide 66, les mélanges et copolymères à base de ces polyamides
38. Composition selon l'une des revendications 17, 18 ou 36, caractérisée en ce que la proportion en poids du composé à base de phosphate de zirconium et/ou de titane dans la composition est inférieure ou égale à 5%.
39. Articles obtenus par moulage ou mise en forme d'une composition selon l'une des revendications 17, 18 ou 36.
40. Fils, fibres et filaments constitués d'une composition selon l'une des revendications 17, 18 ou 36:
41. Feutres pour machines à papier comprenant des fibres selon la revendication 40
42. Utilisation de composés à base de phosphate de zirconium en composition dans des fils, fibres ou filaments en matière thermoplastique, à titre de modificateur de la résistance à l'abrasion desdits fils, fibres ou filaments.
EP01965341A 2000-08-23 2001-08-23 Composes mineraux, leur procede de preparation et leur utilisation dans les materiaux thermoplastiques Withdrawn EP1349807A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0010872A FR2813300B1 (fr) 2000-08-23 2000-08-23 Procede de preparation de composes mineraux, composes obtenus, et leur utilisation dans les materiaux thermoplastiques
FR0010872 2000-08-23
PCT/FR2001/002653 WO2002016264A1 (fr) 2000-08-23 2001-08-23 Composes mineraux, leur procede de preparation et leur utilisation dans les materiaux thermoplastiques

Publications (1)

Publication Number Publication Date
EP1349807A1 true EP1349807A1 (fr) 2003-10-08

Family

ID=8853690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01965341A Withdrawn EP1349807A1 (fr) 2000-08-23 2001-08-23 Composes mineraux, leur procede de preparation et leur utilisation dans les materiaux thermoplastiques

Country Status (10)

Country Link
US (1) US7241827B2 (fr)
EP (1) EP1349807A1 (fr)
JP (1) JP2004506585A (fr)
KR (1) KR100639290B1 (fr)
AU (1) AU2001286002A1 (fr)
BR (1) BR0113434A (fr)
CA (1) CA2420323A1 (fr)
FR (1) FR2813300B1 (fr)
MX (1) MXPA03001583A (fr)
WO (1) WO2002016264A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857471B2 (ja) * 2001-02-06 2012-01-18 株式会社豊田中央研究所 多孔性物質及びその製造方法、並びにそれを用いた触媒
FR2836476B1 (fr) * 2002-02-22 2005-03-18 Rhodianyl Materiau thermoplastique a proprietes barrieres elevees
FR2849018B1 (fr) * 2002-12-20 2006-04-28 Rhodia Elect & Catalysis Phosphate de zirconium a structure exfoliee, precurseur de ce phosphate, procede de preparation et utilisation dans des compositions a base de materiaux macromoleculaires
FR2871792B1 (fr) * 2004-06-22 2007-02-09 Rhodia Chimie Sa Phosphate de zirconium cristallise a haut facteur de forme, son procede de preparation et son utilisation dans un materiau macromoleculaire
FR2871810B1 (fr) * 2004-06-22 2006-08-18 Rhodia Chimie Sa Utilisation de phosphate de zirconium a structure exfoliee ou de ses precurseurs comme agent modificateur de rheologie des milieux aqueux acides
FR2871807B1 (fr) * 2004-06-22 2006-08-11 Rhodia Chimie Sa Composition thermoplastique a base de polyester, et procede de fabrication et corps creux obtenus a partir de ces compositions
FR2886949B1 (fr) * 2005-06-10 2007-08-03 Rhodia Chimie Sa Fils, filaments et fibres polyamide a proprietes ameliorees
FR2904630A1 (fr) * 2006-08-02 2008-02-08 Rhodia Recherches & Tech Composition a base d'un elastomere qui presente une phase cristalline au repos ou sous contrainte et comprenant un phosphate de zirconium ou de titane cristallise a structure lamellaire comportant un agent d'intercalation
FR2904620A1 (fr) * 2006-08-02 2008-02-08 Rhodia Recherches & Tech Materiau a structure lamellaire modifie, de type polysilicate ou phosphate de zirconium et/ou de titane, modifie par un oligoamide, son procede de preparation et son utilisation.
US7498381B1 (en) 2006-08-02 2009-03-03 Exxonmobil Chemical Patents Inc. Low permeability elastomeric-metal phosphate nanocomposites
JP5724578B2 (ja) * 2011-04-20 2015-05-27 東亞合成株式会社 層状リン酸ジルコニウムの製造方法
JP5821258B2 (ja) * 2011-04-20 2015-11-24 東亞合成株式会社 層状リン酸ジルコニウムの製造方法
CN109438759B (zh) * 2018-09-29 2021-03-30 华南理工大学 一种具有阻燃作用的氮-磷复合插层改性磷酸锆及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1282594A (en) * 1969-07-02 1972-07-19 Dow Chemical Co Preparation of titanium phosphate crystals
JPS5954612A (ja) * 1982-09-24 1984-03-29 Agency Of Ind Science & Technol 結晶性層状リン酸ジルコニウム及び低級オレフィン製造用触媒
JPS59124954A (ja) * 1982-12-30 1984-07-19 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
JPH0653566B2 (ja) * 1984-05-11 1994-07-20 第一稀元素化学工業株式会社 結晶質リン酸ジルコニウムの製造方法
IT1191613B (it) * 1985-05-15 1988-03-23 Eniricerche Spa Fosfato di zirconio e suo metodo di preparazione
JP3270518B2 (ja) * 1992-04-28 2002-04-02 三菱化学株式会社 ポリアミド樹脂組成物およびその製造方法
US5266298A (en) * 1992-08-27 1993-11-30 Fmc Corporation Process for removing iron from hydrogen peroxide
JP3186908B2 (ja) * 1993-07-15 2001-07-11 テイカ株式会社 防錆顔料組成物
US5656709A (en) * 1994-05-24 1997-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Hybrid material and process for producing the same
JPH0978430A (ja) * 1995-09-11 1997-03-25 Oji Paper Co Ltd 抗菌性長繊維不織布の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0216264A1 *

Also Published As

Publication number Publication date
CA2420323A1 (fr) 2002-02-28
AU2001286002A1 (en) 2002-03-04
MXPA03001583A (es) 2004-11-01
JP2004506585A (ja) 2004-03-04
US20040033186A1 (en) 2004-02-19
KR100639290B1 (ko) 2006-10-27
BR0113434A (pt) 2003-06-24
FR2813300A1 (fr) 2002-03-01
WO2002016264A1 (fr) 2002-02-28
FR2813300B1 (fr) 2002-10-25
US7241827B2 (en) 2007-07-10
KR20030053505A (ko) 2003-06-28

Similar Documents

Publication Publication Date Title
EP1349807A1 (fr) Composes mineraux, leur procede de preparation et leur utilisation dans les materiaux thermoplastiques
Fernandes et al. Novel transparent nanocomposite films based on chitosan and bacterial cellulose
EP3121232B1 (fr) Microfibres de cellulose composites
EP3643750B1 (fr) Matériau composite de pbs et son procédé de production
EP2196494A1 (fr) Compositions de polyamide-silicate en couche
Marpongahtun et al. Synthesis of carbon nanodots from cellulose nanocrystals oil palm empty fruit by pyrolysis method
JP4199538B2 (ja) 改良された機械的特性を有する重合体組成物
JP2009046692A (ja) 高い遮蔽性を有する熱可塑性材料の製造方法
FR2849018A1 (fr) Phosphate de zirconium a structure exfoliee, precurseur de ce phosphate, procede de preparation et utilisation dans des compositions a base de materiaux macromoleculaires
WO2003001914A1 (fr) Particule comprenant une matrice et au moins un agent bioactif
EP1765728B1 (fr) Phosphate de zirconium cristallise a haut facteur de forme, son procede de preparation et son utilisation dans un materiau macromoleculaire.
EP2448998B1 (fr) Polyamide modifie, procede de preparation, article obtenu a partir de ce polyamide
KR100714745B1 (ko) 폴리우레탄 또는 방향족 폴리아미드 성형용 원액 및 이를위한 하이드로탈사이트 화합물 입자의 이용
US20230110936A1 (en) Bacterial nanocellulose transparent film, manufacturing method thereof, and packaging material using the same
JP3858320B2 (ja) ガラスとポリアミドとの複合体及びその製法
FR2833015A1 (fr) Compositions thermoplastiques a proprietes mecaniques ameliorees
CN115594855A (zh) 光致变色聚酯、聚酯纤维及制备方法
EP1724307A1 (fr) Composition de resine polyester
FR3054244A1 (fr) Polyester thermoplastique semi-cristallin pour la fabrication de fibres
US7446143B2 (en) Intercalates, exfoliates and concentrates thereof formed with protonated, non-carboxylic swelling agent and nylon intercalants polymerized in-situ via ring-opening polymerization
Handayani et al. A systematic Study on the Fabrication of Transparent Nanopaper Based on Controlled Cellulose Nanostructure From Oil Palm Empty Fruit Bunch
KR100787927B1 (ko) 폴리에스테르/실리카 복합재료, 이를 포함하는폴리에스테르 수지 조성물, 및 이의 제조방법
Purwar Bionanocomposites Based on Silk Proteins and Nanoclay
CN115011261A (zh) 一种含氨基难溶高分子溶液用于本体材料粘接的方法
CN113913961A (zh) 一种活性元素掺杂的矿化胶原纳米纤维及其制备方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030321

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20060906

17Q First examination report despatched

Effective date: 20060906

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VARLET, JOEL

Inventor name: ROBERT, GILLES

Inventor name: DUPUIS, DOMINIQUE

Inventor name: BOUGELOT, EMMANUELLE

18D Application deemed to be withdrawn

Effective date: 20080829

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

R18D Application deemed to be withdrawn (corrected)

Effective date: 20080826